Statistics
| Branch: | Revision:

root / cpu-exec.c @ 15388002

History | View | Annotate | Download (43.5 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#ifndef TARGET_SPARC
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    cs_base = 0;
173
    pc = env->regs[15];
174
#elif defined(TARGET_SPARC)
175
#ifdef TARGET_SPARC64
176
    flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
177
#else
178
    flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
179
#endif
180
    cs_base = env->npc;
181
    pc = env->pc;
182
#elif defined(TARGET_PPC)
183
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
184
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
185
    cs_base = 0;
186
    pc = env->nip;
187
#elif defined(TARGET_MIPS)
188
    flags = env->hflags & (MIPS_HFLAGS_TMASK | MIPS_HFLAG_BMASK);
189
    cs_base = 0;
190
    pc = env->PC;
191
#else
192
#error unsupported CPU
193
#endif
194
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
195
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
196
                         tb->flags != flags, 0)) {
197
        tb = tb_find_slow(pc, cs_base, flags);
198
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
199
           doing it in tb_find_slow */
200
        if (tb_invalidated_flag) {
201
            /* as some TB could have been invalidated because
202
               of memory exceptions while generating the code, we
203
               must recompute the hash index here */
204
            T0 = 0;
205
        }
206
    }
207
    return tb;
208
}
209

    
210

    
211
/* main execution loop */
212

    
213
int cpu_exec(CPUState *env1)
214
{
215
    int saved_T0, saved_T1;
216
#if defined(reg_T2)
217
    int saved_T2;
218
#endif
219
    CPUState *saved_env;
220
#if defined(TARGET_I386)
221
#ifdef reg_EAX
222
    int saved_EAX;
223
#endif
224
#ifdef reg_ECX
225
    int saved_ECX;
226
#endif
227
#ifdef reg_EDX
228
    int saved_EDX;
229
#endif
230
#ifdef reg_EBX
231
    int saved_EBX;
232
#endif
233
#ifdef reg_ESP
234
    int saved_ESP;
235
#endif
236
#ifdef reg_EBP
237
    int saved_EBP;
238
#endif
239
#ifdef reg_ESI
240
    int saved_ESI;
241
#endif
242
#ifdef reg_EDI
243
    int saved_EDI;
244
#endif
245
#elif defined(TARGET_SPARC)
246
#if defined(reg_REGWPTR)
247
    uint32_t *saved_regwptr;
248
#endif
249
#endif
250
#ifdef __sparc__
251
    int saved_i7, tmp_T0;
252
#endif
253
    int ret, interrupt_request;
254
    void (*gen_func)(void);
255
    TranslationBlock *tb;
256
    uint8_t *tc_ptr;
257

    
258
#if defined(TARGET_I386)
259
    /* handle exit of HALTED state */
260
    if (env1->hflags & HF_HALTED_MASK) {
261
        /* disable halt condition */
262
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
263
            (env1->eflags & IF_MASK)) {
264
            env1->hflags &= ~HF_HALTED_MASK;
265
        } else {
266
            return EXCP_HALTED;
267
        }
268
    }
269
#elif defined(TARGET_PPC)
270
    if (env1->halted) {
271
        if (env1->msr[MSR_EE] && 
272
            (env1->interrupt_request & 
273
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
274
            env1->halted = 0;
275
        } else {
276
            return EXCP_HALTED;
277
        }
278
    }
279
#elif defined(TARGET_SPARC)
280
    if (env1->halted) {
281
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
282
            (env1->psret != 0)) {
283
            env1->halted = 0;
284
        } else {
285
            return EXCP_HALTED;
286
        }
287
    }
288
#elif defined(TARGET_ARM)
289
    if (env1->halted) {
290
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
291
           set.  */
292
        if (env1->interrupt_request
293
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
294
            env1->halted = 0;
295
        } else {
296
            return EXCP_HALTED;
297
        }
298
    }
299
#elif defined(TARGET_MIPS)
300
    if (env1->halted) {
301
        if (env1->interrupt_request &
302
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
303
            env1->halted = 0;
304
        } else {
305
            return EXCP_HALTED;
306
        }
307
    }
308
#endif
309

    
310
    cpu_single_env = env1; 
311

    
312
    /* first we save global registers */
313
    saved_env = env;
314
    env = env1;
315
    saved_T0 = T0;
316
    saved_T1 = T1;
317
#if defined(reg_T2)
318
    saved_T2 = T2;
319
#endif
320
#ifdef __sparc__
321
    /* we also save i7 because longjmp may not restore it */
322
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
323
#endif
324

    
325
#if defined(TARGET_I386)
326
#ifdef reg_EAX
327
    saved_EAX = EAX;
328
#endif
329
#ifdef reg_ECX
330
    saved_ECX = ECX;
331
#endif
332
#ifdef reg_EDX
333
    saved_EDX = EDX;
334
#endif
335
#ifdef reg_EBX
336
    saved_EBX = EBX;
337
#endif
338
#ifdef reg_ESP
339
    saved_ESP = ESP;
340
#endif
341
#ifdef reg_EBP
342
    saved_EBP = EBP;
343
#endif
344
#ifdef reg_ESI
345
    saved_ESI = ESI;
346
#endif
347
#ifdef reg_EDI
348
    saved_EDI = EDI;
349
#endif
350

    
351
    env_to_regs();
352
    /* put eflags in CPU temporary format */
353
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
354
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
355
    CC_OP = CC_OP_EFLAGS;
356
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
357
#elif defined(TARGET_ARM)
358
#elif defined(TARGET_SPARC)
359
#if defined(reg_REGWPTR)
360
    saved_regwptr = REGWPTR;
361
#endif
362
#elif defined(TARGET_PPC)
363
#elif defined(TARGET_MIPS)
364
#else
365
#error unsupported target CPU
366
#endif
367
    env->exception_index = -1;
368

    
369
    /* prepare setjmp context for exception handling */
370
    for(;;) {
371
        if (setjmp(env->jmp_env) == 0) {
372
            env->current_tb = NULL;
373
            /* if an exception is pending, we execute it here */
374
            if (env->exception_index >= 0) {
375
                if (env->exception_index >= EXCP_INTERRUPT) {
376
                    /* exit request from the cpu execution loop */
377
                    ret = env->exception_index;
378
                    break;
379
                } else if (env->user_mode_only) {
380
                    /* if user mode only, we simulate a fake exception
381
                       which will be hanlded outside the cpu execution
382
                       loop */
383
#if defined(TARGET_I386)
384
                    do_interrupt_user(env->exception_index, 
385
                                      env->exception_is_int, 
386
                                      env->error_code, 
387
                                      env->exception_next_eip);
388
#endif
389
                    ret = env->exception_index;
390
                    break;
391
                } else {
392
#if defined(TARGET_I386)
393
                    /* simulate a real cpu exception. On i386, it can
394
                       trigger new exceptions, but we do not handle
395
                       double or triple faults yet. */
396
                    do_interrupt(env->exception_index, 
397
                                 env->exception_is_int, 
398
                                 env->error_code, 
399
                                 env->exception_next_eip, 0);
400
#elif defined(TARGET_PPC)
401
                    do_interrupt(env);
402
#elif defined(TARGET_MIPS)
403
                    do_interrupt(env);
404
#elif defined(TARGET_SPARC)
405
                    do_interrupt(env->exception_index);
406
#elif defined(TARGET_ARM)
407
                    do_interrupt(env);
408
#endif
409
                }
410
                env->exception_index = -1;
411
            } 
412
#ifdef USE_KQEMU
413
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
414
                int ret;
415
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
416
                ret = kqemu_cpu_exec(env);
417
                /* put eflags in CPU temporary format */
418
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
419
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
420
                CC_OP = CC_OP_EFLAGS;
421
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
422
                if (ret == 1) {
423
                    /* exception */
424
                    longjmp(env->jmp_env, 1);
425
                } else if (ret == 2) {
426
                    /* softmmu execution needed */
427
                } else {
428
                    if (env->interrupt_request != 0) {
429
                        /* hardware interrupt will be executed just after */
430
                    } else {
431
                        /* otherwise, we restart */
432
                        longjmp(env->jmp_env, 1);
433
                    }
434
                }
435
            }
436
#endif
437

    
438
            T0 = 0; /* force lookup of first TB */
439
            for(;;) {
440
#ifdef __sparc__
441
                /* g1 can be modified by some libc? functions */ 
442
                tmp_T0 = T0;
443
#endif            
444
                interrupt_request = env->interrupt_request;
445
                if (__builtin_expect(interrupt_request, 0)) {
446
#if defined(TARGET_I386)
447
                    /* if hardware interrupt pending, we execute it */
448
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
449
                        (env->eflags & IF_MASK) && 
450
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
451
                        int intno;
452
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
453
                        intno = cpu_get_pic_interrupt(env);
454
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
455
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
456
                        }
457
                        do_interrupt(intno, 0, 0, 0, 1);
458
                        /* ensure that no TB jump will be modified as
459
                           the program flow was changed */
460
#ifdef __sparc__
461
                        tmp_T0 = 0;
462
#else
463
                        T0 = 0;
464
#endif
465
                    }
466
#elif defined(TARGET_PPC)
467
#if 0
468
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
469
                        cpu_ppc_reset(env);
470
                    }
471
#endif
472
                    if (msr_ee != 0) {
473
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
474
                            /* Raise it */
475
                            env->exception_index = EXCP_EXTERNAL;
476
                            env->error_code = 0;
477
                            do_interrupt(env);
478
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
479
#ifdef __sparc__
480
                            tmp_T0 = 0;
481
#else
482
                            T0 = 0;
483
#endif
484
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
485
                            /* Raise it */
486
                            env->exception_index = EXCP_DECR;
487
                            env->error_code = 0;
488
                            do_interrupt(env);
489
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
490
#ifdef __sparc__
491
                            tmp_T0 = 0;
492
#else
493
                            T0 = 0;
494
#endif
495
                        }
496
                    }
497
#elif defined(TARGET_MIPS)
498
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
499
                        (env->CP0_Status & (1 << CP0St_IE)) &&
500
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
501
                        !(env->hflags & MIPS_HFLAG_EXL) &&
502
                        !(env->hflags & MIPS_HFLAG_ERL) &&
503
                        !(env->hflags & MIPS_HFLAG_DM)) {
504
                        /* Raise it */
505
                        env->exception_index = EXCP_EXT_INTERRUPT;
506
                        env->error_code = 0;
507
                        do_interrupt(env);
508
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
509
#ifdef __sparc__
510
                        tmp_T0 = 0;
511
#else
512
                        T0 = 0;
513
#endif
514
                    }
515
#elif defined(TARGET_SPARC)
516
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
517
                        (env->psret != 0)) {
518
                        int pil = env->interrupt_index & 15;
519
                        int type = env->interrupt_index & 0xf0;
520

    
521
                        if (((type == TT_EXTINT) &&
522
                             (pil == 15 || pil > env->psrpil)) ||
523
                            type != TT_EXTINT) {
524
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
525
                            do_interrupt(env->interrupt_index);
526
                            env->interrupt_index = 0;
527
#ifdef __sparc__
528
                            tmp_T0 = 0;
529
#else
530
                            T0 = 0;
531
#endif
532
                        }
533
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
534
                        //do_interrupt(0, 0, 0, 0, 0);
535
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
536
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
537
                        env1->halted = 1;
538
                        return EXCP_HALTED;
539
                    }
540
#elif defined(TARGET_ARM)
541
                    if (interrupt_request & CPU_INTERRUPT_FIQ
542
                        && !(env->uncached_cpsr & CPSR_F)) {
543
                        env->exception_index = EXCP_FIQ;
544
                        do_interrupt(env);
545
                    }
546
                    if (interrupt_request & CPU_INTERRUPT_HARD
547
                        && !(env->uncached_cpsr & CPSR_I)) {
548
                        env->exception_index = EXCP_IRQ;
549
                        do_interrupt(env);
550
                    }
551
#endif
552
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
553
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
554
                        /* ensure that no TB jump will be modified as
555
                           the program flow was changed */
556
#ifdef __sparc__
557
                        tmp_T0 = 0;
558
#else
559
                        T0 = 0;
560
#endif
561
                    }
562
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
563
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
564
                        env->exception_index = EXCP_INTERRUPT;
565
                        cpu_loop_exit();
566
                    }
567
                }
568
#ifdef DEBUG_EXEC
569
                if ((loglevel & CPU_LOG_TB_CPU)) {
570
#if defined(TARGET_I386)
571
                    /* restore flags in standard format */
572
#ifdef reg_EAX
573
                    env->regs[R_EAX] = EAX;
574
#endif
575
#ifdef reg_EBX
576
                    env->regs[R_EBX] = EBX;
577
#endif
578
#ifdef reg_ECX
579
                    env->regs[R_ECX] = ECX;
580
#endif
581
#ifdef reg_EDX
582
                    env->regs[R_EDX] = EDX;
583
#endif
584
#ifdef reg_ESI
585
                    env->regs[R_ESI] = ESI;
586
#endif
587
#ifdef reg_EDI
588
                    env->regs[R_EDI] = EDI;
589
#endif
590
#ifdef reg_EBP
591
                    env->regs[R_EBP] = EBP;
592
#endif
593
#ifdef reg_ESP
594
                    env->regs[R_ESP] = ESP;
595
#endif
596
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
597
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
598
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
599
#elif defined(TARGET_ARM)
600
                    cpu_dump_state(env, logfile, fprintf, 0);
601
#elif defined(TARGET_SPARC)
602
                    REGWPTR = env->regbase + (env->cwp * 16);
603
                    env->regwptr = REGWPTR;
604
                    cpu_dump_state(env, logfile, fprintf, 0);
605
#elif defined(TARGET_PPC)
606
                    cpu_dump_state(env, logfile, fprintf, 0);
607
#elif defined(TARGET_MIPS)
608
                    cpu_dump_state(env, logfile, fprintf, 0);
609
#else
610
#error unsupported target CPU 
611
#endif
612
                }
613
#endif
614
                tb = tb_find_fast();
615
#ifdef DEBUG_EXEC
616
                if ((loglevel & CPU_LOG_EXEC)) {
617
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
618
                            (long)tb->tc_ptr, tb->pc,
619
                            lookup_symbol(tb->pc));
620
                }
621
#endif
622
#ifdef __sparc__
623
                T0 = tmp_T0;
624
#endif            
625
                /* see if we can patch the calling TB. When the TB
626
                   spans two pages, we cannot safely do a direct
627
                   jump. */
628
                {
629
                    if (T0 != 0 &&
630
                        tb->page_addr[1] == -1
631
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
632
                    && (tb->cflags & CF_CODE_COPY) == 
633
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
634
#endif
635
                    ) {
636
                    spin_lock(&tb_lock);
637
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
638
#if defined(USE_CODE_COPY)
639
                    /* propagates the FP use info */
640
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
641
                        (tb->cflags & CF_FP_USED);
642
#endif
643
                    spin_unlock(&tb_lock);
644
                }
645
                }
646
                tc_ptr = tb->tc_ptr;
647
                env->current_tb = tb;
648
                /* execute the generated code */
649
                gen_func = (void *)tc_ptr;
650
#if defined(__sparc__)
651
                __asm__ __volatile__("call        %0\n\t"
652
                                     "mov        %%o7,%%i0"
653
                                     : /* no outputs */
654
                                     : "r" (gen_func) 
655
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
656
#elif defined(__arm__)
657
                asm volatile ("mov pc, %0\n\t"
658
                              ".global exec_loop\n\t"
659
                              "exec_loop:\n\t"
660
                              : /* no outputs */
661
                              : "r" (gen_func)
662
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
663
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
664
{
665
    if (!(tb->cflags & CF_CODE_COPY)) {
666
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
667
            save_native_fp_state(env);
668
        }
669
        gen_func();
670
    } else {
671
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
672
            restore_native_fp_state(env);
673
        }
674
        /* we work with native eflags */
675
        CC_SRC = cc_table[CC_OP].compute_all();
676
        CC_OP = CC_OP_EFLAGS;
677
        asm(".globl exec_loop\n"
678
            "\n"
679
            "debug1:\n"
680
            "    pushl %%ebp\n"
681
            "    fs movl %10, %9\n"
682
            "    fs movl %11, %%eax\n"
683
            "    andl $0x400, %%eax\n"
684
            "    fs orl %8, %%eax\n"
685
            "    pushl %%eax\n"
686
            "    popf\n"
687
            "    fs movl %%esp, %12\n"
688
            "    fs movl %0, %%eax\n"
689
            "    fs movl %1, %%ecx\n"
690
            "    fs movl %2, %%edx\n"
691
            "    fs movl %3, %%ebx\n"
692
            "    fs movl %4, %%esp\n"
693
            "    fs movl %5, %%ebp\n"
694
            "    fs movl %6, %%esi\n"
695
            "    fs movl %7, %%edi\n"
696
            "    fs jmp *%9\n"
697
            "exec_loop:\n"
698
            "    fs movl %%esp, %4\n"
699
            "    fs movl %12, %%esp\n"
700
            "    fs movl %%eax, %0\n"
701
            "    fs movl %%ecx, %1\n"
702
            "    fs movl %%edx, %2\n"
703
            "    fs movl %%ebx, %3\n"
704
            "    fs movl %%ebp, %5\n"
705
            "    fs movl %%esi, %6\n"
706
            "    fs movl %%edi, %7\n"
707
            "    pushf\n"
708
            "    popl %%eax\n"
709
            "    movl %%eax, %%ecx\n"
710
            "    andl $0x400, %%ecx\n"
711
            "    shrl $9, %%ecx\n"
712
            "    andl $0x8d5, %%eax\n"
713
            "    fs movl %%eax, %8\n"
714
            "    movl $1, %%eax\n"
715
            "    subl %%ecx, %%eax\n"
716
            "    fs movl %%eax, %11\n"
717
            "    fs movl %9, %%ebx\n" /* get T0 value */
718
            "    popl %%ebp\n"
719
            :
720
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
721
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
722
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
723
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
724
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
725
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
726
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
727
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
728
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
729
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
730
            "a" (gen_func),
731
            "m" (*(uint8_t *)offsetof(CPUState, df)),
732
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
733
            : "%ecx", "%edx"
734
            );
735
    }
736
}
737
#elif defined(__ia64)
738
                struct fptr {
739
                        void *ip;
740
                        void *gp;
741
                } fp;
742

    
743
                fp.ip = tc_ptr;
744
                fp.gp = code_gen_buffer + 2 * (1 << 20);
745
                (*(void (*)(void)) &fp)();
746
#else
747
                gen_func();
748
#endif
749
                env->current_tb = NULL;
750
                /* reset soft MMU for next block (it can currently
751
                   only be set by a memory fault) */
752
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
753
                if (env->hflags & HF_SOFTMMU_MASK) {
754
                    env->hflags &= ~HF_SOFTMMU_MASK;
755
                    /* do not allow linking to another block */
756
                    T0 = 0;
757
                }
758
#endif
759
            }
760
        } else {
761
            env_to_regs();
762
        }
763
    } /* for(;;) */
764

    
765

    
766
#if defined(TARGET_I386)
767
#if defined(USE_CODE_COPY)
768
    if (env->native_fp_regs) {
769
        save_native_fp_state(env);
770
    }
771
#endif
772
    /* restore flags in standard format */
773
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
774

    
775
    /* restore global registers */
776
#ifdef reg_EAX
777
    EAX = saved_EAX;
778
#endif
779
#ifdef reg_ECX
780
    ECX = saved_ECX;
781
#endif
782
#ifdef reg_EDX
783
    EDX = saved_EDX;
784
#endif
785
#ifdef reg_EBX
786
    EBX = saved_EBX;
787
#endif
788
#ifdef reg_ESP
789
    ESP = saved_ESP;
790
#endif
791
#ifdef reg_EBP
792
    EBP = saved_EBP;
793
#endif
794
#ifdef reg_ESI
795
    ESI = saved_ESI;
796
#endif
797
#ifdef reg_EDI
798
    EDI = saved_EDI;
799
#endif
800
#elif defined(TARGET_ARM)
801
    /* XXX: Save/restore host fpu exception state?.  */
802
#elif defined(TARGET_SPARC)
803
#if defined(reg_REGWPTR)
804
    REGWPTR = saved_regwptr;
805
#endif
806
#elif defined(TARGET_PPC)
807
#elif defined(TARGET_MIPS)
808
#else
809
#error unsupported target CPU
810
#endif
811
#ifdef __sparc__
812
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
813
#endif
814
    T0 = saved_T0;
815
    T1 = saved_T1;
816
#if defined(reg_T2)
817
    T2 = saved_T2;
818
#endif
819
    env = saved_env;
820
    /* fail safe : never use cpu_single_env outside cpu_exec() */
821
    cpu_single_env = NULL; 
822
    return ret;
823
}
824

    
825
/* must only be called from the generated code as an exception can be
826
   generated */
827
void tb_invalidate_page_range(target_ulong start, target_ulong end)
828
{
829
    /* XXX: cannot enable it yet because it yields to MMU exception
830
       where NIP != read address on PowerPC */
831
#if 0
832
    target_ulong phys_addr;
833
    phys_addr = get_phys_addr_code(env, start);
834
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
835
#endif
836
}
837

    
838
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
839

    
840
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
841
{
842
    CPUX86State *saved_env;
843

    
844
    saved_env = env;
845
    env = s;
846
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
847
        selector &= 0xffff;
848
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
849
                               (selector << 4), 0xffff, 0);
850
    } else {
851
        load_seg(seg_reg, selector);
852
    }
853
    env = saved_env;
854
}
855

    
856
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
857
{
858
    CPUX86State *saved_env;
859

    
860
    saved_env = env;
861
    env = s;
862
    
863
    helper_fsave((target_ulong)ptr, data32);
864

    
865
    env = saved_env;
866
}
867

    
868
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
869
{
870
    CPUX86State *saved_env;
871

    
872
    saved_env = env;
873
    env = s;
874
    
875
    helper_frstor((target_ulong)ptr, data32);
876

    
877
    env = saved_env;
878
}
879

    
880
#endif /* TARGET_I386 */
881

    
882
#if !defined(CONFIG_SOFTMMU)
883

    
884
#if defined(TARGET_I386)
885

    
886
/* 'pc' is the host PC at which the exception was raised. 'address' is
887
   the effective address of the memory exception. 'is_write' is 1 if a
888
   write caused the exception and otherwise 0'. 'old_set' is the
889
   signal set which should be restored */
890
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
891
                                    int is_write, sigset_t *old_set, 
892
                                    void *puc)
893
{
894
    TranslationBlock *tb;
895
    int ret;
896

    
897
    if (cpu_single_env)
898
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
899
#if defined(DEBUG_SIGNAL)
900
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
901
                pc, address, is_write, *(unsigned long *)old_set);
902
#endif
903
    /* XXX: locking issue */
904
    if (is_write && page_unprotect(address, pc, puc)) {
905
        return 1;
906
    }
907

    
908
    /* see if it is an MMU fault */
909
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
910
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
911
    if (ret < 0)
912
        return 0; /* not an MMU fault */
913
    if (ret == 0)
914
        return 1; /* the MMU fault was handled without causing real CPU fault */
915
    /* now we have a real cpu fault */
916
    tb = tb_find_pc(pc);
917
    if (tb) {
918
        /* the PC is inside the translated code. It means that we have
919
           a virtual CPU fault */
920
        cpu_restore_state(tb, env, pc, puc);
921
    }
922
    if (ret == 1) {
923
#if 0
924
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
925
               env->eip, env->cr[2], env->error_code);
926
#endif
927
        /* we restore the process signal mask as the sigreturn should
928
           do it (XXX: use sigsetjmp) */
929
        sigprocmask(SIG_SETMASK, old_set, NULL);
930
        raise_exception_err(env->exception_index, env->error_code);
931
    } else {
932
        /* activate soft MMU for this block */
933
        env->hflags |= HF_SOFTMMU_MASK;
934
        cpu_resume_from_signal(env, puc);
935
    }
936
    /* never comes here */
937
    return 1;
938
}
939

    
940
#elif defined(TARGET_ARM)
941
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
942
                                    int is_write, sigset_t *old_set,
943
                                    void *puc)
944
{
945
    TranslationBlock *tb;
946
    int ret;
947

    
948
    if (cpu_single_env)
949
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
950
#if defined(DEBUG_SIGNAL)
951
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
952
           pc, address, is_write, *(unsigned long *)old_set);
953
#endif
954
    /* XXX: locking issue */
955
    if (is_write && page_unprotect(address, pc, puc)) {
956
        return 1;
957
    }
958
    /* see if it is an MMU fault */
959
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
960
    if (ret < 0)
961
        return 0; /* not an MMU fault */
962
    if (ret == 0)
963
        return 1; /* the MMU fault was handled without causing real CPU fault */
964
    /* now we have a real cpu fault */
965
    tb = tb_find_pc(pc);
966
    if (tb) {
967
        /* the PC is inside the translated code. It means that we have
968
           a virtual CPU fault */
969
        cpu_restore_state(tb, env, pc, puc);
970
    }
971
    /* we restore the process signal mask as the sigreturn should
972
       do it (XXX: use sigsetjmp) */
973
    sigprocmask(SIG_SETMASK, old_set, NULL);
974
    cpu_loop_exit();
975
}
976
#elif defined(TARGET_SPARC)
977
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
978
                                    int is_write, sigset_t *old_set,
979
                                    void *puc)
980
{
981
    TranslationBlock *tb;
982
    int ret;
983

    
984
    if (cpu_single_env)
985
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
986
#if defined(DEBUG_SIGNAL)
987
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
988
           pc, address, is_write, *(unsigned long *)old_set);
989
#endif
990
    /* XXX: locking issue */
991
    if (is_write && page_unprotect(address, pc, puc)) {
992
        return 1;
993
    }
994
    /* see if it is an MMU fault */
995
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
996
    if (ret < 0)
997
        return 0; /* not an MMU fault */
998
    if (ret == 0)
999
        return 1; /* the MMU fault was handled without causing real CPU fault */
1000
    /* now we have a real cpu fault */
1001
    tb = tb_find_pc(pc);
1002
    if (tb) {
1003
        /* the PC is inside the translated code. It means that we have
1004
           a virtual CPU fault */
1005
        cpu_restore_state(tb, env, pc, puc);
1006
    }
1007
    /* we restore the process signal mask as the sigreturn should
1008
       do it (XXX: use sigsetjmp) */
1009
    sigprocmask(SIG_SETMASK, old_set, NULL);
1010
    cpu_loop_exit();
1011
}
1012
#elif defined (TARGET_PPC)
1013
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1014
                                    int is_write, sigset_t *old_set,
1015
                                    void *puc)
1016
{
1017
    TranslationBlock *tb;
1018
    int ret;
1019
    
1020
    if (cpu_single_env)
1021
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1022
#if defined(DEBUG_SIGNAL)
1023
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1024
           pc, address, is_write, *(unsigned long *)old_set);
1025
#endif
1026
    /* XXX: locking issue */
1027
    if (is_write && page_unprotect(address, pc, puc)) {
1028
        return 1;
1029
    }
1030

    
1031
    /* see if it is an MMU fault */
1032
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1033
    if (ret < 0)
1034
        return 0; /* not an MMU fault */
1035
    if (ret == 0)
1036
        return 1; /* the MMU fault was handled without causing real CPU fault */
1037

    
1038
    /* now we have a real cpu fault */
1039
    tb = tb_find_pc(pc);
1040
    if (tb) {
1041
        /* the PC is inside the translated code. It means that we have
1042
           a virtual CPU fault */
1043
        cpu_restore_state(tb, env, pc, puc);
1044
    }
1045
    if (ret == 1) {
1046
#if 0
1047
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1048
               env->nip, env->error_code, tb);
1049
#endif
1050
    /* we restore the process signal mask as the sigreturn should
1051
       do it (XXX: use sigsetjmp) */
1052
        sigprocmask(SIG_SETMASK, old_set, NULL);
1053
        do_raise_exception_err(env->exception_index, env->error_code);
1054
    } else {
1055
        /* activate soft MMU for this block */
1056
        cpu_resume_from_signal(env, puc);
1057
    }
1058
    /* never comes here */
1059
    return 1;
1060
}
1061

    
1062
#elif defined (TARGET_MIPS)
1063
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1064
                                    int is_write, sigset_t *old_set,
1065
                                    void *puc)
1066
{
1067
    TranslationBlock *tb;
1068
    int ret;
1069
    
1070
    if (cpu_single_env)
1071
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1072
#if defined(DEBUG_SIGNAL)
1073
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1074
           pc, address, is_write, *(unsigned long *)old_set);
1075
#endif
1076
    /* XXX: locking issue */
1077
    if (is_write && page_unprotect(address, pc, puc)) {
1078
        return 1;
1079
    }
1080

    
1081
    /* see if it is an MMU fault */
1082
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1083
    if (ret < 0)
1084
        return 0; /* not an MMU fault */
1085
    if (ret == 0)
1086
        return 1; /* the MMU fault was handled without causing real CPU fault */
1087

    
1088
    /* now we have a real cpu fault */
1089
    tb = tb_find_pc(pc);
1090
    if (tb) {
1091
        /* the PC is inside the translated code. It means that we have
1092
           a virtual CPU fault */
1093
        cpu_restore_state(tb, env, pc, puc);
1094
    }
1095
    if (ret == 1) {
1096
#if 0
1097
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1098
               env->nip, env->error_code, tb);
1099
#endif
1100
    /* we restore the process signal mask as the sigreturn should
1101
       do it (XXX: use sigsetjmp) */
1102
        sigprocmask(SIG_SETMASK, old_set, NULL);
1103
        do_raise_exception_err(env->exception_index, env->error_code);
1104
    } else {
1105
        /* activate soft MMU for this block */
1106
        cpu_resume_from_signal(env, puc);
1107
    }
1108
    /* never comes here */
1109
    return 1;
1110
}
1111

    
1112
#else
1113
#error unsupported target CPU
1114
#endif
1115

    
1116
#if defined(__i386__)
1117

    
1118
#if defined(USE_CODE_COPY)
1119
static void cpu_send_trap(unsigned long pc, int trap, 
1120
                          struct ucontext *uc)
1121
{
1122
    TranslationBlock *tb;
1123

    
1124
    if (cpu_single_env)
1125
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1126
    /* now we have a real cpu fault */
1127
    tb = tb_find_pc(pc);
1128
    if (tb) {
1129
        /* the PC is inside the translated code. It means that we have
1130
           a virtual CPU fault */
1131
        cpu_restore_state(tb, env, pc, uc);
1132
    }
1133
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1134
    raise_exception_err(trap, env->error_code);
1135
}
1136
#endif
1137

    
1138
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1139
                       void *puc)
1140
{
1141
    struct ucontext *uc = puc;
1142
    unsigned long pc;
1143
    int trapno;
1144

    
1145
#ifndef REG_EIP
1146
/* for glibc 2.1 */
1147
#define REG_EIP    EIP
1148
#define REG_ERR    ERR
1149
#define REG_TRAPNO TRAPNO
1150
#endif
1151
    pc = uc->uc_mcontext.gregs[REG_EIP];
1152
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1153
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1154
    if (trapno == 0x00 || trapno == 0x05) {
1155
        /* send division by zero or bound exception */
1156
        cpu_send_trap(pc, trapno, uc);
1157
        return 1;
1158
    } else
1159
#endif
1160
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1161
                                 trapno == 0xe ? 
1162
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1163
                                 &uc->uc_sigmask, puc);
1164
}
1165

    
1166
#elif defined(__x86_64__)
1167

    
1168
int cpu_signal_handler(int host_signum, struct siginfo *info,
1169
                       void *puc)
1170
{
1171
    struct ucontext *uc = puc;
1172
    unsigned long pc;
1173

    
1174
    pc = uc->uc_mcontext.gregs[REG_RIP];
1175
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1176
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1177
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1178
                             &uc->uc_sigmask, puc);
1179
}
1180

    
1181
#elif defined(__powerpc__)
1182

    
1183
/***********************************************************************
1184
 * signal context platform-specific definitions
1185
 * From Wine
1186
 */
1187
#ifdef linux
1188
/* All Registers access - only for local access */
1189
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1190
/* Gpr Registers access  */
1191
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1192
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1193
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1194
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1195
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1196
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1197
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1198
/* Float Registers access  */
1199
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1200
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1201
/* Exception Registers access */
1202
# define DAR_sig(context)                        REG_sig(dar, context)
1203
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1204
# define TRAP_sig(context)                        REG_sig(trap, context)
1205
#endif /* linux */
1206

    
1207
#ifdef __APPLE__
1208
# include <sys/ucontext.h>
1209
typedef struct ucontext SIGCONTEXT;
1210
/* All Registers access - only for local access */
1211
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1212
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1213
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1214
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1215
/* Gpr Registers access */
1216
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1217
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1218
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1219
# define CTR_sig(context)                        REG_sig(ctr, context)
1220
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1221
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1222
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1223
/* Float Registers access */
1224
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1225
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1226
/* Exception Registers access */
1227
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1228
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1229
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1230
#endif /* __APPLE__ */
1231

    
1232
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1233
                       void *puc)
1234
{
1235
    struct ucontext *uc = puc;
1236
    unsigned long pc;
1237
    int is_write;
1238

    
1239
    pc = IAR_sig(uc);
1240
    is_write = 0;
1241
#if 0
1242
    /* ppc 4xx case */
1243
    if (DSISR_sig(uc) & 0x00800000)
1244
        is_write = 1;
1245
#else
1246
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1247
        is_write = 1;
1248
#endif
1249
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1250
                             is_write, &uc->uc_sigmask, puc);
1251
}
1252

    
1253
#elif defined(__alpha__)
1254

    
1255
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1256
                           void *puc)
1257
{
1258
    struct ucontext *uc = puc;
1259
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1260
    uint32_t insn = *pc;
1261
    int is_write = 0;
1262

    
1263
    /* XXX: need kernel patch to get write flag faster */
1264
    switch (insn >> 26) {
1265
    case 0x0d: // stw
1266
    case 0x0e: // stb
1267
    case 0x0f: // stq_u
1268
    case 0x24: // stf
1269
    case 0x25: // stg
1270
    case 0x26: // sts
1271
    case 0x27: // stt
1272
    case 0x2c: // stl
1273
    case 0x2d: // stq
1274
    case 0x2e: // stl_c
1275
    case 0x2f: // stq_c
1276
        is_write = 1;
1277
    }
1278

    
1279
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1280
                             is_write, &uc->uc_sigmask, puc);
1281
}
1282
#elif defined(__sparc__)
1283

    
1284
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1285
                       void *puc)
1286
{
1287
    uint32_t *regs = (uint32_t *)(info + 1);
1288
    void *sigmask = (regs + 20);
1289
    unsigned long pc;
1290
    int is_write;
1291
    uint32_t insn;
1292
    
1293
    /* XXX: is there a standard glibc define ? */
1294
    pc = regs[1];
1295
    /* XXX: need kernel patch to get write flag faster */
1296
    is_write = 0;
1297
    insn = *(uint32_t *)pc;
1298
    if ((insn >> 30) == 3) {
1299
      switch((insn >> 19) & 0x3f) {
1300
      case 0x05: // stb
1301
      case 0x06: // sth
1302
      case 0x04: // st
1303
      case 0x07: // std
1304
      case 0x24: // stf
1305
      case 0x27: // stdf
1306
      case 0x25: // stfsr
1307
        is_write = 1;
1308
        break;
1309
      }
1310
    }
1311
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1312
                             is_write, sigmask, NULL);
1313
}
1314

    
1315
#elif defined(__arm__)
1316

    
1317
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1318
                       void *puc)
1319
{
1320
    struct ucontext *uc = puc;
1321
    unsigned long pc;
1322
    int is_write;
1323
    
1324
    pc = uc->uc_mcontext.gregs[R15];
1325
    /* XXX: compute is_write */
1326
    is_write = 0;
1327
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1328
                             is_write,
1329
                             &uc->uc_sigmask);
1330
}
1331

    
1332
#elif defined(__mc68000)
1333

    
1334
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1335
                       void *puc)
1336
{
1337
    struct ucontext *uc = puc;
1338
    unsigned long pc;
1339
    int is_write;
1340
    
1341
    pc = uc->uc_mcontext.gregs[16];
1342
    /* XXX: compute is_write */
1343
    is_write = 0;
1344
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1345
                             is_write,
1346
                             &uc->uc_sigmask, puc);
1347
}
1348

    
1349
#elif defined(__ia64)
1350

    
1351
#ifndef __ISR_VALID
1352
  /* This ought to be in <bits/siginfo.h>... */
1353
# define __ISR_VALID        1
1354
# define si_flags        _sifields._sigfault._si_pad0
1355
#endif
1356

    
1357
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1358
{
1359
    struct ucontext *uc = puc;
1360
    unsigned long ip;
1361
    int is_write = 0;
1362

    
1363
    ip = uc->uc_mcontext.sc_ip;
1364
    switch (host_signum) {
1365
      case SIGILL:
1366
      case SIGFPE:
1367
      case SIGSEGV:
1368
      case SIGBUS:
1369
      case SIGTRAP:
1370
          if (info->si_code && (info->si_flags & __ISR_VALID))
1371
              /* ISR.W (write-access) is bit 33:  */
1372
              is_write = (info->si_isr >> 33) & 1;
1373
          break;
1374

    
1375
      default:
1376
          break;
1377
    }
1378
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1379
                             is_write,
1380
                             &uc->uc_sigmask, puc);
1381
}
1382

    
1383
#elif defined(__s390__)
1384

    
1385
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1386
                       void *puc)
1387
{
1388
    struct ucontext *uc = puc;
1389
    unsigned long pc;
1390
    int is_write;
1391
    
1392
    pc = uc->uc_mcontext.psw.addr;
1393
    /* XXX: compute is_write */
1394
    is_write = 0;
1395
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1396
                             is_write,
1397
                             &uc->uc_sigmask, puc);
1398
}
1399

    
1400
#else
1401

    
1402
#error host CPU specific signal handler needed
1403

    
1404
#endif
1405

    
1406
#endif /* !defined(CONFIG_SOFTMMU) */