Statistics
| Branch: | Revision:

root / dump.c @ 13ef70f6

History | View | Annotate | Download (22.3 kB)

1
/*
2
 * QEMU dump
3
 *
4
 * Copyright Fujitsu, Corp. 2011, 2012
5
 *
6
 * Authors:
7
 *     Wen Congyang <wency@cn.fujitsu.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10
 * See the COPYING file in the top-level directory.
11
 *
12
 */
13

    
14
#include "qemu-common.h"
15
#include "elf.h"
16
#include "cpu.h"
17
#include "cpu-all.h"
18
#include "targphys.h"
19
#include "monitor.h"
20
#include "kvm.h"
21
#include "dump.h"
22
#include "sysemu.h"
23
#include "memory_mapping.h"
24
#include "error.h"
25
#include "qmp-commands.h"
26
#include "gdbstub.h"
27

    
28
static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
29
{
30
    if (endian == ELFDATA2LSB) {
31
        val = cpu_to_le16(val);
32
    } else {
33
        val = cpu_to_be16(val);
34
    }
35

    
36
    return val;
37
}
38

    
39
static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
40
{
41
    if (endian == ELFDATA2LSB) {
42
        val = cpu_to_le32(val);
43
    } else {
44
        val = cpu_to_be32(val);
45
    }
46

    
47
    return val;
48
}
49

    
50
static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
51
{
52
    if (endian == ELFDATA2LSB) {
53
        val = cpu_to_le64(val);
54
    } else {
55
        val = cpu_to_be64(val);
56
    }
57

    
58
    return val;
59
}
60

    
61
typedef struct DumpState {
62
    ArchDumpInfo dump_info;
63
    MemoryMappingList list;
64
    uint16_t phdr_num;
65
    uint32_t sh_info;
66
    bool have_section;
67
    bool resume;
68
    size_t note_size;
69
    target_phys_addr_t memory_offset;
70
    int fd;
71

    
72
    RAMBlock *block;
73
    ram_addr_t start;
74
    bool has_filter;
75
    int64_t begin;
76
    int64_t length;
77
    Error **errp;
78
} DumpState;
79

    
80
static int dump_cleanup(DumpState *s)
81
{
82
    int ret = 0;
83

    
84
    memory_mapping_list_free(&s->list);
85
    if (s->fd != -1) {
86
        close(s->fd);
87
    }
88
    if (s->resume) {
89
        vm_start();
90
    }
91

    
92
    return ret;
93
}
94

    
95
static void dump_error(DumpState *s, const char *reason)
96
{
97
    dump_cleanup(s);
98
}
99

    
100
static int fd_write_vmcore(void *buf, size_t size, void *opaque)
101
{
102
    DumpState *s = opaque;
103
    int fd = s->fd;
104
    size_t writen_size;
105

    
106
    /* The fd may be passed from user, and it can be non-blocked */
107
    while (size) {
108
        writen_size = qemu_write_full(fd, buf, size);
109
        if (writen_size != size && errno != EAGAIN) {
110
            return -1;
111
        }
112

    
113
        buf += writen_size;
114
        size -= writen_size;
115
    }
116

    
117
    return 0;
118
}
119

    
120
static int write_elf64_header(DumpState *s)
121
{
122
    Elf64_Ehdr elf_header;
123
    int ret;
124
    int endian = s->dump_info.d_endian;
125

    
126
    memset(&elf_header, 0, sizeof(Elf64_Ehdr));
127
    memcpy(&elf_header, ELFMAG, SELFMAG);
128
    elf_header.e_ident[EI_CLASS] = ELFCLASS64;
129
    elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
130
    elf_header.e_ident[EI_VERSION] = EV_CURRENT;
131
    elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
132
    elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
133
                                                   endian);
134
    elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
135
    elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
136
    elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
137
    elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
138
                                                     endian);
139
    elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
140
    if (s->have_section) {
141
        uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
142

    
143
        elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
144
        elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
145
                                                         endian);
146
        elf_header.e_shnum = cpu_convert_to_target16(1, endian);
147
    }
148

    
149
    ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
150
    if (ret < 0) {
151
        dump_error(s, "dump: failed to write elf header.\n");
152
        return -1;
153
    }
154

    
155
    return 0;
156
}
157

    
158
static int write_elf32_header(DumpState *s)
159
{
160
    Elf32_Ehdr elf_header;
161
    int ret;
162
    int endian = s->dump_info.d_endian;
163

    
164
    memset(&elf_header, 0, sizeof(Elf32_Ehdr));
165
    memcpy(&elf_header, ELFMAG, SELFMAG);
166
    elf_header.e_ident[EI_CLASS] = ELFCLASS32;
167
    elf_header.e_ident[EI_DATA] = endian;
168
    elf_header.e_ident[EI_VERSION] = EV_CURRENT;
169
    elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
170
    elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
171
                                                   endian);
172
    elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
173
    elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
174
    elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
175
    elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
176
                                                     endian);
177
    elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
178
    if (s->have_section) {
179
        uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
180

    
181
        elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
182
        elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
183
                                                         endian);
184
        elf_header.e_shnum = cpu_convert_to_target16(1, endian);
185
    }
186

    
187
    ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
188
    if (ret < 0) {
189
        dump_error(s, "dump: failed to write elf header.\n");
190
        return -1;
191
    }
192

    
193
    return 0;
194
}
195

    
196
static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
197
                            int phdr_index, target_phys_addr_t offset)
198
{
199
    Elf64_Phdr phdr;
200
    int ret;
201
    int endian = s->dump_info.d_endian;
202

    
203
    memset(&phdr, 0, sizeof(Elf64_Phdr));
204
    phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
205
    phdr.p_offset = cpu_convert_to_target64(offset, endian);
206
    phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
207
    if (offset == -1) {
208
        /* When the memory is not stored into vmcore, offset will be -1 */
209
        phdr.p_filesz = 0;
210
    } else {
211
        phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian);
212
    }
213
    phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
214
    phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
215

    
216
    ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
217
    if (ret < 0) {
218
        dump_error(s, "dump: failed to write program header table.\n");
219
        return -1;
220
    }
221

    
222
    return 0;
223
}
224

    
225
static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
226
                            int phdr_index, target_phys_addr_t offset)
227
{
228
    Elf32_Phdr phdr;
229
    int ret;
230
    int endian = s->dump_info.d_endian;
231

    
232
    memset(&phdr, 0, sizeof(Elf32_Phdr));
233
    phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
234
    phdr.p_offset = cpu_convert_to_target32(offset, endian);
235
    phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
236
    if (offset == -1) {
237
        /* When the memory is not stored into vmcore, offset will be -1 */
238
        phdr.p_filesz = 0;
239
    } else {
240
        phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian);
241
    }
242
    phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
243
    phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
244

    
245
    ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
246
    if (ret < 0) {
247
        dump_error(s, "dump: failed to write program header table.\n");
248
        return -1;
249
    }
250

    
251
    return 0;
252
}
253

    
254
static int write_elf64_note(DumpState *s)
255
{
256
    Elf64_Phdr phdr;
257
    int endian = s->dump_info.d_endian;
258
    target_phys_addr_t begin = s->memory_offset - s->note_size;
259
    int ret;
260

    
261
    memset(&phdr, 0, sizeof(Elf64_Phdr));
262
    phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
263
    phdr.p_offset = cpu_convert_to_target64(begin, endian);
264
    phdr.p_paddr = 0;
265
    phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
266
    phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
267
    phdr.p_vaddr = 0;
268

    
269
    ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
270
    if (ret < 0) {
271
        dump_error(s, "dump: failed to write program header table.\n");
272
        return -1;
273
    }
274

    
275
    return 0;
276
}
277

    
278
static int write_elf64_notes(DumpState *s)
279
{
280
    CPUArchState *env;
281
    int ret;
282
    int id;
283

    
284
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
285
        id = cpu_index(env);
286
        ret = cpu_write_elf64_note(fd_write_vmcore, env, id, s);
287
        if (ret < 0) {
288
            dump_error(s, "dump: failed to write elf notes.\n");
289
            return -1;
290
        }
291
    }
292

    
293
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
294
        ret = cpu_write_elf64_qemunote(fd_write_vmcore, env, s);
295
        if (ret < 0) {
296
            dump_error(s, "dump: failed to write CPU status.\n");
297
            return -1;
298
        }
299
    }
300

    
301
    return 0;
302
}
303

    
304
static int write_elf32_note(DumpState *s)
305
{
306
    target_phys_addr_t begin = s->memory_offset - s->note_size;
307
    Elf32_Phdr phdr;
308
    int endian = s->dump_info.d_endian;
309
    int ret;
310

    
311
    memset(&phdr, 0, sizeof(Elf32_Phdr));
312
    phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
313
    phdr.p_offset = cpu_convert_to_target32(begin, endian);
314
    phdr.p_paddr = 0;
315
    phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
316
    phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
317
    phdr.p_vaddr = 0;
318

    
319
    ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
320
    if (ret < 0) {
321
        dump_error(s, "dump: failed to write program header table.\n");
322
        return -1;
323
    }
324

    
325
    return 0;
326
}
327

    
328
static int write_elf32_notes(DumpState *s)
329
{
330
    CPUArchState *env;
331
    int ret;
332
    int id;
333

    
334
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
335
        id = cpu_index(env);
336
        ret = cpu_write_elf32_note(fd_write_vmcore, env, id, s);
337
        if (ret < 0) {
338
            dump_error(s, "dump: failed to write elf notes.\n");
339
            return -1;
340
        }
341
    }
342

    
343
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
344
        ret = cpu_write_elf32_qemunote(fd_write_vmcore, env, s);
345
        if (ret < 0) {
346
            dump_error(s, "dump: failed to write CPU status.\n");
347
            return -1;
348
        }
349
    }
350

    
351
    return 0;
352
}
353

    
354
static int write_elf_section(DumpState *s, int type)
355
{
356
    Elf32_Shdr shdr32;
357
    Elf64_Shdr shdr64;
358
    int endian = s->dump_info.d_endian;
359
    int shdr_size;
360
    void *shdr;
361
    int ret;
362

    
363
    if (type == 0) {
364
        shdr_size = sizeof(Elf32_Shdr);
365
        memset(&shdr32, 0, shdr_size);
366
        shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
367
        shdr = &shdr32;
368
    } else {
369
        shdr_size = sizeof(Elf64_Shdr);
370
        memset(&shdr64, 0, shdr_size);
371
        shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
372
        shdr = &shdr64;
373
    }
374

    
375
    ret = fd_write_vmcore(&shdr, shdr_size, s);
376
    if (ret < 0) {
377
        dump_error(s, "dump: failed to write section header table.\n");
378
        return -1;
379
    }
380

    
381
    return 0;
382
}
383

    
384
static int write_data(DumpState *s, void *buf, int length)
385
{
386
    int ret;
387

    
388
    ret = fd_write_vmcore(buf, length, s);
389
    if (ret < 0) {
390
        dump_error(s, "dump: failed to save memory.\n");
391
        return -1;
392
    }
393

    
394
    return 0;
395
}
396

    
397
/* write the memroy to vmcore. 1 page per I/O. */
398
static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start,
399
                        int64_t size)
400
{
401
    int64_t i;
402
    int ret;
403

    
404
    for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
405
        ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
406
                         TARGET_PAGE_SIZE);
407
        if (ret < 0) {
408
            return ret;
409
        }
410
    }
411

    
412
    if ((size % TARGET_PAGE_SIZE) != 0) {
413
        ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
414
                         size % TARGET_PAGE_SIZE);
415
        if (ret < 0) {
416
            return ret;
417
        }
418
    }
419

    
420
    return 0;
421
}
422

    
423
/* get the memory's offset in the vmcore */
424
static target_phys_addr_t get_offset(target_phys_addr_t phys_addr,
425
                                     DumpState *s)
426
{
427
    RAMBlock *block;
428
    target_phys_addr_t offset = s->memory_offset;
429
    int64_t size_in_block, start;
430

    
431
    if (s->has_filter) {
432
        if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
433
            return -1;
434
        }
435
    }
436

    
437
    QLIST_FOREACH(block, &ram_list.blocks, next) {
438
        if (s->has_filter) {
439
            if (block->offset >= s->begin + s->length ||
440
                block->offset + block->length <= s->begin) {
441
                /* This block is out of the range */
442
                continue;
443
            }
444

    
445
            if (s->begin <= block->offset) {
446
                start = block->offset;
447
            } else {
448
                start = s->begin;
449
            }
450

    
451
            size_in_block = block->length - (start - block->offset);
452
            if (s->begin + s->length < block->offset + block->length) {
453
                size_in_block -= block->offset + block->length -
454
                                 (s->begin + s->length);
455
            }
456
        } else {
457
            start = block->offset;
458
            size_in_block = block->length;
459
        }
460

    
461
        if (phys_addr >= start && phys_addr < start + size_in_block) {
462
            return phys_addr - start + offset;
463
        }
464

    
465
        offset += size_in_block;
466
    }
467

    
468
    return -1;
469
}
470

    
471
static int write_elf_loads(DumpState *s)
472
{
473
    target_phys_addr_t offset;
474
    MemoryMapping *memory_mapping;
475
    uint32_t phdr_index = 1;
476
    int ret;
477
    uint32_t max_index;
478

    
479
    if (s->have_section) {
480
        max_index = s->sh_info;
481
    } else {
482
        max_index = s->phdr_num;
483
    }
484

    
485
    QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
486
        offset = get_offset(memory_mapping->phys_addr, s);
487
        if (s->dump_info.d_class == ELFCLASS64) {
488
            ret = write_elf64_load(s, memory_mapping, phdr_index++, offset);
489
        } else {
490
            ret = write_elf32_load(s, memory_mapping, phdr_index++, offset);
491
        }
492

    
493
        if (ret < 0) {
494
            return -1;
495
        }
496

    
497
        if (phdr_index >= max_index) {
498
            break;
499
        }
500
    }
501

    
502
    return 0;
503
}
504

    
505
/* write elf header, PT_NOTE and elf note to vmcore. */
506
static int dump_begin(DumpState *s)
507
{
508
    int ret;
509

    
510
    /*
511
     * the vmcore's format is:
512
     *   --------------
513
     *   |  elf header |
514
     *   --------------
515
     *   |  PT_NOTE    |
516
     *   --------------
517
     *   |  PT_LOAD    |
518
     *   --------------
519
     *   |  ......     |
520
     *   --------------
521
     *   |  PT_LOAD    |
522
     *   --------------
523
     *   |  sec_hdr    |
524
     *   --------------
525
     *   |  elf note   |
526
     *   --------------
527
     *   |  memory     |
528
     *   --------------
529
     *
530
     * we only know where the memory is saved after we write elf note into
531
     * vmcore.
532
     */
533

    
534
    /* write elf header to vmcore */
535
    if (s->dump_info.d_class == ELFCLASS64) {
536
        ret = write_elf64_header(s);
537
    } else {
538
        ret = write_elf32_header(s);
539
    }
540
    if (ret < 0) {
541
        return -1;
542
    }
543

    
544
    if (s->dump_info.d_class == ELFCLASS64) {
545
        /* write PT_NOTE to vmcore */
546
        if (write_elf64_note(s) < 0) {
547
            return -1;
548
        }
549

    
550
        /* write all PT_LOAD to vmcore */
551
        if (write_elf_loads(s) < 0) {
552
            return -1;
553
        }
554

    
555
        /* write section to vmcore */
556
        if (s->have_section) {
557
            if (write_elf_section(s, 1) < 0) {
558
                return -1;
559
            }
560
        }
561

    
562
        /* write notes to vmcore */
563
        if (write_elf64_notes(s) < 0) {
564
            return -1;
565
        }
566

    
567
    } else {
568
        /* write PT_NOTE to vmcore */
569
        if (write_elf32_note(s) < 0) {
570
            return -1;
571
        }
572

    
573
        /* write all PT_LOAD to vmcore */
574
        if (write_elf_loads(s) < 0) {
575
            return -1;
576
        }
577

    
578
        /* write section to vmcore */
579
        if (s->have_section) {
580
            if (write_elf_section(s, 0) < 0) {
581
                return -1;
582
            }
583
        }
584

    
585
        /* write notes to vmcore */
586
        if (write_elf32_notes(s) < 0) {
587
            return -1;
588
        }
589
    }
590

    
591
    return 0;
592
}
593

    
594
/* write PT_LOAD to vmcore */
595
static int dump_completed(DumpState *s)
596
{
597
    dump_cleanup(s);
598
    return 0;
599
}
600

    
601
static int get_next_block(DumpState *s, RAMBlock *block)
602
{
603
    while (1) {
604
        block = QLIST_NEXT(block, next);
605
        if (!block) {
606
            /* no more block */
607
            return 1;
608
        }
609

    
610
        s->start = 0;
611
        s->block = block;
612
        if (s->has_filter) {
613
            if (block->offset >= s->begin + s->length ||
614
                block->offset + block->length <= s->begin) {
615
                /* This block is out of the range */
616
                continue;
617
            }
618

    
619
            if (s->begin > block->offset) {
620
                s->start = s->begin - block->offset;
621
            }
622
        }
623

    
624
        return 0;
625
    }
626
}
627

    
628
/* write all memory to vmcore */
629
static int dump_iterate(DumpState *s)
630
{
631
    RAMBlock *block;
632
    int64_t size;
633
    int ret;
634

    
635
    while (1) {
636
        block = s->block;
637

    
638
        size = block->length;
639
        if (s->has_filter) {
640
            size -= s->start;
641
            if (s->begin + s->length < block->offset + block->length) {
642
                size -= block->offset + block->length - (s->begin + s->length);
643
            }
644
        }
645
        ret = write_memory(s, block, s->start, size);
646
        if (ret == -1) {
647
            return ret;
648
        }
649

    
650
        ret = get_next_block(s, block);
651
        if (ret == 1) {
652
            dump_completed(s);
653
            return 0;
654
        }
655
    }
656
}
657

    
658
static int create_vmcore(DumpState *s)
659
{
660
    int ret;
661

    
662
    ret = dump_begin(s);
663
    if (ret < 0) {
664
        return -1;
665
    }
666

    
667
    ret = dump_iterate(s);
668
    if (ret < 0) {
669
        return -1;
670
    }
671

    
672
    return 0;
673
}
674

    
675
static ram_addr_t get_start_block(DumpState *s)
676
{
677
    RAMBlock *block;
678

    
679
    if (!s->has_filter) {
680
        s->block = QLIST_FIRST(&ram_list.blocks);
681
        return 0;
682
    }
683

    
684
    QLIST_FOREACH(block, &ram_list.blocks, next) {
685
        if (block->offset >= s->begin + s->length ||
686
            block->offset + block->length <= s->begin) {
687
            /* This block is out of the range */
688
            continue;
689
        }
690

    
691
        s->block = block;
692
        if (s->begin > block->offset) {
693
            s->start = s->begin - block->offset;
694
        } else {
695
            s->start = 0;
696
        }
697
        return s->start;
698
    }
699

    
700
    return -1;
701
}
702

    
703
static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
704
                     int64_t begin, int64_t length, Error **errp)
705
{
706
    CPUArchState *env;
707
    int nr_cpus;
708
    int ret;
709

    
710
    if (runstate_is_running()) {
711
        vm_stop(RUN_STATE_SAVE_VM);
712
        s->resume = true;
713
    } else {
714
        s->resume = false;
715
    }
716

    
717
    s->errp = errp;
718
    s->fd = fd;
719
    s->has_filter = has_filter;
720
    s->begin = begin;
721
    s->length = length;
722
    s->start = get_start_block(s);
723
    if (s->start == -1) {
724
        error_set(errp, QERR_INVALID_PARAMETER, "begin");
725
        goto cleanup;
726
    }
727

    
728
    /*
729
     * get dump info: endian, class and architecture.
730
     * If the target architecture is not supported, cpu_get_dump_info() will
731
     * return -1.
732
     *
733
     * if we use kvm, we should synchronize the register before we get dump
734
     * info.
735
     */
736
    nr_cpus = 0;
737
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
738
        cpu_synchronize_state(env);
739
        nr_cpus++;
740
    }
741

    
742
    ret = cpu_get_dump_info(&s->dump_info);
743
    if (ret < 0) {
744
        error_set(errp, QERR_UNSUPPORTED);
745
        goto cleanup;
746
    }
747

    
748
    s->note_size = cpu_get_note_size(s->dump_info.d_class,
749
                                     s->dump_info.d_machine, nr_cpus);
750
    if (ret < 0) {
751
        error_set(errp, QERR_UNSUPPORTED);
752
        goto cleanup;
753
    }
754

    
755
    /* get memory mapping */
756
    memory_mapping_list_init(&s->list);
757
    if (paging) {
758
        qemu_get_guest_memory_mapping(&s->list);
759
    } else {
760
        qemu_get_guest_simple_memory_mapping(&s->list);
761
    }
762

    
763
    if (s->has_filter) {
764
        memory_mapping_filter(&s->list, s->begin, s->length);
765
    }
766

    
767
    /*
768
     * calculate phdr_num
769
     *
770
     * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
771
     */
772
    s->phdr_num = 1; /* PT_NOTE */
773
    if (s->list.num < UINT16_MAX - 2) {
774
        s->phdr_num += s->list.num;
775
        s->have_section = false;
776
    } else {
777
        s->have_section = true;
778
        s->phdr_num = PN_XNUM;
779
        s->sh_info = 1; /* PT_NOTE */
780

    
781
        /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
782
        if (s->list.num <= UINT32_MAX - 1) {
783
            s->sh_info += s->list.num;
784
        } else {
785
            s->sh_info = UINT32_MAX;
786
        }
787
    }
788

    
789
    if (s->dump_info.d_class == ELFCLASS64) {
790
        if (s->have_section) {
791
            s->memory_offset = sizeof(Elf64_Ehdr) +
792
                               sizeof(Elf64_Phdr) * s->sh_info +
793
                               sizeof(Elf64_Shdr) + s->note_size;
794
        } else {
795
            s->memory_offset = sizeof(Elf64_Ehdr) +
796
                               sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
797
        }
798
    } else {
799
        if (s->have_section) {
800
            s->memory_offset = sizeof(Elf32_Ehdr) +
801
                               sizeof(Elf32_Phdr) * s->sh_info +
802
                               sizeof(Elf32_Shdr) + s->note_size;
803
        } else {
804
            s->memory_offset = sizeof(Elf32_Ehdr) +
805
                               sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
806
        }
807
    }
808

    
809
    return 0;
810

    
811
cleanup:
812
    if (s->resume) {
813
        vm_start();
814
    }
815

    
816
    return -1;
817
}
818

    
819
void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
820
                           int64_t begin, bool has_length, int64_t length,
821
                           Error **errp)
822
{
823
    const char *p;
824
    int fd = -1;
825
    DumpState *s;
826
    int ret;
827

    
828
    if (has_begin && !has_length) {
829
        error_set(errp, QERR_MISSING_PARAMETER, "length");
830
        return;
831
    }
832
    if (!has_begin && has_length) {
833
        error_set(errp, QERR_MISSING_PARAMETER, "begin");
834
        return;
835
    }
836

    
837
#if !defined(WIN32)
838
    if (strstart(file, "fd:", &p)) {
839
        fd = monitor_get_fd(cur_mon, p);
840
        if (fd == -1) {
841
            error_set(errp, QERR_FD_NOT_FOUND, p);
842
            return;
843
        }
844
    }
845
#endif
846

    
847
    if  (strstart(file, "file:", &p)) {
848
        fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
849
        if (fd < 0) {
850
            error_set(errp, QERR_OPEN_FILE_FAILED, p);
851
            return;
852
        }
853
    }
854

    
855
    if (fd == -1) {
856
        error_set(errp, QERR_INVALID_PARAMETER, "protocol");
857
        return;
858
    }
859

    
860
    s = g_malloc(sizeof(DumpState));
861

    
862
    ret = dump_init(s, fd, paging, has_begin, begin, length, errp);
863
    if (ret < 0) {
864
        g_free(s);
865
        return;
866
    }
867

    
868
    if (create_vmcore(s) < 0 && !error_is_set(s->errp)) {
869
        error_set(errp, QERR_IO_ERROR);
870
    }
871

    
872
    g_free(s);
873
}