Statistics
| Branch: | Revision:

root / target-arm / cpu.h @ 1273d9ca

History | View | Annotate | Download (26.4 kB)

1
/*
2
 * ARM virtual CPU header
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ARM_H
20
#define CPU_ARM_H
21

    
22
#define TARGET_LONG_BITS 32
23

    
24
#define ELF_MACHINE        EM_ARM
25

    
26
#define CPUArchState struct CPUARMState
27

    
28
#include "config.h"
29
#include "qemu-common.h"
30
#include "cpu-defs.h"
31

    
32
#include "softfloat.h"
33

    
34
#define TARGET_HAS_ICE 1
35

    
36
#define EXCP_UDEF            1   /* undefined instruction */
37
#define EXCP_SWI             2   /* software interrupt */
38
#define EXCP_PREFETCH_ABORT  3
39
#define EXCP_DATA_ABORT      4
40
#define EXCP_IRQ             5
41
#define EXCP_FIQ             6
42
#define EXCP_BKPT            7
43
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45
#define EXCP_STREX          10
46

    
47
#define ARMV7M_EXCP_RESET   1
48
#define ARMV7M_EXCP_NMI     2
49
#define ARMV7M_EXCP_HARD    3
50
#define ARMV7M_EXCP_MEM     4
51
#define ARMV7M_EXCP_BUS     5
52
#define ARMV7M_EXCP_USAGE   6
53
#define ARMV7M_EXCP_SVC     11
54
#define ARMV7M_EXCP_DEBUG   12
55
#define ARMV7M_EXCP_PENDSV  14
56
#define ARMV7M_EXCP_SYSTICK 15
57

    
58
/* ARM-specific interrupt pending bits.  */
59
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
60

    
61

    
62
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63
                            int srcreg, int operand, uint32_t value);
64
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65
                               int dstreg, int operand);
66

    
67
struct arm_boot_info;
68

    
69
#define NB_MMU_MODES 2
70

    
71
/* We currently assume float and double are IEEE single and double
72
   precision respectively.
73
   Doing runtime conversions is tricky because VFP registers may contain
74
   integer values (eg. as the result of a FTOSI instruction).
75
   s<2n> maps to the least significant half of d<n>
76
   s<2n+1> maps to the most significant half of d<n>
77
 */
78

    
79
typedef struct CPUARMState {
80
    /* Regs for current mode.  */
81
    uint32_t regs[16];
82
    /* Frequently accessed CPSR bits are stored separately for efficiency.
83
       This contains all the other bits.  Use cpsr_{read,write} to access
84
       the whole CPSR.  */
85
    uint32_t uncached_cpsr;
86
    uint32_t spsr;
87

    
88
    /* Banked registers.  */
89
    uint32_t banked_spsr[6];
90
    uint32_t banked_r13[6];
91
    uint32_t banked_r14[6];
92

    
93
    /* These hold r8-r12.  */
94
    uint32_t usr_regs[5];
95
    uint32_t fiq_regs[5];
96

    
97
    /* cpsr flag cache for faster execution */
98
    uint32_t CF; /* 0 or 1 */
99
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
100
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
101
    uint32_t ZF; /* Z set if zero.  */
102
    uint32_t QF; /* 0 or 1 */
103
    uint32_t GE; /* cpsr[19:16] */
104
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
106

    
107
    /* System control coprocessor (cp15) */
108
    struct {
109
        uint32_t c0_cpuid;
110
        uint32_t c0_cssel; /* Cache size selection.  */
111
        uint32_t c1_sys; /* System control register.  */
112
        uint32_t c1_coproc; /* Coprocessor access register.  */
113
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
114
        uint32_t c1_scr; /* secure config register.  */
115
        uint32_t c2_base0; /* MMU translation table base 0.  */
116
        uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
117
        uint32_t c2_base1; /* MMU translation table base 0.  */
118
        uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
119
        uint32_t c2_control; /* MMU translation table base control.  */
120
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
121
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
122
        uint32_t c2_data; /* MPU data cachable bits.  */
123
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
124
        uint32_t c3; /* MMU domain access control register
125
                        MPU write buffer control.  */
126
        uint32_t c5_insn; /* Fault status registers.  */
127
        uint32_t c5_data;
128
        uint32_t c6_region[8]; /* MPU base/size registers.  */
129
        uint32_t c6_insn; /* Fault address registers.  */
130
        uint32_t c6_data;
131
        uint32_t c7_par;  /* Translation result. */
132
        uint32_t c7_par_hi;  /* Translation result, high 32 bits */
133
        uint32_t c9_insn; /* Cache lockdown registers.  */
134
        uint32_t c9_data;
135
        uint32_t c9_pmcr; /* performance monitor control register */
136
        uint32_t c9_pmcnten; /* perf monitor counter enables */
137
        uint32_t c9_pmovsr; /* perf monitor overflow status */
138
        uint32_t c9_pmxevtyper; /* perf monitor event type */
139
        uint32_t c9_pmuserenr; /* perf monitor user enable */
140
        uint32_t c9_pminten; /* perf monitor interrupt enables */
141
        uint32_t c13_fcse; /* FCSE PID.  */
142
        uint32_t c13_context; /* Context ID.  */
143
        uint32_t c13_tls1; /* User RW Thread register.  */
144
        uint32_t c13_tls2; /* User RO Thread register.  */
145
        uint32_t c13_tls3; /* Privileged Thread register.  */
146
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
147
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
148
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
149
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
150
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
151
        uint32_t c15_config_base_address; /* SCU base address.  */
152
        uint32_t c15_diagnostic; /* diagnostic register */
153
        uint32_t c15_power_diagnostic;
154
        uint32_t c15_power_control; /* power control */
155
    } cp15;
156

    
157
    struct {
158
        uint32_t other_sp;
159
        uint32_t vecbase;
160
        uint32_t basepri;
161
        uint32_t control;
162
        int current_sp;
163
        int exception;
164
        int pending_exception;
165
    } v7m;
166

    
167
    /* Thumb-2 EE state.  */
168
    uint32_t teecr;
169
    uint32_t teehbr;
170

    
171
    /* VFP coprocessor state.  */
172
    struct {
173
        float64 regs[32];
174

    
175
        uint32_t xregs[16];
176
        /* We store these fpcsr fields separately for convenience.  */
177
        int vec_len;
178
        int vec_stride;
179

    
180
        /* scratch space when Tn are not sufficient.  */
181
        uint32_t scratch[8];
182

    
183
        /* fp_status is the "normal" fp status. standard_fp_status retains
184
         * values corresponding to the ARM "Standard FPSCR Value", ie
185
         * default-NaN, flush-to-zero, round-to-nearest and is used by
186
         * any operations (generally Neon) which the architecture defines
187
         * as controlled by the standard FPSCR value rather than the FPSCR.
188
         *
189
         * To avoid having to transfer exception bits around, we simply
190
         * say that the FPSCR cumulative exception flags are the logical
191
         * OR of the flags in the two fp statuses. This relies on the
192
         * only thing which needs to read the exception flags being
193
         * an explicit FPSCR read.
194
         */
195
        float_status fp_status;
196
        float_status standard_fp_status;
197
    } vfp;
198
    uint32_t exclusive_addr;
199
    uint32_t exclusive_val;
200
    uint32_t exclusive_high;
201
#if defined(CONFIG_USER_ONLY)
202
    uint32_t exclusive_test;
203
    uint32_t exclusive_info;
204
#endif
205

    
206
    /* iwMMXt coprocessor state.  */
207
    struct {
208
        uint64_t regs[16];
209
        uint64_t val;
210

    
211
        uint32_t cregs[16];
212
    } iwmmxt;
213

    
214
    /* For mixed endian mode.  */
215
    bool bswap_code;
216

    
217
#if defined(CONFIG_USER_ONLY)
218
    /* For usermode syscall translation.  */
219
    int eabi;
220
#endif
221

    
222
    CPU_COMMON
223

    
224
    /* These fields after the common ones so they are preserved on reset.  */
225

    
226
    /* Internal CPU feature flags.  */
227
    uint64_t features;
228

    
229
    void *nvic;
230
    const struct arm_boot_info *boot_info;
231
} CPUARMState;
232

    
233
#include "cpu-qom.h"
234

    
235
ARMCPU *cpu_arm_init(const char *cpu_model);
236
void arm_translate_init(void);
237
int cpu_arm_exec(CPUARMState *s);
238
void do_interrupt(CPUARMState *);
239
void switch_mode(CPUARMState *, int);
240
uint32_t do_arm_semihosting(CPUARMState *env);
241

    
242
/* you can call this signal handler from your SIGBUS and SIGSEGV
243
   signal handlers to inform the virtual CPU of exceptions. non zero
244
   is returned if the signal was handled by the virtual CPU.  */
245
int cpu_arm_signal_handler(int host_signum, void *pinfo,
246
                           void *puc);
247
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
248
                              int mmu_idx);
249
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
250

    
251
static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
252
{
253
  env->cp15.c13_tls2 = newtls;
254
}
255

    
256
#define CPSR_M (0x1f)
257
#define CPSR_T (1 << 5)
258
#define CPSR_F (1 << 6)
259
#define CPSR_I (1 << 7)
260
#define CPSR_A (1 << 8)
261
#define CPSR_E (1 << 9)
262
#define CPSR_IT_2_7 (0xfc00)
263
#define CPSR_GE (0xf << 16)
264
#define CPSR_RESERVED (0xf << 20)
265
#define CPSR_J (1 << 24)
266
#define CPSR_IT_0_1 (3 << 25)
267
#define CPSR_Q (1 << 27)
268
#define CPSR_V (1 << 28)
269
#define CPSR_C (1 << 29)
270
#define CPSR_Z (1 << 30)
271
#define CPSR_N (1 << 31)
272
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
273

    
274
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
275
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
276
/* Bits writable in user mode.  */
277
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
278
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
279
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
280

    
281
/* Return the current CPSR value.  */
282
uint32_t cpsr_read(CPUARMState *env);
283
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
284
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
285

    
286
/* Return the current xPSR value.  */
287
static inline uint32_t xpsr_read(CPUARMState *env)
288
{
289
    int ZF;
290
    ZF = (env->ZF == 0);
291
    return (env->NF & 0x80000000) | (ZF << 30)
292
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
293
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
294
        | ((env->condexec_bits & 0xfc) << 8)
295
        | env->v7m.exception;
296
}
297

    
298
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
299
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
300
{
301
    if (mask & CPSR_NZCV) {
302
        env->ZF = (~val) & CPSR_Z;
303
        env->NF = val;
304
        env->CF = (val >> 29) & 1;
305
        env->VF = (val << 3) & 0x80000000;
306
    }
307
    if (mask & CPSR_Q)
308
        env->QF = ((val & CPSR_Q) != 0);
309
    if (mask & (1 << 24))
310
        env->thumb = ((val & (1 << 24)) != 0);
311
    if (mask & CPSR_IT_0_1) {
312
        env->condexec_bits &= ~3;
313
        env->condexec_bits |= (val >> 25) & 3;
314
    }
315
    if (mask & CPSR_IT_2_7) {
316
        env->condexec_bits &= 3;
317
        env->condexec_bits |= (val >> 8) & 0xfc;
318
    }
319
    if (mask & 0x1ff) {
320
        env->v7m.exception = val & 0x1ff;
321
    }
322
}
323

    
324
/* Return the current FPSCR value.  */
325
uint32_t vfp_get_fpscr(CPUARMState *env);
326
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
327

    
328
enum arm_cpu_mode {
329
  ARM_CPU_MODE_USR = 0x10,
330
  ARM_CPU_MODE_FIQ = 0x11,
331
  ARM_CPU_MODE_IRQ = 0x12,
332
  ARM_CPU_MODE_SVC = 0x13,
333
  ARM_CPU_MODE_ABT = 0x17,
334
  ARM_CPU_MODE_UND = 0x1b,
335
  ARM_CPU_MODE_SYS = 0x1f
336
};
337

    
338
/* VFP system registers.  */
339
#define ARM_VFP_FPSID   0
340
#define ARM_VFP_FPSCR   1
341
#define ARM_VFP_MVFR1   6
342
#define ARM_VFP_MVFR0   7
343
#define ARM_VFP_FPEXC   8
344
#define ARM_VFP_FPINST  9
345
#define ARM_VFP_FPINST2 10
346

    
347
/* iwMMXt coprocessor control registers.  */
348
#define ARM_IWMMXT_wCID                0
349
#define ARM_IWMMXT_wCon                1
350
#define ARM_IWMMXT_wCSSF        2
351
#define ARM_IWMMXT_wCASF        3
352
#define ARM_IWMMXT_wCGR0        8
353
#define ARM_IWMMXT_wCGR1        9
354
#define ARM_IWMMXT_wCGR2        10
355
#define ARM_IWMMXT_wCGR3        11
356

    
357
/* If adding a feature bit which corresponds to a Linux ELF
358
 * HWCAP bit, remember to update the feature-bit-to-hwcap
359
 * mapping in linux-user/elfload.c:get_elf_hwcap().
360
 */
361
enum arm_features {
362
    ARM_FEATURE_VFP,
363
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
364
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
365
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
366
    ARM_FEATURE_V6,
367
    ARM_FEATURE_V6K,
368
    ARM_FEATURE_V7,
369
    ARM_FEATURE_THUMB2,
370
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
371
    ARM_FEATURE_VFP3,
372
    ARM_FEATURE_VFP_FP16,
373
    ARM_FEATURE_NEON,
374
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
375
    ARM_FEATURE_M, /* Microcontroller profile.  */
376
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
377
    ARM_FEATURE_THUMB2EE,
378
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
379
    ARM_FEATURE_V4T,
380
    ARM_FEATURE_V5,
381
    ARM_FEATURE_STRONGARM,
382
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
383
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
384
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
385
    ARM_FEATURE_GENERIC_TIMER,
386
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
387
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
388
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
389
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
390
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
391
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
392
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
393
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
394
};
395

    
396
static inline int arm_feature(CPUARMState *env, int feature)
397
{
398
    return (env->features & (1ULL << feature)) != 0;
399
}
400

    
401
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
402

    
403
/* Interface between CPU and Interrupt controller.  */
404
void armv7m_nvic_set_pending(void *opaque, int irq);
405
int armv7m_nvic_acknowledge_irq(void *opaque);
406
void armv7m_nvic_complete_irq(void *opaque, int irq);
407

    
408
/* Interface for defining coprocessor registers.
409
 * Registers are defined in tables of arm_cp_reginfo structs
410
 * which are passed to define_arm_cp_regs().
411
 */
412

    
413
/* When looking up a coprocessor register we look for it
414
 * via an integer which encodes all of:
415
 *  coprocessor number
416
 *  Crn, Crm, opc1, opc2 fields
417
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
418
 *    or via MRRC/MCRR?)
419
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
420
 * (In this case crn and opc2 should be zero.)
421
 */
422
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
423
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
424
     ((crm) << 7) | ((opc1) << 3) | (opc2))
425

    
426
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
427
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
428
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
429
 * TCG can assume the value to be constant (ie load at translate time)
430
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
431
 * indicates that the TB should not be ended after a write to this register
432
 * (the default is that the TB ends after cp writes). OVERRIDE permits
433
 * a register definition to override a previous definition for the
434
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
435
 * old must have the OVERRIDE bit set.
436
 */
437
#define ARM_CP_SPECIAL 1
438
#define ARM_CP_CONST 2
439
#define ARM_CP_64BIT 4
440
#define ARM_CP_SUPPRESS_TB_END 8
441
#define ARM_CP_OVERRIDE 16
442
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
443
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
444
#define ARM_LAST_SPECIAL ARM_CP_WFI
445
/* Used only as a terminator for ARMCPRegInfo lists */
446
#define ARM_CP_SENTINEL 0xffff
447
/* Mask of only the flag bits in a type field */
448
#define ARM_CP_FLAG_MASK 0x1f
449

    
450
/* Return true if cptype is a valid type field. This is used to try to
451
 * catch errors where the sentinel has been accidentally left off the end
452
 * of a list of registers.
453
 */
454
static inline bool cptype_valid(int cptype)
455
{
456
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
457
        || ((cptype & ARM_CP_SPECIAL) &&
458
            (cptype <= ARM_LAST_SPECIAL));
459
}
460

    
461
/* Access rights:
462
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
463
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
464
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
465
 * (ie any of the privileged modes in Secure state, or Monitor mode).
466
 * If a register is accessible in one privilege level it's always accessible
467
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
468
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
469
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
470
 * terminology a little and call this PL3.
471
 *
472
 * If access permissions for a register are more complex than can be
473
 * described with these bits, then use a laxer set of restrictions, and
474
 * do the more restrictive/complex check inside a helper function.
475
 */
476
#define PL3_R 0x80
477
#define PL3_W 0x40
478
#define PL2_R (0x20 | PL3_R)
479
#define PL2_W (0x10 | PL3_W)
480
#define PL1_R (0x08 | PL2_R)
481
#define PL1_W (0x04 | PL2_W)
482
#define PL0_R (0x02 | PL1_R)
483
#define PL0_W (0x01 | PL1_W)
484

    
485
#define PL3_RW (PL3_R | PL3_W)
486
#define PL2_RW (PL2_R | PL2_W)
487
#define PL1_RW (PL1_R | PL1_W)
488
#define PL0_RW (PL0_R | PL0_W)
489

    
490
static inline int arm_current_pl(CPUARMState *env)
491
{
492
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
493
        return 0;
494
    }
495
    /* We don't currently implement the Virtualization or TrustZone
496
     * extensions, so PL2 and PL3 don't exist for us.
497
     */
498
    return 1;
499
}
500

    
501
typedef struct ARMCPRegInfo ARMCPRegInfo;
502

    
503
/* Access functions for coprocessor registers. These should return
504
 * 0 on success, or one of the EXCP_* constants if access should cause
505
 * an exception (in which case *value is not written).
506
 */
507
typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
508
                     uint64_t *value);
509
typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
510
                      uint64_t value);
511
/* Hook function for register reset */
512
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
513

    
514
#define CP_ANY 0xff
515

    
516
/* Definition of an ARM coprocessor register */
517
struct ARMCPRegInfo {
518
    /* Name of register (useful mainly for debugging, need not be unique) */
519
    const char *name;
520
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
521
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
522
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
523
     * will be decoded to this register. The register read and write
524
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
525
     * used by the program, so it is possible to register a wildcard and
526
     * then behave differently on read/write if necessary.
527
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
528
     * must both be zero.
529
     */
530
    uint8_t cp;
531
    uint8_t crn;
532
    uint8_t crm;
533
    uint8_t opc1;
534
    uint8_t opc2;
535
    /* Register type: ARM_CP_* bits/values */
536
    int type;
537
    /* Access rights: PL*_[RW] */
538
    int access;
539
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
540
     * this register was defined: can be used to hand data through to the
541
     * register read/write functions, since they are passed the ARMCPRegInfo*.
542
     */
543
    void *opaque;
544
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
545
     * fieldoffset is non-zero, the reset value of the register.
546
     */
547
    uint64_t resetvalue;
548
    /* Offset of the field in CPUARMState for this register. This is not
549
     * needed if either:
550
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
551
     *  2. both readfn and writefn are specified
552
     */
553
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
554
    /* Function for handling reads of this register. If NULL, then reads
555
     * will be done by loading from the offset into CPUARMState specified
556
     * by fieldoffset.
557
     */
558
    CPReadFn *readfn;
559
    /* Function for handling writes of this register. If NULL, then writes
560
     * will be done by writing to the offset into CPUARMState specified
561
     * by fieldoffset.
562
     */
563
    CPWriteFn *writefn;
564
    /* Function for resetting the register. If NULL, then reset will be done
565
     * by writing resetvalue to the field specified in fieldoffset. If
566
     * fieldoffset is 0 then no reset will be done.
567
     */
568
    CPResetFn *resetfn;
569
};
570

    
571
/* Macros which are lvalues for the field in CPUARMState for the
572
 * ARMCPRegInfo *ri.
573
 */
574
#define CPREG_FIELD32(env, ri) \
575
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
576
#define CPREG_FIELD64(env, ri) \
577
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
578

    
579
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
580

    
581
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
582
                                    const ARMCPRegInfo *regs, void *opaque);
583
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
584
                                       const ARMCPRegInfo *regs, void *opaque);
585
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
586
{
587
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
588
}
589
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
590
{
591
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
592
}
593
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
594

    
595
/* CPWriteFn that can be used to implement writes-ignored behaviour */
596
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
597
                        uint64_t value);
598
/* CPReadFn that can be used for read-as-zero behaviour */
599
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
600

    
601
static inline bool cp_access_ok(CPUARMState *env,
602
                                const ARMCPRegInfo *ri, int isread)
603
{
604
    return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
605
}
606

    
607
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
608
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
609
   conventional cores (ie. Application or Realtime profile).  */
610

    
611
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
612

    
613
#define ARM_CPUID_TI915T      0x54029152
614
#define ARM_CPUID_TI925T      0x54029252
615

    
616
#if defined(CONFIG_USER_ONLY)
617
#define TARGET_PAGE_BITS 12
618
#else
619
/* The ARM MMU allows 1k pages.  */
620
/* ??? Linux doesn't actually use these, and they're deprecated in recent
621
   architecture revisions.  Maybe a configure option to disable them.  */
622
#define TARGET_PAGE_BITS 10
623
#endif
624

    
625
#define TARGET_PHYS_ADDR_SPACE_BITS 40
626
#define TARGET_VIRT_ADDR_SPACE_BITS 32
627

    
628
static inline CPUARMState *cpu_init(const char *cpu_model)
629
{
630
    ARMCPU *cpu = cpu_arm_init(cpu_model);
631
    if (cpu) {
632
        return &cpu->env;
633
    }
634
    return NULL;
635
}
636

    
637
#define cpu_exec cpu_arm_exec
638
#define cpu_gen_code cpu_arm_gen_code
639
#define cpu_signal_handler cpu_arm_signal_handler
640
#define cpu_list arm_cpu_list
641

    
642
#define CPU_SAVE_VERSION 9
643

    
644
/* MMU modes definitions */
645
#define MMU_MODE0_SUFFIX _kernel
646
#define MMU_MODE1_SUFFIX _user
647
#define MMU_USER_IDX 1
648
static inline int cpu_mmu_index (CPUARMState *env)
649
{
650
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
651
}
652

    
653
#if defined(CONFIG_USER_ONLY)
654
static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
655
{
656
    if (newsp)
657
        env->regs[13] = newsp;
658
    env->regs[0] = 0;
659
}
660
#endif
661

    
662
#include "cpu-all.h"
663

    
664
/* Bit usage in the TB flags field: */
665
#define ARM_TBFLAG_THUMB_SHIFT      0
666
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
667
#define ARM_TBFLAG_VECLEN_SHIFT     1
668
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
669
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
670
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
671
#define ARM_TBFLAG_PRIV_SHIFT       6
672
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
673
#define ARM_TBFLAG_VFPEN_SHIFT      7
674
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
675
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
676
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
677
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
678
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
679
/* Bits 31..17 are currently unused. */
680

    
681
/* some convenience accessor macros */
682
#define ARM_TBFLAG_THUMB(F) \
683
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
684
#define ARM_TBFLAG_VECLEN(F) \
685
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
686
#define ARM_TBFLAG_VECSTRIDE(F) \
687
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
688
#define ARM_TBFLAG_PRIV(F) \
689
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
690
#define ARM_TBFLAG_VFPEN(F) \
691
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
692
#define ARM_TBFLAG_CONDEXEC(F) \
693
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
694
#define ARM_TBFLAG_BSWAP_CODE(F) \
695
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
696

    
697
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
698
                                        target_ulong *cs_base, int *flags)
699
{
700
    int privmode;
701
    *pc = env->regs[15];
702
    *cs_base = 0;
703
    *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
704
        | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
705
        | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
706
        | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
707
        | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
708
    if (arm_feature(env, ARM_FEATURE_M)) {
709
        privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
710
    } else {
711
        privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
712
    }
713
    if (privmode) {
714
        *flags |= ARM_TBFLAG_PRIV_MASK;
715
    }
716
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
717
        *flags |= ARM_TBFLAG_VFPEN_MASK;
718
    }
719
}
720

    
721
static inline bool cpu_has_work(CPUARMState *env)
722
{
723
    return env->interrupt_request &
724
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
725
}
726

    
727
#include "exec-all.h"
728

    
729
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
730
{
731
    env->regs[15] = tb->pc;
732
}
733

    
734
/* Load an instruction and return it in the standard little-endian order */
735
static inline uint32_t arm_ldl_code(CPUARMState *env, uint32_t addr,
736
                                    bool do_swap)
737
{
738
    uint32_t insn = cpu_ldl_code(env, addr);
739
    if (do_swap) {
740
        return bswap32(insn);
741
    }
742
    return insn;
743
}
744

    
745
/* Ditto, for a halfword (Thumb) instruction */
746
static inline uint16_t arm_lduw_code(CPUARMState *env, uint32_t addr,
747
                                     bool do_swap)
748
{
749
    uint16_t insn = cpu_lduw_code(env, addr);
750
    if (do_swap) {
751
        return bswap16(insn);
752
    }
753
    return insn;
754
}
755

    
756
#endif