Statistics
| Branch: | Revision:

root / exec-all.h @ 15a51156

History | View | Annotate | Download (17.2 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
struct TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 32
34
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35
#define MAX_OPC_PARAM 10
36
#define OPC_BUF_SIZE 512
37
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38

    
39
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
40

    
41
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
42
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
43
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
44
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
45
extern target_ulong gen_opc_jump_pc[2];
46
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
47

    
48
typedef void (GenOpFunc)(void);
49
typedef void (GenOpFunc1)(long);
50
typedef void (GenOpFunc2)(long, long);
51
typedef void (GenOpFunc3)(long, long, long);
52

    
53
#if defined(TARGET_I386)
54

    
55
void optimize_flags_init(void);
56

    
57
#endif
58

    
59
extern FILE *logfile;
60
extern int loglevel;
61

    
62
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64
unsigned long code_gen_max_block_size(void);
65
void cpu_gen_init(void);
66
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
67
                 int *gen_code_size_ptr);
68
int cpu_restore_state(struct TranslationBlock *tb,
69
                      CPUState *env, unsigned long searched_pc,
70
                      void *puc);
71
int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
72
                      int max_code_size, int *gen_code_size_ptr);
73
int cpu_restore_state_copy(struct TranslationBlock *tb,
74
                           CPUState *env, unsigned long searched_pc,
75
                           void *puc);
76
void cpu_resume_from_signal(CPUState *env1, void *puc);
77
void cpu_exec_init(CPUState *env);
78
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
79
void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
80
                                   int is_cpu_write_access);
81
void tb_invalidate_page_range(target_ulong start, target_ulong end);
82
void tlb_flush_page(CPUState *env, target_ulong addr);
83
void tlb_flush(CPUState *env, int flush_global);
84
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
85
                      target_phys_addr_t paddr, int prot,
86
                      int mmu_idx, int is_softmmu);
87
static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
88
                               target_phys_addr_t paddr, int prot,
89
                               int mmu_idx, int is_softmmu)
90
{
91
    if (prot & PAGE_READ)
92
        prot |= PAGE_EXEC;
93
    return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
94
}
95

    
96
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
97

    
98
#define CODE_GEN_PHYS_HASH_BITS     15
99
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
100

    
101
/* maximum total translate dcode allocated */
102

    
103
/* NOTE: the translated code area cannot be too big because on some
104
   archs the range of "fast" function calls is limited. Here is a
105
   summary of the ranges:
106

107
   i386  : signed 32 bits
108
   arm   : signed 26 bits
109
   ppc   : signed 24 bits
110
   sparc : signed 32 bits
111
   alpha : signed 23 bits
112
*/
113

    
114
#if defined(__alpha__)
115
#define CODE_GEN_BUFFER_SIZE     (2 * 1024 * 1024)
116
#elif defined(__ia64)
117
#define CODE_GEN_BUFFER_SIZE     (4 * 1024 * 1024)        /* range of addl */
118
#elif defined(__powerpc__)
119
#define CODE_GEN_BUFFER_SIZE     (6 * 1024 * 1024)
120
#else
121
/* XXX: make it dynamic on x86 */
122
#define CODE_GEN_BUFFER_SIZE     (16 * 1024 * 1024)
123
#endif
124

    
125
//#define CODE_GEN_BUFFER_SIZE     (128 * 1024)
126

    
127
/* estimated block size for TB allocation */
128
/* XXX: use a per code average code fragment size and modulate it
129
   according to the host CPU */
130
#if defined(CONFIG_SOFTMMU)
131
#define CODE_GEN_AVG_BLOCK_SIZE 128
132
#else
133
#define CODE_GEN_AVG_BLOCK_SIZE 64
134
#endif
135

    
136
#define CODE_GEN_MAX_BLOCKS    (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
137

    
138
#if defined(__powerpc__) || defined(__x86_64__)
139
#define USE_DIRECT_JUMP
140
#endif
141
#if defined(__i386__) && !defined(_WIN32)
142
#define USE_DIRECT_JUMP
143
#endif
144

    
145
typedef struct TranslationBlock {
146
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
147
    target_ulong cs_base; /* CS base for this block */
148
    uint64_t flags; /* flags defining in which context the code was generated */
149
    uint16_t size;      /* size of target code for this block (1 <=
150
                           size <= TARGET_PAGE_SIZE) */
151
    uint16_t cflags;    /* compile flags */
152
#define CF_CODE_COPY   0x0001 /* block was generated in code copy mode */
153
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
154
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
155
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
156

    
157
    uint8_t *tc_ptr;    /* pointer to the translated code */
158
    /* next matching tb for physical address. */
159
    struct TranslationBlock *phys_hash_next;
160
    /* first and second physical page containing code. The lower bit
161
       of the pointer tells the index in page_next[] */
162
    struct TranslationBlock *page_next[2];
163
    target_ulong page_addr[2];
164

    
165
    /* the following data are used to directly call another TB from
166
       the code of this one. */
167
    uint16_t tb_next_offset[2]; /* offset of original jump target */
168
#ifdef USE_DIRECT_JUMP
169
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
170
#else
171
    unsigned long tb_next[2]; /* address of jump generated code */
172
#endif
173
    /* list of TBs jumping to this one. This is a circular list using
174
       the two least significant bits of the pointers to tell what is
175
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
176
       jmp_first */
177
    struct TranslationBlock *jmp_next[2];
178
    struct TranslationBlock *jmp_first;
179
} TranslationBlock;
180

    
181
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
182
{
183
    target_ulong tmp;
184
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
185
    return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
186
}
187

    
188
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
189
{
190
    target_ulong tmp;
191
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
192
    return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
193
            (tmp & TB_JMP_ADDR_MASK));
194
}
195

    
196
static inline unsigned int tb_phys_hash_func(unsigned long pc)
197
{
198
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
199
}
200

    
201
TranslationBlock *tb_alloc(target_ulong pc);
202
void tb_flush(CPUState *env);
203
void tb_link_phys(TranslationBlock *tb,
204
                  target_ulong phys_pc, target_ulong phys_page2);
205

    
206
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
207

    
208
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
209
extern uint8_t *code_gen_ptr;
210

    
211
#if defined(USE_DIRECT_JUMP)
212

    
213
#if defined(__powerpc__)
214
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
215
{
216
    uint32_t val, *ptr;
217

    
218
    /* patch the branch destination */
219
    ptr = (uint32_t *)jmp_addr;
220
    val = *ptr;
221
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
222
    *ptr = val;
223
    /* flush icache */
224
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
225
    asm volatile ("sync" : : : "memory");
226
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
227
    asm volatile ("sync" : : : "memory");
228
    asm volatile ("isync" : : : "memory");
229
}
230
#elif defined(__i386__) || defined(__x86_64__)
231
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
232
{
233
    /* patch the branch destination */
234
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
235
    /* no need to flush icache explicitely */
236
}
237
#endif
238

    
239
static inline void tb_set_jmp_target(TranslationBlock *tb,
240
                                     int n, unsigned long addr)
241
{
242
    unsigned long offset;
243

    
244
    offset = tb->tb_jmp_offset[n];
245
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
246
    offset = tb->tb_jmp_offset[n + 2];
247
    if (offset != 0xffff)
248
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
249
}
250

    
251
#else
252

    
253
/* set the jump target */
254
static inline void tb_set_jmp_target(TranslationBlock *tb,
255
                                     int n, unsigned long addr)
256
{
257
    tb->tb_next[n] = addr;
258
}
259

    
260
#endif
261

    
262
static inline void tb_add_jump(TranslationBlock *tb, int n,
263
                               TranslationBlock *tb_next)
264
{
265
    /* NOTE: this test is only needed for thread safety */
266
    if (!tb->jmp_next[n]) {
267
        /* patch the native jump address */
268
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
269

    
270
        /* add in TB jmp circular list */
271
        tb->jmp_next[n] = tb_next->jmp_first;
272
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
273
    }
274
}
275

    
276
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
277

    
278
#ifndef offsetof
279
#define offsetof(type, field) ((size_t) &((type *)0)->field)
280
#endif
281

    
282
#if defined(_WIN32)
283
#define ASM_DATA_SECTION ".section \".data\"\n"
284
#define ASM_PREVIOUS_SECTION ".section .text\n"
285
#elif defined(__APPLE__)
286
#define ASM_DATA_SECTION ".data\n"
287
#define ASM_PREVIOUS_SECTION ".text\n"
288
#else
289
#define ASM_DATA_SECTION ".section \".data\"\n"
290
#define ASM_PREVIOUS_SECTION ".previous\n"
291
#endif
292

    
293
#define ASM_OP_LABEL_NAME(n, opname) \
294
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
295

    
296
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
297
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
298
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
299

    
300
#if defined(__hppa__)
301

    
302
typedef int spinlock_t[4];
303

    
304
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
305

    
306
static inline void resetlock (spinlock_t *p)
307
{
308
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
309
}
310

    
311
#else
312

    
313
typedef int spinlock_t;
314

    
315
#define SPIN_LOCK_UNLOCKED 0
316

    
317
static inline void resetlock (spinlock_t *p)
318
{
319
    *p = SPIN_LOCK_UNLOCKED;
320
}
321

    
322
#endif
323

    
324
#if defined(__powerpc__)
325
static inline int testandset (int *p)
326
{
327
    int ret;
328
    __asm__ __volatile__ (
329
                          "0:    lwarx %0,0,%1\n"
330
                          "      xor. %0,%3,%0\n"
331
                          "      bne 1f\n"
332
                          "      stwcx. %2,0,%1\n"
333
                          "      bne- 0b\n"
334
                          "1:    "
335
                          : "=&r" (ret)
336
                          : "r" (p), "r" (1), "r" (0)
337
                          : "cr0", "memory");
338
    return ret;
339
}
340
#elif defined(__i386__)
341
static inline int testandset (int *p)
342
{
343
    long int readval = 0;
344

    
345
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
346
                          : "+m" (*p), "+a" (readval)
347
                          : "r" (1)
348
                          : "cc");
349
    return readval;
350
}
351
#elif defined(__x86_64__)
352
static inline int testandset (int *p)
353
{
354
    long int readval = 0;
355

    
356
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
357
                          : "+m" (*p), "+a" (readval)
358
                          : "r" (1)
359
                          : "cc");
360
    return readval;
361
}
362
#elif defined(__s390__)
363
static inline int testandset (int *p)
364
{
365
    int ret;
366

    
367
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
368
                          "   jl    0b"
369
                          : "=&d" (ret)
370
                          : "r" (1), "a" (p), "0" (*p)
371
                          : "cc", "memory" );
372
    return ret;
373
}
374
#elif defined(__alpha__)
375
static inline int testandset (int *p)
376
{
377
    int ret;
378
    unsigned long one;
379

    
380
    __asm__ __volatile__ ("0:        mov 1,%2\n"
381
                          "        ldl_l %0,%1\n"
382
                          "        stl_c %2,%1\n"
383
                          "        beq %2,1f\n"
384
                          ".subsection 2\n"
385
                          "1:        br 0b\n"
386
                          ".previous"
387
                          : "=r" (ret), "=m" (*p), "=r" (one)
388
                          : "m" (*p));
389
    return ret;
390
}
391
#elif defined(__sparc__)
392
static inline int testandset (int *p)
393
{
394
        int ret;
395

    
396
        __asm__ __volatile__("ldstub        [%1], %0"
397
                             : "=r" (ret)
398
                             : "r" (p)
399
                             : "memory");
400

    
401
        return (ret ? 1 : 0);
402
}
403
#elif defined(__arm__)
404
static inline int testandset (int *spinlock)
405
{
406
    register unsigned int ret;
407
    __asm__ __volatile__("swp %0, %1, [%2]"
408
                         : "=r"(ret)
409
                         : "0"(1), "r"(spinlock));
410

    
411
    return ret;
412
}
413
#elif defined(__mc68000)
414
static inline int testandset (int *p)
415
{
416
    char ret;
417
    __asm__ __volatile__("tas %1; sne %0"
418
                         : "=r" (ret)
419
                         : "m" (p)
420
                         : "cc","memory");
421
    return ret;
422
}
423
#elif defined(__hppa__)
424

    
425
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
426
   and GCC only guarantees 8-byte alignment for stack locals, we can't
427
   be assured of 16-byte alignment for atomic lock data even if we
428
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
429
   we use a struct containing an array of four ints for the atomic lock
430
   type and dynamically select the 16-byte aligned int from the array
431
   for the semaphore.  */
432
#define __PA_LDCW_ALIGNMENT 16
433
static inline void *ldcw_align (void *p) {
434
    unsigned long a = (unsigned long)p;
435
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
436
    return (void *)a;
437
}
438

    
439
static inline int testandset (spinlock_t *p)
440
{
441
    unsigned int ret;
442
    p = ldcw_align(p);
443
    __asm__ __volatile__("ldcw 0(%1),%0"
444
                         : "=r" (ret)
445
                         : "r" (p)
446
                         : "memory" );
447
    return !ret;
448
}
449

    
450
#elif defined(__ia64)
451

    
452
#include <ia64intrin.h>
453

    
454
static inline int testandset (int *p)
455
{
456
    return __sync_lock_test_and_set (p, 1);
457
}
458
#elif defined(__mips__)
459
static inline int testandset (int *p)
460
{
461
    int ret;
462

    
463
    __asm__ __volatile__ (
464
        "        .set push                \n"
465
        "        .set noat                \n"
466
        "        .set mips2                \n"
467
        "1:        li        $1, 1                \n"
468
        "        ll        %0, %1                \n"
469
        "        sc        $1, %1                \n"
470
        "        beqz        $1, 1b                \n"
471
        "        .set pop                "
472
        : "=r" (ret), "+R" (*p)
473
        :
474
        : "memory");
475

    
476
    return ret;
477
}
478
#else
479
#error unimplemented CPU support
480
#endif
481

    
482
#if defined(CONFIG_USER_ONLY)
483
static inline void spin_lock(spinlock_t *lock)
484
{
485
    while (testandset(lock));
486
}
487

    
488
static inline void spin_unlock(spinlock_t *lock)
489
{
490
    resetlock(lock);
491
}
492

    
493
static inline int spin_trylock(spinlock_t *lock)
494
{
495
    return !testandset(lock);
496
}
497
#else
498
static inline void spin_lock(spinlock_t *lock)
499
{
500
}
501

    
502
static inline void spin_unlock(spinlock_t *lock)
503
{
504
}
505

    
506
static inline int spin_trylock(spinlock_t *lock)
507
{
508
    return 1;
509
}
510
#endif
511

    
512
extern spinlock_t tb_lock;
513

    
514
extern int tb_invalidated_flag;
515

    
516
#if !defined(CONFIG_USER_ONLY)
517

    
518
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
519
              void *retaddr);
520

    
521
#define ACCESS_TYPE (NB_MMU_MODES + 1)
522
#define MEMSUFFIX _code
523
#define env cpu_single_env
524

    
525
#define DATA_SIZE 1
526
#include "softmmu_header.h"
527

    
528
#define DATA_SIZE 2
529
#include "softmmu_header.h"
530

    
531
#define DATA_SIZE 4
532
#include "softmmu_header.h"
533

    
534
#define DATA_SIZE 8
535
#include "softmmu_header.h"
536

    
537
#undef ACCESS_TYPE
538
#undef MEMSUFFIX
539
#undef env
540

    
541
#endif
542

    
543
#if defined(CONFIG_USER_ONLY)
544
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
545
{
546
    return addr;
547
}
548
#else
549
/* NOTE: this function can trigger an exception */
550
/* NOTE2: the returned address is not exactly the physical address: it
551
   is the offset relative to phys_ram_base */
552
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
553
{
554
    int mmu_idx, index, pd;
555

    
556
    index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
557
    mmu_idx = cpu_mmu_index(env);
558
    if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
559
                         (addr & TARGET_PAGE_MASK), 0)) {
560
        ldub_code(addr);
561
    }
562
    pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
563
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
564
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
565
        do_unassigned_access(addr, 0, 1, 0);
566
#else
567
        cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
568
#endif
569
    }
570
    return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
571
}
572
#endif
573

    
574
#ifdef USE_KQEMU
575
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
576

    
577
int kqemu_init(CPUState *env);
578
int kqemu_cpu_exec(CPUState *env);
579
void kqemu_flush_page(CPUState *env, target_ulong addr);
580
void kqemu_flush(CPUState *env, int global);
581
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
582
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
583
void kqemu_cpu_interrupt(CPUState *env);
584
void kqemu_record_dump(void);
585

    
586
static inline int kqemu_is_ok(CPUState *env)
587
{
588
    return(env->kqemu_enabled &&
589
           (env->cr[0] & CR0_PE_MASK) &&
590
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
591
           (env->eflags & IF_MASK) &&
592
           !(env->eflags & VM_MASK) &&
593
           (env->kqemu_enabled == 2 ||
594
            ((env->hflags & HF_CPL_MASK) == 3 &&
595
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
596
}
597

    
598
#endif