Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 10781c09

History | View | Annotate | Download (97.4 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 b00052e4 balrog
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 52c00a5f bellard
@end itemize
93 386405f7 bellard
94 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95 0806e3f6 bellard
96 debc7065 bellard
@node Installation
97 5b9f457a bellard
@chapter Installation
98 5b9f457a bellard
99 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
100 15a34c63 bellard
101 debc7065 bellard
@menu
102 debc7065 bellard
* install_linux::   Linux
103 debc7065 bellard
* install_windows:: Windows
104 debc7065 bellard
* install_mac::     Macintosh
105 debc7065 bellard
@end menu
106 debc7065 bellard
107 debc7065 bellard
@node install_linux
108 1f673135 bellard
@section Linux
109 1f673135 bellard
110 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
111 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
112 5b9f457a bellard
113 debc7065 bellard
@node install_windows
114 1f673135 bellard
@section Windows
115 8cd0ac2f bellard
116 15a34c63 bellard
Download the experimental binary installer at
117 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
118 d691f669 bellard
119 debc7065 bellard
@node install_mac
120 1f673135 bellard
@section Mac OS X
121 d691f669 bellard
122 15a34c63 bellard
Download the experimental binary installer at
123 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
124 df0f11a0 bellard
125 debc7065 bellard
@node QEMU PC System emulator
126 3f9f3aa1 bellard
@chapter QEMU PC System emulator
127 1eb20527 bellard
128 debc7065 bellard
@menu
129 debc7065 bellard
* pcsys_introduction:: Introduction
130 debc7065 bellard
* pcsys_quickstart::   Quick Start
131 debc7065 bellard
* sec_invocation::     Invocation
132 debc7065 bellard
* pcsys_keys::         Keys
133 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
134 debc7065 bellard
* disk_images::        Disk Images
135 debc7065 bellard
* pcsys_network::      Network emulation
136 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
137 debc7065 bellard
* pcsys_usb::          USB emulation
138 f858dcae ths
* vnc_security::       VNC security
139 debc7065 bellard
* gdb_usage::          GDB usage
140 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
141 debc7065 bellard
@end menu
142 debc7065 bellard
143 debc7065 bellard
@node pcsys_introduction
144 0806e3f6 bellard
@section Introduction
145 0806e3f6 bellard
146 0806e3f6 bellard
@c man begin DESCRIPTION
147 0806e3f6 bellard
148 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
149 3f9f3aa1 bellard
following peripherals:
150 0806e3f6 bellard
151 0806e3f6 bellard
@itemize @minus
152 5fafdf24 ths
@item
153 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 0806e3f6 bellard
@item
155 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 15a34c63 bellard
extensions (hardware level, including all non standard modes).
157 0806e3f6 bellard
@item
158 0806e3f6 bellard
PS/2 mouse and keyboard
159 5fafdf24 ths
@item
160 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
161 1f673135 bellard
@item
162 1f673135 bellard
Floppy disk
163 5fafdf24 ths
@item
164 c4a7060c blueswir1
PCI/ISA PCI network adapters
165 0806e3f6 bellard
@item
166 05d5818c bellard
Serial ports
167 05d5818c bellard
@item
168 c0fe3827 bellard
Creative SoundBlaster 16 sound card
169 c0fe3827 bellard
@item
170 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
171 c0fe3827 bellard
@item
172 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
173 e5c9a13e balrog
@item
174 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
175 b389dbfb bellard
@item
176 26463dbc balrog
Gravis Ultrasound GF1 sound card
177 26463dbc balrog
@item
178 cc53d26d malc
CS4231A compatible sound card
179 cc53d26d malc
@item
180 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
181 0806e3f6 bellard
@end itemize
182 0806e3f6 bellard
183 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
184 3f9f3aa1 bellard
185 cc53d26d malc
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186 0c58ac1c malc
was configured with --audio-card-list option containing the name(s) of
187 e5178e8d malc
required card(s).
188 c0fe3827 bellard
189 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190 15a34c63 bellard
VGA BIOS.
191 15a34c63 bellard
192 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193 c0fe3827 bellard
194 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195 26463dbc balrog
by Tibor "TS" Sch?tz.
196 423d65f4 balrog
197 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
198 cc53d26d malc
199 0806e3f6 bellard
@c man end
200 0806e3f6 bellard
201 debc7065 bellard
@node pcsys_quickstart
202 1eb20527 bellard
@section Quick Start
203 1eb20527 bellard
204 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
205 0806e3f6 bellard
206 0806e3f6 bellard
@example
207 285dc330 bellard
qemu linux.img
208 0806e3f6 bellard
@end example
209 0806e3f6 bellard
210 0806e3f6 bellard
Linux should boot and give you a prompt.
211 0806e3f6 bellard
212 6cc721cf bellard
@node sec_invocation
213 ec410fc9 bellard
@section Invocation
214 ec410fc9 bellard
215 ec410fc9 bellard
@example
216 0806e3f6 bellard
@c man begin SYNOPSIS
217 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
218 0806e3f6 bellard
@c man end
219 ec410fc9 bellard
@end example
220 ec410fc9 bellard
221 0806e3f6 bellard
@c man begin OPTIONS
222 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223 ec410fc9 bellard
224 ec410fc9 bellard
General options:
225 ec410fc9 bellard
@table @option
226 89dfe898 ths
@item -M @var{machine}
227 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
228 3dbbdc25 bellard
229 89dfe898 ths
@item -fda @var{file}
230 89dfe898 ths
@item -fdb @var{file}
231 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233 2be3bc02 bellard
234 89dfe898 ths
@item -hda @var{file}
235 89dfe898 ths
@item -hdb @var{file}
236 89dfe898 ths
@item -hdc @var{file}
237 89dfe898 ths
@item -hdd @var{file}
238 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239 1f47a922 bellard
240 89dfe898 ths
@item -cdrom @var{file}
241 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
243 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244 181f1558 bellard
245 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246 e0e7ada1 balrog
247 e0e7ada1 balrog
Define a new drive. Valid options are:
248 e0e7ada1 balrog
249 e0e7ada1 balrog
@table @code
250 e0e7ada1 balrog
@item file=@var{file}
251 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
252 609497ab balrog
this drive. If the filename contains comma, you must double it
253 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
254 e0e7ada1 balrog
@item if=@var{interface}
255 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
256 e0e7ada1 balrog
Available types are: ide, scsi, sd, mtd, floppy, pflash.
257 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
258 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
259 e0e7ada1 balrog
the unit id.
260 e0e7ada1 balrog
@item index=@var{index}
261 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
262 e0e7ada1 balrog
of available connectors of a given interface type.
263 e0e7ada1 balrog
@item media=@var{media}
264 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
265 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
267 e0e7ada1 balrog
@item snapshot=@var{snapshot}
268 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269 33f00271 balrog
@item cache=@var{cache}
270 9f7965c7 aliguori
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
271 1e72d3b7 aurel32
@item format=@var{format}
272 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
273 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
274 1e72d3b7 aurel32
an untrusted format header.
275 e0e7ada1 balrog
@end table
276 e0e7ada1 balrog
277 9f7965c7 aliguori
By default, writethrough caching is used for all block device.  This means that
278 9f7965c7 aliguori
the host page cache will be used to read and write data but write notification
279 9f7965c7 aliguori
will be sent to the guest only when the data has been reported as written by
280 9f7965c7 aliguori
the storage subsystem.
281 9f7965c7 aliguori
282 9f7965c7 aliguori
Writeback caching will report data writes as completed as soon as the data is
283 9f7965c7 aliguori
present in the host page cache.  This is safe as long as you trust your host.
284 9f7965c7 aliguori
If your host crashes or loses power, then the guest may experience data
285 9f7965c7 aliguori
corruption.  When using the @option{-snapshot} option, writeback caching is
286 9f7965c7 aliguori
used by default.
287 9f7965c7 aliguori
288 9f7965c7 aliguori
The host page can be avoided entirely with @option{cache=none}.  This will
289 9f7965c7 aliguori
attempt to do disk IO directly to the guests memory.  QEMU may still perform
290 9f7965c7 aliguori
an internal copy of the data.
291 9f7965c7 aliguori
292 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
293 e0e7ada1 balrog
@example
294 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
295 e0e7ada1 balrog
@end example
296 e0e7ada1 balrog
297 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
298 e0e7ada1 balrog
use:
299 e0e7ada1 balrog
@example
300 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
301 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
302 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
303 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
304 e0e7ada1 balrog
@end example
305 e0e7ada1 balrog
306 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
307 e0e7ada1 balrog
@example
308 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
309 e0e7ada1 balrog
@end example
310 e0e7ada1 balrog
311 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
312 e0e7ada1 balrog
@example
313 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
314 e0e7ada1 balrog
@end example
315 e0e7ada1 balrog
316 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
317 e0e7ada1 balrog
@example
318 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
319 e0e7ada1 balrog
@end example
320 e0e7ada1 balrog
321 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
322 e0e7ada1 balrog
@example
323 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
324 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
325 e0e7ada1 balrog
@end example
326 e0e7ada1 balrog
327 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
328 e0e7ada1 balrog
incremented:
329 e0e7ada1 balrog
@example
330 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
331 e0e7ada1 balrog
@end example
332 e0e7ada1 balrog
is interpreted like:
333 e0e7ada1 balrog
@example
334 e0e7ada1 balrog
qemu -hda a -hdb b
335 e0e7ada1 balrog
@end example
336 e0e7ada1 balrog
337 eec85c2a ths
@item -boot [a|c|d|n]
338 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
339 eec85c2a ths
is the default.
340 1f47a922 bellard
341 181f1558 bellard
@item -snapshot
342 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
343 1f47a922 bellard
the raw disk image you use is not written back. You can however force
344 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
345 ec410fc9 bellard
346 52ca8d6a bellard
@item -no-fd-bootchk
347 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
348 52ca8d6a bellard
be needed to boot from old floppy disks.
349 52ca8d6a bellard
350 89dfe898 ths
@item -m @var{megs}
351 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
352 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
353 00f82b8a aurel32
gigabytes respectively.
354 ec410fc9 bellard
355 34a3d239 blueswir1
@item -cpu @var{model}
356 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
357 34a3d239 blueswir1
358 89dfe898 ths
@item -smp @var{n}
359 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
360 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
361 a785e42e blueswir1
to 4.
362 3f9f3aa1 bellard
363 1d14ffa9 bellard
@item -audio-help
364 1d14ffa9 bellard
365 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
366 1d14ffa9 bellard
parameters.
367 1d14ffa9 bellard
368 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
369 1d14ffa9 bellard
370 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
371 1d14ffa9 bellard
available sound hardware.
372 1d14ffa9 bellard
373 1d14ffa9 bellard
@example
374 1d14ffa9 bellard
qemu -soundhw sb16,adlib hda
375 1d14ffa9 bellard
qemu -soundhw es1370 hda
376 e5c9a13e balrog
qemu -soundhw ac97 hda
377 6a36d84e bellard
qemu -soundhw all hda
378 1d14ffa9 bellard
qemu -soundhw ?
379 1d14ffa9 bellard
@end example
380 a8c490cd bellard
381 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
382 e5c9a13e balrog
require manually specifying clocking.
383 e5c9a13e balrog
384 e5c9a13e balrog
@example
385 e5c9a13e balrog
modprobe i810_audio clocking=48000
386 e5c9a13e balrog
@end example
387 e5c9a13e balrog
388 15a34c63 bellard
@item -localtime
389 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
390 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
391 15a34c63 bellard
Windows.
392 15a34c63 bellard
393 89dfe898 ths
@item -startdate @var{date}
394 7e0af5d0 bellard
Set the initial date of the real time clock. Valid format for
395 7e0af5d0 bellard
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
396 7e0af5d0 bellard
@code{2006-06-17}. The default value is @code{now}.
397 7e0af5d0 bellard
398 89dfe898 ths
@item -pidfile @var{file}
399 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
400 f7cce898 bellard
from a script.
401 f7cce898 bellard
402 71e3ceb8 ths
@item -daemonize
403 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
404 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
405 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
406 71e3ceb8 ths
to cope with initialization race conditions.
407 71e3ceb8 ths
408 9d0a8e6f bellard
@item -win2k-hack
409 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
410 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
411 9d0a8e6f bellard
slows down the IDE transfers).
412 9d0a8e6f bellard
413 89dfe898 ths
@item -option-rom @var{file}
414 89dfe898 ths
Load the contents of @var{file} as an option ROM.
415 89dfe898 ths
This option is useful to load things like EtherBoot.
416 9ae02555 ths
417 89dfe898 ths
@item -name @var{name}
418 89dfe898 ths
Sets the @var{name} of the guest.
419 89dfe898 ths
This name will be display in the SDL window caption.
420 89dfe898 ths
The @var{name} will also be used for the VNC server.
421 c35734b2 ths
422 0806e3f6 bellard
@end table
423 0806e3f6 bellard
424 f858dcae ths
Display options:
425 f858dcae ths
@table @option
426 f858dcae ths
427 f858dcae ths
@item -nographic
428 f858dcae ths
429 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
430 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
431 f858dcae ths
command line application. The emulated serial port is redirected on
432 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
433 f858dcae ths
with a serial console.
434 f858dcae ths
435 052caf70 aurel32
@item -curses
436 052caf70 aurel32
437 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
438 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
439 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
440 052caf70 aurel32
441 f858dcae ths
@item -no-frame
442 f858dcae ths
443 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
444 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
445 f858dcae ths
workspace more convenient.
446 f858dcae ths
447 99aa9e4c aurel32
@item -no-quit
448 99aa9e4c aurel32
449 99aa9e4c aurel32
Disable SDL window close capability.
450 99aa9e4c aurel32
451 f858dcae ths
@item -full-screen
452 f858dcae ths
Start in full screen.
453 f858dcae ths
454 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
455 f858dcae ths
456 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
457 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
458 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
459 f858dcae ths
tablet device when using this option (option @option{-usbdevice
460 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
461 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
462 f858dcae ths
syntax for the @var{display} is
463 f858dcae ths
464 f858dcae ths
@table @code
465 f858dcae ths
466 3aa3eea3 balrog
@item @var{host}:@var{d}
467 f858dcae ths
468 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
469 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
470 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
471 f858dcae ths
472 3aa3eea3 balrog
@item @code{unix}:@var{path}
473 f858dcae ths
474 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
475 f858dcae ths
location of a unix socket to listen for connections on.
476 f858dcae ths
477 89dfe898 ths
@item none
478 f858dcae ths
479 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
480 3aa3eea3 balrog
can be used to later start the VNC server.
481 f858dcae ths
482 f858dcae ths
@end table
483 f858dcae ths
484 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
485 f858dcae ths
separated by commas. Valid options are
486 f858dcae ths
487 f858dcae ths
@table @code
488 f858dcae ths
489 3aa3eea3 balrog
@item reverse
490 3aa3eea3 balrog
491 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
492 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
493 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
494 3aa3eea3 balrog
is a TCP port number, not a display number.
495 3aa3eea3 balrog
496 89dfe898 ths
@item password
497 f858dcae ths
498 f858dcae ths
Require that password based authentication is used for client connections.
499 f858dcae ths
The password must be set separately using the @code{change} command in the
500 f858dcae ths
@ref{pcsys_monitor}
501 f858dcae ths
502 89dfe898 ths
@item tls
503 f858dcae ths
504 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
505 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
506 f858dcae ths
attack. It is recommended that this option be combined with either the
507 f858dcae ths
@var{x509} or @var{x509verify} options.
508 f858dcae ths
509 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
510 f858dcae ths
511 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
512 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
513 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
514 f858dcae ths
to provide authentication of the client when this is used. The path following
515 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
516 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
517 f858dcae ths
518 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
519 f858dcae ths
520 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
521 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
522 f858dcae ths
to the client, and request that the client send its own x509 certificate.
523 f858dcae ths
The server will validate the client's certificate against the CA certificate,
524 f858dcae ths
and reject clients when validation fails. If the certificate authority is
525 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
526 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
527 f858dcae ths
path following this option specifies where the x509 certificates are to
528 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
529 f858dcae ths
certificates.
530 f858dcae ths
531 f858dcae ths
@end table
532 f858dcae ths
533 89dfe898 ths
@item -k @var{language}
534 f858dcae ths
535 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
536 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
537 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
538 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
539 f858dcae ths
hosts.
540 f858dcae ths
541 f858dcae ths
The available layouts are:
542 f858dcae ths
@example
543 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
544 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
545 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
546 f858dcae ths
@end example
547 f858dcae ths
548 f858dcae ths
The default is @code{en-us}.
549 f858dcae ths
550 f858dcae ths
@end table
551 f858dcae ths
552 b389dbfb bellard
USB options:
553 b389dbfb bellard
@table @option
554 b389dbfb bellard
555 b389dbfb bellard
@item -usb
556 b389dbfb bellard
Enable the USB driver (will be the default soon)
557 b389dbfb bellard
558 89dfe898 ths
@item -usbdevice @var{devname}
559 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
560 8fccda83 ths
561 8fccda83 ths
@table @code
562 8fccda83 ths
563 8fccda83 ths
@item mouse
564 8fccda83 ths
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
565 8fccda83 ths
566 8fccda83 ths
@item tablet
567 8fccda83 ths
Pointer device that uses absolute coordinates (like a touchscreen). This
568 8fccda83 ths
means qemu is able to report the mouse position without having to grab the
569 8fccda83 ths
mouse. Also overrides the PS/2 mouse emulation when activated.
570 8fccda83 ths
571 334c0241 aurel32
@item disk:[format=@var{format}]:file
572 334c0241 aurel32
Mass storage device based on file. The optional @var{format} argument
573 334c0241 aurel32
will be used rather than detecting the format. Can be used to specifiy
574 334c0241 aurel32
format=raw to avoid interpreting an untrusted format header.
575 8fccda83 ths
576 8fccda83 ths
@item host:bus.addr
577 8fccda83 ths
Pass through the host device identified by bus.addr (Linux only).
578 8fccda83 ths
579 8fccda83 ths
@item host:vendor_id:product_id
580 8fccda83 ths
Pass through the host device identified by vendor_id:product_id (Linux only).
581 8fccda83 ths
582 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
583 db380c06 balrog
Serial converter to host character device @var{dev}, see @code{-serial} for the
584 db380c06 balrog
available devices.
585 db380c06 balrog
586 2e4d9fb1 aurel32
@item braille
587 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
588 2e4d9fb1 aurel32
or fake device.
589 2e4d9fb1 aurel32
590 9ad97e65 balrog
@item net:options
591 6c9f886c balrog
Network adapter that supports CDC ethernet and RNDIS protocols.
592 6c9f886c balrog
593 8fccda83 ths
@end table
594 8fccda83 ths
595 b389dbfb bellard
@end table
596 b389dbfb bellard
597 1f673135 bellard
Network options:
598 1f673135 bellard
599 1f673135 bellard
@table @option
600 1f673135 bellard
601 89dfe898 ths
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
602 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
603 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
604 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
605 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
606 549444e1 balrog
Qemu can emulate several different models of network card.
607 549444e1 balrog
Valid values for @var{type} are
608 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
609 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
610 9ad97e65 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
611 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
612 c4a7060c blueswir1
for a list of available devices for your target.
613 41d03949 bellard
614 89dfe898 ths
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
615 7e89463d bellard
Use the user mode network stack which requires no administrator
616 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
617 115defd1 pbrook
hostname reported by the builtin DHCP server.
618 41d03949 bellard
619 89dfe898 ths
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
620 41d03949 bellard
Connect the host TAP network interface @var{name} to VLAN @var{n} and
621 41d03949 bellard
use the network script @var{file} to configure it. The default
622 6a1cbf68 ths
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
623 6a1cbf68 ths
disable script execution. If @var{name} is not
624 89dfe898 ths
provided, the OS automatically provides one. @option{fd}=@var{h} can be
625 41d03949 bellard
used to specify the handle of an already opened host TAP interface. Example:
626 1f673135 bellard
627 41d03949 bellard
@example
628 41d03949 bellard
qemu linux.img -net nic -net tap
629 41d03949 bellard
@end example
630 41d03949 bellard
631 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
632 41d03949 bellard
@example
633 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
634 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
635 41d03949 bellard
@end example
636 3f1a88f4 bellard
637 3f1a88f4 bellard
638 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
639 1f673135 bellard
640 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
641 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
642 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
643 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
644 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
645 3d830459 bellard
specifies an already opened TCP socket.
646 1f673135 bellard
647 41d03949 bellard
Example:
648 41d03949 bellard
@example
649 41d03949 bellard
# launch a first QEMU instance
650 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
651 debc7065 bellard
               -net socket,listen=:1234
652 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
653 debc7065 bellard
# of the first instance
654 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
655 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
656 41d03949 bellard
@end example
657 52c00a5f bellard
658 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
659 3d830459 bellard
660 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
661 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
662 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
663 3d830459 bellard
NOTES:
664 3d830459 bellard
@enumerate
665 5fafdf24 ths
@item
666 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
667 3d830459 bellard
correct multicast setup for these hosts).
668 3d830459 bellard
@item
669 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
670 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
671 4be456f1 ths
@item
672 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
673 3d830459 bellard
@end enumerate
674 3d830459 bellard
675 3d830459 bellard
Example:
676 3d830459 bellard
@example
677 3d830459 bellard
# launch one QEMU instance
678 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
679 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
680 3d830459 bellard
# launch another QEMU instance on same "bus"
681 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
682 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
683 3d830459 bellard
# launch yet another QEMU instance on same "bus"
684 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
685 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
686 3d830459 bellard
@end example
687 3d830459 bellard
688 3d830459 bellard
Example (User Mode Linux compat.):
689 3d830459 bellard
@example
690 debc7065 bellard
# launch QEMU instance (note mcast address selected
691 debc7065 bellard
# is UML's default)
692 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
693 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
694 3d830459 bellard
# launch UML
695 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
696 3d830459 bellard
@end example
697 8a16d273 ths
698 8a16d273 ths
@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
699 8a16d273 ths
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
700 8a16d273 ths
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
701 8a16d273 ths
and MODE @var{octalmode} to change default ownership and permissions for
702 8a16d273 ths
communication port. This option is available only if QEMU has been compiled
703 8a16d273 ths
with vde support enabled.
704 8a16d273 ths
705 8a16d273 ths
Example:
706 8a16d273 ths
@example
707 8a16d273 ths
# launch vde switch
708 8a16d273 ths
vde_switch -F -sock /tmp/myswitch
709 8a16d273 ths
# launch QEMU instance
710 8a16d273 ths
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
711 8a16d273 ths
@end example
712 3d830459 bellard
713 41d03949 bellard
@item -net none
714 41d03949 bellard
Indicate that no network devices should be configured. It is used to
715 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
716 039af320 bellard
is activated if no @option{-net} options are provided.
717 52c00a5f bellard
718 89dfe898 ths
@item -tftp @var{dir}
719 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
720 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
721 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
722 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
723 0db1137d ths
usual 10.0.2.2.
724 9bf05444 bellard
725 89dfe898 ths
@item -bootp @var{file}
726 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
727 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
728 47d5d01a ths
a guest from a local directory.
729 47d5d01a ths
730 47d5d01a ths
Example (using pxelinux):
731 47d5d01a ths
@example
732 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
733 47d5d01a ths
@end example
734 47d5d01a ths
735 89dfe898 ths
@item -smb @var{dir}
736 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
737 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
738 2518bd0d bellard
transparently.
739 2518bd0d bellard
740 2518bd0d bellard
In the guest Windows OS, the line:
741 2518bd0d bellard
@example
742 2518bd0d bellard
10.0.2.4 smbserver
743 2518bd0d bellard
@end example
744 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
745 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
746 2518bd0d bellard
747 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
748 2518bd0d bellard
749 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
750 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
751 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
752 2518bd0d bellard
753 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
754 9bf05444 bellard
755 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
756 9bf05444 bellard
connections to the host port @var{host-port} to the guest
757 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
758 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
759 9bf05444 bellard
built-in DHCP server).
760 9bf05444 bellard
761 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
762 9bf05444 bellard
screen 0, use the following:
763 9bf05444 bellard
764 9bf05444 bellard
@example
765 9bf05444 bellard
# on the host
766 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
767 9bf05444 bellard
# this host xterm should open in the guest X11 server
768 9bf05444 bellard
xterm -display :1
769 9bf05444 bellard
@end example
770 9bf05444 bellard
771 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
772 9bf05444 bellard
the guest, use the following:
773 9bf05444 bellard
774 9bf05444 bellard
@example
775 9bf05444 bellard
# on the host
776 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
777 9bf05444 bellard
telnet localhost 5555
778 9bf05444 bellard
@end example
779 9bf05444 bellard
780 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
781 9bf05444 bellard
connect to the guest telnet server.
782 9bf05444 bellard
783 1f673135 bellard
@end table
784 1f673135 bellard
785 2d564691 balrog
Bluetooth(R) options:
786 2d564691 balrog
@table @option
787 2d564691 balrog
788 2d564691 balrog
@item -bt hci[...]
789 2d564691 balrog
Defines the function of the corresponding Bluetooth HCI.  -bt options
790 2d564691 balrog
are matched with the HCIs present in the chosen machine type.  For
791 2d564691 balrog
example when emulating a machine with only one HCI built into it, only
792 2d564691 balrog
the first @code{-bt hci[...]} option is valid and defines the HCI's
793 2d564691 balrog
logic.  The Transport Layer is decided by the machine type.  Currently
794 2d564691 balrog
the machines @code{n800} and @code{n810} have one HCI and all other
795 2d564691 balrog
machines have none.
796 2d564691 balrog
797 2d564691 balrog
@anchor{bt-hcis}
798 2d564691 balrog
The following three types are recognized:
799 2d564691 balrog
800 2d564691 balrog
@table @code
801 2d564691 balrog
@item -bt hci,null
802 2d564691 balrog
(default) The corresponding Bluetooth HCI assumes no internal logic
803 2d564691 balrog
and will not respond to any HCI commands or emit events.
804 2d564691 balrog
805 2d564691 balrog
@item -bt hci,host[:@var{id}]
806 2d564691 balrog
(@code{bluez} only) The corresponding HCI passes commands / events
807 2d564691 balrog
to / from the physical HCI identified by the name @var{id} (default:
808 2d564691 balrog
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
809 2d564691 balrog
capable systems like Linux.
810 2d564691 balrog
811 2d564691 balrog
@item -bt hci[,vlan=@var{n}]
812 2d564691 balrog
Add a virtual, standard HCI that will participate in the Bluetooth
813 2d564691 balrog
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
814 2d564691 balrog
VLANs, devices inside a bluetooth network @var{n} can only communicate
815 2d564691 balrog
with other devices in the same network (scatternet).
816 2d564691 balrog
@end table
817 2d564691 balrog
818 2d564691 balrog
@item -bt vhci[,vlan=@var{n}]
819 2d564691 balrog
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
820 2d564691 balrog
to the host bluetooth stack instead of to the emulated target.  This
821 2d564691 balrog
allows the host and target machines to participate in a common scatternet
822 2d564691 balrog
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
823 2d564691 balrog
be used as following:
824 2d564691 balrog
825 2d564691 balrog
@example
826 2d564691 balrog
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
827 2d564691 balrog
@end example
828 2d564691 balrog
829 2d564691 balrog
@item -bt device:@var{dev}[,vlan=@var{n}]
830 2d564691 balrog
Emulate a bluetooth device @var{dev} and place it in network @var{n}
831 2d564691 balrog
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
832 2d564691 balrog
currently:
833 2d564691 balrog
834 2d564691 balrog
@table @code
835 2d564691 balrog
@item keyboard
836 2d564691 balrog
Virtual wireless keyboard implementing the HIDP bluetooth profile.
837 2d564691 balrog
@end table
838 2d564691 balrog
839 2d564691 balrog
@end table
840 2d564691 balrog
841 41d03949 bellard
Linux boot specific: When using these options, you can use a given
842 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
843 1f673135 bellard
for easier testing of various kernels.
844 1f673135 bellard
845 0806e3f6 bellard
@table @option
846 0806e3f6 bellard
847 89dfe898 ths
@item -kernel @var{bzImage}
848 0806e3f6 bellard
Use @var{bzImage} as kernel image.
849 0806e3f6 bellard
850 89dfe898 ths
@item -append @var{cmdline}
851 0806e3f6 bellard
Use @var{cmdline} as kernel command line
852 0806e3f6 bellard
853 89dfe898 ths
@item -initrd @var{file}
854 0806e3f6 bellard
Use @var{file} as initial ram disk.
855 0806e3f6 bellard
856 ec410fc9 bellard
@end table
857 ec410fc9 bellard
858 15a34c63 bellard
Debug/Expert options:
859 ec410fc9 bellard
@table @option
860 a0a821a4 bellard
861 89dfe898 ths
@item -serial @var{dev}
862 0bab00f3 bellard
Redirect the virtual serial port to host character device
863 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
864 0bab00f3 bellard
@code{stdio} in non graphical mode.
865 0bab00f3 bellard
866 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
867 0bab00f3 bellard
ports.
868 0bab00f3 bellard
869 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
870 c03b0f0f bellard
871 0bab00f3 bellard
Available character devices are:
872 a0a821a4 bellard
@table @code
873 af3a9031 ths
@item vc[:WxH]
874 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
875 af3a9031 ths
@example
876 af3a9031 ths
vc:800x600
877 af3a9031 ths
@end example
878 af3a9031 ths
It is also possible to specify width or height in characters:
879 af3a9031 ths
@example
880 af3a9031 ths
vc:80Cx24C
881 af3a9031 ths
@end example
882 a0a821a4 bellard
@item pty
883 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
884 c03b0f0f bellard
@item none
885 c03b0f0f bellard
No device is allocated.
886 a0a821a4 bellard
@item null
887 a0a821a4 bellard
void device
888 f8d179e3 bellard
@item /dev/XXX
889 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
890 f8d179e3 bellard
parameters are set according to the emulated ones.
891 89dfe898 ths
@item /dev/parport@var{N}
892 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
893 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
894 89dfe898 ths
@item file:@var{filename}
895 89dfe898 ths
Write output to @var{filename}. No character can be read.
896 a0a821a4 bellard
@item stdio
897 a0a821a4 bellard
[Unix only] standard input/output
898 89dfe898 ths
@item pipe:@var{filename}
899 0bab00f3 bellard
name pipe @var{filename}
900 89dfe898 ths
@item COM@var{n}
901 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
902 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
903 89dfe898 ths
This implements UDP Net Console.
904 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
905 89dfe898 ths
they default to @code{0.0.0.0}.
906 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
907 951f1351 bellard
908 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
909 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
910 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
911 951f1351 bellard
will appear in the netconsole session.
912 0bab00f3 bellard
913 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
914 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
915 0bab00f3 bellard
source port each time by using something like @code{-serial
916 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
917 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
918 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
919 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
920 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
921 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
922 0bab00f3 bellard
@table @code
923 951f1351 bellard
@item Qemu Options:
924 951f1351 bellard
-serial udp::4555@@:4556
925 951f1351 bellard
@item netcat options:
926 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
927 951f1351 bellard
@item telnet options:
928 951f1351 bellard
localhost 5555
929 951f1351 bellard
@end table
930 951f1351 bellard
931 951f1351 bellard
932 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
933 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
934 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
935 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
936 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
937 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
938 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
939 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
940 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
941 951f1351 bellard
connect to the corresponding character device.
942 951f1351 bellard
@table @code
943 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
944 951f1351 bellard
-serial tcp:192.168.0.2:4444
945 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
946 951f1351 bellard
-serial tcp::4444,server
947 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
948 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
949 a0a821a4 bellard
@end table
950 a0a821a4 bellard
951 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
952 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
953 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
954 951f1351 bellard
difference is that the port acts like a telnet server or client using
955 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
956 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
957 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
958 951f1351 bellard
type "send break" followed by pressing the enter key.
959 0bab00f3 bellard
960 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
961 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
962 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
963 ffd843bc ths
@var{path} is used for connections.
964 ffd843bc ths
965 89dfe898 ths
@item mon:@var{dev_string}
966 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
967 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
968 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
969 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
970 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
971 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
972 20d8a3ed ths
listening on port 4444 would be:
973 20d8a3ed ths
@table @code
974 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
975 20d8a3ed ths
@end table
976 20d8a3ed ths
977 2e4d9fb1 aurel32
@item braille
978 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
979 2e4d9fb1 aurel32
or fake device.
980 2e4d9fb1 aurel32
981 0bab00f3 bellard
@end table
982 05d5818c bellard
983 89dfe898 ths
@item -parallel @var{dev}
984 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
985 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
986 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
987 e57a8c0e bellard
parallel port.
988 e57a8c0e bellard
989 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
990 e57a8c0e bellard
ports.
991 e57a8c0e bellard
992 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
993 c03b0f0f bellard
994 89dfe898 ths
@item -monitor @var{dev}
995 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
996 a0a821a4 bellard
serial port).
997 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
998 a0a821a4 bellard
non graphical mode.
999 a0a821a4 bellard
1000 20d8a3ed ths
@item -echr numeric_ascii_value
1001 20d8a3ed ths
Change the escape character used for switching to the monitor when using
1002 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
1003 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
1004 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
1005 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
1006 20d8a3ed ths
instance you could use the either of the following to change the escape
1007 20d8a3ed ths
character to Control-t.
1008 20d8a3ed ths
@table @code
1009 20d8a3ed ths
@item -echr 0x14
1010 20d8a3ed ths
@item -echr 20
1011 20d8a3ed ths
@end table
1012 20d8a3ed ths
1013 ec410fc9 bellard
@item -s
1014 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1015 89dfe898 ths
@item -p @var{port}
1016 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
1017 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
1018 52c00a5f bellard
@item -S
1019 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
1020 3b46e624 ths
@item -d
1021 9d4520d0 bellard
Output log in /tmp/qemu.log
1022 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1023 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1024 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1025 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1026 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
1027 46d4767d bellard
images.
1028 7c3fc84d bellard
1029 87b47350 bellard
@item -L path
1030 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
1031 87b47350 bellard
1032 3893c124 malc
@item -vga @var{type}
1033 3893c124 malc
Select type of VGA card to emulate. Valid values for @var{type} are
1034 3893c124 malc
@table @code
1035 3893c124 malc
@item cirrus
1036 3893c124 malc
Cirrus Logic GD5446 Video card. All Windows versions starting from
1037 3893c124 malc
Windows 95 should recognize and use this graphic card. For optimal
1038 3893c124 malc
performances, use 16 bit color depth in the guest and the host OS.
1039 3893c124 malc
(This one is the default)
1040 3893c124 malc
@item std
1041 3893c124 malc
Standard VGA card with Bochs VBE extensions.  If your guest OS
1042 3893c124 malc
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1043 3893c124 malc
to use high resolution modes (>= 1280x1024x16) then you should use
1044 3893c124 malc
this option.
1045 3893c124 malc
@item vmware
1046 3893c124 malc
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1047 3893c124 malc
recent XFree86/XOrg server or Windows guest with a driver for this
1048 3893c124 malc
card.
1049 3893c124 malc
@end table
1050 3cb0853a bellard
1051 3c656346 bellard
@item -no-acpi
1052 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
1053 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
1054 3c656346 bellard
only).
1055 3c656346 bellard
1056 d1beab82 bellard
@item -no-reboot
1057 d1beab82 bellard
Exit instead of rebooting.
1058 d1beab82 bellard
1059 99aa9e4c aurel32
@item -no-shutdown
1060 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1061 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
1062 99aa9e4c aurel32
disk image.
1063 99aa9e4c aurel32
1064 d63d307f bellard
@item -loadvm file
1065 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
1066 8e71621f pbrook
1067 8e71621f pbrook
@item -semihosting
1068 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
1069 a87295e8 pbrook
1070 a87295e8 pbrook
On ARM this implements the "Angel" interface.
1071 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1072 a87295e8 pbrook
1073 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
1074 8e71621f pbrook
so should only be used with trusted guest OS.
1075 2e70f6ef pbrook
1076 2e70f6ef pbrook
@item -icount [N|auto]
1077 2e70f6ef pbrook
Enable virtual instruction counter.  The virtual cpu will execute one
1078 2e70f6ef pbrook
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1079 2e70f6ef pbrook
then the virtual cpu speed will be automatically adjusted to keep virtual
1080 2e70f6ef pbrook
time within a few seconds of real time.
1081 2e70f6ef pbrook
1082 2e70f6ef pbrook
Note that while this option can give deterministic behavior, it does not
1083 2e70f6ef pbrook
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1084 dd5d6fe9 pbrook
order cores with complex cache hierarchies.  The number of instructions
1085 2e70f6ef pbrook
executed often has little or no correlation with actual performance.
1086 ec410fc9 bellard
@end table
1087 ec410fc9 bellard
1088 3e11db9a bellard
@c man end
1089 3e11db9a bellard
1090 debc7065 bellard
@node pcsys_keys
1091 3e11db9a bellard
@section Keys
1092 3e11db9a bellard
1093 3e11db9a bellard
@c man begin OPTIONS
1094 3e11db9a bellard
1095 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
1096 a1b74fe8 bellard
@table @key
1097 f9859310 bellard
@item Ctrl-Alt-f
1098 a1b74fe8 bellard
Toggle full screen
1099 a0a821a4 bellard
1100 f9859310 bellard
@item Ctrl-Alt-n
1101 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
1102 a0a821a4 bellard
@table @emph
1103 a0a821a4 bellard
@item 1
1104 a0a821a4 bellard
Target system display
1105 a0a821a4 bellard
@item 2
1106 a0a821a4 bellard
Monitor
1107 a0a821a4 bellard
@item 3
1108 a0a821a4 bellard
Serial port
1109 a1b74fe8 bellard
@end table
1110 a1b74fe8 bellard
1111 f9859310 bellard
@item Ctrl-Alt
1112 a0a821a4 bellard
Toggle mouse and keyboard grab.
1113 a0a821a4 bellard
@end table
1114 a0a821a4 bellard
1115 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1116 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1117 3e11db9a bellard
1118 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
1119 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
1120 ec410fc9 bellard
1121 ec410fc9 bellard
@table @key
1122 a1b74fe8 bellard
@item Ctrl-a h
1123 ec410fc9 bellard
Print this help
1124 3b46e624 ths
@item Ctrl-a x
1125 366dfc52 ths
Exit emulator
1126 3b46e624 ths
@item Ctrl-a s
1127 1f47a922 bellard
Save disk data back to file (if -snapshot)
1128 20d8a3ed ths
@item Ctrl-a t
1129 20d8a3ed ths
toggle console timestamps
1130 a1b74fe8 bellard
@item Ctrl-a b
1131 1f673135 bellard
Send break (magic sysrq in Linux)
1132 a1b74fe8 bellard
@item Ctrl-a c
1133 1f673135 bellard
Switch between console and monitor
1134 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1135 a1b74fe8 bellard
Send Ctrl-a
1136 ec410fc9 bellard
@end table
1137 0806e3f6 bellard
@c man end
1138 0806e3f6 bellard
1139 0806e3f6 bellard
@ignore
1140 0806e3f6 bellard
1141 1f673135 bellard
@c man begin SEEALSO
1142 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1143 1f673135 bellard
user mode emulator invocation.
1144 1f673135 bellard
@c man end
1145 1f673135 bellard
1146 1f673135 bellard
@c man begin AUTHOR
1147 1f673135 bellard
Fabrice Bellard
1148 1f673135 bellard
@c man end
1149 1f673135 bellard
1150 1f673135 bellard
@end ignore
1151 1f673135 bellard
1152 debc7065 bellard
@node pcsys_monitor
1153 1f673135 bellard
@section QEMU Monitor
1154 1f673135 bellard
1155 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1156 1f673135 bellard
emulator. You can use it to:
1157 1f673135 bellard
1158 1f673135 bellard
@itemize @minus
1159 1f673135 bellard
1160 1f673135 bellard
@item
1161 e598752a ths
Remove or insert removable media images
1162 89dfe898 ths
(such as CD-ROM or floppies).
1163 1f673135 bellard
1164 5fafdf24 ths
@item
1165 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1166 1f673135 bellard
from a disk file.
1167 1f673135 bellard
1168 1f673135 bellard
@item Inspect the VM state without an external debugger.
1169 1f673135 bellard
1170 1f673135 bellard
@end itemize
1171 1f673135 bellard
1172 1f673135 bellard
@subsection Commands
1173 1f673135 bellard
1174 1f673135 bellard
The following commands are available:
1175 1f673135 bellard
1176 1f673135 bellard
@table @option
1177 1f673135 bellard
1178 89dfe898 ths
@item help or ? [@var{cmd}]
1179 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1180 1f673135 bellard
1181 3b46e624 ths
@item commit
1182 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1183 1f673135 bellard
1184 89dfe898 ths
@item info @var{subcommand}
1185 89dfe898 ths
Show various information about the system state.
1186 1f673135 bellard
1187 1f673135 bellard
@table @option
1188 1f673135 bellard
@item info network
1189 41d03949 bellard
show the various VLANs and the associated devices
1190 1f673135 bellard
@item info block
1191 1f673135 bellard
show the block devices
1192 1f673135 bellard
@item info registers
1193 1f673135 bellard
show the cpu registers
1194 1f673135 bellard
@item info history
1195 1f673135 bellard
show the command line history
1196 b389dbfb bellard
@item info pci
1197 b389dbfb bellard
show emulated PCI device
1198 b389dbfb bellard
@item info usb
1199 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1200 b389dbfb bellard
@item info usbhost
1201 b389dbfb bellard
show all USB host devices
1202 a3c25997 bellard
@item info capture
1203 a3c25997 bellard
show information about active capturing
1204 13a2e80f bellard
@item info snapshots
1205 13a2e80f bellard
show list of VM snapshots
1206 455204eb ths
@item info mice
1207 455204eb ths
show which guest mouse is receiving events
1208 1f673135 bellard
@end table
1209 1f673135 bellard
1210 1f673135 bellard
@item q or quit
1211 1f673135 bellard
Quit the emulator.
1212 1f673135 bellard
1213 89dfe898 ths
@item eject [-f] @var{device}
1214 e598752a ths
Eject a removable medium (use -f to force it).
1215 1f673135 bellard
1216 89dfe898 ths
@item change @var{device} @var{setting}
1217 f858dcae ths
1218 89dfe898 ths
Change the configuration of a device.
1219 f858dcae ths
1220 f858dcae ths
@table @option
1221 f858dcae ths
@item change @var{diskdevice} @var{filename}
1222 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1223 f858dcae ths
1224 f858dcae ths
@example
1225 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1226 f858dcae ths
@end example
1227 f858dcae ths
1228 89dfe898 ths
@item change vnc @var{display},@var{options}
1229 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1230 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1231 f858dcae ths
1232 f858dcae ths
@example
1233 f858dcae ths
(qemu) change vnc localhost:1
1234 f858dcae ths
@end example
1235 f858dcae ths
1236 f858dcae ths
@item change vnc password
1237 f858dcae ths
1238 f858dcae ths
Change the password associated with the VNC server. The monitor will prompt for
1239 f858dcae ths
the new password to be entered. VNC passwords are only significant upto 8 letters.
1240 f858dcae ths
eg.
1241 f858dcae ths
1242 f858dcae ths
@example
1243 f858dcae ths
(qemu) change vnc password
1244 f858dcae ths
Password: ********
1245 f858dcae ths
@end example
1246 f858dcae ths
1247 f858dcae ths
@end table
1248 1f673135 bellard
1249 89dfe898 ths
@item screendump @var{filename}
1250 1f673135 bellard
Save screen into PPM image @var{filename}.
1251 1f673135 bellard
1252 89dfe898 ths
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1253 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1254 455204eb ths
with optional scroll axis @var{dz}.
1255 455204eb ths
1256 89dfe898 ths
@item mouse_button @var{val}
1257 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1258 455204eb ths
1259 89dfe898 ths
@item mouse_set @var{index}
1260 455204eb ths
Set which mouse device receives events at given @var{index}, index
1261 455204eb ths
can be obtained with
1262 455204eb ths
@example
1263 455204eb ths
info mice
1264 455204eb ths
@end example
1265 455204eb ths
1266 89dfe898 ths
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1267 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
1268 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
1269 a3c25997 bellard
1270 a3c25997 bellard
Defaults:
1271 a3c25997 bellard
@itemize @minus
1272 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
1273 a3c25997 bellard
@item Bits = 16
1274 a3c25997 bellard
@item Number of channels = 2 - Stereo
1275 a3c25997 bellard
@end itemize
1276 a3c25997 bellard
1277 89dfe898 ths
@item stopcapture @var{index}
1278 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
1279 a3c25997 bellard
@example
1280 a3c25997 bellard
info capture
1281 a3c25997 bellard
@end example
1282 a3c25997 bellard
1283 89dfe898 ths
@item log @var{item1}[,...]
1284 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1285 1f673135 bellard
1286 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1287 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1288 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1289 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1290 13a2e80f bellard
@ref{vm_snapshots}.
1291 1f673135 bellard
1292 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1293 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1294 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1295 13a2e80f bellard
1296 89dfe898 ths
@item delvm @var{tag}|@var{id}
1297 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1298 1f673135 bellard
1299 1f673135 bellard
@item stop
1300 1f673135 bellard
Stop emulation.
1301 1f673135 bellard
1302 1f673135 bellard
@item c or cont
1303 1f673135 bellard
Resume emulation.
1304 1f673135 bellard
1305 89dfe898 ths
@item gdbserver [@var{port}]
1306 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1307 1f673135 bellard
1308 89dfe898 ths
@item x/fmt @var{addr}
1309 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1310 1f673135 bellard
1311 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1312 1f673135 bellard
Physical memory dump starting at @var{addr}.
1313 1f673135 bellard
1314 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1315 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1316 1f673135 bellard
1317 1f673135 bellard
@table @var
1318 5fafdf24 ths
@item count
1319 1f673135 bellard
is the number of items to be dumped.
1320 1f673135 bellard
1321 1f673135 bellard
@item format
1322 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1323 1f673135 bellard
c (char) or i (asm instruction).
1324 1f673135 bellard
1325 1f673135 bellard
@item size
1326 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1327 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1328 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1329 1f673135 bellard
1330 1f673135 bellard
@end table
1331 1f673135 bellard
1332 5fafdf24 ths
Examples:
1333 1f673135 bellard
@itemize
1334 1f673135 bellard
@item
1335 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1336 5fafdf24 ths
@example
1337 1f673135 bellard
(qemu) x/10i $eip
1338 1f673135 bellard
0x90107063:  ret
1339 1f673135 bellard
0x90107064:  sti
1340 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1341 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1342 1f673135 bellard
0x90107070:  ret
1343 1f673135 bellard
0x90107071:  jmp    0x90107080
1344 1f673135 bellard
0x90107073:  nop
1345 1f673135 bellard
0x90107074:  nop
1346 1f673135 bellard
0x90107075:  nop
1347 1f673135 bellard
0x90107076:  nop
1348 1f673135 bellard
@end example
1349 1f673135 bellard
1350 1f673135 bellard
@item
1351 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1352 5fafdf24 ths
@smallexample
1353 1f673135 bellard
(qemu) xp/80hx 0xb8000
1354 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1355 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1356 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1357 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1358 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1359 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1360 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1361 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1362 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1363 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1364 debc7065 bellard
@end smallexample
1365 1f673135 bellard
@end itemize
1366 1f673135 bellard
1367 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1368 1f673135 bellard
1369 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1370 1f673135 bellard
used.
1371 0806e3f6 bellard
1372 89dfe898 ths
@item sendkey @var{keys}
1373 a3a91a35 bellard
1374 54ae1fbd aurel32
Send @var{keys} to the emulator. @var{keys} could be the name of the
1375 54ae1fbd aurel32
key or @code{#} followed by the raw value in either decimal or hexadecimal
1376 54ae1fbd aurel32
format. Use @code{-} to press several keys simultaneously. Example:
1377 a3a91a35 bellard
@example
1378 a3a91a35 bellard
sendkey ctrl-alt-f1
1379 a3a91a35 bellard
@end example
1380 a3a91a35 bellard
1381 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1382 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1383 a3a91a35 bellard
1384 15a34c63 bellard
@item system_reset
1385 15a34c63 bellard
1386 15a34c63 bellard
Reset the system.
1387 15a34c63 bellard
1388 0ecdffbb aurel32
@item boot_set @var{bootdevicelist}
1389 0ecdffbb aurel32
1390 0ecdffbb aurel32
Define new values for the boot device list. Those values will override
1391 0ecdffbb aurel32
the values specified on the command line through the @code{-boot} option.
1392 0ecdffbb aurel32
1393 0ecdffbb aurel32
The values that can be specified here depend on the machine type, but are
1394 0ecdffbb aurel32
the same that can be specified in the @code{-boot} command line option.
1395 0ecdffbb aurel32
1396 89dfe898 ths
@item usb_add @var{devname}
1397 b389dbfb bellard
1398 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1399 0aff66b5 pbrook
@ref{usb_devices}
1400 b389dbfb bellard
1401 89dfe898 ths
@item usb_del @var{devname}
1402 b389dbfb bellard
1403 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1404 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1405 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1406 b389dbfb bellard
1407 1f673135 bellard
@end table
1408 0806e3f6 bellard
1409 1f673135 bellard
@subsection Integer expressions
1410 1f673135 bellard
1411 1f673135 bellard
The monitor understands integers expressions for every integer
1412 1f673135 bellard
argument. You can use register names to get the value of specifics
1413 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1414 ec410fc9 bellard
1415 1f47a922 bellard
@node disk_images
1416 1f47a922 bellard
@section Disk Images
1417 1f47a922 bellard
1418 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1419 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1420 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1421 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1422 13a2e80f bellard
snapshots.
1423 1f47a922 bellard
1424 debc7065 bellard
@menu
1425 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1426 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1427 13a2e80f bellard
* vm_snapshots::              VM snapshots
1428 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1429 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
1430 19cb3738 bellard
* host_drives::               Using host drives
1431 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1432 75818250 ths
* disk_images_nbd::           NBD access
1433 debc7065 bellard
@end menu
1434 debc7065 bellard
1435 debc7065 bellard
@node disk_images_quickstart
1436 acd935ef bellard
@subsection Quick start for disk image creation
1437 acd935ef bellard
1438 acd935ef bellard
You can create a disk image with the command:
1439 1f47a922 bellard
@example
1440 acd935ef bellard
qemu-img create myimage.img mysize
1441 1f47a922 bellard
@end example
1442 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1443 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1444 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1445 acd935ef bellard
1446 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1447 1f47a922 bellard
1448 debc7065 bellard
@node disk_images_snapshot_mode
1449 1f47a922 bellard
@subsection Snapshot mode
1450 1f47a922 bellard
1451 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1452 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1453 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1454 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1455 acd935ef bellard
command (or @key{C-a s} in the serial console).
1456 1f47a922 bellard
1457 13a2e80f bellard
@node vm_snapshots
1458 13a2e80f bellard
@subsection VM snapshots
1459 13a2e80f bellard
1460 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1461 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1462 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1463 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1464 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1465 13a2e80f bellard
1466 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1467 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1468 19d36792 bellard
snapshot in addition to its numerical ID.
1469 13a2e80f bellard
1470 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1471 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1472 13a2e80f bellard
with their associated information:
1473 13a2e80f bellard
1474 13a2e80f bellard
@example
1475 13a2e80f bellard
(qemu) info snapshots
1476 13a2e80f bellard
Snapshot devices: hda
1477 13a2e80f bellard
Snapshot list (from hda):
1478 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1479 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1480 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1481 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1482 13a2e80f bellard
@end example
1483 13a2e80f bellard
1484 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1485 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1486 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1487 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1488 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1489 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1490 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1491 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1492 19d36792 bellard
disk images).
1493 13a2e80f bellard
1494 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1495 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1496 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1497 13a2e80f bellard
1498 13a2e80f bellard
VM snapshots currently have the following known limitations:
1499 13a2e80f bellard
@itemize
1500 5fafdf24 ths
@item
1501 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1502 13a2e80f bellard
inserted after a snapshot is done.
1503 5fafdf24 ths
@item
1504 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1505 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1506 13a2e80f bellard
@end itemize
1507 13a2e80f bellard
1508 acd935ef bellard
@node qemu_img_invocation
1509 acd935ef bellard
@subsection @code{qemu-img} Invocation
1510 1f47a922 bellard
1511 acd935ef bellard
@include qemu-img.texi
1512 05efe46e bellard
1513 975b092b ths
@node qemu_nbd_invocation
1514 975b092b ths
@subsection @code{qemu-nbd} Invocation
1515 975b092b ths
1516 975b092b ths
@include qemu-nbd.texi
1517 975b092b ths
1518 19cb3738 bellard
@node host_drives
1519 19cb3738 bellard
@subsection Using host drives
1520 19cb3738 bellard
1521 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1522 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1523 19cb3738 bellard
1524 19cb3738 bellard
@subsubsection Linux
1525 19cb3738 bellard
1526 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1527 4be456f1 ths
disk image filename provided you have enough privileges to access
1528 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1529 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1530 19cb3738 bellard
1531 f542086d bellard
@table @code
1532 19cb3738 bellard
@item CD
1533 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1534 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1535 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1536 19cb3738 bellard
@item Floppy
1537 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1538 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1539 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1540 19cb3738 bellard
OS will think that the same floppy is loaded).
1541 19cb3738 bellard
@item Hard disks
1542 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1543 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1544 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1545 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1546 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1547 19cb3738 bellard
line option or modify the device permissions accordingly).
1548 19cb3738 bellard
@end table
1549 19cb3738 bellard
1550 19cb3738 bellard
@subsubsection Windows
1551 19cb3738 bellard
1552 01781963 bellard
@table @code
1553 01781963 bellard
@item CD
1554 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1555 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1556 01781963 bellard
supported as an alias to the first CDROM drive.
1557 19cb3738 bellard
1558 e598752a ths
Currently there is no specific code to handle removable media, so it
1559 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1560 19cb3738 bellard
change or eject media.
1561 01781963 bellard
@item Hard disks
1562 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1563 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1564 01781963 bellard
1565 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1566 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1567 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1568 01781963 bellard
modifications are written in a temporary file).
1569 01781963 bellard
@end table
1570 01781963 bellard
1571 19cb3738 bellard
1572 19cb3738 bellard
@subsubsection Mac OS X
1573 19cb3738 bellard
1574 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1575 19cb3738 bellard
1576 e598752a ths
Currently there is no specific code to handle removable media, so it
1577 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1578 19cb3738 bellard
change or eject media.
1579 19cb3738 bellard
1580 debc7065 bellard
@node disk_images_fat_images
1581 2c6cadd4 bellard
@subsection Virtual FAT disk images
1582 2c6cadd4 bellard
1583 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1584 2c6cadd4 bellard
directory tree. In order to use it, just type:
1585 2c6cadd4 bellard
1586 5fafdf24 ths
@example
1587 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1588 2c6cadd4 bellard
@end example
1589 2c6cadd4 bellard
1590 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1591 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1592 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1593 2c6cadd4 bellard
1594 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1595 2c6cadd4 bellard
1596 5fafdf24 ths
@example
1597 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1598 2c6cadd4 bellard
@end example
1599 2c6cadd4 bellard
1600 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1601 2c6cadd4 bellard
@code{:rw:} option:
1602 2c6cadd4 bellard
1603 5fafdf24 ths
@example
1604 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1605 2c6cadd4 bellard
@end example
1606 2c6cadd4 bellard
1607 2c6cadd4 bellard
What you should @emph{never} do:
1608 2c6cadd4 bellard
@itemize
1609 2c6cadd4 bellard
@item use non-ASCII filenames ;
1610 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1611 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1612 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1613 2c6cadd4 bellard
@end itemize
1614 2c6cadd4 bellard
1615 75818250 ths
@node disk_images_nbd
1616 75818250 ths
@subsection NBD access
1617 75818250 ths
1618 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
1619 75818250 ths
protocol.
1620 75818250 ths
1621 75818250 ths
@example
1622 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1623 75818250 ths
@end example
1624 75818250 ths
1625 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
1626 75818250 ths
of an inet socket:
1627 75818250 ths
1628 75818250 ths
@example
1629 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1630 75818250 ths
@end example
1631 75818250 ths
1632 75818250 ths
In this case, the block device must be exported using qemu-nbd:
1633 75818250 ths
1634 75818250 ths
@example
1635 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1636 75818250 ths
@end example
1637 75818250 ths
1638 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
1639 75818250 ths
@example
1640 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1641 75818250 ths
@end example
1642 75818250 ths
1643 75818250 ths
and then you can use it with two guests:
1644 75818250 ths
@example
1645 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1646 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1647 75818250 ths
@end example
1648 75818250 ths
1649 debc7065 bellard
@node pcsys_network
1650 9d4fb82e bellard
@section Network emulation
1651 9d4fb82e bellard
1652 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1653 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1654 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1655 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1656 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1657 41d03949 bellard
network stack can replace the TAP device to have a basic network
1658 41d03949 bellard
connection.
1659 41d03949 bellard
1660 41d03949 bellard
@subsection VLANs
1661 9d4fb82e bellard
1662 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1663 41d03949 bellard
connection between several network devices. These devices can be for
1664 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1665 41d03949 bellard
(TAP devices).
1666 9d4fb82e bellard
1667 41d03949 bellard
@subsection Using TAP network interfaces
1668 41d03949 bellard
1669 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1670 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1671 41d03949 bellard
can then configure it as if it was a real ethernet card.
1672 9d4fb82e bellard
1673 8f40c388 bellard
@subsubsection Linux host
1674 8f40c388 bellard
1675 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1676 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1677 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1678 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1679 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1680 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1681 9d4fb82e bellard
1682 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1683 ee0f4751 bellard
TAP network interfaces.
1684 9d4fb82e bellard
1685 8f40c388 bellard
@subsubsection Windows host
1686 8f40c388 bellard
1687 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1688 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1689 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1690 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1691 8f40c388 bellard
1692 9d4fb82e bellard
@subsection Using the user mode network stack
1693 9d4fb82e bellard
1694 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1695 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1696 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1697 41d03949 bellard
network). The virtual network configuration is the following:
1698 9d4fb82e bellard
1699 9d4fb82e bellard
@example
1700 9d4fb82e bellard
1701 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1702 41d03949 bellard
                           |          (10.0.2.2)
1703 9d4fb82e bellard
                           |
1704 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1705 3b46e624 ths
                           |
1706 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1707 9d4fb82e bellard
@end example
1708 9d4fb82e bellard
1709 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1710 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1711 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1712 41d03949 bellard
to the hosts starting from 10.0.2.15.
1713 9d4fb82e bellard
1714 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1715 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1716 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1717 9d4fb82e bellard
1718 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1719 4be456f1 ths
would require root privileges. It means you can only ping the local
1720 b415a407 bellard
router (10.0.2.2).
1721 b415a407 bellard
1722 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1723 9bf05444 bellard
server.
1724 9bf05444 bellard
1725 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1726 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1727 9bf05444 bellard
redirect X11, telnet or SSH connections.
1728 443f1376 bellard
1729 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1730 41d03949 bellard
1731 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1732 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1733 41d03949 bellard
basic example.
1734 41d03949 bellard
1735 9d4fb82e bellard
@node direct_linux_boot
1736 9d4fb82e bellard
@section Direct Linux Boot
1737 1f673135 bellard
1738 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1739 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1740 ee0f4751 bellard
kernel testing.
1741 1f673135 bellard
1742 ee0f4751 bellard
The syntax is:
1743 1f673135 bellard
@example
1744 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1745 1f673135 bellard
@end example
1746 1f673135 bellard
1747 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1748 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1749 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1750 1f673135 bellard
1751 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1752 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1753 ee0f4751 bellard
Linux kernel.
1754 1f673135 bellard
1755 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1756 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1757 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1758 1f673135 bellard
@example
1759 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1760 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1761 1f673135 bellard
@end example
1762 1f673135 bellard
1763 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1764 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1765 1f673135 bellard
1766 debc7065 bellard
@node pcsys_usb
1767 b389dbfb bellard
@section USB emulation
1768 b389dbfb bellard
1769 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1770 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1771 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1772 f542086d bellard
as necessary to connect multiple USB devices.
1773 b389dbfb bellard
1774 0aff66b5 pbrook
@menu
1775 0aff66b5 pbrook
* usb_devices::
1776 0aff66b5 pbrook
* host_usb_devices::
1777 0aff66b5 pbrook
@end menu
1778 0aff66b5 pbrook
@node usb_devices
1779 0aff66b5 pbrook
@subsection Connecting USB devices
1780 b389dbfb bellard
1781 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1782 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1783 b389dbfb bellard
1784 db380c06 balrog
@table @code
1785 db380c06 balrog
@item mouse
1786 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1787 db380c06 balrog
@item tablet
1788 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1789 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1790 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1791 db380c06 balrog
@item disk:@var{file}
1792 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1793 db380c06 balrog
@item host:@var{bus.addr}
1794 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1795 0aff66b5 pbrook
(Linux only)
1796 db380c06 balrog
@item host:@var{vendor_id:product_id}
1797 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1798 0aff66b5 pbrook
(Linux only)
1799 db380c06 balrog
@item wacom-tablet
1800 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1801 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1802 f6d2a316 balrog
coordinates it reports touch pressure.
1803 db380c06 balrog
@item keyboard
1804 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1805 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1806 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1807 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1808 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1809 a11d070e balrog
used to override the default 0403:6001. For instance, 
1810 db380c06 balrog
@example
1811 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1812 db380c06 balrog
@end example
1813 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1814 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1815 2e4d9fb1 aurel32
@item braille
1816 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1817 2e4d9fb1 aurel32
or fake device.
1818 9ad97e65 balrog
@item net:@var{options}
1819 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1820 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1821 9ad97e65 balrog
For instance, user-mode networking can be used with
1822 6c9f886c balrog
@example
1823 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1824 6c9f886c balrog
@end example
1825 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
1826 2d564691 balrog
@item bt[:@var{hci-type}]
1827 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
1828 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1829 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1830 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
1831 2d564691 balrog
usage:
1832 2d564691 balrog
@example
1833 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1834 2d564691 balrog
@end example
1835 0aff66b5 pbrook
@end table
1836 b389dbfb bellard
1837 0aff66b5 pbrook
@node host_usb_devices
1838 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1839 b389dbfb bellard
1840 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1841 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1842 b389dbfb bellard
Cameras) are not supported yet.
1843 b389dbfb bellard
1844 b389dbfb bellard
@enumerate
1845 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1846 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1847 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1848 b389dbfb bellard
to @file{mydriver.o.disabled}.
1849 b389dbfb bellard
1850 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1851 b389dbfb bellard
@example
1852 b389dbfb bellard
ls /proc/bus/usb
1853 b389dbfb bellard
001  devices  drivers
1854 b389dbfb bellard
@end example
1855 b389dbfb bellard
1856 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1857 b389dbfb bellard
@example
1858 b389dbfb bellard
chown -R myuid /proc/bus/usb
1859 b389dbfb bellard
@end example
1860 b389dbfb bellard
1861 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1862 5fafdf24 ths
@example
1863 b389dbfb bellard
info usbhost
1864 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1865 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1866 b389dbfb bellard
@end example
1867 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1868 b389dbfb bellard
hubs, it won't work).
1869 b389dbfb bellard
1870 b389dbfb bellard
@item Add the device in QEMU by using:
1871 5fafdf24 ths
@example
1872 b389dbfb bellard
usb_add host:1234:5678
1873 b389dbfb bellard
@end example
1874 b389dbfb bellard
1875 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1876 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1877 b389dbfb bellard
1878 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1879 b389dbfb bellard
1880 b389dbfb bellard
@end enumerate
1881 b389dbfb bellard
1882 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1883 b389dbfb bellard
device to make it work again (this is a bug).
1884 b389dbfb bellard
1885 f858dcae ths
@node vnc_security
1886 f858dcae ths
@section VNC security
1887 f858dcae ths
1888 f858dcae ths
The VNC server capability provides access to the graphical console
1889 f858dcae ths
of the guest VM across the network. This has a number of security
1890 f858dcae ths
considerations depending on the deployment scenarios.
1891 f858dcae ths
1892 f858dcae ths
@menu
1893 f858dcae ths
* vnc_sec_none::
1894 f858dcae ths
* vnc_sec_password::
1895 f858dcae ths
* vnc_sec_certificate::
1896 f858dcae ths
* vnc_sec_certificate_verify::
1897 f858dcae ths
* vnc_sec_certificate_pw::
1898 f858dcae ths
* vnc_generate_cert::
1899 f858dcae ths
@end menu
1900 f858dcae ths
@node vnc_sec_none
1901 f858dcae ths
@subsection Without passwords
1902 f858dcae ths
1903 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1904 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1905 f858dcae ths
socket only. For example
1906 f858dcae ths
1907 f858dcae ths
@example
1908 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1909 f858dcae ths
@end example
1910 f858dcae ths
1911 f858dcae ths
This ensures that only users on local box with read/write access to that
1912 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1913 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1914 f858dcae ths
tunnel.
1915 f858dcae ths
1916 f858dcae ths
@node vnc_sec_password
1917 f858dcae ths
@subsection With passwords
1918 f858dcae ths
1919 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1920 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1921 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1922 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1923 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1924 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
1925 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1926 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1927 f858dcae ths
1928 f858dcae ths
@example
1929 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1930 f858dcae ths
(qemu) change vnc password
1931 f858dcae ths
Password: ********
1932 f858dcae ths
(qemu)
1933 f858dcae ths
@end example
1934 f858dcae ths
1935 f858dcae ths
@node vnc_sec_certificate
1936 f858dcae ths
@subsection With x509 certificates
1937 f858dcae ths
1938 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1939 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1940 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1941 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1942 f858dcae ths
support provides a secure session, but no authentication. This allows any
1943 f858dcae ths
client to connect, and provides an encrypted session.
1944 f858dcae ths
1945 f858dcae ths
@example
1946 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1947 f858dcae ths
@end example
1948 f858dcae ths
1949 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1950 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1951 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1952 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1953 f858dcae ths
only be readable by the user owning it.
1954 f858dcae ths
1955 f858dcae ths
@node vnc_sec_certificate_verify
1956 f858dcae ths
@subsection With x509 certificates and client verification
1957 f858dcae ths
1958 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1959 f858dcae ths
The server will request that the client provide a certificate, which it will
1960 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1961 f858dcae ths
in an environment with a private internal certificate authority.
1962 f858dcae ths
1963 f858dcae ths
@example
1964 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1965 f858dcae ths
@end example
1966 f858dcae ths
1967 f858dcae ths
1968 f858dcae ths
@node vnc_sec_certificate_pw
1969 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1970 f858dcae ths
1971 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1972 f858dcae ths
to provide two layers of authentication for clients.
1973 f858dcae ths
1974 f858dcae ths
@example
1975 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1976 f858dcae ths
(qemu) change vnc password
1977 f858dcae ths
Password: ********
1978 f858dcae ths
(qemu)
1979 f858dcae ths
@end example
1980 f858dcae ths
1981 f858dcae ths
@node vnc_generate_cert
1982 f858dcae ths
@subsection Generating certificates for VNC
1983 f858dcae ths
1984 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1985 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1986 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1987 f858dcae ths
each server. If using certificates for authentication, then each client
1988 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1989 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1990 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1991 f858dcae ths
1992 f858dcae ths
@menu
1993 f858dcae ths
* vnc_generate_ca::
1994 f858dcae ths
* vnc_generate_server::
1995 f858dcae ths
* vnc_generate_client::
1996 f858dcae ths
@end menu
1997 f858dcae ths
@node vnc_generate_ca
1998 f858dcae ths
@subsubsection Setup the Certificate Authority
1999 f858dcae ths
2000 f858dcae ths
This step only needs to be performed once per organization / organizational
2001 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
2002 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
2003 f858dcae ths
issued with it is lost.
2004 f858dcae ths
2005 f858dcae ths
@example
2006 f858dcae ths
# certtool --generate-privkey > ca-key.pem
2007 f858dcae ths
@end example
2008 f858dcae ths
2009 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
2010 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
2011 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
2012 f858dcae ths
name of the organization.
2013 f858dcae ths
2014 f858dcae ths
@example
2015 f858dcae ths
# cat > ca.info <<EOF
2016 f858dcae ths
cn = Name of your organization
2017 f858dcae ths
ca
2018 f858dcae ths
cert_signing_key
2019 f858dcae ths
EOF
2020 f858dcae ths
# certtool --generate-self-signed \
2021 f858dcae ths
           --load-privkey ca-key.pem
2022 f858dcae ths
           --template ca.info \
2023 f858dcae ths
           --outfile ca-cert.pem
2024 f858dcae ths
@end example
2025 f858dcae ths
2026 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2027 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2028 f858dcae ths
2029 f858dcae ths
@node vnc_generate_server
2030 f858dcae ths
@subsubsection Issuing server certificates
2031 f858dcae ths
2032 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
2033 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
2034 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
2035 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
2036 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
2037 f858dcae ths
secure CA private key:
2038 f858dcae ths
2039 f858dcae ths
@example
2040 f858dcae ths
# cat > server.info <<EOF
2041 f858dcae ths
organization = Name  of your organization
2042 f858dcae ths
cn = server.foo.example.com
2043 f858dcae ths
tls_www_server
2044 f858dcae ths
encryption_key
2045 f858dcae ths
signing_key
2046 f858dcae ths
EOF
2047 f858dcae ths
# certtool --generate-privkey > server-key.pem
2048 f858dcae ths
# certtool --generate-certificate \
2049 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2050 f858dcae ths
           --load-ca-privkey ca-key.pem \
2051 f858dcae ths
           --load-privkey server server-key.pem \
2052 f858dcae ths
           --template server.info \
2053 f858dcae ths
           --outfile server-cert.pem
2054 f858dcae ths
@end example
2055 f858dcae ths
2056 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2057 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
2058 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2059 f858dcae ths
2060 f858dcae ths
@node vnc_generate_client
2061 f858dcae ths
@subsubsection Issuing client certificates
2062 f858dcae ths
2063 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2064 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
2065 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
2066 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
2067 f858dcae ths
the secure CA private key:
2068 f858dcae ths
2069 f858dcae ths
@example
2070 f858dcae ths
# cat > client.info <<EOF
2071 f858dcae ths
country = GB
2072 f858dcae ths
state = London
2073 f858dcae ths
locality = London
2074 f858dcae ths
organiazation = Name of your organization
2075 f858dcae ths
cn = client.foo.example.com
2076 f858dcae ths
tls_www_client
2077 f858dcae ths
encryption_key
2078 f858dcae ths
signing_key
2079 f858dcae ths
EOF
2080 f858dcae ths
# certtool --generate-privkey > client-key.pem
2081 f858dcae ths
# certtool --generate-certificate \
2082 f858dcae ths
           --load-ca-certificate ca-cert.pem \
2083 f858dcae ths
           --load-ca-privkey ca-key.pem \
2084 f858dcae ths
           --load-privkey client-key.pem \
2085 f858dcae ths
           --template client.info \
2086 f858dcae ths
           --outfile client-cert.pem
2087 f858dcae ths
@end example
2088 f858dcae ths
2089 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2090 f858dcae ths
copied to the client for which they were generated.
2091 f858dcae ths
2092 0806e3f6 bellard
@node gdb_usage
2093 da415d54 bellard
@section GDB usage
2094 da415d54 bellard
2095 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
2096 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
2097 da415d54 bellard
2098 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2099 da415d54 bellard
gdb connection:
2100 da415d54 bellard
@example
2101 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2102 debc7065 bellard
       -append "root=/dev/hda"
2103 da415d54 bellard
Connected to host network interface: tun0
2104 da415d54 bellard
Waiting gdb connection on port 1234
2105 da415d54 bellard
@end example
2106 da415d54 bellard
2107 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
2108 da415d54 bellard
@example
2109 da415d54 bellard
> gdb vmlinux
2110 da415d54 bellard
@end example
2111 da415d54 bellard
2112 da415d54 bellard
In gdb, connect to QEMU:
2113 da415d54 bellard
@example
2114 6c9bf893 bellard
(gdb) target remote localhost:1234
2115 da415d54 bellard
@end example
2116 da415d54 bellard
2117 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2118 da415d54 bellard
@example
2119 da415d54 bellard
(gdb) c
2120 da415d54 bellard
@end example
2121 da415d54 bellard
2122 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
2123 0806e3f6 bellard
2124 0806e3f6 bellard
@enumerate
2125 0806e3f6 bellard
@item
2126 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
2127 0806e3f6 bellard
@item
2128 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
2129 0806e3f6 bellard
@item
2130 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
2131 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2132 0806e3f6 bellard
@end enumerate
2133 0806e3f6 bellard
2134 60897d36 edgar_igl
Advanced debugging options:
2135 60897d36 edgar_igl
2136 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2137 94d45e44 edgar_igl
@table @code
2138 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
2139 60897d36 edgar_igl
2140 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
2141 60897d36 edgar_igl
@example
2142 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
2143 60897d36 edgar_igl
sending: "qqemu.sstepbits"
2144 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2145 60897d36 edgar_igl
@end example
2146 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
2147 60897d36 edgar_igl
2148 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
2149 60897d36 edgar_igl
@example
2150 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
2151 60897d36 edgar_igl
sending: "qqemu.sstep"
2152 60897d36 edgar_igl
received: "0x7"
2153 60897d36 edgar_igl
@end example
2154 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
2155 60897d36 edgar_igl
2156 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2157 60897d36 edgar_igl
@example
2158 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
2159 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
2160 60897d36 edgar_igl
received: "OK"
2161 60897d36 edgar_igl
@end example
2162 94d45e44 edgar_igl
@end table
2163 60897d36 edgar_igl
2164 debc7065 bellard
@node pcsys_os_specific
2165 1a084f3d bellard
@section Target OS specific information
2166 1a084f3d bellard
2167 1a084f3d bellard
@subsection Linux
2168 1a084f3d bellard
2169 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2170 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2171 15a34c63 bellard
color depth in the guest and the host OS.
2172 1a084f3d bellard
2173 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
2174 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
2175 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
2176 e3371e62 bellard
cannot simulate exactly.
2177 e3371e62 bellard
2178 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2179 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
2180 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
2181 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2182 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2183 7c3fc84d bellard
2184 1a084f3d bellard
@subsection Windows
2185 1a084f3d bellard
2186 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2187 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2188 1a084f3d bellard
2189 e3371e62 bellard
@subsubsection SVGA graphic modes support
2190 e3371e62 bellard
2191 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2192 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2193 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2194 15a34c63 bellard
depth in the guest and the host OS.
2195 1a084f3d bellard
2196 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2197 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2198 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2199 3cb0853a bellard
(option @option{-std-vga}).
2200 3cb0853a bellard
2201 e3371e62 bellard
@subsubsection CPU usage reduction
2202 e3371e62 bellard
2203 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2204 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2205 15a34c63 bellard
idle. You can install the utility from
2206 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2207 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2208 1a084f3d bellard
2209 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2210 e3371e62 bellard
2211 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2212 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2213 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2214 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2215 9d0a8e6f bellard
IDE transfers).
2216 e3371e62 bellard
2217 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2218 6cc721cf bellard
2219 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2220 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2221 6cc721cf bellard
use the APM driver provided by the BIOS.
2222 6cc721cf bellard
2223 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2224 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2225 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2226 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2227 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2228 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2229 6cc721cf bellard
2230 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2231 6cc721cf bellard
2232 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2233 6cc721cf bellard
2234 2192c332 bellard
@subsubsection Windows XP security problem
2235 e3371e62 bellard
2236 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2237 e3371e62 bellard
error when booting:
2238 e3371e62 bellard
@example
2239 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2240 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2241 e3371e62 bellard
@end example
2242 e3371e62 bellard
2243 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2244 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2245 2192c332 bellard
network while in safe mode, its recommended to download the full
2246 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2247 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2248 e3371e62 bellard
2249 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2250 a0a821a4 bellard
2251 a0a821a4 bellard
@subsubsection CPU usage reduction
2252 a0a821a4 bellard
2253 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2254 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2255 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2256 a0a821a4 bellard
problem.
2257 a0a821a4 bellard
2258 debc7065 bellard
@node QEMU System emulator for non PC targets
2259 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2260 3f9f3aa1 bellard
2261 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2262 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2263 4be456f1 ths
differences are mentioned in the following sections.
2264 3f9f3aa1 bellard
2265 debc7065 bellard
@menu
2266 debc7065 bellard
* QEMU PowerPC System emulator::
2267 24d4de45 ths
* Sparc32 System emulator::
2268 24d4de45 ths
* Sparc64 System emulator::
2269 24d4de45 ths
* MIPS System emulator::
2270 24d4de45 ths
* ARM System emulator::
2271 24d4de45 ths
* ColdFire System emulator::
2272 debc7065 bellard
@end menu
2273 debc7065 bellard
2274 debc7065 bellard
@node QEMU PowerPC System emulator
2275 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2276 1a084f3d bellard
2277 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2278 15a34c63 bellard
or PowerMac PowerPC system.
2279 1a084f3d bellard
2280 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2281 1a084f3d bellard
2282 15a34c63 bellard
@itemize @minus
2283 5fafdf24 ths
@item
2284 5fafdf24 ths
UniNorth PCI Bridge
2285 15a34c63 bellard
@item
2286 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2287 5fafdf24 ths
@item
2288 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2289 5fafdf24 ths
@item
2290 15a34c63 bellard
NE2000 PCI adapters
2291 15a34c63 bellard
@item
2292 15a34c63 bellard
Non Volatile RAM
2293 15a34c63 bellard
@item
2294 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2295 1a084f3d bellard
@end itemize
2296 1a084f3d bellard
2297 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2298 52c00a5f bellard
2299 52c00a5f bellard
@itemize @minus
2300 5fafdf24 ths
@item
2301 15a34c63 bellard
PCI Bridge
2302 15a34c63 bellard
@item
2303 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2304 5fafdf24 ths
@item
2305 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2306 52c00a5f bellard
@item
2307 52c00a5f bellard
Floppy disk
2308 5fafdf24 ths
@item
2309 15a34c63 bellard
NE2000 network adapters
2310 52c00a5f bellard
@item
2311 52c00a5f bellard
Serial port
2312 52c00a5f bellard
@item
2313 52c00a5f bellard
PREP Non Volatile RAM
2314 15a34c63 bellard
@item
2315 15a34c63 bellard
PC compatible keyboard and mouse.
2316 52c00a5f bellard
@end itemize
2317 52c00a5f bellard
2318 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2319 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2320 52c00a5f bellard
2321 15a34c63 bellard
@c man begin OPTIONS
2322 15a34c63 bellard
2323 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2324 15a34c63 bellard
2325 15a34c63 bellard
@table @option
2326 15a34c63 bellard
2327 3b46e624 ths
@item -g WxH[xDEPTH]
2328 15a34c63 bellard
2329 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2330 15a34c63 bellard
2331 15a34c63 bellard
@end table
2332 15a34c63 bellard
2333 5fafdf24 ths
@c man end
2334 15a34c63 bellard
2335 15a34c63 bellard
2336 52c00a5f bellard
More information is available at
2337 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2338 52c00a5f bellard
2339 24d4de45 ths
@node Sparc32 System emulator
2340 24d4de45 ths
@section Sparc32 System emulator
2341 e80cfcfc bellard
2342 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
2343 34a3d239 blueswir1
Sun4m architecture machines:
2344 34a3d239 blueswir1
@itemize @minus
2345 34a3d239 blueswir1
@item
2346 34a3d239 blueswir1
SPARCstation 4
2347 34a3d239 blueswir1
@item
2348 34a3d239 blueswir1
SPARCstation 5
2349 34a3d239 blueswir1
@item
2350 34a3d239 blueswir1
SPARCstation 10
2351 34a3d239 blueswir1
@item
2352 34a3d239 blueswir1
SPARCstation 20
2353 34a3d239 blueswir1
@item
2354 34a3d239 blueswir1
SPARCserver 600MP
2355 34a3d239 blueswir1
@item
2356 34a3d239 blueswir1
SPARCstation LX
2357 34a3d239 blueswir1
@item
2358 34a3d239 blueswir1
SPARCstation Voyager
2359 34a3d239 blueswir1
@item
2360 34a3d239 blueswir1
SPARCclassic
2361 34a3d239 blueswir1
@item
2362 34a3d239 blueswir1
SPARCbook
2363 34a3d239 blueswir1
@end itemize
2364 34a3d239 blueswir1
2365 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2366 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
2367 e80cfcfc bellard
2368 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2369 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2370 34a3d239 blueswir1
emulators are not usable yet.
2371 34a3d239 blueswir1
2372 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2373 e80cfcfc bellard
2374 e80cfcfc bellard
@itemize @minus
2375 3475187d bellard
@item
2376 7d85892b blueswir1
IOMMU or IO-UNITs
2377 e80cfcfc bellard
@item
2378 e80cfcfc bellard
TCX Frame buffer
2379 5fafdf24 ths
@item
2380 e80cfcfc bellard
Lance (Am7990) Ethernet
2381 e80cfcfc bellard
@item
2382 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
2383 e80cfcfc bellard
@item
2384 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2385 3475187d bellard
and power/reset logic
2386 3475187d bellard
@item
2387 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2388 3475187d bellard
@item
2389 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2390 a2502b58 blueswir1
@item
2391 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2392 e80cfcfc bellard
@end itemize
2393 e80cfcfc bellard
2394 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2395 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2396 7d85892b blueswir1
others 2047MB.
2397 3475187d bellard
2398 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2399 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2400 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2401 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2402 3475187d bellard
2403 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2404 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2405 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
2406 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
2407 34a3d239 blueswir1
Solaris.
2408 3475187d bellard
2409 3475187d bellard
@c man begin OPTIONS
2410 3475187d bellard
2411 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2412 3475187d bellard
2413 3475187d bellard
@table @option
2414 3475187d bellard
2415 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2416 3475187d bellard
2417 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2418 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2419 3475187d bellard
2420 66508601 blueswir1
@item -prom-env string
2421 66508601 blueswir1
2422 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2423 66508601 blueswir1
2424 66508601 blueswir1
@example
2425 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2426 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2427 66508601 blueswir1
@end example
2428 66508601 blueswir1
2429 34a3d239 blueswir1
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2430 a2502b58 blueswir1
2431 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2432 a2502b58 blueswir1
2433 3475187d bellard
@end table
2434 3475187d bellard
2435 5fafdf24 ths
@c man end
2436 3475187d bellard
2437 24d4de45 ths
@node Sparc64 System emulator
2438 24d4de45 ths
@section Sparc64 System emulator
2439 e80cfcfc bellard
2440 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2441 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2442 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
2443 34a3d239 blueswir1
it can launch some kernels.
2444 b756921a bellard
2445 c7ba218d blueswir1
QEMU emulates the following peripherals:
2446 83469015 bellard
2447 83469015 bellard
@itemize @minus
2448 83469015 bellard
@item
2449 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2450 83469015 bellard
@item
2451 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2452 83469015 bellard
@item
2453 34a3d239 blueswir1
PS/2 mouse and keyboard
2454 34a3d239 blueswir1
@item
2455 83469015 bellard
Non Volatile RAM M48T59
2456 83469015 bellard
@item
2457 83469015 bellard
PC-compatible serial ports
2458 c7ba218d blueswir1
@item
2459 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
2460 34a3d239 blueswir1
@item
2461 34a3d239 blueswir1
Floppy disk
2462 83469015 bellard
@end itemize
2463 83469015 bellard
2464 c7ba218d blueswir1
@c man begin OPTIONS
2465 c7ba218d blueswir1
2466 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
2467 c7ba218d blueswir1
2468 c7ba218d blueswir1
@table @option
2469 c7ba218d blueswir1
2470 34a3d239 blueswir1
@item -prom-env string
2471 34a3d239 blueswir1
2472 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2473 34a3d239 blueswir1
2474 34a3d239 blueswir1
@example
2475 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2476 34a3d239 blueswir1
@end example
2477 34a3d239 blueswir1
2478 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
2479 c7ba218d blueswir1
2480 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
2481 c7ba218d blueswir1
2482 c7ba218d blueswir1
@end table
2483 c7ba218d blueswir1
2484 c7ba218d blueswir1
@c man end
2485 c7ba218d blueswir1
2486 24d4de45 ths
@node MIPS System emulator
2487 24d4de45 ths
@section MIPS System emulator
2488 9d0a8e6f bellard
2489 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2490 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2491 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2492 88cb0a02 aurel32
Five different machine types are emulated:
2493 24d4de45 ths
2494 24d4de45 ths
@itemize @minus
2495 24d4de45 ths
@item
2496 24d4de45 ths
A generic ISA PC-like machine "mips"
2497 24d4de45 ths
@item
2498 24d4de45 ths
The MIPS Malta prototype board "malta"
2499 24d4de45 ths
@item
2500 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2501 6bf5b4e8 ths
@item
2502 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2503 88cb0a02 aurel32
@item
2504 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2505 24d4de45 ths
@end itemize
2506 24d4de45 ths
2507 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2508 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2509 24d4de45 ths
emulated:
2510 3f9f3aa1 bellard
2511 3f9f3aa1 bellard
@itemize @minus
2512 5fafdf24 ths
@item
2513 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2514 3f9f3aa1 bellard
@item
2515 3f9f3aa1 bellard
PC style serial port
2516 3f9f3aa1 bellard
@item
2517 24d4de45 ths
PC style IDE disk
2518 24d4de45 ths
@item
2519 3f9f3aa1 bellard
NE2000 network card
2520 3f9f3aa1 bellard
@end itemize
2521 3f9f3aa1 bellard
2522 24d4de45 ths
The Malta emulation supports the following devices:
2523 24d4de45 ths
2524 24d4de45 ths
@itemize @minus
2525 24d4de45 ths
@item
2526 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2527 24d4de45 ths
@item
2528 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2529 24d4de45 ths
@item
2530 24d4de45 ths
The Multi-I/O chip's serial device
2531 24d4de45 ths
@item
2532 24d4de45 ths
PCnet32 PCI network card
2533 24d4de45 ths
@item
2534 24d4de45 ths
Malta FPGA serial device
2535 24d4de45 ths
@item
2536 24d4de45 ths
Cirrus VGA graphics card
2537 24d4de45 ths
@end itemize
2538 24d4de45 ths
2539 24d4de45 ths
The ACER Pica emulation supports:
2540 24d4de45 ths
2541 24d4de45 ths
@itemize @minus
2542 24d4de45 ths
@item
2543 24d4de45 ths
MIPS R4000 CPU
2544 24d4de45 ths
@item
2545 24d4de45 ths
PC-style IRQ and DMA controllers
2546 24d4de45 ths
@item
2547 24d4de45 ths
PC Keyboard
2548 24d4de45 ths
@item
2549 24d4de45 ths
IDE controller
2550 24d4de45 ths
@end itemize
2551 3f9f3aa1 bellard
2552 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2553 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2554 f0fc6f8f ths
It supports:
2555 6bf5b4e8 ths
2556 6bf5b4e8 ths
@itemize @minus
2557 6bf5b4e8 ths
@item
2558 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2559 6bf5b4e8 ths
@item
2560 6bf5b4e8 ths
PC style serial port
2561 6bf5b4e8 ths
@item
2562 6bf5b4e8 ths
MIPSnet network emulation
2563 6bf5b4e8 ths
@end itemize
2564 6bf5b4e8 ths
2565 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2566 88cb0a02 aurel32
2567 88cb0a02 aurel32
@itemize @minus
2568 88cb0a02 aurel32
@item
2569 88cb0a02 aurel32
MIPS R4000 CPU
2570 88cb0a02 aurel32
@item
2571 88cb0a02 aurel32
PC-style IRQ controller
2572 88cb0a02 aurel32
@item
2573 88cb0a02 aurel32
PC Keyboard
2574 88cb0a02 aurel32
@item
2575 88cb0a02 aurel32
SCSI controller
2576 88cb0a02 aurel32
@item
2577 88cb0a02 aurel32
G364 framebuffer
2578 88cb0a02 aurel32
@end itemize
2579 88cb0a02 aurel32
2580 88cb0a02 aurel32
2581 24d4de45 ths
@node ARM System emulator
2582 24d4de45 ths
@section ARM System emulator
2583 3f9f3aa1 bellard
2584 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2585 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2586 3f9f3aa1 bellard
devices:
2587 3f9f3aa1 bellard
2588 3f9f3aa1 bellard
@itemize @minus
2589 3f9f3aa1 bellard
@item
2590 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2591 3f9f3aa1 bellard
@item
2592 3f9f3aa1 bellard
Two PL011 UARTs
2593 5fafdf24 ths
@item
2594 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2595 00a9bf19 pbrook
@item
2596 00a9bf19 pbrook
PL110 LCD controller
2597 00a9bf19 pbrook
@item
2598 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2599 a1bb27b1 pbrook
@item
2600 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2601 00a9bf19 pbrook
@end itemize
2602 00a9bf19 pbrook
2603 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2604 00a9bf19 pbrook
2605 00a9bf19 pbrook
@itemize @minus
2606 00a9bf19 pbrook
@item
2607 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2608 00a9bf19 pbrook
@item
2609 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2610 00a9bf19 pbrook
@item
2611 00a9bf19 pbrook
Four PL011 UARTs
2612 5fafdf24 ths
@item
2613 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2614 00a9bf19 pbrook
@item
2615 00a9bf19 pbrook
PL110 LCD controller
2616 00a9bf19 pbrook
@item
2617 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2618 00a9bf19 pbrook
@item
2619 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2620 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2621 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2622 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2623 00a9bf19 pbrook
mapped control registers.
2624 e6de1bad pbrook
@item
2625 e6de1bad pbrook
PCI OHCI USB controller.
2626 e6de1bad pbrook
@item
2627 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2628 a1bb27b1 pbrook
@item
2629 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2630 3f9f3aa1 bellard
@end itemize
2631 3f9f3aa1 bellard
2632 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2633 d7739d75 pbrook
2634 d7739d75 pbrook
@itemize @minus
2635 d7739d75 pbrook
@item
2636 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2637 d7739d75 pbrook
@item
2638 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2639 d7739d75 pbrook
@item
2640 d7739d75 pbrook
Four PL011 UARTs
2641 5fafdf24 ths
@item
2642 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2643 d7739d75 pbrook
@item
2644 d7739d75 pbrook
PL110 LCD controller
2645 d7739d75 pbrook
@item
2646 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2647 d7739d75 pbrook
@item
2648 d7739d75 pbrook
PCI host bridge
2649 d7739d75 pbrook
@item
2650 d7739d75 pbrook
PCI OHCI USB controller
2651 d7739d75 pbrook
@item
2652 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2653 a1bb27b1 pbrook
@item
2654 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2655 d7739d75 pbrook
@end itemize
2656 d7739d75 pbrook
2657 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2658 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2659 b00052e4 balrog
2660 b00052e4 balrog
@itemize @minus
2661 b00052e4 balrog
@item
2662 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2663 b00052e4 balrog
@item
2664 b00052e4 balrog
NAND Flash memory
2665 b00052e4 balrog
@item
2666 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2667 b00052e4 balrog
@item
2668 b00052e4 balrog
On-chip OHCI USB controller
2669 b00052e4 balrog
@item
2670 b00052e4 balrog
On-chip LCD controller
2671 b00052e4 balrog
@item
2672 b00052e4 balrog
On-chip Real Time Clock
2673 b00052e4 balrog
@item
2674 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2675 b00052e4 balrog
@item
2676 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2677 b00052e4 balrog
@item
2678 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2679 b00052e4 balrog
@item
2680 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2681 b00052e4 balrog
@item
2682 b00052e4 balrog
Three on-chip UARTs
2683 b00052e4 balrog
@item
2684 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2685 b00052e4 balrog
@end itemize
2686 b00052e4 balrog
2687 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2688 02645926 balrog
following elements:
2689 02645926 balrog
2690 02645926 balrog
@itemize @minus
2691 02645926 balrog
@item
2692 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2693 02645926 balrog
@item
2694 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2695 02645926 balrog
@item
2696 02645926 balrog
On-chip LCD controller
2697 02645926 balrog
@item
2698 02645926 balrog
On-chip Real Time Clock
2699 02645926 balrog
@item
2700 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2701 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2702 02645926 balrog
@item
2703 02645926 balrog
GPIO-connected matrix keypad
2704 02645926 balrog
@item
2705 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2706 02645926 balrog
@item
2707 02645926 balrog
Three on-chip UARTs
2708 02645926 balrog
@end itemize
2709 02645926 balrog
2710 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2711 c30bb264 balrog
emulation supports the following elements:
2712 c30bb264 balrog
2713 c30bb264 balrog
@itemize @minus
2714 c30bb264 balrog
@item
2715 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2716 c30bb264 balrog
@item
2717 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2718 c30bb264 balrog
@item
2719 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2720 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2721 c30bb264 balrog
@item
2722 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2723 c30bb264 balrog
driven through SPI bus
2724 c30bb264 balrog
@item
2725 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2726 c30bb264 balrog
through I@math{^2}C bus
2727 c30bb264 balrog
@item
2728 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2729 c30bb264 balrog
@item
2730 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2731 c30bb264 balrog
@item
2732 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
2733 2d564691 balrog
@item
2734 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2735 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2736 c30bb264 balrog
@item
2737 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2738 c30bb264 balrog
@item
2739 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2740 c30bb264 balrog
@item
2741 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2742 c30bb264 balrog
through CBUS
2743 c30bb264 balrog
@end itemize
2744 c30bb264 balrog
2745 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2746 9ee6e8bb pbrook
devices:
2747 9ee6e8bb pbrook
2748 9ee6e8bb pbrook
@itemize @minus
2749 9ee6e8bb pbrook
@item
2750 9ee6e8bb pbrook
Cortex-M3 CPU core.
2751 9ee6e8bb pbrook
@item
2752 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2753 9ee6e8bb pbrook
@item
2754 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2755 9ee6e8bb pbrook
@item
2756 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2757 9ee6e8bb pbrook
@end itemize
2758 9ee6e8bb pbrook
2759 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2760 9ee6e8bb pbrook
devices:
2761 9ee6e8bb pbrook
2762 9ee6e8bb pbrook
@itemize @minus
2763 9ee6e8bb pbrook
@item
2764 9ee6e8bb pbrook
Cortex-M3 CPU core.
2765 9ee6e8bb pbrook
@item
2766 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2767 9ee6e8bb pbrook
@item
2768 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2769 9ee6e8bb pbrook
@item
2770 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2771 9ee6e8bb pbrook
@end itemize
2772 9ee6e8bb pbrook
2773 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2774 57cd6e97 balrog
elements:
2775 57cd6e97 balrog
2776 57cd6e97 balrog
@itemize @minus
2777 57cd6e97 balrog
@item
2778 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2779 57cd6e97 balrog
@item
2780 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2781 57cd6e97 balrog
@item
2782 57cd6e97 balrog
Up to 2 16550 UARTs
2783 57cd6e97 balrog
@item
2784 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2785 57cd6e97 balrog
@item
2786 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2787 57cd6e97 balrog
@item
2788 57cd6e97 balrog
128?64 display with brightness control
2789 57cd6e97 balrog
@item
2790 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2791 57cd6e97 balrog
@end itemize
2792 57cd6e97 balrog
2793 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2794 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2795 9d0a8e6f bellard
2796 24d4de45 ths
@node ColdFire System emulator
2797 24d4de45 ths
@section ColdFire System emulator
2798 209a4e69 pbrook
2799 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2800 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2801 707e011b pbrook
2802 707e011b pbrook
The M5208EVB emulation includes the following devices:
2803 707e011b pbrook
2804 707e011b pbrook
@itemize @minus
2805 5fafdf24 ths
@item
2806 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2807 707e011b pbrook
@item
2808 707e011b pbrook
Three Two on-chip UARTs.
2809 707e011b pbrook
@item
2810 707e011b pbrook
Fast Ethernet Controller (FEC)
2811 707e011b pbrook
@end itemize
2812 707e011b pbrook
2813 707e011b pbrook
The AN5206 emulation includes the following devices:
2814 209a4e69 pbrook
2815 209a4e69 pbrook
@itemize @minus
2816 5fafdf24 ths
@item
2817 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2818 209a4e69 pbrook
@item
2819 209a4e69 pbrook
Two on-chip UARTs.
2820 209a4e69 pbrook
@end itemize
2821 209a4e69 pbrook
2822 5fafdf24 ths
@node QEMU User space emulator
2823 5fafdf24 ths
@chapter QEMU User space emulator
2824 83195237 bellard
2825 83195237 bellard
@menu
2826 83195237 bellard
* Supported Operating Systems ::
2827 83195237 bellard
* Linux User space emulator::
2828 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2829 84778508 blueswir1
* BSD User space emulator ::
2830 83195237 bellard
@end menu
2831 83195237 bellard
2832 83195237 bellard
@node Supported Operating Systems
2833 83195237 bellard
@section Supported Operating Systems
2834 83195237 bellard
2835 83195237 bellard
The following OS are supported in user space emulation:
2836 83195237 bellard
2837 83195237 bellard
@itemize @minus
2838 83195237 bellard
@item
2839 4be456f1 ths
Linux (referred as qemu-linux-user)
2840 83195237 bellard
@item
2841 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2842 84778508 blueswir1
@item
2843 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2844 83195237 bellard
@end itemize
2845 83195237 bellard
2846 83195237 bellard
@node Linux User space emulator
2847 83195237 bellard
@section Linux User space emulator
2848 386405f7 bellard
2849 debc7065 bellard
@menu
2850 debc7065 bellard
* Quick Start::
2851 debc7065 bellard
* Wine launch::
2852 debc7065 bellard
* Command line options::
2853 79737e4a pbrook
* Other binaries::
2854 debc7065 bellard
@end menu
2855 debc7065 bellard
2856 debc7065 bellard
@node Quick Start
2857 83195237 bellard
@subsection Quick Start
2858 df0f11a0 bellard
2859 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2860 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2861 386405f7 bellard
2862 1f673135 bellard
@itemize
2863 386405f7 bellard
2864 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2865 1f673135 bellard
libraries:
2866 386405f7 bellard
2867 5fafdf24 ths
@example
2868 1f673135 bellard
qemu-i386 -L / /bin/ls
2869 1f673135 bellard
@end example
2870 386405f7 bellard
2871 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2872 1f673135 bellard
@file{/} prefix.
2873 386405f7 bellard
2874 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2875 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2876 386405f7 bellard
2877 5fafdf24 ths
@example
2878 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2879 1f673135 bellard
@end example
2880 386405f7 bellard
2881 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2882 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2883 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2884 df0f11a0 bellard
2885 1f673135 bellard
@example
2886 5fafdf24 ths
unset LD_LIBRARY_PATH
2887 1f673135 bellard
@end example
2888 1eb87257 bellard
2889 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2890 1eb87257 bellard
2891 1f673135 bellard
@example
2892 1f673135 bellard
qemu-i386 tests/i386/ls
2893 1f673135 bellard
@end example
2894 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2895 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2896 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2897 1f673135 bellard
Linux kernel.
2898 1eb87257 bellard
2899 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2900 1f673135 bellard
@example
2901 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2902 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2903 1f673135 bellard
@end example
2904 1eb20527 bellard
2905 1f673135 bellard
@end itemize
2906 1eb20527 bellard
2907 debc7065 bellard
@node Wine launch
2908 83195237 bellard
@subsection Wine launch
2909 1eb20527 bellard
2910 1f673135 bellard
@itemize
2911 386405f7 bellard
2912 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2913 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2914 1f673135 bellard
able to do:
2915 386405f7 bellard
2916 1f673135 bellard
@example
2917 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2918 1f673135 bellard
@end example
2919 386405f7 bellard
2920 1f673135 bellard
@item Download the binary x86 Wine install
2921 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2922 386405f7 bellard
2923 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2924 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2925 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2926 386405f7 bellard
2927 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2928 386405f7 bellard
2929 1f673135 bellard
@example
2930 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2931 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2932 1f673135 bellard
@end example
2933 386405f7 bellard
2934 1f673135 bellard
@end itemize
2935 fd429f2f bellard
2936 debc7065 bellard
@node Command line options
2937 83195237 bellard
@subsection Command line options
2938 1eb20527 bellard
2939 1f673135 bellard
@example
2940 34a3d239 blueswir1
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2941 1f673135 bellard
@end example
2942 1eb20527 bellard
2943 1f673135 bellard
@table @option
2944 1f673135 bellard
@item -h
2945 1f673135 bellard
Print the help
2946 3b46e624 ths
@item -L path
2947 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2948 1f673135 bellard
@item -s size
2949 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2950 34a3d239 blueswir1
@item -cpu model
2951 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2952 386405f7 bellard
@end table
2953 386405f7 bellard
2954 1f673135 bellard
Debug options:
2955 386405f7 bellard
2956 1f673135 bellard
@table @option
2957 1f673135 bellard
@item -d
2958 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2959 1f673135 bellard
@item -p pagesize
2960 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2961 34a3d239 blueswir1
@item -g port
2962 34a3d239 blueswir1
Wait gdb connection to port
2963 1f673135 bellard
@end table
2964 386405f7 bellard
2965 b01bcae6 balrog
Environment variables:
2966 b01bcae6 balrog
2967 b01bcae6 balrog
@table @env
2968 b01bcae6 balrog
@item QEMU_STRACE
2969 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2970 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2971 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2972 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2973 b01bcae6 balrog
format are printed with information for six arguments.  Many
2974 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2975 5cfdf930 ths
@end table
2976 b01bcae6 balrog
2977 79737e4a pbrook
@node Other binaries
2978 83195237 bellard
@subsection Other binaries
2979 79737e4a pbrook
2980 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2981 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2982 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2983 79737e4a pbrook
2984 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2985 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2986 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2987 e6e5906b pbrook
2988 79737e4a pbrook
The binary format is detected automatically.
2989 79737e4a pbrook
2990 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2991 34a3d239 blueswir1
2992 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2993 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2994 a785e42e blueswir1
2995 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2996 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2997 a785e42e blueswir1
2998 83195237 bellard
@node Mac OS X/Darwin User space emulator
2999 83195237 bellard
@section Mac OS X/Darwin User space emulator
3000 83195237 bellard
3001 83195237 bellard
@menu
3002 83195237 bellard
* Mac OS X/Darwin Status::
3003 83195237 bellard
* Mac OS X/Darwin Quick Start::
3004 83195237 bellard
* Mac OS X/Darwin Command line options::
3005 83195237 bellard
@end menu
3006 83195237 bellard
3007 83195237 bellard
@node Mac OS X/Darwin Status
3008 83195237 bellard
@subsection Mac OS X/Darwin Status
3009 83195237 bellard
3010 83195237 bellard
@itemize @minus
3011 83195237 bellard
@item
3012 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3013 83195237 bellard
@item
3014 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3015 83195237 bellard
@item
3016 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3017 83195237 bellard
@item
3018 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3019 83195237 bellard
@end itemize
3020 83195237 bellard
3021 83195237 bellard
[1] If you're host commpage can be executed by qemu.
3022 83195237 bellard
3023 83195237 bellard
@node Mac OS X/Darwin Quick Start
3024 83195237 bellard
@subsection Quick Start
3025 83195237 bellard
3026 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3027 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
3028 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3029 83195237 bellard
CD or compile them by hand.
3030 83195237 bellard
3031 83195237 bellard
@itemize
3032 83195237 bellard
3033 83195237 bellard
@item On x86, you can just try to launch any process by using the native
3034 83195237 bellard
libraries:
3035 83195237 bellard
3036 5fafdf24 ths
@example
3037 dbcf5e82 ths
qemu-i386 /bin/ls
3038 83195237 bellard
@end example
3039 83195237 bellard
3040 83195237 bellard
or to run the ppc version of the executable:
3041 83195237 bellard
3042 5fafdf24 ths
@example
3043 dbcf5e82 ths
qemu-ppc /bin/ls
3044 83195237 bellard
@end example
3045 83195237 bellard
3046 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3047 83195237 bellard
are installed:
3048 83195237 bellard
3049 5fafdf24 ths
@example
3050 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
3051 83195237 bellard
@end example
3052 83195237 bellard
3053 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3054 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
3055 83195237 bellard
3056 83195237 bellard
@end itemize
3057 83195237 bellard
3058 83195237 bellard
@node Mac OS X/Darwin Command line options
3059 83195237 bellard
@subsection Command line options
3060 83195237 bellard
3061 83195237 bellard
@example
3062 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3063 83195237 bellard
@end example
3064 83195237 bellard
3065 83195237 bellard
@table @option
3066 83195237 bellard
@item -h
3067 83195237 bellard
Print the help
3068 3b46e624 ths
@item -L path
3069 83195237 bellard
Set the library root path (default=/)
3070 83195237 bellard
@item -s size
3071 83195237 bellard
Set the stack size in bytes (default=524288)
3072 83195237 bellard
@end table
3073 83195237 bellard
3074 83195237 bellard
Debug options:
3075 83195237 bellard
3076 83195237 bellard
@table @option
3077 83195237 bellard
@item -d
3078 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
3079 83195237 bellard
@item -p pagesize
3080 83195237 bellard
Act as if the host page size was 'pagesize' bytes
3081 83195237 bellard
@end table
3082 83195237 bellard
3083 84778508 blueswir1
@node BSD User space emulator
3084 84778508 blueswir1
@section BSD User space emulator
3085 84778508 blueswir1
3086 84778508 blueswir1
@menu
3087 84778508 blueswir1
* BSD Status::
3088 84778508 blueswir1
* BSD Quick Start::
3089 84778508 blueswir1
* BSD Command line options::
3090 84778508 blueswir1
@end menu
3091 84778508 blueswir1
3092 84778508 blueswir1
@node BSD Status
3093 84778508 blueswir1
@subsection BSD Status
3094 84778508 blueswir1
3095 84778508 blueswir1
@itemize @minus
3096 84778508 blueswir1
@item
3097 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
3098 84778508 blueswir1
@end itemize
3099 84778508 blueswir1
3100 84778508 blueswir1
@node BSD Quick Start
3101 84778508 blueswir1
@subsection Quick Start
3102 84778508 blueswir1
3103 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
3104 84778508 blueswir1
itself and all the target dynamic libraries used by it.
3105 84778508 blueswir1
3106 84778508 blueswir1
@itemize
3107 84778508 blueswir1
3108 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
3109 84778508 blueswir1
libraries:
3110 84778508 blueswir1
3111 84778508 blueswir1
@example
3112 84778508 blueswir1
qemu-sparc64 /bin/ls
3113 84778508 blueswir1
@end example
3114 84778508 blueswir1
3115 84778508 blueswir1
@end itemize
3116 84778508 blueswir1
3117 84778508 blueswir1
@node BSD Command line options
3118 84778508 blueswir1
@subsection Command line options
3119 84778508 blueswir1
3120 84778508 blueswir1
@example
3121 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3122 84778508 blueswir1
@end example
3123 84778508 blueswir1
3124 84778508 blueswir1
@table @option
3125 84778508 blueswir1
@item -h
3126 84778508 blueswir1
Print the help
3127 84778508 blueswir1
@item -L path
3128 84778508 blueswir1
Set the library root path (default=/)
3129 84778508 blueswir1
@item -s size
3130 84778508 blueswir1
Set the stack size in bytes (default=524288)
3131 84778508 blueswir1
@item -bsd type
3132 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
3133 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
3134 84778508 blueswir1
@end table
3135 84778508 blueswir1
3136 84778508 blueswir1
Debug options:
3137 84778508 blueswir1
3138 84778508 blueswir1
@table @option
3139 84778508 blueswir1
@item -d
3140 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
3141 84778508 blueswir1
@item -p pagesize
3142 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
3143 84778508 blueswir1
@end table
3144 84778508 blueswir1
3145 15a34c63 bellard
@node compilation
3146 15a34c63 bellard
@chapter Compilation from the sources
3147 15a34c63 bellard
3148 debc7065 bellard
@menu
3149 debc7065 bellard
* Linux/Unix::
3150 debc7065 bellard
* Windows::
3151 debc7065 bellard
* Cross compilation for Windows with Linux::
3152 debc7065 bellard
* Mac OS X::
3153 debc7065 bellard
@end menu
3154 debc7065 bellard
3155 debc7065 bellard
@node Linux/Unix
3156 7c3fc84d bellard
@section Linux/Unix
3157 7c3fc84d bellard
3158 7c3fc84d bellard
@subsection Compilation
3159 7c3fc84d bellard
3160 7c3fc84d bellard
First you must decompress the sources:
3161 7c3fc84d bellard
@example
3162 7c3fc84d bellard
cd /tmp
3163 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
3164 7c3fc84d bellard
cd qemu-x.y.z
3165 7c3fc84d bellard
@end example
3166 7c3fc84d bellard
3167 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
3168 7c3fc84d bellard
@example
3169 7c3fc84d bellard
./configure
3170 7c3fc84d bellard
make
3171 7c3fc84d bellard
@end example
3172 7c3fc84d bellard
3173 7c3fc84d bellard
Then type as root user:
3174 7c3fc84d bellard
@example
3175 7c3fc84d bellard
make install
3176 7c3fc84d bellard
@end example
3177 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
3178 7c3fc84d bellard
3179 4fe8b87a bellard
@subsection GCC version
3180 7c3fc84d bellard
3181 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
3182 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
3183 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3184 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
3185 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
3186 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
3187 4be456f1 ths
these older versions so that usually you don't have to do anything.
3188 15a34c63 bellard
3189 debc7065 bellard
@node Windows
3190 15a34c63 bellard
@section Windows
3191 15a34c63 bellard
3192 15a34c63 bellard
@itemize
3193 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
3194 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
3195 15a34c63 bellard
instructions in the download section and the FAQ.
3196 15a34c63 bellard
3197 5fafdf24 ths
@item Download
3198 15a34c63 bellard
the MinGW development library of SDL 1.2.x
3199 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3200 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3201 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3202 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
3203 15a34c63 bellard
correct SDL directory when invoked.
3204 15a34c63 bellard
3205 15a34c63 bellard
@item Extract the current version of QEMU.
3206 5fafdf24 ths
3207 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
3208 15a34c63 bellard
3209 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
3210 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
3211 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
3212 15a34c63 bellard
3213 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
3214 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
3215 15a34c63 bellard
@file{Program Files/Qemu}.
3216 15a34c63 bellard
3217 15a34c63 bellard
@end itemize
3218 15a34c63 bellard
3219 debc7065 bellard
@node Cross compilation for Windows with Linux
3220 15a34c63 bellard
@section Cross compilation for Windows with Linux
3221 15a34c63 bellard
3222 15a34c63 bellard
@itemize
3223 15a34c63 bellard
@item
3224 15a34c63 bellard
Install the MinGW cross compilation tools available at
3225 15a34c63 bellard
@url{http://www.mingw.org/}.
3226 15a34c63 bellard
3227 5fafdf24 ths
@item
3228 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3229 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3230 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3231 15a34c63 bellard
the QEMU configuration script.
3232 15a34c63 bellard
3233 5fafdf24 ths
@item
3234 15a34c63 bellard
Configure QEMU for Windows cross compilation:
3235 15a34c63 bellard
@example
3236 15a34c63 bellard
./configure --enable-mingw32
3237 15a34c63 bellard
@end example
3238 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
3239 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
3240 15a34c63 bellard
--prefix to set the Win32 install path.
3241 15a34c63 bellard
3242 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
3243 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3244 5fafdf24 ths
installation directory.
3245 15a34c63 bellard
3246 15a34c63 bellard
@end itemize
3247 15a34c63 bellard
3248 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
3249 15a34c63 bellard
QEMU for Win32.
3250 15a34c63 bellard
3251 debc7065 bellard
@node Mac OS X
3252 15a34c63 bellard
@section Mac OS X
3253 15a34c63 bellard
3254 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
3255 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
3256 15a34c63 bellard
information.
3257 15a34c63 bellard
3258 debc7065 bellard
@node Index
3259 debc7065 bellard
@chapter Index
3260 debc7065 bellard
@printindex cp
3261 debc7065 bellard
3262 debc7065 bellard
@bye