Statistics
| Branch: | Revision:

root / hw / sun4m.c @ 0fc5c15a

History | View | Annotate | Download (10.8 kB)

1
/*
2
 * QEMU Sun4m System Emulator
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#define KERNEL_LOAD_ADDR     0x00004000
27
#define CMDLINE_ADDR         0x007ff000
28
#define INITRD_LOAD_ADDR     0x00800000
29
#define PROM_SIZE_MAX        (256 * 1024)
30
#define PROM_ADDR             0xffd00000
31
#define PROM_FILENAMEB             "proll.bin"
32
#define PROM_FILENAMEE             "proll.elf"
33
#define PHYS_JJ_EEPROM        0x71200000        /* m48t08 */
34
#define PHYS_JJ_IDPROM_OFF        0x1FD8
35
#define PHYS_JJ_EEPROM_SIZE        0x2000
36
// IRQs are not PIL ones, but master interrupt controller register
37
// bits
38
#define PHYS_JJ_IOMMU        0x10000000        /* I/O MMU */
39
#define PHYS_JJ_TCX_FB        0x50000000        /* TCX frame buffer */
40
#define PHYS_JJ_SLAVIO        0x70000000        /* Slavio base */
41
#define PHYS_JJ_ESPDMA  0x78400000      /* ESP DMA controller */
42
#define PHYS_JJ_ESP     0x78800000      /* ESP SCSI */
43
#define PHYS_JJ_ESP_IRQ    18
44
#define PHYS_JJ_LEDMA   0x78400010      /* Lance DMA controller */
45
#define PHYS_JJ_LE      0x78C00000      /* Lance ethernet */
46
#define PHYS_JJ_LE_IRQ     16
47
#define PHYS_JJ_CLOCK        0x71D00000      /* Per-CPU timer/counter, L14 */
48
#define PHYS_JJ_CLOCK_IRQ  7
49
#define PHYS_JJ_CLOCK1        0x71D10000      /* System timer/counter, L10 */
50
#define PHYS_JJ_CLOCK1_IRQ 19
51
#define PHYS_JJ_INTR0        0x71E00000        /* Per-CPU interrupt control registers */
52
#define PHYS_JJ_INTR_G        0x71E10000        /* Master interrupt control registers */
53
#define PHYS_JJ_MS_KBD        0x71000000        /* Mouse and keyboard */
54
#define PHYS_JJ_MS_KBD_IRQ    14
55
#define PHYS_JJ_SER        0x71100000        /* Serial */
56
#define PHYS_JJ_SER_IRQ    15
57
#define PHYS_JJ_FDC        0x71400000        /* Floppy */
58
#define PHYS_JJ_FLOPPY_IRQ 22
59
#define PHYS_JJ_ME_IRQ 30                /* Module error, power fail */
60
#define MAX_CPUS 16
61

    
62
/* TSC handling */
63

    
64
uint64_t cpu_get_tsc()
65
{
66
    return qemu_get_clock(vm_clock);
67
}
68

    
69
int DMA_get_channel_mode (int nchan)
70
{
71
    return 0;
72
}
73
int DMA_read_memory (int nchan, void *buf, int pos, int size)
74
{
75
    return 0;
76
}
77
int DMA_write_memory (int nchan, void *buf, int pos, int size)
78
{
79
    return 0;
80
}
81
void DMA_hold_DREQ (int nchan) {}
82
void DMA_release_DREQ (int nchan) {}
83
void DMA_schedule(int nchan) {}
84
void DMA_run (void) {}
85
void DMA_init (int high_page_enable) {}
86
void DMA_register_channel (int nchan,
87
                           DMA_transfer_handler transfer_handler,
88
                           void *opaque)
89
{
90
}
91

    
92
static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
93
{
94
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
95
    m48t59_write(nvram, addr++, value & 0xff);
96
}
97

    
98
static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
99
{
100
    m48t59_write(nvram, addr++, value >> 24);
101
    m48t59_write(nvram, addr++, (value >> 16) & 0xff);
102
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
103
    m48t59_write(nvram, addr++, value & 0xff);
104
}
105

    
106
static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
107
                       const unsigned char *str, uint32_t max)
108
{
109
    unsigned int i;
110

    
111
    for (i = 0; i < max && str[i] != '\0'; i++) {
112
        m48t59_write(nvram, addr + i, str[i]);
113
    }
114
    m48t59_write(nvram, addr + max - 1, '\0');
115
}
116

    
117
static m48t59_t *nvram;
118

    
119
extern int nographic;
120

    
121
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
122
                       int boot_device, uint32_t RAM_size,
123
                       uint32_t kernel_size,
124
                       int width, int height, int depth)
125
{
126
    unsigned char tmp = 0;
127
    int i, j;
128

    
129
    // Try to match PPC NVRAM
130
    nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
131
    nvram_set_lword(nvram,  0x10, 0x00000001); /* structure v1 */
132
    // NVRAM_size, arch not applicable
133
    m48t59_write(nvram, 0x2D, smp_cpus & 0xff);
134
    m48t59_write(nvram, 0x2E, 0);
135
    m48t59_write(nvram, 0x2F, nographic & 0xff);
136
    nvram_set_lword(nvram,  0x30, RAM_size);
137
    m48t59_write(nvram, 0x34, boot_device & 0xff);
138
    nvram_set_lword(nvram,  0x38, KERNEL_LOAD_ADDR);
139
    nvram_set_lword(nvram,  0x3C, kernel_size);
140
    if (cmdline) {
141
        strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
142
        nvram_set_lword(nvram,  0x40, CMDLINE_ADDR);
143
        nvram_set_lword(nvram,  0x44, strlen(cmdline));
144
    }
145
    // initrd_image, initrd_size passed differently
146
    nvram_set_word(nvram,   0x54, width);
147
    nvram_set_word(nvram,   0x56, height);
148
    nvram_set_word(nvram,   0x58, depth);
149

    
150
    // Sun4m specific use
151
    i = 0x1fd8;
152
    m48t59_write(nvram, i++, 0x01);
153
    m48t59_write(nvram, i++, 0x80); /* Sun4m OBP */
154
    j = 0;
155
    m48t59_write(nvram, i++, macaddr[j++]);
156
    m48t59_write(nvram, i++, macaddr[j++]);
157
    m48t59_write(nvram, i++, macaddr[j++]);
158
    m48t59_write(nvram, i++, macaddr[j++]);
159
    m48t59_write(nvram, i++, macaddr[j++]);
160
    m48t59_write(nvram, i, macaddr[j]);
161

    
162
    /* Calculate checksum */
163
    for (i = 0x1fd8; i < 0x1fe7; i++) {
164
        tmp ^= m48t59_read(nvram, i);
165
    }
166
    m48t59_write(nvram, 0x1fe7, tmp);
167
}
168

    
169
static void *slavio_intctl;
170

    
171
void pic_info()
172
{
173
    slavio_pic_info(slavio_intctl);
174
}
175

    
176
void irq_info()
177
{
178
    slavio_irq_info(slavio_intctl);
179
}
180

    
181
void pic_set_irq(int irq, int level)
182
{
183
    slavio_pic_set_irq(slavio_intctl, irq, level);
184
}
185

    
186
void pic_set_irq_new(void *opaque, int irq, int level)
187
{
188
    pic_set_irq(irq, level);
189
}
190

    
191
void pic_set_irq_cpu(int irq, int level, unsigned int cpu)
192
{
193
    slavio_pic_set_irq_cpu(slavio_intctl, irq, level, cpu);
194
}
195

    
196
static void *iommu;
197

    
198
uint32_t iommu_translate(uint32_t addr)
199
{
200
    return iommu_translate_local(iommu, addr);
201
}
202

    
203
static void *slavio_misc;
204

    
205
void qemu_system_powerdown(void)
206
{
207
    slavio_set_power_fail(slavio_misc, 1);
208
}
209

    
210
static void main_cpu_reset(void *opaque)
211
{
212
    CPUState *env = opaque;
213
    cpu_reset(env);
214
}
215

    
216
/* Sun4m hardware initialisation */
217
static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
218
                       DisplayState *ds, const char **fd_filename, int snapshot,
219
                       const char *kernel_filename, const char *kernel_cmdline,
220
                       const char *initrd_filename)
221
{
222
    CPUState *env, *envs[MAX_CPUS];
223
    char buf[1024];
224
    int ret, linux_boot;
225
    unsigned int i;
226
    long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
227

    
228
    linux_boot = (kernel_filename != NULL);
229

    
230
    /* init CPUs */
231
    for(i = 0; i < smp_cpus; i++) {
232
        env = cpu_init();
233
        envs[i] = env;
234
        if (i != 0)
235
            env->halted = 1;
236
        register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
237
        qemu_register_reset(main_cpu_reset, env);
238
    }
239
    /* allocate RAM */
240
    cpu_register_physical_memory(0, ram_size, 0);
241

    
242
    iommu = iommu_init(PHYS_JJ_IOMMU);
243
    slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
244
    for(i = 0; i < smp_cpus; i++) {
245
        slavio_intctl_set_cpu(slavio_intctl, i, envs[i]);
246
    }
247

    
248
    tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
249
    if (nd_table[0].vlan) {
250
        if (nd_table[0].model == NULL
251
            || strcmp(nd_table[0].model, "lance") == 0) {
252
            lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
253
        } else {
254
            fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model);
255
            exit (1);
256
        }
257
    }
258
    nvram = m48t59_init(0, PHYS_JJ_EEPROM, 0, PHYS_JJ_EEPROM_SIZE, 8);
259
    for (i = 0; i < MAX_CPUS; i++) {
260
        slavio_timer_init(PHYS_JJ_CLOCK + i * TARGET_PAGE_SIZE, PHYS_JJ_CLOCK_IRQ, 0, i);
261
    }
262
    slavio_timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ, 2, (unsigned int)-1);
263
    slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
264
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
265
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
266
    slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
267
    fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
268
    esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
269
    slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
270

    
271
    prom_offset = ram_size + vram_size;
272
    cpu_register_physical_memory(PROM_ADDR, 
273
                                 (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, 
274
                                 prom_offset | IO_MEM_ROM);
275

    
276
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
277
    ret = load_elf(buf, 0, NULL);
278
    if (ret < 0) {
279
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
280
        ret = load_image(buf, phys_ram_base + prom_offset);
281
    }
282
    if (ret < 0) {
283
        fprintf(stderr, "qemu: could not load prom '%s'\n", 
284
                buf);
285
        exit(1);
286
    }
287

    
288
    kernel_size = 0;
289
    if (linux_boot) {
290
        kernel_size = load_elf(kernel_filename, -0xf0000000, NULL);
291
        if (kernel_size < 0)
292
            kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
293
        if (kernel_size < 0)
294
            kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
295
        if (kernel_size < 0) {
296
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
297
                    kernel_filename);
298
            exit(1);
299
        }
300

    
301
        /* load initrd */
302
        initrd_size = 0;
303
        if (initrd_filename) {
304
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
305
            if (initrd_size < 0) {
306
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
307
                        initrd_filename);
308
                exit(1);
309
            }
310
        }
311
        if (initrd_size > 0) {
312
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
313
                if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
314
                    == 0x48647253) { // HdrS
315
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
316
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
317
                    break;
318
                }
319
            }
320
        }
321
    }
322
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
323
}
324

    
325
QEMUMachine sun4m_machine = {
326
    "sun4m",
327
    "Sun4m platform",
328
    sun4m_init,
329
};