Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 178e08a5

History | View | Annotate | Download (75.7 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
94 52c00a5f bellard
@end itemize
95 386405f7 bellard
96 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97 0806e3f6 bellard
98 debc7065 bellard
@node Installation
99 5b9f457a bellard
@chapter Installation
100 5b9f457a bellard
101 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
102 15a34c63 bellard
103 debc7065 bellard
@menu
104 debc7065 bellard
* install_linux::   Linux
105 debc7065 bellard
* install_windows:: Windows
106 debc7065 bellard
* install_mac::     Macintosh
107 debc7065 bellard
@end menu
108 debc7065 bellard
109 debc7065 bellard
@node install_linux
110 1f673135 bellard
@section Linux
111 1f673135 bellard
112 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
113 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
114 5b9f457a bellard
115 debc7065 bellard
@node install_windows
116 1f673135 bellard
@section Windows
117 8cd0ac2f bellard
118 15a34c63 bellard
Download the experimental binary installer at
119 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
120 d691f669 bellard
121 debc7065 bellard
@node install_mac
122 1f673135 bellard
@section Mac OS X
123 d691f669 bellard
124 15a34c63 bellard
Download the experimental binary installer at
125 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
126 df0f11a0 bellard
127 debc7065 bellard
@node QEMU PC System emulator
128 3f9f3aa1 bellard
@chapter QEMU PC System emulator
129 1eb20527 bellard
130 debc7065 bellard
@menu
131 debc7065 bellard
* pcsys_introduction:: Introduction
132 debc7065 bellard
* pcsys_quickstart::   Quick Start
133 debc7065 bellard
* sec_invocation::     Invocation
134 debc7065 bellard
* pcsys_keys::         Keys
135 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
136 debc7065 bellard
* disk_images::        Disk Images
137 debc7065 bellard
* pcsys_network::      Network emulation
138 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
139 debc7065 bellard
* pcsys_usb::          USB emulation
140 f858dcae ths
* vnc_security::       VNC security
141 debc7065 bellard
* gdb_usage::          GDB usage
142 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
143 debc7065 bellard
@end menu
144 debc7065 bellard
145 debc7065 bellard
@node pcsys_introduction
146 0806e3f6 bellard
@section Introduction
147 0806e3f6 bellard
148 0806e3f6 bellard
@c man begin DESCRIPTION
149 0806e3f6 bellard
150 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
151 3f9f3aa1 bellard
following peripherals:
152 0806e3f6 bellard
153 0806e3f6 bellard
@itemize @minus
154 5fafdf24 ths
@item
155 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156 0806e3f6 bellard
@item
157 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158 15a34c63 bellard
extensions (hardware level, including all non standard modes).
159 0806e3f6 bellard
@item
160 0806e3f6 bellard
PS/2 mouse and keyboard
161 5fafdf24 ths
@item
162 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
163 1f673135 bellard
@item
164 1f673135 bellard
Floppy disk
165 5fafdf24 ths
@item
166 c4a7060c blueswir1
PCI/ISA PCI network adapters
167 0806e3f6 bellard
@item
168 05d5818c bellard
Serial ports
169 05d5818c bellard
@item
170 c0fe3827 bellard
Creative SoundBlaster 16 sound card
171 c0fe3827 bellard
@item
172 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
173 c0fe3827 bellard
@item
174 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
175 e5c9a13e balrog
@item
176 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
177 b389dbfb bellard
@item
178 26463dbc balrog
Gravis Ultrasound GF1 sound card
179 26463dbc balrog
@item
180 cc53d26d malc
CS4231A compatible sound card
181 cc53d26d malc
@item
182 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
183 0806e3f6 bellard
@end itemize
184 0806e3f6 bellard
185 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
186 3f9f3aa1 bellard
187 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
188 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
189 e5178e8d malc
required card(s).
190 c0fe3827 bellard
191 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192 15a34c63 bellard
VGA BIOS.
193 15a34c63 bellard
194 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195 c0fe3827 bellard
196 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197 26463dbc balrog
by Tibor "TS" Sch?tz.
198 423d65f4 balrog
199 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
200 cc53d26d malc
201 0806e3f6 bellard
@c man end
202 0806e3f6 bellard
203 debc7065 bellard
@node pcsys_quickstart
204 1eb20527 bellard
@section Quick Start
205 1eb20527 bellard
206 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
207 0806e3f6 bellard
208 0806e3f6 bellard
@example
209 285dc330 bellard
qemu linux.img
210 0806e3f6 bellard
@end example
211 0806e3f6 bellard
212 0806e3f6 bellard
Linux should boot and give you a prompt.
213 0806e3f6 bellard
214 6cc721cf bellard
@node sec_invocation
215 ec410fc9 bellard
@section Invocation
216 ec410fc9 bellard
217 ec410fc9 bellard
@example
218 0806e3f6 bellard
@c man begin SYNOPSIS
219 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
220 0806e3f6 bellard
@c man end
221 ec410fc9 bellard
@end example
222 ec410fc9 bellard
223 0806e3f6 bellard
@c man begin OPTIONS
224 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225 d2c639d6 blueswir1
targets do not need a disk image.
226 ec410fc9 bellard
227 5824d651 blueswir1
@include qemu-options.texi
228 ec410fc9 bellard
229 3e11db9a bellard
@c man end
230 3e11db9a bellard
231 debc7065 bellard
@node pcsys_keys
232 3e11db9a bellard
@section Keys
233 3e11db9a bellard
234 3e11db9a bellard
@c man begin OPTIONS
235 3e11db9a bellard
236 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
237 a1b74fe8 bellard
@table @key
238 f9859310 bellard
@item Ctrl-Alt-f
239 a1b74fe8 bellard
Toggle full screen
240 a0a821a4 bellard
241 f9859310 bellard
@item Ctrl-Alt-n
242 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
243 a0a821a4 bellard
@table @emph
244 a0a821a4 bellard
@item 1
245 a0a821a4 bellard
Target system display
246 a0a821a4 bellard
@item 2
247 a0a821a4 bellard
Monitor
248 a0a821a4 bellard
@item 3
249 a0a821a4 bellard
Serial port
250 a1b74fe8 bellard
@end table
251 a1b74fe8 bellard
252 f9859310 bellard
@item Ctrl-Alt
253 a0a821a4 bellard
Toggle mouse and keyboard grab.
254 a0a821a4 bellard
@end table
255 a0a821a4 bellard
256 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
257 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
258 3e11db9a bellard
259 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
260 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
261 ec410fc9 bellard
262 ec410fc9 bellard
@table @key
263 a1b74fe8 bellard
@item Ctrl-a h
264 d2c639d6 blueswir1
@item Ctrl-a ?
265 ec410fc9 bellard
Print this help
266 3b46e624 ths
@item Ctrl-a x
267 366dfc52 ths
Exit emulator
268 3b46e624 ths
@item Ctrl-a s
269 1f47a922 bellard
Save disk data back to file (if -snapshot)
270 20d8a3ed ths
@item Ctrl-a t
271 d2c639d6 blueswir1
Toggle console timestamps
272 a1b74fe8 bellard
@item Ctrl-a b
273 1f673135 bellard
Send break (magic sysrq in Linux)
274 a1b74fe8 bellard
@item Ctrl-a c
275 1f673135 bellard
Switch between console and monitor
276 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
277 a1b74fe8 bellard
Send Ctrl-a
278 ec410fc9 bellard
@end table
279 0806e3f6 bellard
@c man end
280 0806e3f6 bellard
281 0806e3f6 bellard
@ignore
282 0806e3f6 bellard
283 1f673135 bellard
@c man begin SEEALSO
284 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
285 1f673135 bellard
user mode emulator invocation.
286 1f673135 bellard
@c man end
287 1f673135 bellard
288 1f673135 bellard
@c man begin AUTHOR
289 1f673135 bellard
Fabrice Bellard
290 1f673135 bellard
@c man end
291 1f673135 bellard
292 1f673135 bellard
@end ignore
293 1f673135 bellard
294 debc7065 bellard
@node pcsys_monitor
295 1f673135 bellard
@section QEMU Monitor
296 1f673135 bellard
297 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
298 1f673135 bellard
emulator. You can use it to:
299 1f673135 bellard
300 1f673135 bellard
@itemize @minus
301 1f673135 bellard
302 1f673135 bellard
@item
303 e598752a ths
Remove or insert removable media images
304 89dfe898 ths
(such as CD-ROM or floppies).
305 1f673135 bellard
306 5fafdf24 ths
@item
307 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
308 1f673135 bellard
from a disk file.
309 1f673135 bellard
310 1f673135 bellard
@item Inspect the VM state without an external debugger.
311 1f673135 bellard
312 1f673135 bellard
@end itemize
313 1f673135 bellard
314 1f673135 bellard
@subsection Commands
315 1f673135 bellard
316 1f673135 bellard
The following commands are available:
317 1f673135 bellard
318 1f673135 bellard
@table @option
319 1f673135 bellard
320 89dfe898 ths
@item help or ? [@var{cmd}]
321 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
322 1f673135 bellard
323 3b46e624 ths
@item commit
324 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
325 1f673135 bellard
326 89dfe898 ths
@item info @var{subcommand}
327 89dfe898 ths
Show various information about the system state.
328 1f673135 bellard
329 1f673135 bellard
@table @option
330 d2c639d6 blueswir1
@item info version
331 d2c639d6 blueswir1
show the version of QEMU
332 1f673135 bellard
@item info network
333 41d03949 bellard
show the various VLANs and the associated devices
334 d2c639d6 blueswir1
@item info chardev
335 d2c639d6 blueswir1
show the character devices
336 1f673135 bellard
@item info block
337 1f673135 bellard
show the block devices
338 d2c639d6 blueswir1
@item info block
339 d2c639d6 blueswir1
show block device statistics
340 1f673135 bellard
@item info registers
341 1f673135 bellard
show the cpu registers
342 d2c639d6 blueswir1
@item info cpus
343 d2c639d6 blueswir1
show infos for each CPU
344 1f673135 bellard
@item info history
345 1f673135 bellard
show the command line history
346 d2c639d6 blueswir1
@item info irq
347 d2c639d6 blueswir1
show the interrupts statistics (if available)
348 d2c639d6 blueswir1
@item info pic
349 d2c639d6 blueswir1
show i8259 (PIC) state
350 b389dbfb bellard
@item info pci
351 d2c639d6 blueswir1
show emulated PCI device info
352 d2c639d6 blueswir1
@item info tlb
353 d2c639d6 blueswir1
show virtual to physical memory mappings (i386 only)
354 d2c639d6 blueswir1
@item info mem
355 d2c639d6 blueswir1
show the active virtual memory mappings (i386 only)
356 d2c639d6 blueswir1
@item info hpet
357 d2c639d6 blueswir1
show state of HPET (i386 only)
358 d2c639d6 blueswir1
@item info kqemu
359 d2c639d6 blueswir1
show KQEMU information
360 d2c639d6 blueswir1
@item info kvm
361 d2c639d6 blueswir1
show KVM information
362 b389dbfb bellard
@item info usb
363 b389dbfb bellard
show USB devices plugged on the virtual USB hub
364 b389dbfb bellard
@item info usbhost
365 b389dbfb bellard
show all USB host devices
366 d2c639d6 blueswir1
@item info profile
367 d2c639d6 blueswir1
show profiling information
368 a3c25997 bellard
@item info capture
369 a3c25997 bellard
show information about active capturing
370 13a2e80f bellard
@item info snapshots
371 13a2e80f bellard
show list of VM snapshots
372 d2c639d6 blueswir1
@item info status
373 d2c639d6 blueswir1
show the current VM status (running|paused)
374 d2c639d6 blueswir1
@item info pcmcia
375 d2c639d6 blueswir1
show guest PCMCIA status
376 455204eb ths
@item info mice
377 455204eb ths
show which guest mouse is receiving events
378 d2c639d6 blueswir1
@item info vnc
379 d2c639d6 blueswir1
show the vnc server status
380 d2c639d6 blueswir1
@item info name
381 d2c639d6 blueswir1
show the current VM name
382 d2c639d6 blueswir1
@item info uuid
383 d2c639d6 blueswir1
show the current VM UUID
384 d2c639d6 blueswir1
@item info cpustats
385 d2c639d6 blueswir1
show CPU statistics
386 d2c639d6 blueswir1
@item info slirp
387 d2c639d6 blueswir1
show SLIRP statistics (if available)
388 d2c639d6 blueswir1
@item info migrate
389 d2c639d6 blueswir1
show migration status
390 d2c639d6 blueswir1
@item info balloon
391 d2c639d6 blueswir1
show balloon information
392 1f673135 bellard
@end table
393 1f673135 bellard
394 1f673135 bellard
@item q or quit
395 1f673135 bellard
Quit the emulator.
396 1f673135 bellard
397 89dfe898 ths
@item eject [-f] @var{device}
398 e598752a ths
Eject a removable medium (use -f to force it).
399 1f673135 bellard
400 89dfe898 ths
@item change @var{device} @var{setting}
401 f858dcae ths
402 89dfe898 ths
Change the configuration of a device.
403 f858dcae ths
404 f858dcae ths
@table @option
405 d2c639d6 blueswir1
@item change @var{diskdevice} @var{filename} [@var{format}]
406 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
407 f858dcae ths
408 f858dcae ths
@example
409 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
410 f858dcae ths
@end example
411 f858dcae ths
412 d2c639d6 blueswir1
@var{format} is optional.
413 d2c639d6 blueswir1
414 89dfe898 ths
@item change vnc @var{display},@var{options}
415 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
416 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
417 f858dcae ths
418 f858dcae ths
@example
419 f858dcae ths
(qemu) change vnc localhost:1
420 f858dcae ths
@end example
421 f858dcae ths
422 2569da0c aliguori
@item change vnc password [@var{password}]
423 f858dcae ths
424 2569da0c aliguori
Change the password associated with the VNC server. If the new password is not
425 2569da0c aliguori
supplied, the monitor will prompt for it to be entered. VNC passwords are only
426 2569da0c aliguori
significant up to 8 letters. eg
427 f858dcae ths
428 f858dcae ths
@example
429 f858dcae ths
(qemu) change vnc password
430 f858dcae ths
Password: ********
431 f858dcae ths
@end example
432 f858dcae ths
433 f858dcae ths
@end table
434 1f673135 bellard
435 76655d6d aliguori
@item acl @var{subcommand} @var{aclname} @var{match} @var{index}
436 76655d6d aliguori
437 76655d6d aliguori
Manage access control lists for network services. There are currently
438 76655d6d aliguori
two named access control lists, @var{vnc.x509dname} and @var{vnc.username}
439 76655d6d aliguori
matching on the x509 client certificate distinguished name, and SASL
440 76655d6d aliguori
username respectively.
441 76655d6d aliguori
442 76655d6d aliguori
@table @option
443 76655d6d aliguori
@item acl show <aclname>
444 76655d6d aliguori
list all the match rules in the access control list, and the default
445 76655d6d aliguori
policy
446 76655d6d aliguori
@item acl policy <aclname> @code{allow|deny}
447 76655d6d aliguori
set the default access control list policy, used in the event that
448 76655d6d aliguori
none of the explicit rules match. The default policy at startup is
449 76655d6d aliguori
always @code{deny}
450 76655d6d aliguori
@item acl allow <aclname> <match> [<index>]
451 76655d6d aliguori
add a match to the access control list, allowing access. The match will
452 76655d6d aliguori
normally be an exact username or x509 distinguished name, but can
453 9e995645 aurel32
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
454 76655d6d aliguori
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
455 76655d6d aliguori
normally be appended to the end of the ACL, but can be inserted
456 76655d6d aliguori
earlier in the list if the optional @code{index} parameter is supplied.
457 76655d6d aliguori
@item acl deny <aclname> <match> [<index>]
458 76655d6d aliguori
add a match to the access control list, denying access. The match will
459 76655d6d aliguori
normally be an exact username or x509 distinguished name, but can
460 9e995645 aurel32
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
461 76655d6d aliguori
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
462 76655d6d aliguori
normally be appended to the end of the ACL, but can be inserted
463 76655d6d aliguori
earlier in the list if the optional @code{index} parameter is supplied.
464 76655d6d aliguori
@item acl remove <aclname> <match>
465 76655d6d aliguori
remove the specified match rule from the access control list.
466 76655d6d aliguori
@item acl reset <aclname>
467 76655d6d aliguori
remove all matches from the access control list, and set the default
468 76655d6d aliguori
policy back to @code{deny}.
469 76655d6d aliguori
@end table
470 76655d6d aliguori
471 89dfe898 ths
@item screendump @var{filename}
472 1f673135 bellard
Save screen into PPM image @var{filename}.
473 1f673135 bellard
474 d2c639d6 blueswir1
@item logfile @var{filename}
475 d2c639d6 blueswir1
Output logs to @var{filename}.
476 a3c25997 bellard
477 89dfe898 ths
@item log @var{item1}[,...]
478 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
479 1f673135 bellard
480 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
481 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
482 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
483 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
484 13a2e80f bellard
@ref{vm_snapshots}.
485 1f673135 bellard
486 89dfe898 ths
@item loadvm @var{tag}|@var{id}
487 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
488 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
489 13a2e80f bellard
490 89dfe898 ths
@item delvm @var{tag}|@var{id}
491 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
492 1f673135 bellard
493 1f673135 bellard
@item stop
494 1f673135 bellard
Stop emulation.
495 1f673135 bellard
496 1f673135 bellard
@item c or cont
497 1f673135 bellard
Resume emulation.
498 1f673135 bellard
499 89dfe898 ths
@item gdbserver [@var{port}]
500 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
501 1f673135 bellard
502 89dfe898 ths
@item x/fmt @var{addr}
503 1f673135 bellard
Virtual memory dump starting at @var{addr}.
504 1f673135 bellard
505 89dfe898 ths
@item xp /@var{fmt} @var{addr}
506 1f673135 bellard
Physical memory dump starting at @var{addr}.
507 1f673135 bellard
508 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
509 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
510 1f673135 bellard
511 1f673135 bellard
@table @var
512 5fafdf24 ths
@item count
513 1f673135 bellard
is the number of items to be dumped.
514 1f673135 bellard
515 1f673135 bellard
@item format
516 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
517 1f673135 bellard
c (char) or i (asm instruction).
518 1f673135 bellard
519 1f673135 bellard
@item size
520 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
521 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
522 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
523 1f673135 bellard
524 1f673135 bellard
@end table
525 1f673135 bellard
526 5fafdf24 ths
Examples:
527 1f673135 bellard
@itemize
528 1f673135 bellard
@item
529 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
530 5fafdf24 ths
@example
531 1f673135 bellard
(qemu) x/10i $eip
532 1f673135 bellard
0x90107063:  ret
533 1f673135 bellard
0x90107064:  sti
534 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
535 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
536 1f673135 bellard
0x90107070:  ret
537 1f673135 bellard
0x90107071:  jmp    0x90107080
538 1f673135 bellard
0x90107073:  nop
539 1f673135 bellard
0x90107074:  nop
540 1f673135 bellard
0x90107075:  nop
541 1f673135 bellard
0x90107076:  nop
542 1f673135 bellard
@end example
543 1f673135 bellard
544 1f673135 bellard
@item
545 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
546 5fafdf24 ths
@smallexample
547 1f673135 bellard
(qemu) xp/80hx 0xb8000
548 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
549 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
550 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
551 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
552 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
553 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
554 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
555 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
556 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
557 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
558 debc7065 bellard
@end smallexample
559 1f673135 bellard
@end itemize
560 1f673135 bellard
561 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
562 1f673135 bellard
563 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
564 1f673135 bellard
used.
565 0806e3f6 bellard
566 89dfe898 ths
@item sendkey @var{keys}
567 a3a91a35 bellard
568 54ae1fbd aurel32
Send @var{keys} to the emulator. @var{keys} could be the name of the
569 54ae1fbd aurel32
key or @code{#} followed by the raw value in either decimal or hexadecimal
570 54ae1fbd aurel32
format. Use @code{-} to press several keys simultaneously. Example:
571 a3a91a35 bellard
@example
572 a3a91a35 bellard
sendkey ctrl-alt-f1
573 a3a91a35 bellard
@end example
574 a3a91a35 bellard
575 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
576 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
577 a3a91a35 bellard
578 15a34c63 bellard
@item system_reset
579 15a34c63 bellard
580 15a34c63 bellard
Reset the system.
581 15a34c63 bellard
582 d2c639d6 blueswir1
@item system_powerdown
583 0ecdffbb aurel32
584 d2c639d6 blueswir1
Power down the system (if supported).
585 0ecdffbb aurel32
586 d2c639d6 blueswir1
@item sum @var{addr} @var{size}
587 d2c639d6 blueswir1
588 d2c639d6 blueswir1
Compute the checksum of a memory region.
589 0ecdffbb aurel32
590 89dfe898 ths
@item usb_add @var{devname}
591 b389dbfb bellard
592 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
593 0aff66b5 pbrook
@ref{usb_devices}
594 b389dbfb bellard
595 89dfe898 ths
@item usb_del @var{devname}
596 b389dbfb bellard
597 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
598 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
599 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
600 b389dbfb bellard
601 d2c639d6 blueswir1
@item mouse_move @var{dx} @var{dy} [@var{dz}]
602 d2c639d6 blueswir1
Move the active mouse to the specified coordinates @var{dx} @var{dy}
603 d2c639d6 blueswir1
with optional scroll axis @var{dz}.
604 d2c639d6 blueswir1
605 d2c639d6 blueswir1
@item mouse_button @var{val}
606 d2c639d6 blueswir1
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
607 d2c639d6 blueswir1
608 d2c639d6 blueswir1
@item mouse_set @var{index}
609 d2c639d6 blueswir1
Set which mouse device receives events at given @var{index}, index
610 d2c639d6 blueswir1
can be obtained with
611 d2c639d6 blueswir1
@example
612 d2c639d6 blueswir1
info mice
613 d2c639d6 blueswir1
@end example
614 d2c639d6 blueswir1
615 d2c639d6 blueswir1
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
616 d2c639d6 blueswir1
Capture audio into @var{filename}. Using sample rate @var{frequency}
617 d2c639d6 blueswir1
bits per sample @var{bits} and number of channels @var{channels}.
618 d2c639d6 blueswir1
619 d2c639d6 blueswir1
Defaults:
620 d2c639d6 blueswir1
@itemize @minus
621 d2c639d6 blueswir1
@item Sample rate = 44100 Hz - CD quality
622 d2c639d6 blueswir1
@item Bits = 16
623 d2c639d6 blueswir1
@item Number of channels = 2 - Stereo
624 d2c639d6 blueswir1
@end itemize
625 d2c639d6 blueswir1
626 d2c639d6 blueswir1
@item stopcapture @var{index}
627 d2c639d6 blueswir1
Stop capture with a given @var{index}, index can be obtained with
628 d2c639d6 blueswir1
@example
629 d2c639d6 blueswir1
info capture
630 d2c639d6 blueswir1
@end example
631 d2c639d6 blueswir1
632 d2c639d6 blueswir1
@item memsave @var{addr} @var{size} @var{file}
633 d2c639d6 blueswir1
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
634 d2c639d6 blueswir1
635 d2c639d6 blueswir1
@item pmemsave @var{addr} @var{size} @var{file}
636 d2c639d6 blueswir1
save to disk physical memory dump starting at @var{addr} of size @var{size}.
637 d2c639d6 blueswir1
638 d2c639d6 blueswir1
@item boot_set @var{bootdevicelist}
639 d2c639d6 blueswir1
640 d2c639d6 blueswir1
Define new values for the boot device list. Those values will override
641 d2c639d6 blueswir1
the values specified on the command line through the @code{-boot} option.
642 d2c639d6 blueswir1
643 d2c639d6 blueswir1
The values that can be specified here depend on the machine type, but are
644 d2c639d6 blueswir1
the same that can be specified in the @code{-boot} command line option.
645 d2c639d6 blueswir1
646 d2c639d6 blueswir1
@item nmi @var{cpu}
647 d2c639d6 blueswir1
Inject an NMI on the given CPU.
648 d2c639d6 blueswir1
649 d2c639d6 blueswir1
@item migrate [-d] @var{uri}
650 d2c639d6 blueswir1
Migrate to @var{uri} (using -d to not wait for completion).
651 d2c639d6 blueswir1
652 d2c639d6 blueswir1
@item migrate_cancel
653 d2c639d6 blueswir1
Cancel the current VM migration.
654 d2c639d6 blueswir1
655 d2c639d6 blueswir1
@item migrate_set_speed @var{value}
656 d2c639d6 blueswir1
Set maximum speed to @var{value} (in bytes) for migrations.
657 d2c639d6 blueswir1
658 d2c639d6 blueswir1
@item balloon @var{value}
659 d2c639d6 blueswir1
Request VM to change its memory allocation to @var{value} (in MB).
660 d2c639d6 blueswir1
661 d2c639d6 blueswir1
@item set_link @var{name} [up|down]
662 d2c639d6 blueswir1
Set link @var{name} up or down.
663 d2c639d6 blueswir1
664 1f673135 bellard
@end table
665 0806e3f6 bellard
666 1f673135 bellard
@subsection Integer expressions
667 1f673135 bellard
668 1f673135 bellard
The monitor understands integers expressions for every integer
669 1f673135 bellard
argument. You can use register names to get the value of specifics
670 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
671 ec410fc9 bellard
672 1f47a922 bellard
@node disk_images
673 1f47a922 bellard
@section Disk Images
674 1f47a922 bellard
675 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
676 acd935ef bellard
growable disk images (their size increase as non empty sectors are
677 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
678 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
679 13a2e80f bellard
snapshots.
680 1f47a922 bellard
681 debc7065 bellard
@menu
682 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
683 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
684 13a2e80f bellard
* vm_snapshots::              VM snapshots
685 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
686 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
687 19cb3738 bellard
* host_drives::               Using host drives
688 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
689 75818250 ths
* disk_images_nbd::           NBD access
690 debc7065 bellard
@end menu
691 debc7065 bellard
692 debc7065 bellard
@node disk_images_quickstart
693 acd935ef bellard
@subsection Quick start for disk image creation
694 acd935ef bellard
695 acd935ef bellard
You can create a disk image with the command:
696 1f47a922 bellard
@example
697 acd935ef bellard
qemu-img create myimage.img mysize
698 1f47a922 bellard
@end example
699 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
700 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
701 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
702 acd935ef bellard
703 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
704 1f47a922 bellard
705 debc7065 bellard
@node disk_images_snapshot_mode
706 1f47a922 bellard
@subsection Snapshot mode
707 1f47a922 bellard
708 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
709 1f47a922 bellard
considered as read only. When sectors in written, they are written in
710 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
711 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
712 acd935ef bellard
command (or @key{C-a s} in the serial console).
713 1f47a922 bellard
714 13a2e80f bellard
@node vm_snapshots
715 13a2e80f bellard
@subsection VM snapshots
716 13a2e80f bellard
717 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
718 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
719 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
720 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
721 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
722 13a2e80f bellard
723 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
724 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
725 19d36792 bellard
snapshot in addition to its numerical ID.
726 13a2e80f bellard
727 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
728 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
729 13a2e80f bellard
with their associated information:
730 13a2e80f bellard
731 13a2e80f bellard
@example
732 13a2e80f bellard
(qemu) info snapshots
733 13a2e80f bellard
Snapshot devices: hda
734 13a2e80f bellard
Snapshot list (from hda):
735 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
736 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
737 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
738 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
739 13a2e80f bellard
@end example
740 13a2e80f bellard
741 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
742 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
743 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
744 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
745 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
746 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
747 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
748 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
749 19d36792 bellard
disk images).
750 13a2e80f bellard
751 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
752 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
753 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
754 13a2e80f bellard
755 13a2e80f bellard
VM snapshots currently have the following known limitations:
756 13a2e80f bellard
@itemize
757 5fafdf24 ths
@item
758 13a2e80f bellard
They cannot cope with removable devices if they are removed or
759 13a2e80f bellard
inserted after a snapshot is done.
760 5fafdf24 ths
@item
761 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
762 13a2e80f bellard
state is not saved or restored properly (in particular USB).
763 13a2e80f bellard
@end itemize
764 13a2e80f bellard
765 acd935ef bellard
@node qemu_img_invocation
766 acd935ef bellard
@subsection @code{qemu-img} Invocation
767 1f47a922 bellard
768 acd935ef bellard
@include qemu-img.texi
769 05efe46e bellard
770 975b092b ths
@node qemu_nbd_invocation
771 975b092b ths
@subsection @code{qemu-nbd} Invocation
772 975b092b ths
773 975b092b ths
@include qemu-nbd.texi
774 975b092b ths
775 19cb3738 bellard
@node host_drives
776 19cb3738 bellard
@subsection Using host drives
777 19cb3738 bellard
778 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
779 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
780 19cb3738 bellard
781 19cb3738 bellard
@subsubsection Linux
782 19cb3738 bellard
783 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
784 4be456f1 ths
disk image filename provided you have enough privileges to access
785 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
786 19cb3738 bellard
@file{/dev/fd0} for the floppy.
787 19cb3738 bellard
788 f542086d bellard
@table @code
789 19cb3738 bellard
@item CD
790 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
791 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
792 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
793 19cb3738 bellard
@item Floppy
794 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
795 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
796 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
797 19cb3738 bellard
OS will think that the same floppy is loaded).
798 19cb3738 bellard
@item Hard disks
799 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
800 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
801 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
802 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
803 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
804 19cb3738 bellard
line option or modify the device permissions accordingly).
805 19cb3738 bellard
@end table
806 19cb3738 bellard
807 19cb3738 bellard
@subsubsection Windows
808 19cb3738 bellard
809 01781963 bellard
@table @code
810 01781963 bellard
@item CD
811 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
812 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
813 01781963 bellard
supported as an alias to the first CDROM drive.
814 19cb3738 bellard
815 e598752a ths
Currently there is no specific code to handle removable media, so it
816 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
817 19cb3738 bellard
change or eject media.
818 01781963 bellard
@item Hard disks
819 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
820 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
821 01781963 bellard
822 01781963 bellard
WARNING: unless you know what you do, it is better to only make
823 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
824 01781963 bellard
host data (use the @option{-snapshot} command line so that the
825 01781963 bellard
modifications are written in a temporary file).
826 01781963 bellard
@end table
827 01781963 bellard
828 19cb3738 bellard
829 19cb3738 bellard
@subsubsection Mac OS X
830 19cb3738 bellard
831 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
832 19cb3738 bellard
833 e598752a ths
Currently there is no specific code to handle removable media, so it
834 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
835 19cb3738 bellard
change or eject media.
836 19cb3738 bellard
837 debc7065 bellard
@node disk_images_fat_images
838 2c6cadd4 bellard
@subsection Virtual FAT disk images
839 2c6cadd4 bellard
840 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
841 2c6cadd4 bellard
directory tree. In order to use it, just type:
842 2c6cadd4 bellard
843 5fafdf24 ths
@example
844 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
845 2c6cadd4 bellard
@end example
846 2c6cadd4 bellard
847 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
848 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
849 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
850 2c6cadd4 bellard
851 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
852 2c6cadd4 bellard
853 5fafdf24 ths
@example
854 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
855 2c6cadd4 bellard
@end example
856 2c6cadd4 bellard
857 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
858 2c6cadd4 bellard
@code{:rw:} option:
859 2c6cadd4 bellard
860 5fafdf24 ths
@example
861 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
862 2c6cadd4 bellard
@end example
863 2c6cadd4 bellard
864 2c6cadd4 bellard
What you should @emph{never} do:
865 2c6cadd4 bellard
@itemize
866 2c6cadd4 bellard
@item use non-ASCII filenames ;
867 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
868 85b2c688 bellard
@item expect it to work when loadvm'ing ;
869 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
870 2c6cadd4 bellard
@end itemize
871 2c6cadd4 bellard
872 75818250 ths
@node disk_images_nbd
873 75818250 ths
@subsection NBD access
874 75818250 ths
875 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
876 75818250 ths
protocol.
877 75818250 ths
878 75818250 ths
@example
879 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
880 75818250 ths
@end example
881 75818250 ths
882 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
883 75818250 ths
of an inet socket:
884 75818250 ths
885 75818250 ths
@example
886 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
887 75818250 ths
@end example
888 75818250 ths
889 75818250 ths
In this case, the block device must be exported using qemu-nbd:
890 75818250 ths
891 75818250 ths
@example
892 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
893 75818250 ths
@end example
894 75818250 ths
895 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
896 75818250 ths
@example
897 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
898 75818250 ths
@end example
899 75818250 ths
900 75818250 ths
and then you can use it with two guests:
901 75818250 ths
@example
902 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
903 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
904 75818250 ths
@end example
905 75818250 ths
906 debc7065 bellard
@node pcsys_network
907 9d4fb82e bellard
@section Network emulation
908 9d4fb82e bellard
909 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
910 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
911 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
912 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
913 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
914 41d03949 bellard
network stack can replace the TAP device to have a basic network
915 41d03949 bellard
connection.
916 41d03949 bellard
917 41d03949 bellard
@subsection VLANs
918 9d4fb82e bellard
919 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
920 41d03949 bellard
connection between several network devices. These devices can be for
921 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
922 41d03949 bellard
(TAP devices).
923 9d4fb82e bellard
924 41d03949 bellard
@subsection Using TAP network interfaces
925 41d03949 bellard
926 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
927 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
928 41d03949 bellard
can then configure it as if it was a real ethernet card.
929 9d4fb82e bellard
930 8f40c388 bellard
@subsubsection Linux host
931 8f40c388 bellard
932 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
933 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
934 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
935 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
936 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
937 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
938 9d4fb82e bellard
939 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
940 ee0f4751 bellard
TAP network interfaces.
941 9d4fb82e bellard
942 8f40c388 bellard
@subsubsection Windows host
943 8f40c388 bellard
944 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
945 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
946 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
947 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
948 8f40c388 bellard
949 9d4fb82e bellard
@subsection Using the user mode network stack
950 9d4fb82e bellard
951 41d03949 bellard
By using the option @option{-net user} (default configuration if no
952 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
953 4be456f1 ths
network stack (you don't need root privilege to use the virtual
954 41d03949 bellard
network). The virtual network configuration is the following:
955 9d4fb82e bellard
956 9d4fb82e bellard
@example
957 9d4fb82e bellard
958 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
959 41d03949 bellard
                           |          (10.0.2.2)
960 9d4fb82e bellard
                           |
961 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
962 3b46e624 ths
                           |
963 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
964 9d4fb82e bellard
@end example
965 9d4fb82e bellard
966 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
967 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
968 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
969 41d03949 bellard
to the hosts starting from 10.0.2.15.
970 9d4fb82e bellard
971 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
972 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
973 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
974 9d4fb82e bellard
975 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
976 4be456f1 ths
would require root privileges. It means you can only ping the local
977 b415a407 bellard
router (10.0.2.2).
978 b415a407 bellard
979 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
980 9bf05444 bellard
server.
981 9bf05444 bellard
982 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
983 9bf05444 bellard
redirected from the host to the guest. It allows for example to
984 9bf05444 bellard
redirect X11, telnet or SSH connections.
985 443f1376 bellard
986 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
987 41d03949 bellard
988 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
989 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
990 41d03949 bellard
basic example.
991 41d03949 bellard
992 9d4fb82e bellard
@node direct_linux_boot
993 9d4fb82e bellard
@section Direct Linux Boot
994 1f673135 bellard
995 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
996 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
997 ee0f4751 bellard
kernel testing.
998 1f673135 bellard
999 ee0f4751 bellard
The syntax is:
1000 1f673135 bellard
@example
1001 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1002 1f673135 bellard
@end example
1003 1f673135 bellard
1004 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1005 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1006 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1007 1f673135 bellard
1008 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1009 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1010 ee0f4751 bellard
Linux kernel.
1011 1f673135 bellard
1012 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1013 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1014 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1015 1f673135 bellard
@example
1016 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1017 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1018 1f673135 bellard
@end example
1019 1f673135 bellard
1020 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1021 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1022 1f673135 bellard
1023 debc7065 bellard
@node pcsys_usb
1024 b389dbfb bellard
@section USB emulation
1025 b389dbfb bellard
1026 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1027 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1028 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1029 f542086d bellard
as necessary to connect multiple USB devices.
1030 b389dbfb bellard
1031 0aff66b5 pbrook
@menu
1032 0aff66b5 pbrook
* usb_devices::
1033 0aff66b5 pbrook
* host_usb_devices::
1034 0aff66b5 pbrook
@end menu
1035 0aff66b5 pbrook
@node usb_devices
1036 0aff66b5 pbrook
@subsection Connecting USB devices
1037 b389dbfb bellard
1038 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1039 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1040 b389dbfb bellard
1041 db380c06 balrog
@table @code
1042 db380c06 balrog
@item mouse
1043 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1044 db380c06 balrog
@item tablet
1045 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1046 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1047 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1048 db380c06 balrog
@item disk:@var{file}
1049 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1050 db380c06 balrog
@item host:@var{bus.addr}
1051 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1052 0aff66b5 pbrook
(Linux only)
1053 db380c06 balrog
@item host:@var{vendor_id:product_id}
1054 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1055 0aff66b5 pbrook
(Linux only)
1056 db380c06 balrog
@item wacom-tablet
1057 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1058 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1059 f6d2a316 balrog
coordinates it reports touch pressure.
1060 db380c06 balrog
@item keyboard
1061 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1062 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1063 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1064 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1065 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1066 a11d070e balrog
used to override the default 0403:6001. For instance, 
1067 db380c06 balrog
@example
1068 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1069 db380c06 balrog
@end example
1070 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1071 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1072 2e4d9fb1 aurel32
@item braille
1073 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1074 2e4d9fb1 aurel32
or fake device.
1075 9ad97e65 balrog
@item net:@var{options}
1076 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1077 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1078 9ad97e65 balrog
For instance, user-mode networking can be used with
1079 6c9f886c balrog
@example
1080 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1081 6c9f886c balrog
@end example
1082 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
1083 2d564691 balrog
@item bt[:@var{hci-type}]
1084 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
1085 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1086 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1087 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
1088 2d564691 balrog
usage:
1089 2d564691 balrog
@example
1090 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1091 2d564691 balrog
@end example
1092 0aff66b5 pbrook
@end table
1093 b389dbfb bellard
1094 0aff66b5 pbrook
@node host_usb_devices
1095 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1096 b389dbfb bellard
1097 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1098 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1099 b389dbfb bellard
Cameras) are not supported yet.
1100 b389dbfb bellard
1101 b389dbfb bellard
@enumerate
1102 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1103 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1104 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1105 b389dbfb bellard
to @file{mydriver.o.disabled}.
1106 b389dbfb bellard
1107 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1108 b389dbfb bellard
@example
1109 b389dbfb bellard
ls /proc/bus/usb
1110 b389dbfb bellard
001  devices  drivers
1111 b389dbfb bellard
@end example
1112 b389dbfb bellard
1113 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1114 b389dbfb bellard
@example
1115 b389dbfb bellard
chown -R myuid /proc/bus/usb
1116 b389dbfb bellard
@end example
1117 b389dbfb bellard
1118 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1119 5fafdf24 ths
@example
1120 b389dbfb bellard
info usbhost
1121 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1122 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1123 b389dbfb bellard
@end example
1124 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1125 b389dbfb bellard
hubs, it won't work).
1126 b389dbfb bellard
1127 b389dbfb bellard
@item Add the device in QEMU by using:
1128 5fafdf24 ths
@example
1129 b389dbfb bellard
usb_add host:1234:5678
1130 b389dbfb bellard
@end example
1131 b389dbfb bellard
1132 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1133 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1134 b389dbfb bellard
1135 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1136 b389dbfb bellard
1137 b389dbfb bellard
@end enumerate
1138 b389dbfb bellard
1139 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1140 b389dbfb bellard
device to make it work again (this is a bug).
1141 b389dbfb bellard
1142 f858dcae ths
@node vnc_security
1143 f858dcae ths
@section VNC security
1144 f858dcae ths
1145 f858dcae ths
The VNC server capability provides access to the graphical console
1146 f858dcae ths
of the guest VM across the network. This has a number of security
1147 f858dcae ths
considerations depending on the deployment scenarios.
1148 f858dcae ths
1149 f858dcae ths
@menu
1150 f858dcae ths
* vnc_sec_none::
1151 f858dcae ths
* vnc_sec_password::
1152 f858dcae ths
* vnc_sec_certificate::
1153 f858dcae ths
* vnc_sec_certificate_verify::
1154 f858dcae ths
* vnc_sec_certificate_pw::
1155 2f9606b3 aliguori
* vnc_sec_sasl::
1156 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
1157 f858dcae ths
* vnc_generate_cert::
1158 2f9606b3 aliguori
* vnc_setup_sasl::
1159 f858dcae ths
@end menu
1160 f858dcae ths
@node vnc_sec_none
1161 f858dcae ths
@subsection Without passwords
1162 f858dcae ths
1163 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1164 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1165 f858dcae ths
socket only. For example
1166 f858dcae ths
1167 f858dcae ths
@example
1168 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1169 f858dcae ths
@end example
1170 f858dcae ths
1171 f858dcae ths
This ensures that only users on local box with read/write access to that
1172 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1173 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1174 f858dcae ths
tunnel.
1175 f858dcae ths
1176 f858dcae ths
@node vnc_sec_password
1177 f858dcae ths
@subsection With passwords
1178 f858dcae ths
1179 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1180 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1181 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1182 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1183 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1184 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
1185 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1186 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1187 f858dcae ths
1188 f858dcae ths
@example
1189 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1190 f858dcae ths
(qemu) change vnc password
1191 f858dcae ths
Password: ********
1192 f858dcae ths
(qemu)
1193 f858dcae ths
@end example
1194 f858dcae ths
1195 f858dcae ths
@node vnc_sec_certificate
1196 f858dcae ths
@subsection With x509 certificates
1197 f858dcae ths
1198 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1199 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1200 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1201 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1202 f858dcae ths
support provides a secure session, but no authentication. This allows any
1203 f858dcae ths
client to connect, and provides an encrypted session.
1204 f858dcae ths
1205 f858dcae ths
@example
1206 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1207 f858dcae ths
@end example
1208 f858dcae ths
1209 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1210 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1211 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1212 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1213 f858dcae ths
only be readable by the user owning it.
1214 f858dcae ths
1215 f858dcae ths
@node vnc_sec_certificate_verify
1216 f858dcae ths
@subsection With x509 certificates and client verification
1217 f858dcae ths
1218 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1219 f858dcae ths
The server will request that the client provide a certificate, which it will
1220 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1221 f858dcae ths
in an environment with a private internal certificate authority.
1222 f858dcae ths
1223 f858dcae ths
@example
1224 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1225 f858dcae ths
@end example
1226 f858dcae ths
1227 f858dcae ths
1228 f858dcae ths
@node vnc_sec_certificate_pw
1229 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1230 f858dcae ths
1231 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1232 f858dcae ths
to provide two layers of authentication for clients.
1233 f858dcae ths
1234 f858dcae ths
@example
1235 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1236 f858dcae ths
(qemu) change vnc password
1237 f858dcae ths
Password: ********
1238 f858dcae ths
(qemu)
1239 f858dcae ths
@end example
1240 f858dcae ths
1241 2f9606b3 aliguori
1242 2f9606b3 aliguori
@node vnc_sec_sasl
1243 2f9606b3 aliguori
@subsection With SASL authentication
1244 2f9606b3 aliguori
1245 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
1246 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
1247 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
1248 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1249 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
1250 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
1251 2f9606b3 aliguori
it will encrypt the datastream as well.
1252 2f9606b3 aliguori
1253 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
1254 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
1255 2f9606b3 aliguori
then QEMU can be launched with:
1256 2f9606b3 aliguori
1257 2f9606b3 aliguori
@example
1258 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1259 2f9606b3 aliguori
@end example
1260 2f9606b3 aliguori
1261 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
1262 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
1263 2f9606b3 aliguori
1264 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
1265 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
1266 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
1267 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
1268 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
1269 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
1270 2f9606b3 aliguori
1271 2f9606b3 aliguori
@example
1272 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1273 2f9606b3 aliguori
@end example
1274 2f9606b3 aliguori
1275 2f9606b3 aliguori
1276 f858dcae ths
@node vnc_generate_cert
1277 f858dcae ths
@subsection Generating certificates for VNC
1278 f858dcae ths
1279 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1280 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1281 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1282 f858dcae ths
each server. If using certificates for authentication, then each client
1283 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1284 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1285 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1286 f858dcae ths
1287 f858dcae ths
@menu
1288 f858dcae ths
* vnc_generate_ca::
1289 f858dcae ths
* vnc_generate_server::
1290 f858dcae ths
* vnc_generate_client::
1291 f858dcae ths
@end menu
1292 f858dcae ths
@node vnc_generate_ca
1293 f858dcae ths
@subsubsection Setup the Certificate Authority
1294 f858dcae ths
1295 f858dcae ths
This step only needs to be performed once per organization / organizational
1296 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1297 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1298 f858dcae ths
issued with it is lost.
1299 f858dcae ths
1300 f858dcae ths
@example
1301 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1302 f858dcae ths
@end example
1303 f858dcae ths
1304 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1305 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1306 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1307 f858dcae ths
name of the organization.
1308 f858dcae ths
1309 f858dcae ths
@example
1310 f858dcae ths
# cat > ca.info <<EOF
1311 f858dcae ths
cn = Name of your organization
1312 f858dcae ths
ca
1313 f858dcae ths
cert_signing_key
1314 f858dcae ths
EOF
1315 f858dcae ths
# certtool --generate-self-signed \
1316 f858dcae ths
           --load-privkey ca-key.pem
1317 f858dcae ths
           --template ca.info \
1318 f858dcae ths
           --outfile ca-cert.pem
1319 f858dcae ths
@end example
1320 f858dcae ths
1321 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1322 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1323 f858dcae ths
1324 f858dcae ths
@node vnc_generate_server
1325 f858dcae ths
@subsubsection Issuing server certificates
1326 f858dcae ths
1327 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1328 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1329 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1330 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1331 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1332 f858dcae ths
secure CA private key:
1333 f858dcae ths
1334 f858dcae ths
@example
1335 f858dcae ths
# cat > server.info <<EOF
1336 f858dcae ths
organization = Name  of your organization
1337 f858dcae ths
cn = server.foo.example.com
1338 f858dcae ths
tls_www_server
1339 f858dcae ths
encryption_key
1340 f858dcae ths
signing_key
1341 f858dcae ths
EOF
1342 f858dcae ths
# certtool --generate-privkey > server-key.pem
1343 f858dcae ths
# certtool --generate-certificate \
1344 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1345 f858dcae ths
           --load-ca-privkey ca-key.pem \
1346 f858dcae ths
           --load-privkey server server-key.pem \
1347 f858dcae ths
           --template server.info \
1348 f858dcae ths
           --outfile server-cert.pem
1349 f858dcae ths
@end example
1350 f858dcae ths
1351 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1352 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1353 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1354 f858dcae ths
1355 f858dcae ths
@node vnc_generate_client
1356 f858dcae ths
@subsubsection Issuing client certificates
1357 f858dcae ths
1358 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1359 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1360 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1361 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1362 f858dcae ths
the secure CA private key:
1363 f858dcae ths
1364 f858dcae ths
@example
1365 f858dcae ths
# cat > client.info <<EOF
1366 f858dcae ths
country = GB
1367 f858dcae ths
state = London
1368 f858dcae ths
locality = London
1369 f858dcae ths
organiazation = Name of your organization
1370 f858dcae ths
cn = client.foo.example.com
1371 f858dcae ths
tls_www_client
1372 f858dcae ths
encryption_key
1373 f858dcae ths
signing_key
1374 f858dcae ths
EOF
1375 f858dcae ths
# certtool --generate-privkey > client-key.pem
1376 f858dcae ths
# certtool --generate-certificate \
1377 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1378 f858dcae ths
           --load-ca-privkey ca-key.pem \
1379 f858dcae ths
           --load-privkey client-key.pem \
1380 f858dcae ths
           --template client.info \
1381 f858dcae ths
           --outfile client-cert.pem
1382 f858dcae ths
@end example
1383 f858dcae ths
1384 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1385 f858dcae ths
copied to the client for which they were generated.
1386 f858dcae ths
1387 2f9606b3 aliguori
1388 2f9606b3 aliguori
@node vnc_setup_sasl
1389 2f9606b3 aliguori
1390 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1391 2f9606b3 aliguori
1392 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1393 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1394 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1395 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1396 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1397 2f9606b3 aliguori
to make it search alternate locations for the service config.
1398 2f9606b3 aliguori
1399 2f9606b3 aliguori
The default configuration might contain
1400 2f9606b3 aliguori
1401 2f9606b3 aliguori
@example
1402 2f9606b3 aliguori
mech_list: digest-md5
1403 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1404 2f9606b3 aliguori
@end example
1405 2f9606b3 aliguori
1406 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1407 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1408 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1409 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1410 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1411 2f9606b3 aliguori
ad-hoc testing.
1412 2f9606b3 aliguori
1413 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1414 2f9606b3 aliguori
mechanism
1415 2f9606b3 aliguori
1416 2f9606b3 aliguori
@example
1417 2f9606b3 aliguori
mech_list: gssapi
1418 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1419 2f9606b3 aliguori
@end example
1420 2f9606b3 aliguori
1421 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1422 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1423 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1424 2f9606b3 aliguori
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1425 2f9606b3 aliguori
1426 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1427 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1428 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1429 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1430 2f9606b3 aliguori
1431 0806e3f6 bellard
@node gdb_usage
1432 da415d54 bellard
@section GDB usage
1433 da415d54 bellard
1434 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1435 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1436 da415d54 bellard
1437 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1438 da415d54 bellard
gdb connection:
1439 da415d54 bellard
@example
1440 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1441 debc7065 bellard
       -append "root=/dev/hda"
1442 da415d54 bellard
Connected to host network interface: tun0
1443 da415d54 bellard
Waiting gdb connection on port 1234
1444 da415d54 bellard
@end example
1445 da415d54 bellard
1446 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1447 da415d54 bellard
@example
1448 da415d54 bellard
> gdb vmlinux
1449 da415d54 bellard
@end example
1450 da415d54 bellard
1451 da415d54 bellard
In gdb, connect to QEMU:
1452 da415d54 bellard
@example
1453 6c9bf893 bellard
(gdb) target remote localhost:1234
1454 da415d54 bellard
@end example
1455 da415d54 bellard
1456 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1457 da415d54 bellard
@example
1458 da415d54 bellard
(gdb) c
1459 da415d54 bellard
@end example
1460 da415d54 bellard
1461 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1462 0806e3f6 bellard
1463 0806e3f6 bellard
@enumerate
1464 0806e3f6 bellard
@item
1465 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1466 0806e3f6 bellard
@item
1467 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1468 0806e3f6 bellard
@item
1469 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1470 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1471 0806e3f6 bellard
@end enumerate
1472 0806e3f6 bellard
1473 60897d36 edgar_igl
Advanced debugging options:
1474 60897d36 edgar_igl
1475 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1476 94d45e44 edgar_igl
@table @code
1477 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1478 60897d36 edgar_igl
1479 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1480 60897d36 edgar_igl
@example
1481 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1482 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1483 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1484 60897d36 edgar_igl
@end example
1485 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1486 60897d36 edgar_igl
1487 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1488 60897d36 edgar_igl
@example
1489 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1490 60897d36 edgar_igl
sending: "qqemu.sstep"
1491 60897d36 edgar_igl
received: "0x7"
1492 60897d36 edgar_igl
@end example
1493 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1494 60897d36 edgar_igl
1495 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1496 60897d36 edgar_igl
@example
1497 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1498 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1499 60897d36 edgar_igl
received: "OK"
1500 60897d36 edgar_igl
@end example
1501 94d45e44 edgar_igl
@end table
1502 60897d36 edgar_igl
1503 debc7065 bellard
@node pcsys_os_specific
1504 1a084f3d bellard
@section Target OS specific information
1505 1a084f3d bellard
1506 1a084f3d bellard
@subsection Linux
1507 1a084f3d bellard
1508 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1509 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1510 15a34c63 bellard
color depth in the guest and the host OS.
1511 1a084f3d bellard
1512 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1513 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1514 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1515 e3371e62 bellard
cannot simulate exactly.
1516 e3371e62 bellard
1517 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1518 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1519 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1520 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1521 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1522 7c3fc84d bellard
1523 1a084f3d bellard
@subsection Windows
1524 1a084f3d bellard
1525 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1526 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1527 1a084f3d bellard
1528 e3371e62 bellard
@subsubsection SVGA graphic modes support
1529 e3371e62 bellard
1530 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1531 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1532 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1533 15a34c63 bellard
depth in the guest and the host OS.
1534 1a084f3d bellard
1535 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1536 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1537 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1538 3cb0853a bellard
(option @option{-std-vga}).
1539 3cb0853a bellard
1540 e3371e62 bellard
@subsubsection CPU usage reduction
1541 e3371e62 bellard
1542 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1543 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1544 15a34c63 bellard
idle. You can install the utility from
1545 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1546 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1547 1a084f3d bellard
1548 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1549 e3371e62 bellard
1550 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1551 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1552 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1553 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1554 9d0a8e6f bellard
IDE transfers).
1555 e3371e62 bellard
1556 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1557 6cc721cf bellard
1558 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1559 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1560 6cc721cf bellard
use the APM driver provided by the BIOS.
1561 6cc721cf bellard
1562 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1563 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1564 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1565 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1566 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1567 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1568 6cc721cf bellard
1569 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1570 6cc721cf bellard
1571 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1572 6cc721cf bellard
1573 2192c332 bellard
@subsubsection Windows XP security problem
1574 e3371e62 bellard
1575 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1576 e3371e62 bellard
error when booting:
1577 e3371e62 bellard
@example
1578 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1579 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1580 e3371e62 bellard
@end example
1581 e3371e62 bellard
1582 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1583 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1584 2192c332 bellard
network while in safe mode, its recommended to download the full
1585 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1586 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1587 e3371e62 bellard
1588 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1589 a0a821a4 bellard
1590 a0a821a4 bellard
@subsubsection CPU usage reduction
1591 a0a821a4 bellard
1592 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1593 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1594 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1595 a0a821a4 bellard
problem.
1596 a0a821a4 bellard
1597 debc7065 bellard
@node QEMU System emulator for non PC targets
1598 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1599 3f9f3aa1 bellard
1600 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1601 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1602 4be456f1 ths
differences are mentioned in the following sections.
1603 3f9f3aa1 bellard
1604 debc7065 bellard
@menu
1605 debc7065 bellard
* QEMU PowerPC System emulator::
1606 24d4de45 ths
* Sparc32 System emulator::
1607 24d4de45 ths
* Sparc64 System emulator::
1608 24d4de45 ths
* MIPS System emulator::
1609 24d4de45 ths
* ARM System emulator::
1610 24d4de45 ths
* ColdFire System emulator::
1611 debc7065 bellard
@end menu
1612 debc7065 bellard
1613 debc7065 bellard
@node QEMU PowerPC System emulator
1614 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
1615 1a084f3d bellard
1616 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1617 15a34c63 bellard
or PowerMac PowerPC system.
1618 1a084f3d bellard
1619 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1620 1a084f3d bellard
1621 15a34c63 bellard
@itemize @minus
1622 5fafdf24 ths
@item
1623 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1624 15a34c63 bellard
@item
1625 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1626 5fafdf24 ths
@item
1627 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1628 5fafdf24 ths
@item
1629 15a34c63 bellard
NE2000 PCI adapters
1630 15a34c63 bellard
@item
1631 15a34c63 bellard
Non Volatile RAM
1632 15a34c63 bellard
@item
1633 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1634 1a084f3d bellard
@end itemize
1635 1a084f3d bellard
1636 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1637 52c00a5f bellard
1638 52c00a5f bellard
@itemize @minus
1639 5fafdf24 ths
@item
1640 15a34c63 bellard
PCI Bridge
1641 15a34c63 bellard
@item
1642 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1643 5fafdf24 ths
@item
1644 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1645 52c00a5f bellard
@item
1646 52c00a5f bellard
Floppy disk
1647 5fafdf24 ths
@item
1648 15a34c63 bellard
NE2000 network adapters
1649 52c00a5f bellard
@item
1650 52c00a5f bellard
Serial port
1651 52c00a5f bellard
@item
1652 52c00a5f bellard
PREP Non Volatile RAM
1653 15a34c63 bellard
@item
1654 15a34c63 bellard
PC compatible keyboard and mouse.
1655 52c00a5f bellard
@end itemize
1656 52c00a5f bellard
1657 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1658 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1659 52c00a5f bellard
1660 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1661 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1662 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1663 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1664 992e5acd blueswir1
1665 15a34c63 bellard
@c man begin OPTIONS
1666 15a34c63 bellard
1667 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1668 15a34c63 bellard
1669 15a34c63 bellard
@table @option
1670 15a34c63 bellard
1671 3b46e624 ths
@item -g WxH[xDEPTH]
1672 15a34c63 bellard
1673 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1674 15a34c63 bellard
1675 95efd11c blueswir1
@item -prom-env string
1676 95efd11c blueswir1
1677 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1678 95efd11c blueswir1
1679 95efd11c blueswir1
@example
1680 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1681 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1682 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1683 95efd11c blueswir1
@end example
1684 95efd11c blueswir1
1685 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1686 95efd11c blueswir1
1687 15a34c63 bellard
@end table
1688 15a34c63 bellard
1689 5fafdf24 ths
@c man end
1690 15a34c63 bellard
1691 15a34c63 bellard
1692 52c00a5f bellard
More information is available at
1693 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1694 52c00a5f bellard
1695 24d4de45 ths
@node Sparc32 System emulator
1696 24d4de45 ths
@section Sparc32 System emulator
1697 e80cfcfc bellard
1698 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1699 34a3d239 blueswir1
Sun4m architecture machines:
1700 34a3d239 blueswir1
@itemize @minus
1701 34a3d239 blueswir1
@item
1702 34a3d239 blueswir1
SPARCstation 4
1703 34a3d239 blueswir1
@item
1704 34a3d239 blueswir1
SPARCstation 5
1705 34a3d239 blueswir1
@item
1706 34a3d239 blueswir1
SPARCstation 10
1707 34a3d239 blueswir1
@item
1708 34a3d239 blueswir1
SPARCstation 20
1709 34a3d239 blueswir1
@item
1710 34a3d239 blueswir1
SPARCserver 600MP
1711 34a3d239 blueswir1
@item
1712 34a3d239 blueswir1
SPARCstation LX
1713 34a3d239 blueswir1
@item
1714 34a3d239 blueswir1
SPARCstation Voyager
1715 34a3d239 blueswir1
@item
1716 34a3d239 blueswir1
SPARCclassic
1717 34a3d239 blueswir1
@item
1718 34a3d239 blueswir1
SPARCbook
1719 34a3d239 blueswir1
@end itemize
1720 34a3d239 blueswir1
1721 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1722 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1723 e80cfcfc bellard
1724 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1725 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1726 34a3d239 blueswir1
emulators are not usable yet.
1727 34a3d239 blueswir1
1728 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1729 e80cfcfc bellard
1730 e80cfcfc bellard
@itemize @minus
1731 3475187d bellard
@item
1732 7d85892b blueswir1
IOMMU or IO-UNITs
1733 e80cfcfc bellard
@item
1734 e80cfcfc bellard
TCX Frame buffer
1735 5fafdf24 ths
@item
1736 e80cfcfc bellard
Lance (Am7990) Ethernet
1737 e80cfcfc bellard
@item
1738 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1739 e80cfcfc bellard
@item
1740 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1741 3475187d bellard
and power/reset logic
1742 3475187d bellard
@item
1743 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1744 3475187d bellard
@item
1745 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1746 a2502b58 blueswir1
@item
1747 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1748 e80cfcfc bellard
@end itemize
1749 e80cfcfc bellard
1750 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1751 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1752 7d85892b blueswir1
others 2047MB.
1753 3475187d bellard
1754 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1755 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1756 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1757 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1758 3475187d bellard
1759 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1760 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1761 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1762 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1763 34a3d239 blueswir1
Solaris.
1764 3475187d bellard
1765 3475187d bellard
@c man begin OPTIONS
1766 3475187d bellard
1767 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1768 3475187d bellard
1769 3475187d bellard
@table @option
1770 3475187d bellard
1771 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
1772 3475187d bellard
1773 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1774 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1775 3475187d bellard
1776 66508601 blueswir1
@item -prom-env string
1777 66508601 blueswir1
1778 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1779 66508601 blueswir1
1780 66508601 blueswir1
@example
1781 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1782 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1783 66508601 blueswir1
@end example
1784 66508601 blueswir1
1785 34a3d239 blueswir1
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1786 a2502b58 blueswir1
1787 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1788 a2502b58 blueswir1
1789 3475187d bellard
@end table
1790 3475187d bellard
1791 5fafdf24 ths
@c man end
1792 3475187d bellard
1793 24d4de45 ths
@node Sparc64 System emulator
1794 24d4de45 ths
@section Sparc64 System emulator
1795 e80cfcfc bellard
1796 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1797 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1798 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1799 34a3d239 blueswir1
it can launch some kernels.
1800 b756921a bellard
1801 c7ba218d blueswir1
QEMU emulates the following peripherals:
1802 83469015 bellard
1803 83469015 bellard
@itemize @minus
1804 83469015 bellard
@item
1805 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1806 83469015 bellard
@item
1807 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1808 83469015 bellard
@item
1809 34a3d239 blueswir1
PS/2 mouse and keyboard
1810 34a3d239 blueswir1
@item
1811 83469015 bellard
Non Volatile RAM M48T59
1812 83469015 bellard
@item
1813 83469015 bellard
PC-compatible serial ports
1814 c7ba218d blueswir1
@item
1815 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1816 34a3d239 blueswir1
@item
1817 34a3d239 blueswir1
Floppy disk
1818 83469015 bellard
@end itemize
1819 83469015 bellard
1820 c7ba218d blueswir1
@c man begin OPTIONS
1821 c7ba218d blueswir1
1822 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1823 c7ba218d blueswir1
1824 c7ba218d blueswir1
@table @option
1825 c7ba218d blueswir1
1826 34a3d239 blueswir1
@item -prom-env string
1827 34a3d239 blueswir1
1828 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1829 34a3d239 blueswir1
1830 34a3d239 blueswir1
@example
1831 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1832 34a3d239 blueswir1
@end example
1833 34a3d239 blueswir1
1834 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1835 c7ba218d blueswir1
1836 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1837 c7ba218d blueswir1
1838 c7ba218d blueswir1
@end table
1839 c7ba218d blueswir1
1840 c7ba218d blueswir1
@c man end
1841 c7ba218d blueswir1
1842 24d4de45 ths
@node MIPS System emulator
1843 24d4de45 ths
@section MIPS System emulator
1844 9d0a8e6f bellard
1845 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1846 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1847 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1848 88cb0a02 aurel32
Five different machine types are emulated:
1849 24d4de45 ths
1850 24d4de45 ths
@itemize @minus
1851 24d4de45 ths
@item
1852 24d4de45 ths
A generic ISA PC-like machine "mips"
1853 24d4de45 ths
@item
1854 24d4de45 ths
The MIPS Malta prototype board "malta"
1855 24d4de45 ths
@item
1856 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1857 6bf5b4e8 ths
@item
1858 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1859 88cb0a02 aurel32
@item
1860 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1861 24d4de45 ths
@end itemize
1862 24d4de45 ths
1863 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1864 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1865 24d4de45 ths
emulated:
1866 3f9f3aa1 bellard
1867 3f9f3aa1 bellard
@itemize @minus
1868 5fafdf24 ths
@item
1869 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1870 3f9f3aa1 bellard
@item
1871 3f9f3aa1 bellard
PC style serial port
1872 3f9f3aa1 bellard
@item
1873 24d4de45 ths
PC style IDE disk
1874 24d4de45 ths
@item
1875 3f9f3aa1 bellard
NE2000 network card
1876 3f9f3aa1 bellard
@end itemize
1877 3f9f3aa1 bellard
1878 24d4de45 ths
The Malta emulation supports the following devices:
1879 24d4de45 ths
1880 24d4de45 ths
@itemize @minus
1881 24d4de45 ths
@item
1882 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1883 24d4de45 ths
@item
1884 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1885 24d4de45 ths
@item
1886 24d4de45 ths
The Multi-I/O chip's serial device
1887 24d4de45 ths
@item
1888 24d4de45 ths
PCnet32 PCI network card
1889 24d4de45 ths
@item
1890 24d4de45 ths
Malta FPGA serial device
1891 24d4de45 ths
@item
1892 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1893 24d4de45 ths
@end itemize
1894 24d4de45 ths
1895 24d4de45 ths
The ACER Pica emulation supports:
1896 24d4de45 ths
1897 24d4de45 ths
@itemize @minus
1898 24d4de45 ths
@item
1899 24d4de45 ths
MIPS R4000 CPU
1900 24d4de45 ths
@item
1901 24d4de45 ths
PC-style IRQ and DMA controllers
1902 24d4de45 ths
@item
1903 24d4de45 ths
PC Keyboard
1904 24d4de45 ths
@item
1905 24d4de45 ths
IDE controller
1906 24d4de45 ths
@end itemize
1907 3f9f3aa1 bellard
1908 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
1909 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1910 f0fc6f8f ths
It supports:
1911 6bf5b4e8 ths
1912 6bf5b4e8 ths
@itemize @minus
1913 6bf5b4e8 ths
@item
1914 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1915 6bf5b4e8 ths
@item
1916 6bf5b4e8 ths
PC style serial port
1917 6bf5b4e8 ths
@item
1918 6bf5b4e8 ths
MIPSnet network emulation
1919 6bf5b4e8 ths
@end itemize
1920 6bf5b4e8 ths
1921 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1922 88cb0a02 aurel32
1923 88cb0a02 aurel32
@itemize @minus
1924 88cb0a02 aurel32
@item
1925 88cb0a02 aurel32
MIPS R4000 CPU
1926 88cb0a02 aurel32
@item
1927 88cb0a02 aurel32
PC-style IRQ controller
1928 88cb0a02 aurel32
@item
1929 88cb0a02 aurel32
PC Keyboard
1930 88cb0a02 aurel32
@item
1931 88cb0a02 aurel32
SCSI controller
1932 88cb0a02 aurel32
@item
1933 88cb0a02 aurel32
G364 framebuffer
1934 88cb0a02 aurel32
@end itemize
1935 88cb0a02 aurel32
1936 88cb0a02 aurel32
1937 24d4de45 ths
@node ARM System emulator
1938 24d4de45 ths
@section ARM System emulator
1939 3f9f3aa1 bellard
1940 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1941 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1942 3f9f3aa1 bellard
devices:
1943 3f9f3aa1 bellard
1944 3f9f3aa1 bellard
@itemize @minus
1945 3f9f3aa1 bellard
@item
1946 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1947 3f9f3aa1 bellard
@item
1948 3f9f3aa1 bellard
Two PL011 UARTs
1949 5fafdf24 ths
@item
1950 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1951 00a9bf19 pbrook
@item
1952 00a9bf19 pbrook
PL110 LCD controller
1953 00a9bf19 pbrook
@item
1954 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1955 a1bb27b1 pbrook
@item
1956 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1957 00a9bf19 pbrook
@end itemize
1958 00a9bf19 pbrook
1959 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1960 00a9bf19 pbrook
1961 00a9bf19 pbrook
@itemize @minus
1962 00a9bf19 pbrook
@item
1963 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1964 00a9bf19 pbrook
@item
1965 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1966 00a9bf19 pbrook
@item
1967 00a9bf19 pbrook
Four PL011 UARTs
1968 5fafdf24 ths
@item
1969 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1970 00a9bf19 pbrook
@item
1971 00a9bf19 pbrook
PL110 LCD controller
1972 00a9bf19 pbrook
@item
1973 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1974 00a9bf19 pbrook
@item
1975 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1976 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1977 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1978 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1979 00a9bf19 pbrook
mapped control registers.
1980 e6de1bad pbrook
@item
1981 e6de1bad pbrook
PCI OHCI USB controller.
1982 e6de1bad pbrook
@item
1983 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1984 a1bb27b1 pbrook
@item
1985 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1986 3f9f3aa1 bellard
@end itemize
1987 3f9f3aa1 bellard
1988 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
1989 d7739d75 pbrook
1990 d7739d75 pbrook
@itemize @minus
1991 d7739d75 pbrook
@item
1992 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
1993 d7739d75 pbrook
@item
1994 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1995 d7739d75 pbrook
@item
1996 d7739d75 pbrook
Four PL011 UARTs
1997 5fafdf24 ths
@item
1998 d7739d75 pbrook
SMC 91c111 Ethernet adapter
1999 d7739d75 pbrook
@item
2000 d7739d75 pbrook
PL110 LCD controller
2001 d7739d75 pbrook
@item
2002 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2003 d7739d75 pbrook
@item
2004 d7739d75 pbrook
PCI host bridge
2005 d7739d75 pbrook
@item
2006 d7739d75 pbrook
PCI OHCI USB controller
2007 d7739d75 pbrook
@item
2008 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2009 a1bb27b1 pbrook
@item
2010 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2011 d7739d75 pbrook
@end itemize
2012 d7739d75 pbrook
2013 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2014 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2015 b00052e4 balrog
2016 b00052e4 balrog
@itemize @minus
2017 b00052e4 balrog
@item
2018 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2019 b00052e4 balrog
@item
2020 b00052e4 balrog
NAND Flash memory
2021 b00052e4 balrog
@item
2022 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2023 b00052e4 balrog
@item
2024 b00052e4 balrog
On-chip OHCI USB controller
2025 b00052e4 balrog
@item
2026 b00052e4 balrog
On-chip LCD controller
2027 b00052e4 balrog
@item
2028 b00052e4 balrog
On-chip Real Time Clock
2029 b00052e4 balrog
@item
2030 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2031 b00052e4 balrog
@item
2032 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2033 b00052e4 balrog
@item
2034 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2035 b00052e4 balrog
@item
2036 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2037 b00052e4 balrog
@item
2038 b00052e4 balrog
Three on-chip UARTs
2039 b00052e4 balrog
@item
2040 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2041 b00052e4 balrog
@end itemize
2042 b00052e4 balrog
2043 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2044 02645926 balrog
following elements:
2045 02645926 balrog
2046 02645926 balrog
@itemize @minus
2047 02645926 balrog
@item
2048 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2049 02645926 balrog
@item
2050 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2051 02645926 balrog
@item
2052 02645926 balrog
On-chip LCD controller
2053 02645926 balrog
@item
2054 02645926 balrog
On-chip Real Time Clock
2055 02645926 balrog
@item
2056 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2057 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2058 02645926 balrog
@item
2059 02645926 balrog
GPIO-connected matrix keypad
2060 02645926 balrog
@item
2061 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2062 02645926 balrog
@item
2063 02645926 balrog
Three on-chip UARTs
2064 02645926 balrog
@end itemize
2065 02645926 balrog
2066 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2067 c30bb264 balrog
emulation supports the following elements:
2068 c30bb264 balrog
2069 c30bb264 balrog
@itemize @minus
2070 c30bb264 balrog
@item
2071 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2072 c30bb264 balrog
@item
2073 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2074 c30bb264 balrog
@item
2075 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2076 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2077 c30bb264 balrog
@item
2078 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2079 c30bb264 balrog
driven through SPI bus
2080 c30bb264 balrog
@item
2081 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2082 c30bb264 balrog
through I@math{^2}C bus
2083 c30bb264 balrog
@item
2084 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2085 c30bb264 balrog
@item
2086 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2087 c30bb264 balrog
@item
2088 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
2089 2d564691 balrog
@item
2090 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2091 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2092 c30bb264 balrog
@item
2093 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2094 c30bb264 balrog
@item
2095 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2096 c30bb264 balrog
@item
2097 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2098 c30bb264 balrog
through CBUS
2099 c30bb264 balrog
@end itemize
2100 c30bb264 balrog
2101 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2102 9ee6e8bb pbrook
devices:
2103 9ee6e8bb pbrook
2104 9ee6e8bb pbrook
@itemize @minus
2105 9ee6e8bb pbrook
@item
2106 9ee6e8bb pbrook
Cortex-M3 CPU core.
2107 9ee6e8bb pbrook
@item
2108 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2109 9ee6e8bb pbrook
@item
2110 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2111 9ee6e8bb pbrook
@item
2112 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2113 9ee6e8bb pbrook
@end itemize
2114 9ee6e8bb pbrook
2115 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2116 9ee6e8bb pbrook
devices:
2117 9ee6e8bb pbrook
2118 9ee6e8bb pbrook
@itemize @minus
2119 9ee6e8bb pbrook
@item
2120 9ee6e8bb pbrook
Cortex-M3 CPU core.
2121 9ee6e8bb pbrook
@item
2122 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2123 9ee6e8bb pbrook
@item
2124 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2125 9ee6e8bb pbrook
@item
2126 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2127 9ee6e8bb pbrook
@end itemize
2128 9ee6e8bb pbrook
2129 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2130 57cd6e97 balrog
elements:
2131 57cd6e97 balrog
2132 57cd6e97 balrog
@itemize @minus
2133 57cd6e97 balrog
@item
2134 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2135 57cd6e97 balrog
@item
2136 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2137 57cd6e97 balrog
@item
2138 57cd6e97 balrog
Up to 2 16550 UARTs
2139 57cd6e97 balrog
@item
2140 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2141 57cd6e97 balrog
@item
2142 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2143 57cd6e97 balrog
@item
2144 57cd6e97 balrog
128?64 display with brightness control
2145 57cd6e97 balrog
@item
2146 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2147 57cd6e97 balrog
@end itemize
2148 57cd6e97 balrog
2149 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
2150 997641a8 balrog
The emulaton includes the following elements:
2151 997641a8 balrog
2152 997641a8 balrog
@itemize @minus
2153 997641a8 balrog
@item
2154 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2155 997641a8 balrog
@item
2156 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2157 997641a8 balrog
V1
2158 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
2159 997641a8 balrog
V2
2160 997641a8 balrog
1 Flash of 32MB
2161 997641a8 balrog
@item
2162 997641a8 balrog
On-chip LCD controller
2163 997641a8 balrog
@item
2164 997641a8 balrog
On-chip Real Time Clock
2165 997641a8 balrog
@item
2166 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
2167 997641a8 balrog
@item
2168 997641a8 balrog
Three on-chip UARTs
2169 997641a8 balrog
@end itemize
2170 997641a8 balrog
2171 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2172 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2173 9d0a8e6f bellard
2174 d2c639d6 blueswir1
@c man begin OPTIONS
2175 d2c639d6 blueswir1
2176 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2177 d2c639d6 blueswir1
2178 d2c639d6 blueswir1
@table @option
2179 d2c639d6 blueswir1
2180 d2c639d6 blueswir1
@item -semihosting
2181 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2182 d2c639d6 blueswir1
2183 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
2184 d2c639d6 blueswir1
2185 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2186 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2187 d2c639d6 blueswir1
2188 d2c639d6 blueswir1
@end table
2189 d2c639d6 blueswir1
2190 24d4de45 ths
@node ColdFire System emulator
2191 24d4de45 ths
@section ColdFire System emulator
2192 209a4e69 pbrook
2193 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2194 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2195 707e011b pbrook
2196 707e011b pbrook
The M5208EVB emulation includes the following devices:
2197 707e011b pbrook
2198 707e011b pbrook
@itemize @minus
2199 5fafdf24 ths
@item
2200 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2201 707e011b pbrook
@item
2202 707e011b pbrook
Three Two on-chip UARTs.
2203 707e011b pbrook
@item
2204 707e011b pbrook
Fast Ethernet Controller (FEC)
2205 707e011b pbrook
@end itemize
2206 707e011b pbrook
2207 707e011b pbrook
The AN5206 emulation includes the following devices:
2208 209a4e69 pbrook
2209 209a4e69 pbrook
@itemize @minus
2210 5fafdf24 ths
@item
2211 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2212 209a4e69 pbrook
@item
2213 209a4e69 pbrook
Two on-chip UARTs.
2214 209a4e69 pbrook
@end itemize
2215 209a4e69 pbrook
2216 d2c639d6 blueswir1
@c man begin OPTIONS
2217 d2c639d6 blueswir1
2218 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
2219 d2c639d6 blueswir1
2220 d2c639d6 blueswir1
@table @option
2221 d2c639d6 blueswir1
2222 d2c639d6 blueswir1
@item -semihosting
2223 d2c639d6 blueswir1
Enable semihosting syscall emulation.
2224 d2c639d6 blueswir1
2225 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2226 d2c639d6 blueswir1
2227 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
2228 d2c639d6 blueswir1
so should only be used with trusted guest OS.
2229 d2c639d6 blueswir1
2230 d2c639d6 blueswir1
@end table
2231 d2c639d6 blueswir1
2232 5fafdf24 ths
@node QEMU User space emulator
2233 5fafdf24 ths
@chapter QEMU User space emulator
2234 83195237 bellard
2235 83195237 bellard
@menu
2236 83195237 bellard
* Supported Operating Systems ::
2237 83195237 bellard
* Linux User space emulator::
2238 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2239 84778508 blueswir1
* BSD User space emulator ::
2240 83195237 bellard
@end menu
2241 83195237 bellard
2242 83195237 bellard
@node Supported Operating Systems
2243 83195237 bellard
@section Supported Operating Systems
2244 83195237 bellard
2245 83195237 bellard
The following OS are supported in user space emulation:
2246 83195237 bellard
2247 83195237 bellard
@itemize @minus
2248 83195237 bellard
@item
2249 4be456f1 ths
Linux (referred as qemu-linux-user)
2250 83195237 bellard
@item
2251 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2252 84778508 blueswir1
@item
2253 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2254 83195237 bellard
@end itemize
2255 83195237 bellard
2256 83195237 bellard
@node Linux User space emulator
2257 83195237 bellard
@section Linux User space emulator
2258 386405f7 bellard
2259 debc7065 bellard
@menu
2260 debc7065 bellard
* Quick Start::
2261 debc7065 bellard
* Wine launch::
2262 debc7065 bellard
* Command line options::
2263 79737e4a pbrook
* Other binaries::
2264 debc7065 bellard
@end menu
2265 debc7065 bellard
2266 debc7065 bellard
@node Quick Start
2267 83195237 bellard
@subsection Quick Start
2268 df0f11a0 bellard
2269 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2270 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2271 386405f7 bellard
2272 1f673135 bellard
@itemize
2273 386405f7 bellard
2274 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2275 1f673135 bellard
libraries:
2276 386405f7 bellard
2277 5fafdf24 ths
@example
2278 1f673135 bellard
qemu-i386 -L / /bin/ls
2279 1f673135 bellard
@end example
2280 386405f7 bellard
2281 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2282 1f673135 bellard
@file{/} prefix.
2283 386405f7 bellard
2284 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2285 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2286 386405f7 bellard
2287 5fafdf24 ths
@example
2288 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2289 1f673135 bellard
@end example
2290 386405f7 bellard
2291 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2292 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2293 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2294 df0f11a0 bellard
2295 1f673135 bellard
@example
2296 5fafdf24 ths
unset LD_LIBRARY_PATH
2297 1f673135 bellard
@end example
2298 1eb87257 bellard
2299 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2300 1eb87257 bellard
2301 1f673135 bellard
@example
2302 1f673135 bellard
qemu-i386 tests/i386/ls
2303 1f673135 bellard
@end example
2304 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2305 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2306 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2307 1f673135 bellard
Linux kernel.
2308 1eb87257 bellard
2309 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2310 1f673135 bellard
@example
2311 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2312 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2313 1f673135 bellard
@end example
2314 1eb20527 bellard
2315 1f673135 bellard
@end itemize
2316 1eb20527 bellard
2317 debc7065 bellard
@node Wine launch
2318 83195237 bellard
@subsection Wine launch
2319 1eb20527 bellard
2320 1f673135 bellard
@itemize
2321 386405f7 bellard
2322 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2323 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2324 1f673135 bellard
able to do:
2325 386405f7 bellard
2326 1f673135 bellard
@example
2327 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2328 1f673135 bellard
@end example
2329 386405f7 bellard
2330 1f673135 bellard
@item Download the binary x86 Wine install
2331 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2332 386405f7 bellard
2333 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2334 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2335 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2336 386405f7 bellard
2337 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2338 386405f7 bellard
2339 1f673135 bellard
@example
2340 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2341 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2342 1f673135 bellard
@end example
2343 386405f7 bellard
2344 1f673135 bellard
@end itemize
2345 fd429f2f bellard
2346 debc7065 bellard
@node Command line options
2347 83195237 bellard
@subsection Command line options
2348 1eb20527 bellard
2349 1f673135 bellard
@example
2350 34a3d239 blueswir1
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2351 1f673135 bellard
@end example
2352 1eb20527 bellard
2353 1f673135 bellard
@table @option
2354 1f673135 bellard
@item -h
2355 1f673135 bellard
Print the help
2356 3b46e624 ths
@item -L path
2357 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2358 1f673135 bellard
@item -s size
2359 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2360 34a3d239 blueswir1
@item -cpu model
2361 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2362 386405f7 bellard
@end table
2363 386405f7 bellard
2364 1f673135 bellard
Debug options:
2365 386405f7 bellard
2366 1f673135 bellard
@table @option
2367 1f673135 bellard
@item -d
2368 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2369 1f673135 bellard
@item -p pagesize
2370 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2371 34a3d239 blueswir1
@item -g port
2372 34a3d239 blueswir1
Wait gdb connection to port
2373 1f673135 bellard
@end table
2374 386405f7 bellard
2375 b01bcae6 balrog
Environment variables:
2376 b01bcae6 balrog
2377 b01bcae6 balrog
@table @env
2378 b01bcae6 balrog
@item QEMU_STRACE
2379 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2380 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2381 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2382 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2383 b01bcae6 balrog
format are printed with information for six arguments.  Many
2384 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2385 5cfdf930 ths
@end table
2386 b01bcae6 balrog
2387 79737e4a pbrook
@node Other binaries
2388 83195237 bellard
@subsection Other binaries
2389 79737e4a pbrook
2390 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2391 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2392 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2393 79737e4a pbrook
2394 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2395 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2396 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2397 e6e5906b pbrook
2398 79737e4a pbrook
The binary format is detected automatically.
2399 79737e4a pbrook
2400 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2401 34a3d239 blueswir1
2402 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2403 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2404 a785e42e blueswir1
2405 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2406 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2407 a785e42e blueswir1
2408 83195237 bellard
@node Mac OS X/Darwin User space emulator
2409 83195237 bellard
@section Mac OS X/Darwin User space emulator
2410 83195237 bellard
2411 83195237 bellard
@menu
2412 83195237 bellard
* Mac OS X/Darwin Status::
2413 83195237 bellard
* Mac OS X/Darwin Quick Start::
2414 83195237 bellard
* Mac OS X/Darwin Command line options::
2415 83195237 bellard
@end menu
2416 83195237 bellard
2417 83195237 bellard
@node Mac OS X/Darwin Status
2418 83195237 bellard
@subsection Mac OS X/Darwin Status
2419 83195237 bellard
2420 83195237 bellard
@itemize @minus
2421 83195237 bellard
@item
2422 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2423 83195237 bellard
@item
2424 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2425 83195237 bellard
@item
2426 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2427 83195237 bellard
@item
2428 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2429 83195237 bellard
@end itemize
2430 83195237 bellard
2431 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2432 83195237 bellard
2433 83195237 bellard
@node Mac OS X/Darwin Quick Start
2434 83195237 bellard
@subsection Quick Start
2435 83195237 bellard
2436 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2437 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2438 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2439 83195237 bellard
CD or compile them by hand.
2440 83195237 bellard
2441 83195237 bellard
@itemize
2442 83195237 bellard
2443 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2444 83195237 bellard
libraries:
2445 83195237 bellard
2446 5fafdf24 ths
@example
2447 dbcf5e82 ths
qemu-i386 /bin/ls
2448 83195237 bellard
@end example
2449 83195237 bellard
2450 83195237 bellard
or to run the ppc version of the executable:
2451 83195237 bellard
2452 5fafdf24 ths
@example
2453 dbcf5e82 ths
qemu-ppc /bin/ls
2454 83195237 bellard
@end example
2455 83195237 bellard
2456 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2457 83195237 bellard
are installed:
2458 83195237 bellard
2459 5fafdf24 ths
@example
2460 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2461 83195237 bellard
@end example
2462 83195237 bellard
2463 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2464 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2465 83195237 bellard
2466 83195237 bellard
@end itemize
2467 83195237 bellard
2468 83195237 bellard
@node Mac OS X/Darwin Command line options
2469 83195237 bellard
@subsection Command line options
2470 83195237 bellard
2471 83195237 bellard
@example
2472 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2473 83195237 bellard
@end example
2474 83195237 bellard
2475 83195237 bellard
@table @option
2476 83195237 bellard
@item -h
2477 83195237 bellard
Print the help
2478 3b46e624 ths
@item -L path
2479 83195237 bellard
Set the library root path (default=/)
2480 83195237 bellard
@item -s size
2481 83195237 bellard
Set the stack size in bytes (default=524288)
2482 83195237 bellard
@end table
2483 83195237 bellard
2484 83195237 bellard
Debug options:
2485 83195237 bellard
2486 83195237 bellard
@table @option
2487 83195237 bellard
@item -d
2488 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2489 83195237 bellard
@item -p pagesize
2490 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2491 83195237 bellard
@end table
2492 83195237 bellard
2493 84778508 blueswir1
@node BSD User space emulator
2494 84778508 blueswir1
@section BSD User space emulator
2495 84778508 blueswir1
2496 84778508 blueswir1
@menu
2497 84778508 blueswir1
* BSD Status::
2498 84778508 blueswir1
* BSD Quick Start::
2499 84778508 blueswir1
* BSD Command line options::
2500 84778508 blueswir1
@end menu
2501 84778508 blueswir1
2502 84778508 blueswir1
@node BSD Status
2503 84778508 blueswir1
@subsection BSD Status
2504 84778508 blueswir1
2505 84778508 blueswir1
@itemize @minus
2506 84778508 blueswir1
@item
2507 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2508 84778508 blueswir1
@end itemize
2509 84778508 blueswir1
2510 84778508 blueswir1
@node BSD Quick Start
2511 84778508 blueswir1
@subsection Quick Start
2512 84778508 blueswir1
2513 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2514 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2515 84778508 blueswir1
2516 84778508 blueswir1
@itemize
2517 84778508 blueswir1
2518 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2519 84778508 blueswir1
libraries:
2520 84778508 blueswir1
2521 84778508 blueswir1
@example
2522 84778508 blueswir1
qemu-sparc64 /bin/ls
2523 84778508 blueswir1
@end example
2524 84778508 blueswir1
2525 84778508 blueswir1
@end itemize
2526 84778508 blueswir1
2527 84778508 blueswir1
@node BSD Command line options
2528 84778508 blueswir1
@subsection Command line options
2529 84778508 blueswir1
2530 84778508 blueswir1
@example
2531 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2532 84778508 blueswir1
@end example
2533 84778508 blueswir1
2534 84778508 blueswir1
@table @option
2535 84778508 blueswir1
@item -h
2536 84778508 blueswir1
Print the help
2537 84778508 blueswir1
@item -L path
2538 84778508 blueswir1
Set the library root path (default=/)
2539 84778508 blueswir1
@item -s size
2540 84778508 blueswir1
Set the stack size in bytes (default=524288)
2541 84778508 blueswir1
@item -bsd type
2542 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2543 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2544 84778508 blueswir1
@end table
2545 84778508 blueswir1
2546 84778508 blueswir1
Debug options:
2547 84778508 blueswir1
2548 84778508 blueswir1
@table @option
2549 84778508 blueswir1
@item -d
2550 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2551 84778508 blueswir1
@item -p pagesize
2552 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2553 84778508 blueswir1
@end table
2554 84778508 blueswir1
2555 15a34c63 bellard
@node compilation
2556 15a34c63 bellard
@chapter Compilation from the sources
2557 15a34c63 bellard
2558 debc7065 bellard
@menu
2559 debc7065 bellard
* Linux/Unix::
2560 debc7065 bellard
* Windows::
2561 debc7065 bellard
* Cross compilation for Windows with Linux::
2562 debc7065 bellard
* Mac OS X::
2563 debc7065 bellard
@end menu
2564 debc7065 bellard
2565 debc7065 bellard
@node Linux/Unix
2566 7c3fc84d bellard
@section Linux/Unix
2567 7c3fc84d bellard
2568 7c3fc84d bellard
@subsection Compilation
2569 7c3fc84d bellard
2570 7c3fc84d bellard
First you must decompress the sources:
2571 7c3fc84d bellard
@example
2572 7c3fc84d bellard
cd /tmp
2573 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2574 7c3fc84d bellard
cd qemu-x.y.z
2575 7c3fc84d bellard
@end example
2576 7c3fc84d bellard
2577 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2578 7c3fc84d bellard
@example
2579 7c3fc84d bellard
./configure
2580 7c3fc84d bellard
make
2581 7c3fc84d bellard
@end example
2582 7c3fc84d bellard
2583 7c3fc84d bellard
Then type as root user:
2584 7c3fc84d bellard
@example
2585 7c3fc84d bellard
make install
2586 7c3fc84d bellard
@end example
2587 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2588 7c3fc84d bellard
2589 4fe8b87a bellard
@subsection GCC version
2590 7c3fc84d bellard
2591 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
2592 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
2593 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2594 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
2595 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
2596 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
2597 4be456f1 ths
these older versions so that usually you don't have to do anything.
2598 15a34c63 bellard
2599 debc7065 bellard
@node Windows
2600 15a34c63 bellard
@section Windows
2601 15a34c63 bellard
2602 15a34c63 bellard
@itemize
2603 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2604 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2605 15a34c63 bellard
instructions in the download section and the FAQ.
2606 15a34c63 bellard
2607 5fafdf24 ths
@item Download
2608 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2609 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2610 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2611 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2612 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2613 15a34c63 bellard
correct SDL directory when invoked.
2614 15a34c63 bellard
2615 15a34c63 bellard
@item Extract the current version of QEMU.
2616 5fafdf24 ths
2617 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2618 15a34c63 bellard
2619 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2620 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2621 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2622 15a34c63 bellard
2623 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2624 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2625 15a34c63 bellard
@file{Program Files/Qemu}.
2626 15a34c63 bellard
2627 15a34c63 bellard
@end itemize
2628 15a34c63 bellard
2629 debc7065 bellard
@node Cross compilation for Windows with Linux
2630 15a34c63 bellard
@section Cross compilation for Windows with Linux
2631 15a34c63 bellard
2632 15a34c63 bellard
@itemize
2633 15a34c63 bellard
@item
2634 15a34c63 bellard
Install the MinGW cross compilation tools available at
2635 15a34c63 bellard
@url{http://www.mingw.org/}.
2636 15a34c63 bellard
2637 5fafdf24 ths
@item
2638 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2639 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2640 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2641 15a34c63 bellard
the QEMU configuration script.
2642 15a34c63 bellard
2643 5fafdf24 ths
@item
2644 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2645 15a34c63 bellard
@example
2646 15a34c63 bellard
./configure --enable-mingw32
2647 15a34c63 bellard
@end example
2648 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2649 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2650 15a34c63 bellard
--prefix to set the Win32 install path.
2651 15a34c63 bellard
2652 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2653 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2654 5fafdf24 ths
installation directory.
2655 15a34c63 bellard
2656 15a34c63 bellard
@end itemize
2657 15a34c63 bellard
2658 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2659 15a34c63 bellard
QEMU for Win32.
2660 15a34c63 bellard
2661 debc7065 bellard
@node Mac OS X
2662 15a34c63 bellard
@section Mac OS X
2663 15a34c63 bellard
2664 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2665 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2666 15a34c63 bellard
information.
2667 15a34c63 bellard
2668 debc7065 bellard
@node Index
2669 debc7065 bellard
@chapter Index
2670 debc7065 bellard
@printindex cp
2671 debc7065 bellard
2672 debc7065 bellard
@bye