Statistics
| Branch: | Revision:

root / qemu-options.hx @ 16415335

History | View | Annotate | Download (56.4 kB)

1
HXCOMM Use DEFHEADING() to define headings in both help text and texi
2
HXCOMM Text between STEXI and ETEXI are copied to texi version and
3
HXCOMM discarded from C version
4
HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct
5
HXCOMM option structures, enums and help message.
6
HXCOMM HXCOMM can be used for comments, discarded from both texi and C
7

    
8
DEFHEADING(Standard options:)
9
STEXI
10
@table @option
11
ETEXI
12

    
13
DEF("help", 0, QEMU_OPTION_h,
14
    "-h or -help     display this help and exit\n")
15
STEXI
16
@item -h
17
Display help and exit
18
ETEXI
19

    
20
DEF("version", 0, QEMU_OPTION_version,
21
    "-version        display version information and exit\n")
22
STEXI
23
@item -version
24
Display version information and exit
25
ETEXI
26

    
27
DEF("M", HAS_ARG, QEMU_OPTION_M,
28
    "-M machine      select emulated machine (-M ? for list)\n")
29
STEXI
30
@item -M @var{machine}
31
Select the emulated @var{machine} (@code{-M ?} for list)
32
ETEXI
33

    
34
DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
35
    "-cpu cpu        select CPU (-cpu ? for list)\n")
36
STEXI
37
@item -cpu @var{model}
38
Select CPU model (-cpu ? for list and additional feature selection)
39
ETEXI
40

    
41
DEF("smp", HAS_ARG, QEMU_OPTION_smp,
42
    "-smp n          set the number of CPUs to 'n' [default=1]\n")
43
STEXI
44
@item -smp @var{n}
45
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
46
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
47
to 4.
48
ETEXI
49

    
50
DEF("numa", HAS_ARG, QEMU_OPTION_numa,
51
    "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n")
52
STEXI
53
@item -numa @var{opts}
54
Simulate a multi node NUMA system. If mem and cpus are omitted, resources
55
are split equally.
56
ETEXI
57

    
58
DEF("fda", HAS_ARG, QEMU_OPTION_fda,
59
    "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n")
60
DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "")
61
STEXI
62
@item -fda @var{file}
63
@item -fdb @var{file}
64
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
65
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
66
ETEXI
67

    
68
DEF("hda", HAS_ARG, QEMU_OPTION_hda,
69
    "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n")
70
DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "")
71
DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
72
    "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n")
73
DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "")
74
STEXI
75
@item -hda @var{file}
76
@item -hdb @var{file}
77
@item -hdc @var{file}
78
@item -hdd @var{file}
79
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
80
ETEXI
81

    
82
DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
83
    "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n")
84
STEXI
85
@item -cdrom @var{file}
86
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
87
@option{-cdrom} at the same time). You can use the host CD-ROM by
88
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
89
ETEXI
90

    
91
DEF("drive", HAS_ARG, QEMU_OPTION_drive,
92
    "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
93
    "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
94
    "       [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
95
    "       [,addr=A]\n"
96
    "                use 'file' as a drive image\n")
97
STEXI
98
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
99

    
100
Define a new drive. Valid options are:
101

    
102
@table @code
103
@item file=@var{file}
104
This option defines which disk image (@pxref{disk_images}) to use with
105
this drive. If the filename contains comma, you must double it
106
(for instance, "file=my,,file" to use file "my,file").
107
@item if=@var{interface}
108
This option defines on which type on interface the drive is connected.
109
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
110
@item bus=@var{bus},unit=@var{unit}
111
These options define where is connected the drive by defining the bus number and
112
the unit id.
113
@item index=@var{index}
114
This option defines where is connected the drive by using an index in the list
115
of available connectors of a given interface type.
116
@item media=@var{media}
117
This option defines the type of the media: disk or cdrom.
118
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
119
These options have the same definition as they have in @option{-hdachs}.
120
@item snapshot=@var{snapshot}
121
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
122
@item cache=@var{cache}
123
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
124
@item format=@var{format}
125
Specify which disk @var{format} will be used rather than detecting
126
the format.  Can be used to specifiy format=raw to avoid interpreting
127
an untrusted format header.
128
@item serial=@var{serial}
129
This option specifies the serial number to assign to the device.
130
@item addr=@var{addr}
131
Specify the controller's PCI address (if=virtio only).
132
@end table
133

    
134
By default, writethrough caching is used for all block device.  This means that
135
the host page cache will be used to read and write data but write notification
136
will be sent to the guest only when the data has been reported as written by
137
the storage subsystem.
138

    
139
Writeback caching will report data writes as completed as soon as the data is
140
present in the host page cache.  This is safe as long as you trust your host.
141
If your host crashes or loses power, then the guest may experience data
142
corruption.  When using the @option{-snapshot} option, writeback caching is
143
used by default.
144

    
145
The host page cache can be avoided entirely with @option{cache=none}.  This will
146
attempt to do disk IO directly to the guests memory.  QEMU may still perform
147
an internal copy of the data.
148

    
149
Some block drivers perform badly with @option{cache=writethrough}, most notably,
150
qcow2.  If performance is more important than correctness,
151
@option{cache=writeback} should be used with qcow2.
152

    
153
Instead of @option{-cdrom} you can use:
154
@example
155
qemu -drive file=file,index=2,media=cdrom
156
@end example
157

    
158
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
159
use:
160
@example
161
qemu -drive file=file,index=0,media=disk
162
qemu -drive file=file,index=1,media=disk
163
qemu -drive file=file,index=2,media=disk
164
qemu -drive file=file,index=3,media=disk
165
@end example
166

    
167
You can connect a CDROM to the slave of ide0:
168
@example
169
qemu -drive file=file,if=ide,index=1,media=cdrom
170
@end example
171

    
172
If you don't specify the "file=" argument, you define an empty drive:
173
@example
174
qemu -drive if=ide,index=1,media=cdrom
175
@end example
176

    
177
You can connect a SCSI disk with unit ID 6 on the bus #0:
178
@example
179
qemu -drive file=file,if=scsi,bus=0,unit=6
180
@end example
181

    
182
Instead of @option{-fda}, @option{-fdb}, you can use:
183
@example
184
qemu -drive file=file,index=0,if=floppy
185
qemu -drive file=file,index=1,if=floppy
186
@end example
187

    
188
By default, @var{interface} is "ide" and @var{index} is automatically
189
incremented:
190
@example
191
qemu -drive file=a -drive file=b"
192
@end example
193
is interpreted like:
194
@example
195
qemu -hda a -hdb b
196
@end example
197
ETEXI
198

    
199
DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
200
    "-mtdblock file  use 'file' as on-board Flash memory image\n")
201
STEXI
202

    
203
@item -mtdblock file
204
Use 'file' as on-board Flash memory image.
205
ETEXI
206

    
207
DEF("sd", HAS_ARG, QEMU_OPTION_sd,
208
    "-sd file        use 'file' as SecureDigital card image\n")
209
STEXI
210
@item -sd file
211
Use 'file' as SecureDigital card image.
212
ETEXI
213

    
214
DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
215
    "-pflash file    use 'file' as a parallel flash image\n")
216
STEXI
217
@item -pflash file
218
Use 'file' as a parallel flash image.
219
ETEXI
220

    
221
DEF("boot", HAS_ARG, QEMU_OPTION_boot,
222
    "-boot [order=drives][,once=drives][,menu=on|off]\n"
223
    "                'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n")
224
STEXI
225
@item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off]
226

    
227
Specify boot order @var{drives} as a string of drive letters. Valid
228
drive letters depend on the target achitecture. The x86 PC uses: a, b
229
(floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
230
from network adapter 1-4), hard disk boot is the default. To apply a
231
particular boot order only on the first startup, specify it via
232
@option{once}.
233

    
234
Interactive boot menus/prompts can be enabled via @option{menu=on} as far
235
as firmware/BIOS supports them. The default is non-interactive boot.
236

    
237
@example
238
# try to boot from network first, then from hard disk
239
qemu -boot order=nc
240
# boot from CD-ROM first, switch back to default order after reboot
241
qemu -boot once=d
242
@end example
243

    
244
Note: The legacy format '-boot @var{drives}' is still supported but its
245
use is discouraged as it may be removed from future versions.
246
ETEXI
247

    
248
DEF("snapshot", 0, QEMU_OPTION_snapshot,
249
    "-snapshot       write to temporary files instead of disk image files\n")
250
STEXI
251
@item -snapshot
252
Write to temporary files instead of disk image files. In this case,
253
the raw disk image you use is not written back. You can however force
254
the write back by pressing @key{C-a s} (@pxref{disk_images}).
255
ETEXI
256

    
257
DEF("m", HAS_ARG, QEMU_OPTION_m,
258
    "-m megs         set virtual RAM size to megs MB [default=%d]\n")
259
STEXI
260
@item -m @var{megs}
261
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
262
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
263
gigabytes respectively.
264
ETEXI
265

    
266
DEF("k", HAS_ARG, QEMU_OPTION_k,
267
    "-k language     use keyboard layout (for example 'fr' for French)\n")
268
STEXI
269
@item -k @var{language}
270

    
271
Use keyboard layout @var{language} (for example @code{fr} for
272
French). This option is only needed where it is not easy to get raw PC
273
keycodes (e.g. on Macs, with some X11 servers or with a VNC
274
display). You don't normally need to use it on PC/Linux or PC/Windows
275
hosts.
276

    
277
The available layouts are:
278
@example
279
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
280
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
281
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
282
@end example
283

    
284
The default is @code{en-us}.
285
ETEXI
286

    
287

    
288
#ifdef HAS_AUDIO
289
DEF("audio-help", 0, QEMU_OPTION_audio_help,
290
    "-audio-help     print list of audio drivers and their options\n")
291
#endif
292
STEXI
293
@item -audio-help
294

    
295
Will show the audio subsystem help: list of drivers, tunable
296
parameters.
297
ETEXI
298

    
299
#ifdef HAS_AUDIO
300
DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
301
    "-soundhw c1,... enable audio support\n"
302
    "                and only specified sound cards (comma separated list)\n"
303
    "                use -soundhw ? to get the list of supported cards\n"
304
    "                use -soundhw all to enable all of them\n")
305
#endif
306
STEXI
307
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
308

    
309
Enable audio and selected sound hardware. Use ? to print all
310
available sound hardware.
311

    
312
@example
313
qemu -soundhw sb16,adlib disk.img
314
qemu -soundhw es1370 disk.img
315
qemu -soundhw ac97 disk.img
316
qemu -soundhw all disk.img
317
qemu -soundhw ?
318
@end example
319

    
320
Note that Linux's i810_audio OSS kernel (for AC97) module might
321
require manually specifying clocking.
322

    
323
@example
324
modprobe i810_audio clocking=48000
325
@end example
326
ETEXI
327

    
328
STEXI
329
@end table
330
ETEXI
331

    
332
DEF("usb", 0, QEMU_OPTION_usb,
333
    "-usb            enable the USB driver (will be the default soon)\n")
334
STEXI
335
USB options:
336
@table @option
337

    
338
@item -usb
339
Enable the USB driver (will be the default soon)
340
ETEXI
341

    
342
DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
343
    "-usbdevice name add the host or guest USB device 'name'\n")
344
STEXI
345

    
346
@item -usbdevice @var{devname}
347
Add the USB device @var{devname}. @xref{usb_devices}.
348

    
349
@table @code
350

    
351
@item mouse
352
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
353

    
354
@item tablet
355
Pointer device that uses absolute coordinates (like a touchscreen). This
356
means qemu is able to report the mouse position without having to grab the
357
mouse. Also overrides the PS/2 mouse emulation when activated.
358

    
359
@item disk:[format=@var{format}]:file
360
Mass storage device based on file. The optional @var{format} argument
361
will be used rather than detecting the format. Can be used to specifiy
362
format=raw to avoid interpreting an untrusted format header.
363

    
364
@item host:bus.addr
365
Pass through the host device identified by bus.addr (Linux only).
366

    
367
@item host:vendor_id:product_id
368
Pass through the host device identified by vendor_id:product_id (Linux only).
369

    
370
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
371
Serial converter to host character device @var{dev}, see @code{-serial} for the
372
available devices.
373

    
374
@item braille
375
Braille device.  This will use BrlAPI to display the braille output on a real
376
or fake device.
377

    
378
@item net:options
379
Network adapter that supports CDC ethernet and RNDIS protocols.
380

    
381
@end table
382
ETEXI
383

    
384
DEF("name", HAS_ARG, QEMU_OPTION_name,
385
    "-name string1[,process=string2]    set the name of the guest\n"
386
    "            string1 sets the window title and string2 the process name (on Linux)\n")
387
STEXI
388
@item -name @var{name}
389
Sets the @var{name} of the guest.
390
This name will be displayed in the SDL window caption.
391
The @var{name} will also be used for the VNC server.
392
Also optionally set the top visible process name in Linux.
393
ETEXI
394

    
395
DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
396
    "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
397
    "                specify machine UUID\n")
398
STEXI
399
@item -uuid @var{uuid}
400
Set system UUID.
401
ETEXI
402

    
403
STEXI
404
@end table
405
ETEXI
406

    
407
DEFHEADING()
408

    
409
DEFHEADING(Display options:)
410

    
411
STEXI
412
@table @option
413
ETEXI
414

    
415
DEF("nographic", 0, QEMU_OPTION_nographic,
416
    "-nographic      disable graphical output and redirect serial I/Os to console\n")
417
STEXI
418
@item -nographic
419

    
420
Normally, QEMU uses SDL to display the VGA output. With this option,
421
you can totally disable graphical output so that QEMU is a simple
422
command line application. The emulated serial port is redirected on
423
the console. Therefore, you can still use QEMU to debug a Linux kernel
424
with a serial console.
425
ETEXI
426

    
427
#ifdef CONFIG_CURSES
428
DEF("curses", 0, QEMU_OPTION_curses,
429
    "-curses         use a curses/ncurses interface instead of SDL\n")
430
#endif
431
STEXI
432
@item -curses
433

    
434
Normally, QEMU uses SDL to display the VGA output.  With this option,
435
QEMU can display the VGA output when in text mode using a
436
curses/ncurses interface.  Nothing is displayed in graphical mode.
437
ETEXI
438

    
439
#ifdef CONFIG_SDL
440
DEF("no-frame", 0, QEMU_OPTION_no_frame,
441
    "-no-frame       open SDL window without a frame and window decorations\n")
442
#endif
443
STEXI
444
@item -no-frame
445

    
446
Do not use decorations for SDL windows and start them using the whole
447
available screen space. This makes the using QEMU in a dedicated desktop
448
workspace more convenient.
449
ETEXI
450

    
451
#ifdef CONFIG_SDL
452
DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
453
    "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n")
454
#endif
455
STEXI
456
@item -alt-grab
457

    
458
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
459
ETEXI
460

    
461
#ifdef CONFIG_SDL
462
DEF("no-quit", 0, QEMU_OPTION_no_quit,
463
    "-no-quit        disable SDL window close capability\n")
464
#endif
465
STEXI
466
@item -no-quit
467

    
468
Disable SDL window close capability.
469
ETEXI
470

    
471
#ifdef CONFIG_SDL
472
DEF("sdl", 0, QEMU_OPTION_sdl,
473
    "-sdl            enable SDL\n")
474
#endif
475
STEXI
476
@item -sdl
477

    
478
Enable SDL.
479
ETEXI
480

    
481
DEF("portrait", 0, QEMU_OPTION_portrait,
482
    "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n")
483
STEXI
484
@item -portrait
485

    
486
Rotate graphical output 90 deg left (only PXA LCD).
487
ETEXI
488

    
489
DEF("vga", HAS_ARG, QEMU_OPTION_vga,
490
    "-vga [std|cirrus|vmware|xenfb|none]\n"
491
    "                select video card type\n")
492
STEXI
493
@item -vga @var{type}
494
Select type of VGA card to emulate. Valid values for @var{type} are
495
@table @code
496
@item cirrus
497
Cirrus Logic GD5446 Video card. All Windows versions starting from
498
Windows 95 should recognize and use this graphic card. For optimal
499
performances, use 16 bit color depth in the guest and the host OS.
500
(This one is the default)
501
@item std
502
Standard VGA card with Bochs VBE extensions.  If your guest OS
503
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
504
to use high resolution modes (>= 1280x1024x16) then you should use
505
this option.
506
@item vmware
507
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
508
recent XFree86/XOrg server or Windows guest with a driver for this
509
card.
510
@item none
511
Disable VGA card.
512
@end table
513
ETEXI
514

    
515
DEF("full-screen", 0, QEMU_OPTION_full_screen,
516
    "-full-screen    start in full screen\n")
517
STEXI
518
@item -full-screen
519
Start in full screen.
520
ETEXI
521

    
522
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
523
DEF("g", 1, QEMU_OPTION_g ,
524
    "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n")
525
#endif
526
STEXI
527
ETEXI
528

    
529
DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
530
    "-vnc display    start a VNC server on display\n")
531
STEXI
532
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
533

    
534
Normally, QEMU uses SDL to display the VGA output.  With this option,
535
you can have QEMU listen on VNC display @var{display} and redirect the VGA
536
display over the VNC session.  It is very useful to enable the usb
537
tablet device when using this option (option @option{-usbdevice
538
tablet}). When using the VNC display, you must use the @option{-k}
539
parameter to set the keyboard layout if you are not using en-us. Valid
540
syntax for the @var{display} is
541

    
542
@table @code
543

    
544
@item @var{host}:@var{d}
545

    
546
TCP connections will only be allowed from @var{host} on display @var{d}.
547
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
548
be omitted in which case the server will accept connections from any host.
549

    
550
@item @code{unix}:@var{path}
551

    
552
Connections will be allowed over UNIX domain sockets where @var{path} is the
553
location of a unix socket to listen for connections on.
554

    
555
@item none
556

    
557
VNC is initialized but not started. The monitor @code{change} command
558
can be used to later start the VNC server.
559

    
560
@end table
561

    
562
Following the @var{display} value there may be one or more @var{option} flags
563
separated by commas. Valid options are
564

    
565
@table @code
566

    
567
@item reverse
568

    
569
Connect to a listening VNC client via a ``reverse'' connection. The
570
client is specified by the @var{display}. For reverse network
571
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
572
is a TCP port number, not a display number.
573

    
574
@item password
575

    
576
Require that password based authentication is used for client connections.
577
The password must be set separately using the @code{change} command in the
578
@ref{pcsys_monitor}
579

    
580
@item tls
581

    
582
Require that client use TLS when communicating with the VNC server. This
583
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
584
attack. It is recommended that this option be combined with either the
585
@var{x509} or @var{x509verify} options.
586

    
587
@item x509=@var{/path/to/certificate/dir}
588

    
589
Valid if @option{tls} is specified. Require that x509 credentials are used
590
for negotiating the TLS session. The server will send its x509 certificate
591
to the client. It is recommended that a password be set on the VNC server
592
to provide authentication of the client when this is used. The path following
593
this option specifies where the x509 certificates are to be loaded from.
594
See the @ref{vnc_security} section for details on generating certificates.
595

    
596
@item x509verify=@var{/path/to/certificate/dir}
597

    
598
Valid if @option{tls} is specified. Require that x509 credentials are used
599
for negotiating the TLS session. The server will send its x509 certificate
600
to the client, and request that the client send its own x509 certificate.
601
The server will validate the client's certificate against the CA certificate,
602
and reject clients when validation fails. If the certificate authority is
603
trusted, this is a sufficient authentication mechanism. You may still wish
604
to set a password on the VNC server as a second authentication layer. The
605
path following this option specifies where the x509 certificates are to
606
be loaded from. See the @ref{vnc_security} section for details on generating
607
certificates.
608

    
609
@item sasl
610

    
611
Require that the client use SASL to authenticate with the VNC server.
612
The exact choice of authentication method used is controlled from the
613
system / user's SASL configuration file for the 'qemu' service. This
614
is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
615
unprivileged user, an environment variable SASL_CONF_PATH can be used
616
to make it search alternate locations for the service config.
617
While some SASL auth methods can also provide data encryption (eg GSSAPI),
618
it is recommended that SASL always be combined with the 'tls' and
619
'x509' settings to enable use of SSL and server certificates. This
620
ensures a data encryption preventing compromise of authentication
621
credentials. See the @ref{vnc_security} section for details on using
622
SASL authentication.
623

    
624
@item acl
625

    
626
Turn on access control lists for checking of the x509 client certificate
627
and SASL party. For x509 certs, the ACL check is made against the
628
certificate's distinguished name. This is something that looks like
629
@code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
630
made against the username, which depending on the SASL plugin, may
631
include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
632
When the @option{acl} flag is set, the initial access list will be
633
empty, with a @code{deny} policy. Thus no one will be allowed to
634
use the VNC server until the ACLs have been loaded. This can be
635
achieved using the @code{acl} monitor command.
636

    
637
@end table
638
ETEXI
639

    
640
STEXI
641
@end table
642
ETEXI
643

    
644
DEFHEADING()
645

    
646
#ifdef TARGET_I386
647
DEFHEADING(i386 target only:)
648
#endif
649
STEXI
650
@table @option
651
ETEXI
652

    
653
#ifdef TARGET_I386
654
DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
655
    "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n")
656
#endif
657
STEXI
658
@item -win2k-hack
659
Use it when installing Windows 2000 to avoid a disk full bug. After
660
Windows 2000 is installed, you no longer need this option (this option
661
slows down the IDE transfers).
662
ETEXI
663

    
664
#ifdef TARGET_I386
665
DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack,
666
    "-rtc-td-hack    use it to fix time drift in Windows ACPI HAL\n")
667
#endif
668
STEXI
669
@item -rtc-td-hack
670
Use it if you experience time drift problem in Windows with ACPI HAL.
671
This option will try to figure out how many timer interrupts were not
672
processed by the Windows guest and will re-inject them.
673
ETEXI
674

    
675
#ifdef TARGET_I386
676
DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
677
    "-no-fd-bootchk  disable boot signature checking for floppy disks\n")
678
#endif
679
STEXI
680
@item -no-fd-bootchk
681
Disable boot signature checking for floppy disks in Bochs BIOS. It may
682
be needed to boot from old floppy disks.
683
ETEXI
684

    
685
#ifdef TARGET_I386
686
DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
687
           "-no-acpi        disable ACPI\n")
688
#endif
689
STEXI
690
@item -no-acpi
691
Disable ACPI (Advanced Configuration and Power Interface) support. Use
692
it if your guest OS complains about ACPI problems (PC target machine
693
only).
694
ETEXI
695

    
696
#ifdef TARGET_I386
697
DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
698
    "-no-hpet        disable HPET\n")
699
#endif
700
STEXI
701
@item -no-hpet
702
Disable HPET support.
703
ETEXI
704

    
705
#ifdef TARGET_I386
706
DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
707
    "-balloon none   disable balloon device\n"
708
    "-balloon virtio[,addr=str]\n"
709
    "                enable virtio balloon device (default)\n")
710
#endif
711
STEXI
712
@item -balloon none
713
Disable balloon device.
714
@item -balloon virtio[,addr=@var{addr}]
715
Enable virtio balloon device (default), optionally with PCI address
716
@var{addr}.
717
ETEXI
718

    
719
#ifdef TARGET_I386
720
DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
721
    "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
722
    "                ACPI table description\n")
723
#endif
724
STEXI
725
@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
726
Add ACPI table with specified header fields and context from specified files.
727
ETEXI
728

    
729
#ifdef TARGET_I386
730
DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
731
    "-smbios file=binary\n"
732
    "                Load SMBIOS entry from binary file\n"
733
    "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n"
734
    "                Specify SMBIOS type 0 fields\n"
735
    "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
736
    "              [,uuid=uuid][,sku=str][,family=str]\n"
737
    "                Specify SMBIOS type 1 fields\n")
738
#endif
739
STEXI
740
@item -smbios file=@var{binary}
741
Load SMBIOS entry from binary file.
742

    
743
@item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}]
744
Specify SMBIOS type 0 fields
745

    
746
@item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
747
Specify SMBIOS type 1 fields
748
ETEXI
749

    
750
#ifdef TARGET_I386
751
DEFHEADING()
752
#endif
753
STEXI
754
@end table
755
ETEXI
756

    
757
DEFHEADING(Network options:)
758
STEXI
759
@table @option
760
ETEXI
761

    
762
HXCOMM Legacy slirp options (now moved to -net user):
763
#ifdef CONFIG_SLIRP
764
DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "")
765
DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "")
766
DEF("redir", HAS_ARG, QEMU_OPTION_redir, "")
767
#ifndef _WIN32
768
DEF("smb", HAS_ARG, QEMU_OPTION_smb, "")
769
#endif
770
#endif
771

    
772
DEF("net", HAS_ARG, QEMU_OPTION_net,
773
    "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
774
    "                create a new Network Interface Card and connect it to VLAN 'n'\n"
775
#ifdef CONFIG_SLIRP
776
    "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n"
777
    "         [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n"
778
    "         [,hostfwd=rule][,guestfwd=rule]"
779
#ifndef _WIN32
780
                                             "[,smb=dir[,smbserver=addr]]\n"
781
#endif
782
    "                connect the user mode network stack to VLAN 'n', configure its\n"
783
    "                DHCP server and enabled optional services\n"
784
#endif
785
#ifdef _WIN32
786
    "-net tap[,vlan=n][,name=str],ifname=name\n"
787
    "                connect the host TAP network interface to VLAN 'n'\n"
788
#else
789
    "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]"
790
#ifdef TUNSETSNDBUF
791
    "[,sndbuf=nbytes]"
792
#endif
793
    "\n"
794
    "                connect the host TAP network interface to VLAN 'n' and use the\n"
795
    "                network scripts 'file' (default=%s)\n"
796
    "                and 'dfile' (default=%s);\n"
797
    "                use '[down]script=no' to disable script execution;\n"
798
    "                use 'fd=h' to connect to an already opened TAP interface\n"
799
#ifdef TUNSETSNDBUF
800
    "                use 'sndbuf=nbytes' to limit the size of the send buffer; the\n"
801
    "                default of 'sndbuf=1048576' can be disabled using 'sndbuf=0'\n"
802
#endif
803
#endif
804
    "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
805
    "                connect the vlan 'n' to another VLAN using a socket connection\n"
806
    "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
807
    "                connect the vlan 'n' to multicast maddr and port\n"
808
#ifdef CONFIG_VDE
809
    "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
810
    "                connect the vlan 'n' to port 'n' of a vde switch running\n"
811
    "                on host and listening for incoming connections on 'socketpath'.\n"
812
    "                Use group 'groupname' and mode 'octalmode' to change default\n"
813
    "                ownership and permissions for communication port.\n"
814
#endif
815
    "-net dump[,vlan=n][,file=f][,len=n]\n"
816
    "                dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
817
    "-net none       use it alone to have zero network devices; if no -net option\n"
818
    "                is provided, the default is '-net nic -net user'\n")
819
STEXI
820
@item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
821
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
822
= 0 is the default). The NIC is an ne2k_pci by default on the PC
823
target. Optionally, the MAC address can be changed to @var{mac}, the
824
device address set to @var{addr} (PCI cards only),
825
and a @var{name} can be assigned for use in monitor commands.
826
Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
827
that the card should have; this option currently only affects virtio cards; set
828
@var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
829
NIC is created.  Qemu can emulate several different models of network card.
830
Valid values for @var{type} are
831
@code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
832
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
833
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
834
Not all devices are supported on all targets.  Use -net nic,model=?
835
for a list of available devices for your target.
836

    
837
@item -net user[,@var{option}][,@var{option}][,...]
838
Use the user mode network stack which requires no administrator
839
privilege to run. Valid options are:
840

    
841
@table @code
842
@item vlan=@var{n}
843
Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
844

    
845
@item name=@var{name}
846
Assign symbolic name for use in monitor commands.
847

    
848
@item net=@var{addr}[/@var{mask}]
849
Set IP network address the guest will see. Optionally specify the netmask,
850
either in the form a.b.c.d or as number of valid top-most bits. Default is
851
10.0.2.0/8.
852

    
853
@item host=@var{addr}
854
Specify the guest-visible address of the host. Default is the 2nd IP in the
855
guest network, i.e. x.x.x.2.
856

    
857
@item restrict=y|yes|n|no
858
If this options is enabled, the guest will be isolated, i.e. it will not be
859
able to contact the host and no guest IP packets will be routed over the host
860
to the outside. This option does not affect explicitly set forwarding rule.
861

    
862
@item hostname=@var{name}
863
Specifies the client hostname reported by the builtin DHCP server.
864

    
865
@item dhcpstart=@var{addr}
866
Specify the first of the 16 IPs the built-in DHCP server can assign. Default
867
is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31.
868

    
869
@item dns=@var{addr}
870
Specify the guest-visible address of the virtual nameserver. The address must
871
be different from the host address. Default is the 3rd IP in the guest network,
872
i.e. x.x.x.3.
873

    
874
@item tftp=@var{dir}
875
When using the user mode network stack, activate a built-in TFTP
876
server. The files in @var{dir} will be exposed as the root of a TFTP server.
877
The TFTP client on the guest must be configured in binary mode (use the command
878
@code{bin} of the Unix TFTP client).
879

    
880
@item bootfile=@var{file}
881
When using the user mode network stack, broadcast @var{file} as the BOOTP
882
filename. In conjunction with @option{tftp}, this can be used to network boot
883
a guest from a local directory.
884

    
885
Example (using pxelinux):
886
@example
887
qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
888
@end example
889

    
890
@item smb=@var{dir}[,smbserver=@var{addr}]
891
When using the user mode network stack, activate a built-in SMB
892
server so that Windows OSes can access to the host files in @file{@var{dir}}
893
transparently. The IP address of the SMB server can be set to @var{addr}. By
894
default the 4th IP in the guest network is used, i.e. x.x.x.4.
895

    
896
In the guest Windows OS, the line:
897
@example
898
10.0.2.4 smbserver
899
@end example
900
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
901
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
902

    
903
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
904

    
905
Note that a SAMBA server must be installed on the host OS in
906
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
907
Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
908

    
909
@item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
910
Redirect incoming TCP or UDP connections to the host port @var{hostport} to
911
the guest IP address @var{guestaddr} on guest port @var{guestport}. If
912
@var{guestaddr} is not specified, its value is x.x.x.15 (default first address
913
given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
914
be bound to a specific host interface. If no connection type is set, TCP is
915
used. This option can be given multiple times.
916

    
917
For example, to redirect host X11 connection from screen 1 to guest
918
screen 0, use the following:
919

    
920
@example
921
# on the host
922
qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
923
# this host xterm should open in the guest X11 server
924
xterm -display :1
925
@end example
926

    
927
To redirect telnet connections from host port 5555 to telnet port on
928
the guest, use the following:
929

    
930
@example
931
# on the host
932
qemu -net user,hostfwd=tcp:5555::23 [...]
933
telnet localhost 5555
934
@end example
935

    
936
Then when you use on the host @code{telnet localhost 5555}, you
937
connect to the guest telnet server.
938

    
939
@item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
940
Forward guest TCP connections to the IP address @var{server} on port @var{port}
941
to the character device @var{dev}. This option can be given multiple times.
942

    
943
@end table
944

    
945
Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
946
processed and applied to -net user. Mixing them with the new configuration
947
syntax gives undefined results. Their use for new applications is discouraged
948
as they will be removed from future versions.
949

    
950
@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
951
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
952
the network script @var{file} to configure it and the network script
953
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS
954
automatically provides one. @option{fd}=@var{h} can be used to specify
955
the handle of an already opened host TAP interface. The default network
956
configure script is @file{/etc/qemu-ifup} and the default network
957
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
958
or @option{downscript=no} to disable script execution. Example:
959

    
960
@example
961
qemu linux.img -net nic -net tap
962
@end example
963

    
964
More complicated example (two NICs, each one connected to a TAP device)
965
@example
966
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
967
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
968
@end example
969

    
970
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
971

    
972
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
973
machine using a TCP socket connection. If @option{listen} is
974
specified, QEMU waits for incoming connections on @var{port}
975
(@var{host} is optional). @option{connect} is used to connect to
976
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
977
specifies an already opened TCP socket.
978

    
979
Example:
980
@example
981
# launch a first QEMU instance
982
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
983
               -net socket,listen=:1234
984
# connect the VLAN 0 of this instance to the VLAN 0
985
# of the first instance
986
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
987
               -net socket,connect=127.0.0.1:1234
988
@end example
989

    
990
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
991

    
992
Create a VLAN @var{n} shared with another QEMU virtual
993
machines using a UDP multicast socket, effectively making a bus for
994
every QEMU with same multicast address @var{maddr} and @var{port}.
995
NOTES:
996
@enumerate
997
@item
998
Several QEMU can be running on different hosts and share same bus (assuming
999
correct multicast setup for these hosts).
1000
@item
1001
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1002
@url{http://user-mode-linux.sf.net}.
1003
@item
1004
Use @option{fd=h} to specify an already opened UDP multicast socket.
1005
@end enumerate
1006

    
1007
Example:
1008
@example
1009
# launch one QEMU instance
1010
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1011
               -net socket,mcast=230.0.0.1:1234
1012
# launch another QEMU instance on same "bus"
1013
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1014
               -net socket,mcast=230.0.0.1:1234
1015
# launch yet another QEMU instance on same "bus"
1016
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
1017
               -net socket,mcast=230.0.0.1:1234
1018
@end example
1019

    
1020
Example (User Mode Linux compat.):
1021
@example
1022
# launch QEMU instance (note mcast address selected
1023
# is UML's default)
1024
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1025
               -net socket,mcast=239.192.168.1:1102
1026
# launch UML
1027
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
1028
@end example
1029

    
1030
@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
1031
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
1032
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
1033
and MODE @var{octalmode} to change default ownership and permissions for
1034
communication port. This option is available only if QEMU has been compiled
1035
with vde support enabled.
1036

    
1037
Example:
1038
@example
1039
# launch vde switch
1040
vde_switch -F -sock /tmp/myswitch
1041
# launch QEMU instance
1042
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
1043
@end example
1044

    
1045
@item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
1046
Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
1047
At most @var{len} bytes (64k by default) per packet are stored. The file format is
1048
libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
1049

    
1050
@item -net none
1051
Indicate that no network devices should be configured. It is used to
1052
override the default configuration (@option{-net nic -net user}) which
1053
is activated if no @option{-net} options are provided.
1054

    
1055
@end table
1056
ETEXI
1057

    
1058
DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
1059
    "\n" \
1060
    "-bt hci,null    dumb bluetooth HCI - doesn't respond to commands\n" \
1061
    "-bt hci,host[:id]\n" \
1062
    "                use host's HCI with the given name\n" \
1063
    "-bt hci[,vlan=n]\n" \
1064
    "                emulate a standard HCI in virtual scatternet 'n'\n" \
1065
    "-bt vhci[,vlan=n]\n" \
1066
    "                add host computer to virtual scatternet 'n' using VHCI\n" \
1067
    "-bt device:dev[,vlan=n]\n" \
1068
    "                emulate a bluetooth device 'dev' in scatternet 'n'\n")
1069
STEXI
1070
Bluetooth(R) options:
1071
@table @option
1072

    
1073
@item -bt hci[...]
1074
Defines the function of the corresponding Bluetooth HCI.  -bt options
1075
are matched with the HCIs present in the chosen machine type.  For
1076
example when emulating a machine with only one HCI built into it, only
1077
the first @code{-bt hci[...]} option is valid and defines the HCI's
1078
logic.  The Transport Layer is decided by the machine type.  Currently
1079
the machines @code{n800} and @code{n810} have one HCI and all other
1080
machines have none.
1081

    
1082
@anchor{bt-hcis}
1083
The following three types are recognized:
1084

    
1085
@table @code
1086
@item -bt hci,null
1087
(default) The corresponding Bluetooth HCI assumes no internal logic
1088
and will not respond to any HCI commands or emit events.
1089

    
1090
@item -bt hci,host[:@var{id}]
1091
(@code{bluez} only) The corresponding HCI passes commands / events
1092
to / from the physical HCI identified by the name @var{id} (default:
1093
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
1094
capable systems like Linux.
1095

    
1096
@item -bt hci[,vlan=@var{n}]
1097
Add a virtual, standard HCI that will participate in the Bluetooth
1098
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
1099
VLANs, devices inside a bluetooth network @var{n} can only communicate
1100
with other devices in the same network (scatternet).
1101
@end table
1102

    
1103
@item -bt vhci[,vlan=@var{n}]
1104
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
1105
to the host bluetooth stack instead of to the emulated target.  This
1106
allows the host and target machines to participate in a common scatternet
1107
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
1108
be used as following:
1109

    
1110
@example
1111
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
1112
@end example
1113

    
1114
@item -bt device:@var{dev}[,vlan=@var{n}]
1115
Emulate a bluetooth device @var{dev} and place it in network @var{n}
1116
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
1117
currently:
1118

    
1119
@table @code
1120
@item keyboard
1121
Virtual wireless keyboard implementing the HIDP bluetooth profile.
1122
@end table
1123
@end table
1124
ETEXI
1125

    
1126
DEFHEADING()
1127

    
1128
DEFHEADING(Linux/Multiboot boot specific:)
1129
STEXI
1130

    
1131
When using these options, you can use a given Linux or Multiboot
1132
kernel without installing it in the disk image. It can be useful
1133
for easier testing of various kernels.
1134

    
1135
@table @option
1136
ETEXI
1137

    
1138
DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
1139
    "-kernel bzImage use 'bzImage' as kernel image\n")
1140
STEXI
1141
@item -kernel @var{bzImage}
1142
Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
1143
or in multiboot format.
1144
ETEXI
1145

    
1146
DEF("append", HAS_ARG, QEMU_OPTION_append, \
1147
    "-append cmdline use 'cmdline' as kernel command line\n")
1148
STEXI
1149
@item -append @var{cmdline}
1150
Use @var{cmdline} as kernel command line
1151
ETEXI
1152

    
1153
DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
1154
           "-initrd file    use 'file' as initial ram disk\n")
1155
STEXI
1156
@item -initrd @var{file}
1157
Use @var{file} as initial ram disk.
1158

    
1159
@item -initrd "@var{file1} arg=foo,@var{file2}"
1160

    
1161
This syntax is only available with multiboot.
1162

    
1163
Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
1164
first module.
1165
ETEXI
1166

    
1167
STEXI
1168
@end table
1169
ETEXI
1170

    
1171
DEFHEADING()
1172

    
1173
DEFHEADING(Debug/Expert options:)
1174

    
1175
STEXI
1176
@table @option
1177
ETEXI
1178

    
1179
DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
1180
    "-serial dev     redirect the serial port to char device 'dev'\n")
1181
STEXI
1182
@item -serial @var{dev}
1183
Redirect the virtual serial port to host character device
1184
@var{dev}. The default device is @code{vc} in graphical mode and
1185
@code{stdio} in non graphical mode.
1186

    
1187
This option can be used several times to simulate up to 4 serial
1188
ports.
1189

    
1190
Use @code{-serial none} to disable all serial ports.
1191

    
1192
Available character devices are:
1193
@table @code
1194
@item vc[:WxH]
1195
Virtual console. Optionally, a width and height can be given in pixel with
1196
@example
1197
vc:800x600
1198
@end example
1199
It is also possible to specify width or height in characters:
1200
@example
1201
vc:80Cx24C
1202
@end example
1203
@item pty
1204
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
1205
@item none
1206
No device is allocated.
1207
@item null
1208
void device
1209
@item /dev/XXX
1210
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
1211
parameters are set according to the emulated ones.
1212
@item /dev/parport@var{N}
1213
[Linux only, parallel port only] Use host parallel port
1214
@var{N}. Currently SPP and EPP parallel port features can be used.
1215
@item file:@var{filename}
1216
Write output to @var{filename}. No character can be read.
1217
@item stdio
1218
[Unix only] standard input/output
1219
@item pipe:@var{filename}
1220
name pipe @var{filename}
1221
@item COM@var{n}
1222
[Windows only] Use host serial port @var{n}
1223
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
1224
This implements UDP Net Console.
1225
When @var{remote_host} or @var{src_ip} are not specified
1226
they default to @code{0.0.0.0}.
1227
When not using a specified @var{src_port} a random port is automatically chosen.
1228
@item msmouse
1229
Three button serial mouse. Configure the guest to use Microsoft protocol.
1230

    
1231
If you just want a simple readonly console you can use @code{netcat} or
1232
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1233
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1234
will appear in the netconsole session.
1235

    
1236
If you plan to send characters back via netconsole or you want to stop
1237
and start qemu a lot of times, you should have qemu use the same
1238
source port each time by using something like @code{-serial
1239
udp::4555@@:4556} to qemu. Another approach is to use a patched
1240
version of netcat which can listen to a TCP port and send and receive
1241
characters via udp.  If you have a patched version of netcat which
1242
activates telnet remote echo and single char transfer, then you can
1243
use the following options to step up a netcat redirector to allow
1244
telnet on port 5555 to access the qemu port.
1245
@table @code
1246
@item Qemu Options:
1247
-serial udp::4555@@:4556
1248
@item netcat options:
1249
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1250
@item telnet options:
1251
localhost 5555
1252
@end table
1253

    
1254
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1255
The TCP Net Console has two modes of operation.  It can send the serial
1256
I/O to a location or wait for a connection from a location.  By default
1257
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
1258
the @var{server} option QEMU will wait for a client socket application
1259
to connect to the port before continuing, unless the @code{nowait}
1260
option was specified.  The @code{nodelay} option disables the Nagle buffering
1261
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
1262
one TCP connection at a time is accepted. You can use @code{telnet} to
1263
connect to the corresponding character device.
1264
@table @code
1265
@item Example to send tcp console to 192.168.0.2 port 4444
1266
-serial tcp:192.168.0.2:4444
1267
@item Example to listen and wait on port 4444 for connection
1268
-serial tcp::4444,server
1269
@item Example to not wait and listen on ip 192.168.0.100 port 4444
1270
-serial tcp:192.168.0.100:4444,server,nowait
1271
@end table
1272

    
1273
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1274
The telnet protocol is used instead of raw tcp sockets.  The options
1275
work the same as if you had specified @code{-serial tcp}.  The
1276
difference is that the port acts like a telnet server or client using
1277
telnet option negotiation.  This will also allow you to send the
1278
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1279
sequence.  Typically in unix telnet you do it with Control-] and then
1280
type "send break" followed by pressing the enter key.
1281

    
1282
@item unix:@var{path}[,server][,nowait]
1283
A unix domain socket is used instead of a tcp socket.  The option works the
1284
same as if you had specified @code{-serial tcp} except the unix domain socket
1285
@var{path} is used for connections.
1286

    
1287
@item mon:@var{dev_string}
1288
This is a special option to allow the monitor to be multiplexed onto
1289
another serial port.  The monitor is accessed with key sequence of
1290
@key{Control-a} and then pressing @key{c}. See monitor access
1291
@ref{pcsys_keys} in the -nographic section for more keys.
1292
@var{dev_string} should be any one of the serial devices specified
1293
above.  An example to multiplex the monitor onto a telnet server
1294
listening on port 4444 would be:
1295
@table @code
1296
@item -serial mon:telnet::4444,server,nowait
1297
@end table
1298

    
1299
@item braille
1300
Braille device.  This will use BrlAPI to display the braille output on a real
1301
or fake device.
1302

    
1303
@end table
1304
ETEXI
1305

    
1306
DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
1307
    "-parallel dev   redirect the parallel port to char device 'dev'\n")
1308
STEXI
1309
@item -parallel @var{dev}
1310
Redirect the virtual parallel port to host device @var{dev} (same
1311
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1312
be used to use hardware devices connected on the corresponding host
1313
parallel port.
1314

    
1315
This option can be used several times to simulate up to 3 parallel
1316
ports.
1317

    
1318
Use @code{-parallel none} to disable all parallel ports.
1319
ETEXI
1320

    
1321
DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
1322
    "-monitor dev    redirect the monitor to char device 'dev'\n")
1323
STEXI
1324
@item -monitor @var{dev}
1325
Redirect the monitor to host device @var{dev} (same devices as the
1326
serial port).
1327
The default device is @code{vc} in graphical mode and @code{stdio} in
1328
non graphical mode.
1329
ETEXI
1330

    
1331
DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
1332
    "-pidfile file   write PID to 'file'\n")
1333
STEXI
1334
@item -pidfile @var{file}
1335
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1336
from a script.
1337
ETEXI
1338

    
1339
DEF("singlestep", 0, QEMU_OPTION_singlestep, \
1340
    "-singlestep   always run in singlestep mode\n")
1341
STEXI
1342
@item -singlestep
1343
Run the emulation in single step mode.
1344
ETEXI
1345

    
1346
DEF("S", 0, QEMU_OPTION_S, \
1347
    "-S              freeze CPU at startup (use 'c' to start execution)\n")
1348
STEXI
1349
@item -S
1350
Do not start CPU at startup (you must type 'c' in the monitor).
1351
ETEXI
1352

    
1353
DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
1354
    "-gdb dev        wait for gdb connection on 'dev'\n")
1355
STEXI
1356
@item -gdb @var{dev}
1357
Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
1358
connections will likely be TCP-based, but also UDP, pseudo TTY, or even
1359
stdio are reasonable use case. The latter is allowing to start qemu from
1360
within gdb and establish the connection via a pipe:
1361
@example
1362
(gdb) target remote | exec qemu -gdb stdio ...
1363
@end example
1364
ETEXI
1365

    
1366
DEF("s", 0, QEMU_OPTION_s, \
1367
    "-s              shorthand for -gdb tcp::%s\n")
1368
STEXI
1369
@item -s
1370
Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
1371
(@pxref{gdb_usage}).
1372
ETEXI
1373

    
1374
DEF("d", HAS_ARG, QEMU_OPTION_d, \
1375
    "-d item1,...    output log to %s (use -d ? for a list of log items)\n")
1376
STEXI
1377
@item -d
1378
Output log in /tmp/qemu.log
1379
ETEXI
1380

    
1381
DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1382
    "-hdachs c,h,s[,t]\n" \
1383
    "                force hard disk 0 physical geometry and the optional BIOS\n" \
1384
    "                translation (t=none or lba) (usually qemu can guess them)\n")
1385
STEXI
1386
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1387
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1388
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1389
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1390
all those parameters. This option is useful for old MS-DOS disk
1391
images.
1392
ETEXI
1393

    
1394
DEF("L", HAS_ARG, QEMU_OPTION_L, \
1395
    "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n")
1396
STEXI
1397
@item -L  @var{path}
1398
Set the directory for the BIOS, VGA BIOS and keymaps.
1399
ETEXI
1400

    
1401
DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
1402
    "-bios file      set the filename for the BIOS\n")
1403
STEXI
1404
@item -bios @var{file}
1405
Set the filename for the BIOS.
1406
ETEXI
1407

    
1408
#ifdef CONFIG_KQEMU
1409
DEF("kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu, \
1410
    "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n")
1411
#endif
1412
STEXI
1413
@item -kernel-kqemu
1414
Enable KQEMU full virtualization (default is user mode only).
1415
ETEXI
1416

    
1417
#ifdef CONFIG_KQEMU
1418
DEF("enable-kqemu", 0, QEMU_OPTION_enable_kqemu, \
1419
    "-enable-kqemu   enable KQEMU kernel module usage\n")
1420
#endif
1421
STEXI
1422
@item -enable-kqemu
1423
Enable KQEMU kernel module usage. KQEMU options are only available if
1424
KQEMU support is enabled when compiling.
1425
ETEXI
1426

    
1427
#ifdef CONFIG_KVM
1428
DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
1429
    "-enable-kvm     enable KVM full virtualization support\n")
1430
#endif
1431
STEXI
1432
@item -enable-kvm
1433
Enable KVM full virtualization support. This option is only available
1434
if KVM support is enabled when compiling.
1435
ETEXI
1436

    
1437
#ifdef CONFIG_XEN
1438
DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
1439
    "-xen-domid id   specify xen guest domain id\n")
1440
DEF("xen-create", 0, QEMU_OPTION_xen_create,
1441
    "-xen-create     create domain using xen hypercalls, bypassing xend\n"
1442
    "                warning: should not be used when xend is in use\n")
1443
DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
1444
    "-xen-attach     attach to existing xen domain\n"
1445
    "                xend will use this when starting qemu\n")
1446
#endif
1447

    
1448
DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
1449
    "-no-reboot      exit instead of rebooting\n")
1450
STEXI
1451
@item -no-reboot
1452
Exit instead of rebooting.
1453
ETEXI
1454

    
1455
DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
1456
    "-no-shutdown    stop before shutdown\n")
1457
STEXI
1458
@item -no-shutdown
1459
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1460
This allows for instance switching to monitor to commit changes to the
1461
disk image.
1462
ETEXI
1463

    
1464
DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
1465
    "-loadvm [tag|id]\n" \
1466
    "                start right away with a saved state (loadvm in monitor)\n")
1467
STEXI
1468
@item -loadvm @var{file}
1469
Start right away with a saved state (@code{loadvm} in monitor)
1470
ETEXI
1471

    
1472
#ifndef _WIN32
1473
DEF("daemonize", 0, QEMU_OPTION_daemonize, \
1474
    "-daemonize      daemonize QEMU after initializing\n")
1475
#endif
1476
STEXI
1477
@item -daemonize
1478
Daemonize the QEMU process after initialization.  QEMU will not detach from
1479
standard IO until it is ready to receive connections on any of its devices.
1480
This option is a useful way for external programs to launch QEMU without having
1481
to cope with initialization race conditions.
1482
ETEXI
1483

    
1484
DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
1485
    "-option-rom rom load a file, rom, into the option ROM space\n")
1486
STEXI
1487
@item -option-rom @var{file}
1488
Load the contents of @var{file} as an option ROM.
1489
This option is useful to load things like EtherBoot.
1490
ETEXI
1491

    
1492
DEF("clock", HAS_ARG, QEMU_OPTION_clock, \
1493
    "-clock          force the use of the given methods for timer alarm.\n" \
1494
    "                To see what timers are available use -clock ?\n")
1495
STEXI
1496
@item -clock @var{method}
1497
Force the use of the given methods for timer alarm. To see what timers
1498
are available use -clock ?.
1499
ETEXI
1500

    
1501
DEF("localtime", 0, QEMU_OPTION_localtime, \
1502
    "-localtime      set the real time clock to local time [default=utc]\n")
1503
STEXI
1504
@item -localtime
1505
Set the real time clock to local time (the default is to UTC
1506
time). This option is needed to have correct date in MS-DOS or
1507
Windows.
1508
ETEXI
1509

    
1510
DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, \
1511
    "-startdate      select initial date of the clock\n")
1512
STEXI
1513

    
1514
@item -startdate @var{date}
1515
Set the initial date of the real time clock. Valid formats for
1516
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1517
@code{2006-06-17}. The default value is @code{now}.
1518
ETEXI
1519

    
1520
DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
1521
    "-icount [N|auto]\n" \
1522
    "                enable virtual instruction counter with 2^N clock ticks per\n" \
1523
    "                instruction\n")
1524
STEXI
1525
@item -icount [N|auto]
1526
Enable virtual instruction counter.  The virtual cpu will execute one
1527
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1528
then the virtual cpu speed will be automatically adjusted to keep virtual
1529
time within a few seconds of real time.
1530

    
1531
Note that while this option can give deterministic behavior, it does not
1532
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1533
order cores with complex cache hierarchies.  The number of instructions
1534
executed often has little or no correlation with actual performance.
1535
ETEXI
1536

    
1537
DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
1538
    "-watchdog i6300esb|ib700\n" \
1539
    "                enable virtual hardware watchdog [default=none]\n")
1540
STEXI
1541
@item -watchdog @var{model}
1542
Create a virtual hardware watchdog device.  Once enabled (by a guest
1543
action), the watchdog must be periodically polled by an agent inside
1544
the guest or else the guest will be restarted.
1545

    
1546
The @var{model} is the model of hardware watchdog to emulate.  Choices
1547
for model are: @code{ib700} (iBASE 700) which is a very simple ISA
1548
watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O
1549
controller hub) which is a much more featureful PCI-based dual-timer
1550
watchdog.  Choose a model for which your guest has drivers.
1551

    
1552
Use @code{-watchdog ?} to list available hardware models.  Only one
1553
watchdog can be enabled for a guest.
1554
ETEXI
1555

    
1556
DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
1557
    "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
1558
    "                action when watchdog fires [default=reset]\n")
1559
STEXI
1560
@item -watchdog-action @var{action}
1561

    
1562
The @var{action} controls what QEMU will do when the watchdog timer
1563
expires.
1564
The default is
1565
@code{reset} (forcefully reset the guest).
1566
Other possible actions are:
1567
@code{shutdown} (attempt to gracefully shutdown the guest),
1568
@code{poweroff} (forcefully poweroff the guest),
1569
@code{pause} (pause the guest),
1570
@code{debug} (print a debug message and continue), or
1571
@code{none} (do nothing).
1572

    
1573
Note that the @code{shutdown} action requires that the guest responds
1574
to ACPI signals, which it may not be able to do in the sort of
1575
situations where the watchdog would have expired, and thus
1576
@code{-watchdog-action shutdown} is not recommended for production use.
1577

    
1578
Examples:
1579

    
1580
@table @code
1581
@item -watchdog i6300esb -watchdog-action pause
1582
@item -watchdog ib700
1583
@end table
1584
ETEXI
1585

    
1586
DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
1587
    "-echr chr       set terminal escape character instead of ctrl-a\n")
1588
STEXI
1589

    
1590
@item -echr numeric_ascii_value
1591
Change the escape character used for switching to the monitor when using
1592
monitor and serial sharing.  The default is @code{0x01} when using the
1593
@code{-nographic} option.  @code{0x01} is equal to pressing
1594
@code{Control-a}.  You can select a different character from the ascii
1595
control keys where 1 through 26 map to Control-a through Control-z.  For
1596
instance you could use the either of the following to change the escape
1597
character to Control-t.
1598
@table @code
1599
@item -echr 0x14
1600
@item -echr 20
1601
@end table
1602
ETEXI
1603

    
1604
DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
1605
    "-virtioconsole c\n" \
1606
    "                set virtio console\n")
1607
STEXI
1608
@item -virtioconsole @var{c}
1609
Set virtio console.
1610
ETEXI
1611

    
1612
DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
1613
    "-show-cursor    show cursor\n")
1614
STEXI
1615
ETEXI
1616

    
1617
DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
1618
    "-tb-size n      set TB size\n")
1619
STEXI
1620
ETEXI
1621

    
1622
DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
1623
    "-incoming p     prepare for incoming migration, listen on port p\n")
1624
STEXI
1625
ETEXI
1626

    
1627
#ifndef _WIN32
1628
DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
1629
    "-chroot dir     Chroot to dir just before starting the VM.\n")
1630
#endif
1631
STEXI
1632
@item -chroot dir
1633
Immediately before starting guest execution, chroot to the specified
1634
directory.  Especially useful in combination with -runas.
1635
ETEXI
1636

    
1637
#ifndef _WIN32
1638
DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
1639
    "-runas user     Change to user id user just before starting the VM.\n")
1640
#endif
1641
STEXI
1642
@item -runas user
1643
Immediately before starting guest execution, drop root privileges, switching
1644
to the specified user.
1645
ETEXI
1646

    
1647
STEXI
1648
@end table
1649
ETEXI
1650

    
1651
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
1652
DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
1653
    "-prom-env variable=value\n"
1654
    "                set OpenBIOS nvram variables\n")
1655
#endif
1656
#if defined(TARGET_ARM) || defined(TARGET_M68K)
1657
DEF("semihosting", 0, QEMU_OPTION_semihosting,
1658
    "-semihosting    semihosting mode\n")
1659
#endif
1660
#if defined(TARGET_ARM)
1661
DEF("old-param", 0, QEMU_OPTION_old_param,
1662
    "-old-param      old param mode\n")
1663
#endif