Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 1129714f

History | View | Annotate | Download (64.1 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserverd or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c5
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
#define ITD_BUFPTR_MULT_SH       0
202
} EHCIitd;
203

    
204
/*  EHCI spec version 1.0 Section 3.4
205
 */
206
typedef struct EHCIsitd {
207
    uint32_t next;                  // Standard next link pointer
208
    uint32_t epchar;
209
#define SITD_EPCHAR_IO              (1 << 31)
210
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
211
#define SITD_EPCHAR_PORTNUM_SH      24
212
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
213
#define SITD_EPCHAR_HUBADDR_SH      16
214
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
215
#define SITD_EPCHAR_EPNUM_SH        8
216
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
217

    
218
    uint32_t uframe;
219
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
220
#define SITD_UFRAME_CMASK_SH        8
221
#define SITD_UFRAME_SMASK_MASK      0x000000ff
222

    
223
    uint32_t results;
224
#define SITD_RESULTS_IOC              (1 << 31)
225
#define SITD_RESULTS_PGSEL            (1 << 30)
226
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
227
#define SITD_RESULTS_TYBYTES_SH       16
228
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
229
#define SITD_RESULTS_CPROGMASK_SH     8
230
#define SITD_RESULTS_ACTIVE           (1 << 7)
231
#define SITD_RESULTS_ERR              (1 << 6)
232
#define SITD_RESULTS_DBERR            (1 << 5)
233
#define SITD_RESULTS_BABBLE           (1 << 4)
234
#define SITD_RESULTS_XACTERR          (1 << 3)
235
#define SITD_RESULTS_MISSEDUF         (1 << 2)
236
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
237

    
238
    uint32_t bufptr[2];
239
#define SITD_BUFPTR_MASK              0xfffff000
240
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
241
#define SITD_BUFPTR_TPOS_MASK         0x00000018
242
#define SITD_BUFPTR_TPOS_SH           3
243
#define SITD_BUFPTR_TCNT_MASK         0x00000007
244

    
245
    uint32_t backptr;                 // Standard next link pointer
246
} EHCIsitd;
247

    
248
/*  EHCI spec version 1.0 Section 3.5
249
 */
250
typedef struct EHCIqtd {
251
    uint32_t next;                    // Standard next link pointer
252
    uint32_t altnext;                 // Standard next link pointer
253
    uint32_t token;
254
#define QTD_TOKEN_DTOGGLE             (1 << 31)
255
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
256
#define QTD_TOKEN_TBYTES_SH           16
257
#define QTD_TOKEN_IOC                 (1 << 15)
258
#define QTD_TOKEN_CPAGE_MASK          0x00007000
259
#define QTD_TOKEN_CPAGE_SH            12
260
#define QTD_TOKEN_CERR_MASK           0x00000c00
261
#define QTD_TOKEN_CERR_SH             10
262
#define QTD_TOKEN_PID_MASK            0x00000300
263
#define QTD_TOKEN_PID_SH              8
264
#define QTD_TOKEN_ACTIVE              (1 << 7)
265
#define QTD_TOKEN_HALT                (1 << 6)
266
#define QTD_TOKEN_DBERR               (1 << 5)
267
#define QTD_TOKEN_BABBLE              (1 << 4)
268
#define QTD_TOKEN_XACTERR             (1 << 3)
269
#define QTD_TOKEN_MISSEDUF            (1 << 2)
270
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
271
#define QTD_TOKEN_PING                (1 << 0)
272

    
273
    uint32_t bufptr[5];               // Standard buffer pointer
274
#define QTD_BUFPTR_MASK               0xfffff000
275
} EHCIqtd;
276

    
277
/*  EHCI spec version 1.0 Section 3.6
278
 */
279
typedef struct EHCIqh {
280
    uint32_t next;                    // Standard next link pointer
281

    
282
    /* endpoint characteristics */
283
    uint32_t epchar;
284
#define QH_EPCHAR_RL_MASK             0xf0000000
285
#define QH_EPCHAR_RL_SH               28
286
#define QH_EPCHAR_C                   (1 << 27)
287
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
288
#define QH_EPCHAR_MPLEN_SH            16
289
#define QH_EPCHAR_H                   (1 << 15)
290
#define QH_EPCHAR_DTC                 (1 << 14)
291
#define QH_EPCHAR_EPS_MASK            0x00003000
292
#define QH_EPCHAR_EPS_SH              12
293
#define EHCI_QH_EPS_FULL              0
294
#define EHCI_QH_EPS_LOW               1
295
#define EHCI_QH_EPS_HIGH              2
296
#define EHCI_QH_EPS_RESERVED          3
297

    
298
#define QH_EPCHAR_EP_MASK             0x00000f00
299
#define QH_EPCHAR_EP_SH               8
300
#define QH_EPCHAR_I                   (1 << 7)
301
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
302
#define QH_EPCHAR_DEVADDR_SH          0
303

    
304
    /* endpoint capabilities */
305
    uint32_t epcap;
306
#define QH_EPCAP_MULT_MASK            0xc0000000
307
#define QH_EPCAP_MULT_SH              30
308
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
309
#define QH_EPCAP_PORTNUM_SH           23
310
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
311
#define QH_EPCAP_HUBADDR_SH           16
312
#define QH_EPCAP_CMASK_MASK           0x0000ff00
313
#define QH_EPCAP_CMASK_SH             8
314
#define QH_EPCAP_SMASK_MASK           0x000000ff
315
#define QH_EPCAP_SMASK_SH             0
316

    
317
    uint32_t current_qtd;             // Standard next link pointer
318
    uint32_t next_qtd;                // Standard next link pointer
319
    uint32_t altnext_qtd;
320
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
321
#define QH_ALTNEXT_NAKCNT_SH          1
322

    
323
    uint32_t token;                   // Same as QTD token
324
    uint32_t bufptr[5];               // Standard buffer pointer
325
#define BUFPTR_CPROGMASK_MASK         0x000000ff
326
#define BUFPTR_FRAMETAG_MASK          0x0000001f
327
#define BUFPTR_SBYTES_MASK            0x00000fe0
328
#define BUFPTR_SBYTES_SH              5
329
} EHCIqh;
330

    
331
/*  EHCI spec version 1.0 Section 3.7
332
 */
333
typedef struct EHCIfstn {
334
    uint32_t next;                    // Standard next link pointer
335
    uint32_t backptr;                 // Standard next link pointer
336
} EHCIfstn;
337

    
338
typedef struct EHCIQueue EHCIQueue;
339
typedef struct EHCIState EHCIState;
340

    
341
enum async_state {
342
    EHCI_ASYNC_NONE = 0,
343
    EHCI_ASYNC_INFLIGHT,
344
    EHCI_ASYNC_FINISHED,
345
};
346

    
347
struct EHCIQueue {
348
    EHCIState *ehci;
349
    QTAILQ_ENTRY(EHCIQueue) next;
350
    bool async_schedule;
351
    uint32_t seen;
352
    uint64_t ts;
353

    
354
    /* cached data from guest - needs to be flushed
355
     * when guest removes an entry (doorbell, handshake sequence)
356
     */
357
    EHCIqh qh;             // copy of current QH (being worked on)
358
    uint32_t qhaddr;       // address QH read from
359
    EHCIqtd qtd;           // copy of current QTD (being worked on)
360
    uint32_t qtdaddr;      // address QTD read from
361

    
362
    USBPacket packet;
363
    uint8_t buffer[BUFF_SIZE];
364
    int pid;
365
    uint32_t tbytes;
366
    enum async_state async;
367
    int usb_status;
368
};
369

    
370
struct EHCIState {
371
    PCIDevice dev;
372
    USBBus bus;
373
    qemu_irq irq;
374
    target_phys_addr_t mem_base;
375
    int mem;
376
    int num_ports;
377

    
378
    /* properties */
379
    uint32_t freq;
380
    uint32_t maxframes;
381

    
382
    /*
383
     *  EHCI spec version 1.0 Section 2.3
384
     *  Host Controller Operational Registers
385
     */
386
    union {
387
        uint8_t mmio[MMIO_SIZE];
388
        struct {
389
            uint8_t cap[OPREGBASE];
390
            uint32_t usbcmd;
391
            uint32_t usbsts;
392
            uint32_t usbintr;
393
            uint32_t frindex;
394
            uint32_t ctrldssegment;
395
            uint32_t periodiclistbase;
396
            uint32_t asynclistaddr;
397
            uint32_t notused[9];
398
            uint32_t configflag;
399
            uint32_t portsc[NB_PORTS];
400
        };
401
    };
402

    
403
    /*
404
     *  Internal states, shadow registers, etc
405
     */
406
    uint32_t sofv;
407
    QEMUTimer *frame_timer;
408
    int attach_poll_counter;
409
    int astate;                        // Current state in asynchronous schedule
410
    int pstate;                        // Current state in periodic schedule
411
    USBPort ports[NB_PORTS];
412
    uint32_t usbsts_pending;
413
    QTAILQ_HEAD(, EHCIQueue) queues;
414

    
415
    uint32_t a_fetch_addr;   // which address to look at next
416
    uint32_t p_fetch_addr;   // which address to look at next
417

    
418
    USBPacket ipacket;
419
    uint8_t ibuffer[BUFF_SIZE];
420
    int isoch_pause;
421

    
422
    uint64_t last_run_ns;
423
};
424

    
425
#define SET_LAST_RUN_CLOCK(s) \
426
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427

    
428
/* nifty macros from Arnon's EHCI version  */
429
#define get_field(data, field) \
430
    (((data) & field##_MASK) >> field##_SH)
431

    
432
#define set_field(data, newval, field) do { \
433
    uint32_t val = *data; \
434
    val &= ~ field##_MASK; \
435
    val |= ((newval) << field##_SH) & field##_MASK; \
436
    *data = val; \
437
    } while(0)
438

    
439
static const char *ehci_state_names[] = {
440
    [ EST_INACTIVE ]     = "INACTIVE",
441
    [ EST_ACTIVE ]       = "ACTIVE",
442
    [ EST_EXECUTING ]    = "EXECUTING",
443
    [ EST_SLEEPING ]     = "SLEEPING",
444
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
445
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
446
    [ EST_FETCHQH ]      = "FETCH QH",
447
    [ EST_FETCHITD ]     = "FETCH ITD",
448
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
449
    [ EST_FETCHQTD ]     = "FETCH QTD",
450
    [ EST_EXECUTE ]      = "EXECUTE",
451
    [ EST_WRITEBACK ]    = "WRITEBACK",
452
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
453
};
454

    
455
static const char *ehci_mmio_names[] = {
456
    [ CAPLENGTH ]        = "CAPLENGTH",
457
    [ HCIVERSION ]       = "HCIVERSION",
458
    [ HCSPARAMS ]        = "HCSPARAMS",
459
    [ HCCPARAMS ]        = "HCCPARAMS",
460
    [ USBCMD ]           = "USBCMD",
461
    [ USBSTS ]           = "USBSTS",
462
    [ USBINTR ]          = "USBINTR",
463
    [ FRINDEX ]          = "FRINDEX",
464
    [ PERIODICLISTBASE ] = "P-LIST BASE",
465
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
466
    [ PORTSC_BEGIN ]     = "PORTSC #0",
467
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
468
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
469
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
470
    [ CONFIGFLAG ]       = "CONFIGFLAG",
471
};
472

    
473
static const char *nr2str(const char **n, size_t len, uint32_t nr)
474
{
475
    if (nr < len && n[nr] != NULL) {
476
        return n[nr];
477
    } else {
478
        return "unknown";
479
    }
480
}
481

    
482
static const char *state2str(uint32_t state)
483
{
484
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
485
}
486

    
487
static const char *addr2str(target_phys_addr_t addr)
488
{
489
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
490
}
491

    
492
static void ehci_trace_usbsts(uint32_t mask, int state)
493
{
494
    /* interrupts */
495
    if (mask & USBSTS_INT) {
496
        trace_usb_ehci_usbsts("INT", state);
497
    }
498
    if (mask & USBSTS_ERRINT) {
499
        trace_usb_ehci_usbsts("ERRINT", state);
500
    }
501
    if (mask & USBSTS_PCD) {
502
        trace_usb_ehci_usbsts("PCD", state);
503
    }
504
    if (mask & USBSTS_FLR) {
505
        trace_usb_ehci_usbsts("FLR", state);
506
    }
507
    if (mask & USBSTS_HSE) {
508
        trace_usb_ehci_usbsts("HSE", state);
509
    }
510
    if (mask & USBSTS_IAA) {
511
        trace_usb_ehci_usbsts("IAA", state);
512
    }
513

    
514
    /* status */
515
    if (mask & USBSTS_HALT) {
516
        trace_usb_ehci_usbsts("HALT", state);
517
    }
518
    if (mask & USBSTS_REC) {
519
        trace_usb_ehci_usbsts("REC", state);
520
    }
521
    if (mask & USBSTS_PSS) {
522
        trace_usb_ehci_usbsts("PSS", state);
523
    }
524
    if (mask & USBSTS_ASS) {
525
        trace_usb_ehci_usbsts("ASS", state);
526
    }
527
}
528

    
529
static inline void ehci_set_usbsts(EHCIState *s, int mask)
530
{
531
    if ((s->usbsts & mask) == mask) {
532
        return;
533
    }
534
    ehci_trace_usbsts(mask, 1);
535
    s->usbsts |= mask;
536
}
537

    
538
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
539
{
540
    if ((s->usbsts & mask) == 0) {
541
        return;
542
    }
543
    ehci_trace_usbsts(mask, 0);
544
    s->usbsts &= ~mask;
545
}
546

    
547
static inline void ehci_set_interrupt(EHCIState *s, int intr)
548
{
549
    int level = 0;
550

    
551
    // TODO honour interrupt threshold requests
552

    
553
    ehci_set_usbsts(s, intr);
554

    
555
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
556
        level = 1;
557
    }
558

    
559
    qemu_set_irq(s->irq, level);
560
}
561

    
562
static inline void ehci_record_interrupt(EHCIState *s, int intr)
563
{
564
    s->usbsts_pending |= intr;
565
}
566

    
567
static inline void ehci_commit_interrupt(EHCIState *s)
568
{
569
    if (!s->usbsts_pending) {
570
        return;
571
    }
572
    ehci_set_interrupt(s, s->usbsts_pending);
573
    s->usbsts_pending = 0;
574
}
575

    
576
static void ehci_set_state(EHCIState *s, int async, int state)
577
{
578
    if (async) {
579
        trace_usb_ehci_state("async", state2str(state));
580
        s->astate = state;
581
    } else {
582
        trace_usb_ehci_state("periodic", state2str(state));
583
        s->pstate = state;
584
    }
585
}
586

    
587
static int ehci_get_state(EHCIState *s, int async)
588
{
589
    return async ? s->astate : s->pstate;
590
}
591

    
592
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
593
{
594
    if (async) {
595
        s->a_fetch_addr = addr;
596
    } else {
597
        s->p_fetch_addr = addr;
598
    }
599
}
600

    
601
static int ehci_get_fetch_addr(EHCIState *s, int async)
602
{
603
    return async ? s->a_fetch_addr : s->p_fetch_addr;
604
}
605

    
606
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
607
{
608
    /* need three here due to argument count limits */
609
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
610
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
611
    trace_usb_ehci_qh_fields(addr,
612
                             get_field(qh->epchar, QH_EPCHAR_RL),
613
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
614
                             get_field(qh->epchar, QH_EPCHAR_EPS),
615
                             get_field(qh->epchar, QH_EPCHAR_EP),
616
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
617
    trace_usb_ehci_qh_bits(addr,
618
                           (bool)(qh->epchar & QH_EPCHAR_C),
619
                           (bool)(qh->epchar & QH_EPCHAR_H),
620
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
621
                           (bool)(qh->epchar & QH_EPCHAR_I));
622
}
623

    
624
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
625
{
626
    /* need three here due to argument count limits */
627
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
628
    trace_usb_ehci_qtd_fields(addr,
629
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
630
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
631
                              get_field(qtd->token, QTD_TOKEN_CERR),
632
                              get_field(qtd->token, QTD_TOKEN_PID));
633
    trace_usb_ehci_qtd_bits(addr,
634
                            (bool)(qtd->token & QTD_TOKEN_IOC),
635
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
636
                            (bool)(qtd->token & QTD_TOKEN_HALT),
637
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
638
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
639
}
640

    
641
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
642
{
643
    trace_usb_ehci_itd(addr, itd->next,
644
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
645
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
646
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
647
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
648
}
649

    
650
/* queue management */
651

    
652
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
653
{
654
    EHCIQueue *q;
655

    
656
    q = qemu_mallocz(sizeof(*q));
657
    q->ehci = ehci;
658
    q->async_schedule = async;
659
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
660
    trace_usb_ehci_queue_action(q, "alloc");
661
    return q;
662
}
663

    
664
static void ehci_free_queue(EHCIQueue *q)
665
{
666
    trace_usb_ehci_queue_action(q, "free");
667
    if (q->async == EHCI_ASYNC_INFLIGHT) {
668
        usb_cancel_packet(&q->packet);
669
    }
670
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
671
    qemu_free(q);
672
}
673

    
674
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
675
{
676
    EHCIQueue *q;
677

    
678
    QTAILQ_FOREACH(q, &ehci->queues, next) {
679
        if (addr == q->qhaddr) {
680
            return q;
681
        }
682
    }
683
    return NULL;
684
}
685

    
686
static void ehci_queues_rip_unused(EHCIState *ehci)
687
{
688
    EHCIQueue *q, *tmp;
689

    
690
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
691
        if (q->seen) {
692
            q->seen = 0;
693
            q->ts = ehci->last_run_ns;
694
            continue;
695
        }
696
        if (ehci->last_run_ns < q->ts + 250000000) {
697
            /* allow 0.25 sec idle */
698
            continue;
699
        }
700
        ehci_free_queue(q);
701
    }
702
}
703

    
704
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
705
{
706
    EHCIQueue *q, *tmp;
707

    
708
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
709
        if (q->packet.owner != dev) {
710
            continue;
711
        }
712
        ehci_free_queue(q);
713
    }
714
}
715

    
716
static void ehci_queues_rip_all(EHCIState *ehci)
717
{
718
    EHCIQueue *q, *tmp;
719

    
720
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
721
        ehci_free_queue(q);
722
    }
723
}
724

    
725
/* Attach or detach a device on root hub */
726

    
727
static void ehci_attach(USBPort *port)
728
{
729
    EHCIState *s = port->opaque;
730
    uint32_t *portsc = &s->portsc[port->index];
731

    
732
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
733

    
734
    *portsc |= PORTSC_CONNECT;
735
    *portsc |= PORTSC_CSC;
736

    
737
    /*
738
     *  If a high speed device is attached then we own this port(indicated
739
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
740
     *  and set an interrupt if enabled.
741
     */
742
    if ( !(*portsc & PORTSC_POWNER)) {
743
        ehci_set_interrupt(s, USBSTS_PCD);
744
    }
745
}
746

    
747
static void ehci_detach(USBPort *port)
748
{
749
    EHCIState *s = port->opaque;
750
    uint32_t *portsc = &s->portsc[port->index];
751

    
752
    trace_usb_ehci_port_detach(port->index);
753

    
754
    *portsc &= ~PORTSC_CONNECT;
755
    *portsc |= PORTSC_CSC;
756

    
757
    /*
758
     *  If a high speed device is attached then we own this port(indicated
759
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
760
     *  and set an interrupt if enabled.
761
     */
762
    if ( !(*portsc & PORTSC_POWNER)) {
763
        ehci_set_interrupt(s, USBSTS_PCD);
764
    }
765
}
766

    
767
/* 4.1 host controller initialization */
768
static void ehci_reset(void *opaque)
769
{
770
    EHCIState *s = opaque;
771
    int i;
772

    
773
    trace_usb_ehci_reset();
774

    
775
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
776

    
777
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
778
    s->usbsts = USBSTS_HALT;
779

    
780
    s->astate = EST_INACTIVE;
781
    s->pstate = EST_INACTIVE;
782
    s->isoch_pause = -1;
783
    s->attach_poll_counter = 0;
784

    
785
    for(i = 0; i < NB_PORTS; i++) {
786
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
787

    
788
        if (s->ports[i].dev) {
789
            usb_attach(&s->ports[i], s->ports[i].dev);
790
        }
791
    }
792
    ehci_queues_rip_all(s);
793
}
794

    
795
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
796
{
797
    EHCIState *s = ptr;
798
    uint32_t val;
799

    
800
    val = s->mmio[addr];
801

    
802
    return val;
803
}
804

    
805
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
806
{
807
    EHCIState *s = ptr;
808
    uint32_t val;
809

    
810
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
811

    
812
    return val;
813
}
814

    
815
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
816
{
817
    EHCIState *s = ptr;
818
    uint32_t val;
819

    
820
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
821
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
822

    
823
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
824
    return val;
825
}
826

    
827
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
828
{
829
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
830
    exit(1);
831
}
832

    
833
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
834
{
835
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
836
    exit(1);
837
}
838

    
839
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
840
{
841
    uint32_t *portsc = &s->portsc[port];
842
    int rwc;
843
    USBDevice *dev = s->ports[port].dev;
844

    
845
    rwc = val & PORTSC_RWC_MASK;
846
    val &= PORTSC_RO_MASK;
847

    
848
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
849

    
850
    *portsc &= ~rwc;
851

    
852
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
853
        trace_usb_ehci_port_reset(port, 1);
854
    }
855

    
856
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
857
        trace_usb_ehci_port_reset(port, 0);
858
        usb_attach(&s->ports[port], dev);
859

    
860
        // TODO how to handle reset of ports with no device
861
        if (dev) {
862
            usb_send_msg(dev, USB_MSG_RESET);
863
        }
864

    
865
        if (s->ports[port].dev) {
866
            *portsc &= ~PORTSC_CSC;
867
        }
868

    
869
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
870
         *  to SW that this port has a high speed device attached
871
         *
872
         *  TODO - when to disable?
873
         */
874
        val |= PORTSC_PED;
875
        val |= PORTSC_PEDC;
876
    }
877

    
878
    *portsc &= ~PORTSC_RO_MASK;
879
    *portsc |= val;
880
}
881

    
882
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
883
{
884
    EHCIState *s = ptr;
885
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
886
    uint32_t old = *mmio;
887
    int i;
888

    
889
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
890

    
891
    /* Only aligned reads are allowed on OHCI */
892
    if (addr & 3) {
893
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
894
                TARGET_FMT_plx "\n", addr);
895
        return;
896
    }
897

    
898
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
899
        handle_port_status_write(s, (addr-PORTSC)/4, val);
900
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
901
        return;
902
    }
903

    
904
    if (addr < OPREGBASE) {
905
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
906
                TARGET_FMT_plx "\n", addr);
907
        return;
908
    }
909

    
910

    
911
    /* Do any register specific pre-write processing here.  */
912
    switch(addr) {
913
    case USBCMD:
914
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
915
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
916
            SET_LAST_RUN_CLOCK(s);
917
            ehci_clear_usbsts(s, USBSTS_HALT);
918
        }
919

    
920
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
921
            qemu_del_timer(s->frame_timer);
922
            // TODO - should finish out some stuff before setting halt
923
            ehci_set_usbsts(s, USBSTS_HALT);
924
        }
925

    
926
        if (val & USBCMD_HCRESET) {
927
            ehci_reset(s);
928
            val &= ~USBCMD_HCRESET;
929
        }
930

    
931
        /* not supporting dynamic frame list size at the moment */
932
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
933
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
934
                    val & USBCMD_FLS);
935
            val &= ~USBCMD_FLS;
936
        }
937
        break;
938

    
939
    case USBSTS:
940
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
941
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
942
        val = s->usbsts;
943
        ehci_set_interrupt(s, 0);
944
        break;
945

    
946
    case USBINTR:
947
        val &= USBINTR_MASK;
948
        break;
949

    
950
    case FRINDEX:
951
        s->sofv = val >> 3;
952
        break;
953

    
954
    case CONFIGFLAG:
955
        val &= 0x1;
956
        if (val) {
957
            for(i = 0; i < NB_PORTS; i++)
958
                s->portsc[i] &= ~PORTSC_POWNER;
959
        }
960
        break;
961

    
962
    case PERIODICLISTBASE:
963
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
964
            fprintf(stderr,
965
              "ehci: PERIODIC list base register set while periodic schedule\n"
966
              "      is enabled and HC is enabled\n");
967
        }
968
        break;
969

    
970
    case ASYNCLISTADDR:
971
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
972
            fprintf(stderr,
973
              "ehci: ASYNC list address register set while async schedule\n"
974
              "      is enabled and HC is enabled\n");
975
        }
976
        break;
977
    }
978

    
979
    *mmio = val;
980
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
981
}
982

    
983

    
984
// TODO : Put in common header file, duplication from usb-ohci.c
985

    
986
/* Get an array of dwords from main memory */
987
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
988
{
989
    int i;
990

    
991
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
992
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
993
        *buf = le32_to_cpu(*buf);
994
    }
995

    
996
    return 1;
997
}
998

    
999
/* Put an array of dwords in to main memory */
1000
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1001
{
1002
    int i;
1003

    
1004
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1005
        uint32_t tmp = cpu_to_le32(*buf);
1006
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1007
    }
1008

    
1009
    return 1;
1010
}
1011

    
1012
// 4.10.2
1013

    
1014
static int ehci_qh_do_overlay(EHCIQueue *q)
1015
{
1016
    int i;
1017
    int dtoggle;
1018
    int ping;
1019
    int eps;
1020
    int reload;
1021

    
1022
    // remember values in fields to preserve in qh after overlay
1023

    
1024
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1025
    ping    = q->qh.token & QTD_TOKEN_PING;
1026

    
1027
    q->qh.current_qtd = q->qtdaddr;
1028
    q->qh.next_qtd    = q->qtd.next;
1029
    q->qh.altnext_qtd = q->qtd.altnext;
1030
    q->qh.token       = q->qtd.token;
1031

    
1032

    
1033
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1034
    if (eps == EHCI_QH_EPS_HIGH) {
1035
        q->qh.token &= ~QTD_TOKEN_PING;
1036
        q->qh.token |= ping;
1037
    }
1038

    
1039
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1040
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1041

    
1042
    for (i = 0; i < 5; i++) {
1043
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1044
    }
1045

    
1046
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1047
        // preserve QH DT bit
1048
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1049
        q->qh.token |= dtoggle;
1050
    }
1051

    
1052
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1053
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1054

    
1055
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1056

    
1057
    return 0;
1058
}
1059

    
1060
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1061
{
1062
    int bufpos = 0;
1063
    int cpage, offset;
1064
    uint32_t head;
1065
    uint32_t tail;
1066

    
1067

    
1068
    if (!bytes) {
1069
        return 0;
1070
    }
1071

    
1072
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1073
    if (cpage > 4) {
1074
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1075
        return USB_RET_PROCERR;
1076
    }
1077

    
1078
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1079

    
1080
    do {
1081
        /* start and end of this page */
1082
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1083
        tail = head + ~QTD_BUFPTR_MASK + 1;
1084
        /* add offset into page */
1085
        head |= offset;
1086

    
1087
        if (bytes <= (tail - head)) {
1088
            tail = head + bytes;
1089
        }
1090

    
1091
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1092
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1093

    
1094
        bufpos += (tail - head);
1095
        offset += (tail - head);
1096
        bytes -= (tail - head);
1097

    
1098
        if (bytes > 0) {
1099
            cpage++;
1100
            offset = 0;
1101
        }
1102
    } while (bytes > 0);
1103

    
1104
    /* save cpage */
1105
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1106

    
1107
    /* save offset into cpage */
1108
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1109
    q->qh.bufptr[0] |= offset;
1110

    
1111
    return 0;
1112
}
1113

    
1114
static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
1115
{
1116
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1117

    
1118
    trace_usb_ehci_queue_action(q, "wakeup");
1119
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1120
    q->async = EHCI_ASYNC_FINISHED;
1121
    q->usb_status = packet->len;
1122
}
1123

    
1124
static void ehci_execute_complete(EHCIQueue *q)
1125
{
1126
    int c_err, reload;
1127

    
1128
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1129
    q->async = EHCI_ASYNC_NONE;
1130

    
1131
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1132
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1133

    
1134
    if (q->usb_status < 0) {
1135
err:
1136
        /* TO-DO: put this is in a function that can be invoked below as well */
1137
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1138
        c_err--;
1139
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1140

    
1141
        switch(q->usb_status) {
1142
        case USB_RET_NODEV:
1143
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1144
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1145
            break;
1146
        case USB_RET_STALL:
1147
            q->qh.token |= QTD_TOKEN_HALT;
1148
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1149
            break;
1150
        case USB_RET_NAK:
1151
            /* 4.10.3 */
1152
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1153
            if ((q->pid == USB_TOKEN_IN) && reload) {
1154
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1155
                nakcnt--;
1156
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1157
            } else if (!reload) {
1158
                return;
1159
            }
1160
            break;
1161
        case USB_RET_BABBLE:
1162
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1163
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1164
            break;
1165
        default:
1166
            /* should not be triggerable */
1167
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1168
            assert(0);
1169
            break;
1170
        }
1171
    } else {
1172
        // DPRINTF("Short packet condition\n");
1173
        // TODO check 4.12 for splits
1174

    
1175
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1176
            q->usb_status = USB_RET_BABBLE;
1177
            goto err;
1178
        }
1179

    
1180
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1181
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1182
                q->usb_status = USB_RET_PROCERR;
1183
                return;
1184
            }
1185
            q->tbytes -= q->usb_status;
1186
        } else {
1187
            q->tbytes = 0;
1188
        }
1189

    
1190
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1191
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1192
    }
1193

    
1194
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1195
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1196

    
1197
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1198
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1199
    }
1200
}
1201

    
1202
// 4.10.3
1203

    
1204
static int ehci_execute(EHCIQueue *q)
1205
{
1206
    USBPort *port;
1207
    USBDevice *dev;
1208
    int ret;
1209
    int i;
1210
    int endp;
1211
    int devadr;
1212

    
1213
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1214
        fprintf(stderr, "Attempting to execute inactive QH\n");
1215
        return USB_RET_PROCERR;
1216
    }
1217

    
1218
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1219
    if (q->tbytes > BUFF_SIZE) {
1220
        fprintf(stderr, "Request for more bytes than allowed\n");
1221
        return USB_RET_PROCERR;
1222
    }
1223

    
1224
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1225
    switch(q->pid) {
1226
        case 0: q->pid = USB_TOKEN_OUT; break;
1227
        case 1: q->pid = USB_TOKEN_IN; break;
1228
        case 2: q->pid = USB_TOKEN_SETUP; break;
1229
        default: fprintf(stderr, "bad token\n"); break;
1230
    }
1231

    
1232
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1233
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1234
        return USB_RET_PROCERR;
1235
    }
1236

    
1237
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1238
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1239

    
1240
    ret = USB_RET_NODEV;
1241

    
1242
    // TO-DO: associating device with ehci port
1243
    for(i = 0; i < NB_PORTS; i++) {
1244
        port = &q->ehci->ports[i];
1245
        dev = port->dev;
1246

    
1247
        // TODO sometime we will also need to check if we are the port owner
1248

    
1249
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1250
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1251
                    i, q->ehci->portsc[i]);
1252
            continue;
1253
        }
1254

    
1255
        q->packet.pid = q->pid;
1256
        q->packet.devaddr = devadr;
1257
        q->packet.devep = endp;
1258
        q->packet.data = q->buffer;
1259
        q->packet.len = q->tbytes;
1260

    
1261
        ret = usb_handle_packet(dev, &q->packet);
1262

    
1263
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1264
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1265
                q->packet.len, q->tbytes, endp, ret);
1266

    
1267
        if (ret != USB_RET_NODEV) {
1268
            break;
1269
        }
1270
    }
1271

    
1272
    if (ret > BUFF_SIZE) {
1273
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1274
        return USB_RET_PROCERR;
1275
    }
1276

    
1277
    return ret;
1278
}
1279

    
1280
/*  4.7.2
1281
 */
1282

    
1283
static int ehci_process_itd(EHCIState *ehci,
1284
                            EHCIitd *itd)
1285
{
1286
    USBPort *port;
1287
    USBDevice *dev;
1288
    int ret;
1289
    uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1290
    uint32_t pg, off, ptr1, ptr2, max, mult;
1291

    
1292
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1293
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1294
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1295
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1296
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1297

    
1298
    for(i = 0; i < 8; i++) {
1299
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1300
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1301
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1302
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1303
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1304
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1305

    
1306
            if (len > max * mult) {
1307
                len = max * mult;
1308
            }
1309

    
1310
            if (len > BUFF_SIZE) {
1311
                return USB_RET_PROCERR;
1312
            }
1313

    
1314
            if (off + len > 4096) {
1315
                /* transfer crosses page border */
1316
                len2 = off + len - 4096;
1317
                len1 = len - len2;
1318
            } else {
1319
                len1 = len;
1320
                len2 = 0;
1321
            }
1322

    
1323
            if (!dir) {
1324
                pid = USB_TOKEN_OUT;
1325
                trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1326
                cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1327
                if (len2) {
1328
                    trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1329
                    cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1330
                }
1331
            } else {
1332
                pid = USB_TOKEN_IN;
1333
            }
1334

    
1335
            ret = USB_RET_NODEV;
1336

    
1337
            for (j = 0; j < NB_PORTS; j++) {
1338
                port = &ehci->ports[j];
1339
                dev = port->dev;
1340

    
1341
                // TODO sometime we will also need to check if we are the port owner
1342

    
1343
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1344
                    continue;
1345
                }
1346

    
1347
                ehci->ipacket.pid = pid;
1348
                ehci->ipacket.devaddr = devaddr;
1349
                ehci->ipacket.devep = endp;
1350
                ehci->ipacket.data = ehci->ibuffer;
1351
                ehci->ipacket.len = len;
1352

    
1353
                ret = usb_handle_packet(dev, &ehci->ipacket);
1354

    
1355
                if (ret != USB_RET_NODEV) {
1356
                    break;
1357
                }
1358
            }
1359

    
1360
#if 0
1361
            /*  In isoch, there is no facility to indicate a NAK so let's
1362
             *  instead just complete a zero-byte transaction.  Setting
1363
             *  DBERR seems too draconian.
1364
             */
1365

1366
            if (ret == USB_RET_NAK) {
1367
                if (ehci->isoch_pause > 0) {
1368
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1369
                    ehci->isoch_pause--;
1370
                    return 0;
1371
                } else if (ehci->isoch_pause == -1) {
1372
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1373
                    // Pause frindex for up to 50 msec waiting for data from
1374
                    // remote
1375
                    ehci->isoch_pause = 50;
1376
                    return 0;
1377
                } else {
1378
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1379
                    ret = 0;
1380
                }
1381
            } else {
1382
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1383
                ehci->isoch_pause = -1;
1384
            }
1385
#else
1386
            if (ret == USB_RET_NAK) {
1387
                ret = 0;
1388
            }
1389
#endif
1390

    
1391
            if (ret >= 0) {
1392
                if (!dir) {
1393
                    /* OUT */
1394
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1395
                } else {
1396
                    /* IN */
1397
                    if (len1 > ret) {
1398
                        len1 = ret;
1399
                    }
1400
                    if (len2 > ret - len1) {
1401
                        len2 = ret - len1;
1402
                    }
1403
                    if (len1) {
1404
                        trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1405
                        cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1406
                    }
1407
                    if (len2) {
1408
                        trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1409
                        cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1410
                    }
1411
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1412
                }
1413

    
1414
                if (itd->transact[i] & ITD_XACT_IOC) {
1415
                    ehci_record_interrupt(ehci, USBSTS_INT);
1416
                }
1417
            }
1418
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1419
        }
1420
    }
1421
    return 0;
1422
}
1423

    
1424
/*  This state is the entry point for asynchronous schedule
1425
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1426
 */
1427
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1428
{
1429
    EHCIqh qh;
1430
    int i = 0;
1431
    int again = 0;
1432
    uint32_t entry = ehci->asynclistaddr;
1433

    
1434
    /* set reclamation flag at start event (4.8.6) */
1435
    if (async) {
1436
        ehci_set_usbsts(ehci, USBSTS_REC);
1437
    }
1438

    
1439
    ehci_queues_rip_unused(ehci);
1440

    
1441
    /*  Find the head of the list (4.9.1.1) */
1442
    for(i = 0; i < MAX_QH; i++) {
1443
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1444
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1445

    
1446
        if (qh.epchar & QH_EPCHAR_H) {
1447
            if (async) {
1448
                entry |= (NLPTR_TYPE_QH << 1);
1449
            }
1450

    
1451
            ehci_set_fetch_addr(ehci, async, entry);
1452
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1453
            again = 1;
1454
            goto out;
1455
        }
1456

    
1457
        entry = qh.next;
1458
        if (entry == ehci->asynclistaddr) {
1459
            break;
1460
        }
1461
    }
1462

    
1463
    /* no head found for list. */
1464

    
1465
    ehci_set_state(ehci, async, EST_ACTIVE);
1466

    
1467
out:
1468
    return again;
1469
}
1470

    
1471

    
1472
/*  This state is the entry point for periodic schedule processing as
1473
 *  well as being a continuation state for async processing.
1474
 */
1475
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1476
{
1477
    int again = 0;
1478
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1479

    
1480
    if (entry < 0x1000) {
1481
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1482
        ehci_set_state(ehci, async, EST_ACTIVE);
1483
        goto out;
1484
    }
1485

    
1486
    /* section 4.8, only QH in async schedule */
1487
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1488
        fprintf(stderr, "non queue head request in async schedule\n");
1489
        return -1;
1490
    }
1491

    
1492
    switch (NLPTR_TYPE_GET(entry)) {
1493
    case NLPTR_TYPE_QH:
1494
        ehci_set_state(ehci, async, EST_FETCHQH);
1495
        again = 1;
1496
        break;
1497

    
1498
    case NLPTR_TYPE_ITD:
1499
        ehci_set_state(ehci, async, EST_FETCHITD);
1500
        again = 1;
1501
        break;
1502

    
1503
    default:
1504
        // TODO: handle siTD and FSTN types
1505
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1506
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1507
        return -1;
1508
    }
1509

    
1510
out:
1511
    return again;
1512
}
1513

    
1514
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1515
{
1516
    uint32_t entry;
1517
    EHCIQueue *q;
1518
    int reload;
1519

    
1520
    entry = ehci_get_fetch_addr(ehci, async);
1521
    q = ehci_find_queue_by_qh(ehci, entry);
1522
    if (NULL == q) {
1523
        q = ehci_alloc_queue(ehci, async);
1524
    }
1525
    q->qhaddr = entry;
1526
    q->seen++;
1527

    
1528
    if (q->seen > 1) {
1529
        /* we are going in circles -- stop processing */
1530
        ehci_set_state(ehci, async, EST_ACTIVE);
1531
        q = NULL;
1532
        goto out;
1533
    }
1534

    
1535
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1536
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1537

    
1538
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1539
        /* I/O still in progress -- skip queue */
1540
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1541
        goto out;
1542
    }
1543
    if (q->async == EHCI_ASYNC_FINISHED) {
1544
        /* I/O finished -- continue processing queue */
1545
        trace_usb_ehci_queue_action(q, "resume");
1546
        ehci_set_state(ehci, async, EST_EXECUTING);
1547
        goto out;
1548
    }
1549

    
1550
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1551

    
1552
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1553
        if (ehci->usbsts & USBSTS_REC) {
1554
            ehci_clear_usbsts(ehci, USBSTS_REC);
1555
        } else {
1556
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1557
                       " - done processing\n", q->qhaddr);
1558
            ehci_set_state(ehci, async, EST_ACTIVE);
1559
            q = NULL;
1560
            goto out;
1561
        }
1562
    }
1563

    
1564
#if EHCI_DEBUG
1565
    if (q->qhaddr != q->qh.next) {
1566
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1567
               q->qhaddr,
1568
               q->qh.epchar & QH_EPCHAR_H,
1569
               q->qh.token & QTD_TOKEN_HALT,
1570
               q->qh.token & QTD_TOKEN_ACTIVE,
1571
               q->qh.next);
1572
    }
1573
#endif
1574

    
1575
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1576
    if (reload) {
1577
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1578
    }
1579

    
1580
    if (q->qh.token & QTD_TOKEN_HALT) {
1581
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1582

    
1583
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1584
        q->qtdaddr = q->qh.current_qtd;
1585
        ehci_set_state(ehci, async, EST_FETCHQTD);
1586

    
1587
    } else {
1588
        /*  EHCI spec version 1.0 Section 4.10.2 */
1589
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1590
    }
1591

    
1592
out:
1593
    return q;
1594
}
1595

    
1596
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1597
{
1598
    uint32_t entry;
1599
    EHCIitd itd;
1600

    
1601
    assert(!async);
1602
    entry = ehci_get_fetch_addr(ehci, async);
1603

    
1604
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1605
               sizeof(EHCIitd) >> 2);
1606
    ehci_trace_itd(ehci, entry, &itd);
1607

    
1608
    if (ehci_process_itd(ehci, &itd) != 0) {
1609
        return -1;
1610
    }
1611

    
1612
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1613
                sizeof(EHCIitd) >> 2);
1614
    ehci_set_fetch_addr(ehci, async, itd.next);
1615
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1616

    
1617
    return 1;
1618
}
1619

    
1620
/* Section 4.10.2 - paragraph 3 */
1621
static int ehci_state_advqueue(EHCIQueue *q, int async)
1622
{
1623
#if 0
1624
    /* TO-DO: 4.10.2 - paragraph 2
1625
     * if I-bit is set to 1 and QH is not active
1626
     * go to horizontal QH
1627
     */
1628
    if (I-bit set) {
1629
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1630
        goto out;
1631
    }
1632
#endif
1633

    
1634
    /*
1635
     * want data and alt-next qTD is valid
1636
     */
1637
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1638
        (q->qh.altnext_qtd > 0x1000) &&
1639
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1640
        q->qtdaddr = q->qh.altnext_qtd;
1641
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1642

    
1643
    /*
1644
     *  next qTD is valid
1645
     */
1646
    } else if ((q->qh.next_qtd > 0x1000) &&
1647
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1648
        q->qtdaddr = q->qh.next_qtd;
1649
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1650

    
1651
    /*
1652
     *  no valid qTD, try next QH
1653
     */
1654
    } else {
1655
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1656
    }
1657

    
1658
    return 1;
1659
}
1660

    
1661
/* Section 4.10.2 - paragraph 4 */
1662
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1663
{
1664
    int again = 0;
1665

    
1666
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1667
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1668

    
1669
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1670
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1671
        again = 1;
1672
    } else {
1673
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1674
        again = 1;
1675
    }
1676

    
1677
    return again;
1678
}
1679

    
1680
static int ehci_state_horizqh(EHCIQueue *q, int async)
1681
{
1682
    int again = 0;
1683

    
1684
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1685
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1686
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1687
        again = 1;
1688
    } else {
1689
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1690
    }
1691

    
1692
    return again;
1693
}
1694

    
1695
/*
1696
 *  Write the qh back to guest physical memory.  This step isn't
1697
 *  in the EHCI spec but we need to do it since we don't share
1698
 *  physical memory with our guest VM.
1699
 *
1700
 *  The first three dwords are read-only for the EHCI, so skip them
1701
 *  when writing back the qh.
1702
 */
1703
static void ehci_flush_qh(EHCIQueue *q)
1704
{
1705
    uint32_t *qh = (uint32_t *) &q->qh;
1706
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1707
    uint32_t addr = NLPTR_GET(q->qhaddr);
1708

    
1709
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1710
}
1711

    
1712
static int ehci_state_execute(EHCIQueue *q, int async)
1713
{
1714
    int again = 0;
1715
    int reload, nakcnt;
1716
    int smask;
1717

    
1718
    if (ehci_qh_do_overlay(q) != 0) {
1719
        return -1;
1720
    }
1721

    
1722
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1723

    
1724
    if (!smask) {
1725
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1726
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1727
        if (reload && !nakcnt) {
1728
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1729
            again = 1;
1730
            goto out;
1731
        }
1732
    }
1733

    
1734
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1735
    // TODO write back ptr to async list when done or out of time
1736
    // TODO Windows does not seem to ever set the MULT field
1737

    
1738
    if (!async) {
1739
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1740
        if (!transactCtr) {
1741
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1742
            again = 1;
1743
            goto out;
1744
        }
1745
    }
1746

    
1747
    if (async) {
1748
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1749
    }
1750

    
1751
    q->usb_status = ehci_execute(q);
1752
    if (q->usb_status == USB_RET_PROCERR) {
1753
        again = -1;
1754
        goto out;
1755
    }
1756
    if (q->usb_status == USB_RET_ASYNC) {
1757
        ehci_flush_qh(q);
1758
        trace_usb_ehci_queue_action(q, "suspend");
1759
        q->async = EHCI_ASYNC_INFLIGHT;
1760
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1761
        again = 1;
1762
        goto out;
1763
    }
1764

    
1765
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1766
    again = 1;
1767

    
1768
out:
1769
    return again;
1770
}
1771

    
1772
static int ehci_state_executing(EHCIQueue *q, int async)
1773
{
1774
    int again = 0;
1775
    int reload, nakcnt;
1776

    
1777
    ehci_execute_complete(q);
1778
    if (q->usb_status == USB_RET_ASYNC) {
1779
        goto out;
1780
    }
1781
    if (q->usb_status == USB_RET_PROCERR) {
1782
        again = -1;
1783
        goto out;
1784
    }
1785

    
1786
    // 4.10.3
1787
    if (!async) {
1788
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1789
        transactCtr--;
1790
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1791
        // 4.10.3, bottom of page 82, should exit this state when transaction
1792
        // counter decrements to 0
1793
    }
1794

    
1795
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1796
    if (reload) {
1797
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1798
        if (q->usb_status == USB_RET_NAK) {
1799
            if (nakcnt) {
1800
                nakcnt--;
1801
            }
1802
        } else {
1803
            nakcnt = reload;
1804
        }
1805
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1806
    }
1807

    
1808
    /* 4.10.5 */
1809
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1810
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1811
    } else {
1812
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1813
    }
1814

    
1815
    again = 1;
1816

    
1817
out:
1818
    ehci_flush_qh(q);
1819
    return again;
1820
}
1821

    
1822

    
1823
static int ehci_state_writeback(EHCIQueue *q, int async)
1824
{
1825
    int again = 0;
1826

    
1827
    /*  Write back the QTD from the QH area */
1828
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1829
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1830
                sizeof(EHCIqtd) >> 2);
1831

    
1832
    /*
1833
     * EHCI specs say go horizontal here.
1834
     *
1835
     * We can also advance the queue here for performance reasons.  We
1836
     * need to take care to only take that shortcut in case we've
1837
     * processed the qtd just written back without errors, i.e. halt
1838
     * bit is clear.
1839
     */
1840
    if (q->qh.token & QTD_TOKEN_HALT) {
1841
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1842
        again = 1;
1843
    } else {
1844
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1845
        again = 1;
1846
    }
1847
    return again;
1848
}
1849

    
1850
/*
1851
 * This is the state machine that is common to both async and periodic
1852
 */
1853

    
1854
static void ehci_advance_state(EHCIState *ehci,
1855
                               int async)
1856
{
1857
    EHCIQueue *q = NULL;
1858
    int again;
1859
    int iter = 0;
1860

    
1861
    do {
1862
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1863
            iter++;
1864
            /* if we are roaming a lot of QH without executing a qTD
1865
             * something is wrong with the linked list. TO-DO: why is
1866
             * this hack needed?
1867
             */
1868
            assert(iter < MAX_ITERATIONS);
1869
#if 0
1870
            if (iter > MAX_ITERATIONS) {
1871
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1872
                ehci_set_state(ehci, async, EST_ACTIVE);
1873
                break;
1874
            }
1875
#endif
1876
        }
1877
        switch(ehci_get_state(ehci, async)) {
1878
        case EST_WAITLISTHEAD:
1879
            again = ehci_state_waitlisthead(ehci, async);
1880
            break;
1881

    
1882
        case EST_FETCHENTRY:
1883
            again = ehci_state_fetchentry(ehci, async);
1884
            break;
1885

    
1886
        case EST_FETCHQH:
1887
            q = ehci_state_fetchqh(ehci, async);
1888
            again = q ? 1 : 0;
1889
            break;
1890

    
1891
        case EST_FETCHITD:
1892
            again = ehci_state_fetchitd(ehci, async);
1893
            break;
1894

    
1895
        case EST_ADVANCEQUEUE:
1896
            again = ehci_state_advqueue(q, async);
1897
            break;
1898

    
1899
        case EST_FETCHQTD:
1900
            again = ehci_state_fetchqtd(q, async);
1901
            break;
1902

    
1903
        case EST_HORIZONTALQH:
1904
            again = ehci_state_horizqh(q, async);
1905
            break;
1906

    
1907
        case EST_EXECUTE:
1908
            iter = 0;
1909
            again = ehci_state_execute(q, async);
1910
            break;
1911

    
1912
        case EST_EXECUTING:
1913
            assert(q != NULL);
1914
            again = ehci_state_executing(q, async);
1915
            break;
1916

    
1917
        case EST_WRITEBACK:
1918
            again = ehci_state_writeback(q, async);
1919
            break;
1920

    
1921
        default:
1922
            fprintf(stderr, "Bad state!\n");
1923
            again = -1;
1924
            assert(0);
1925
            break;
1926
        }
1927

    
1928
        if (again < 0) {
1929
            fprintf(stderr, "processing error - resetting ehci HC\n");
1930
            ehci_reset(ehci);
1931
            again = 0;
1932
            assert(0);
1933
        }
1934
    }
1935
    while (again);
1936

    
1937
    ehci_commit_interrupt(ehci);
1938
}
1939

    
1940
static void ehci_advance_async_state(EHCIState *ehci)
1941
{
1942
    int async = 1;
1943

    
1944
    switch(ehci_get_state(ehci, async)) {
1945
    case EST_INACTIVE:
1946
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1947
            break;
1948
        }
1949
        ehci_set_usbsts(ehci, USBSTS_ASS);
1950
        ehci_set_state(ehci, async, EST_ACTIVE);
1951
        // No break, fall through to ACTIVE
1952

    
1953
    case EST_ACTIVE:
1954
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1955
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1956
            ehci_set_state(ehci, async, EST_INACTIVE);
1957
            break;
1958
        }
1959

    
1960
        /* If the doorbell is set, the guest wants to make a change to the
1961
         * schedule. The host controller needs to release cached data.
1962
         * (section 4.8.2)
1963
         */
1964
        if (ehci->usbcmd & USBCMD_IAAD) {
1965
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1966
            ehci->usbcmd &= ~USBCMD_IAAD;
1967
            ehci_set_interrupt(ehci, USBSTS_IAA);
1968
            break;
1969
        }
1970

    
1971
        /* make sure guest has acknowledged */
1972
        /* TO-DO: is this really needed? */
1973
        if (ehci->usbsts & USBSTS_IAA) {
1974
            DPRINTF("IAA status bit still set.\n");
1975
            break;
1976
        }
1977

    
1978
        /* check that address register has been set */
1979
        if (ehci->asynclistaddr == 0) {
1980
            break;
1981
        }
1982

    
1983
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1984
        ehci_advance_state(ehci, async);
1985
        break;
1986

    
1987
    default:
1988
        /* this should only be due to a developer mistake */
1989
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1990
                "Resetting to active\n", ehci->astate);
1991
        assert(0);
1992
    }
1993
}
1994

    
1995
static void ehci_advance_periodic_state(EHCIState *ehci)
1996
{
1997
    uint32_t entry;
1998
    uint32_t list;
1999
    int async = 0;
2000

    
2001
    // 4.6
2002

    
2003
    switch(ehci_get_state(ehci, async)) {
2004
    case EST_INACTIVE:
2005
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2006
            ehci_set_usbsts(ehci, USBSTS_PSS);
2007
            ehci_set_state(ehci, async, EST_ACTIVE);
2008
            // No break, fall through to ACTIVE
2009
        } else
2010
            break;
2011

    
2012
    case EST_ACTIVE:
2013
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2014
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2015
            ehci_set_state(ehci, async, EST_INACTIVE);
2016
            break;
2017
        }
2018

    
2019
        list = ehci->periodiclistbase & 0xfffff000;
2020
        /* check that register has been set */
2021
        if (list == 0) {
2022
            break;
2023
        }
2024
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2025

    
2026
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2027
        entry = le32_to_cpu(entry);
2028

    
2029
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2030
                ehci->frindex / 8, list, entry);
2031
        ehci_set_fetch_addr(ehci, async,entry);
2032
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2033
        ehci_advance_state(ehci, async);
2034
        break;
2035

    
2036
    default:
2037
        /* this should only be due to a developer mistake */
2038
        fprintf(stderr, "ehci: Bad periodic state %d. "
2039
                "Resetting to active\n", ehci->pstate);
2040
        assert(0);
2041
    }
2042
}
2043

    
2044
static void ehci_frame_timer(void *opaque)
2045
{
2046
    EHCIState *ehci = opaque;
2047
    int64_t expire_time, t_now;
2048
    uint64_t ns_elapsed;
2049
    int frames;
2050
    int i;
2051
    int skipped_frames = 0;
2052

    
2053
    t_now = qemu_get_clock_ns(vm_clock);
2054
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2055

    
2056
    ns_elapsed = t_now - ehci->last_run_ns;
2057
    frames = ns_elapsed / FRAME_TIMER_NS;
2058

    
2059
    for (i = 0; i < frames; i++) {
2060
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2061
            if (ehci->isoch_pause <= 0) {
2062
                ehci->frindex += 8;
2063
            }
2064

    
2065
            if (ehci->frindex > 0x00001fff) {
2066
                ehci->frindex = 0;
2067
                ehci_set_interrupt(ehci, USBSTS_FLR);
2068
            }
2069

    
2070
            ehci->sofv = (ehci->frindex - 1) >> 3;
2071
            ehci->sofv &= 0x000003ff;
2072
        }
2073

    
2074
        if (frames - i > ehci->maxframes) {
2075
            skipped_frames++;
2076
        } else {
2077
            ehci_advance_periodic_state(ehci);
2078
        }
2079

    
2080
        ehci->last_run_ns += FRAME_TIMER_NS;
2081
    }
2082

    
2083
#if 0
2084
    if (skipped_frames) {
2085
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2086
    }
2087
#endif
2088

    
2089
    /*  Async is not inside loop since it executes everything it can once
2090
     *  called
2091
     */
2092
    ehci_advance_async_state(ehci);
2093

    
2094
    qemu_mod_timer(ehci->frame_timer, expire_time);
2095
}
2096

    
2097
static CPUReadMemoryFunc *ehci_readfn[3]={
2098
    ehci_mem_readb,
2099
    ehci_mem_readw,
2100
    ehci_mem_readl
2101
};
2102

    
2103
static CPUWriteMemoryFunc *ehci_writefn[3]={
2104
    ehci_mem_writeb,
2105
    ehci_mem_writew,
2106
    ehci_mem_writel
2107
};
2108

    
2109
static void ehci_map(PCIDevice *pci_dev, int region_num,
2110
                     pcibus_t addr, pcibus_t size, int type)
2111
{
2112
    EHCIState *s =(EHCIState *)pci_dev;
2113

    
2114
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2115
            region_num, addr, size, s->mem);
2116
    s->mem_base = addr;
2117
    cpu_register_physical_memory(addr, size, s->mem);
2118
}
2119

    
2120
static void ehci_device_destroy(USBBus *bus, USBDevice *dev)
2121
{
2122
    EHCIState *s = container_of(bus, EHCIState, bus);
2123

    
2124
    ehci_queues_rip_device(s, dev);
2125
}
2126

    
2127
static int usb_ehci_initfn(PCIDevice *dev);
2128

    
2129
static USBPortOps ehci_port_ops = {
2130
    .attach = ehci_attach,
2131
    .detach = ehci_detach,
2132
    .complete = ehci_async_complete_packet,
2133
};
2134

    
2135
static USBBusOps ehci_bus_ops = {
2136
    .device_destroy = ehci_device_destroy,
2137
};
2138

    
2139
static PCIDeviceInfo ehci_info = {
2140
    .qdev.name    = "usb-ehci",
2141
    .qdev.size    = sizeof(EHCIState),
2142
    .init         = usb_ehci_initfn,
2143
    .vendor_id    = PCI_VENDOR_ID_INTEL,
2144
    .device_id    = PCI_DEVICE_ID_INTEL_82801D,
2145
    .revision     = 0x10,
2146
    .class_id     = PCI_CLASS_SERIAL_USB,
2147
    .qdev.props   = (Property[]) {
2148
        DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2149
        DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2150
        DEFINE_PROP_END_OF_LIST(),
2151
    },
2152
};
2153

    
2154
static int usb_ehci_initfn(PCIDevice *dev)
2155
{
2156
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2157
    uint8_t *pci_conf = s->dev.config;
2158
    int i;
2159

    
2160
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2161

    
2162
    /* capabilities pointer */
2163
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2164
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2165

    
2166
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2167
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2168
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2169

    
2170
    // pci_conf[0x50] = 0x01; // power management caps
2171

    
2172
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2173
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2174
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2175

    
2176
    pci_conf[0x64] = 0x00;
2177
    pci_conf[0x65] = 0x00;
2178
    pci_conf[0x66] = 0x00;
2179
    pci_conf[0x67] = 0x00;
2180
    pci_conf[0x68] = 0x01;
2181
    pci_conf[0x69] = 0x00;
2182
    pci_conf[0x6a] = 0x00;
2183
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2184
    pci_conf[0x6c] = 0x00;
2185
    pci_conf[0x6d] = 0x00;
2186
    pci_conf[0x6e] = 0x00;
2187
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2188

    
2189
    // 2.2 host controller interface version
2190
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2191
    s->mmio[0x01] = 0x00;
2192
    s->mmio[0x02] = 0x00;
2193
    s->mmio[0x03] = 0x01;        // HC version
2194
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2195
    s->mmio[0x05] = 0x00;        // No companion ports at present
2196
    s->mmio[0x06] = 0x00;
2197
    s->mmio[0x07] = 0x00;
2198
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2199
    s->mmio[0x09] = 0x68;        // EECP
2200
    s->mmio[0x0a] = 0x00;
2201
    s->mmio[0x0b] = 0x00;
2202

    
2203
    s->irq = s->dev.irq[3];
2204

    
2205
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2206
    for(i = 0; i < NB_PORTS; i++) {
2207
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2208
                          USB_SPEED_MASK_HIGH);
2209
        usb_port_location(&s->ports[i], NULL, i+1);
2210
        s->ports[i].dev = 0;
2211
    }
2212

    
2213
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2214
    QTAILQ_INIT(&s->queues);
2215

    
2216
    qemu_register_reset(ehci_reset, s);
2217

    
2218
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2219
                                    DEVICE_LITTLE_ENDIAN);
2220

    
2221
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2222
                                                            ehci_map);
2223

    
2224
    fprintf(stderr, "*** EHCI support is under development ***\n");
2225

    
2226
    return 0;
2227
}
2228

    
2229
static void ehci_register(void)
2230
{
2231
    pci_qdev_register(&ehci_info);
2232
}
2233
device_init(ehci_register);
2234

    
2235
/*
2236
 * vim: expandtab ts=4
2237
 */