Statistics
| Branch: | Revision:

root / hw / m48t59.c @ 180b700d

History | View | Annotate | Download (15.5 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 * 
4
 * Copyright (c) 2003-2005 Jocelyn Mayer
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t59.h"
26

    
27
//#define DEBUG_NVRAM
28

    
29
#if defined(DEBUG_NVRAM)
30
#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
31
#else
32
#define NVRAM_PRINTF(fmt, args...) do { } while (0)
33
#endif
34

    
35
/*
36
 * The M48T08 and M48T59 chips are very similar. The newer '59 has
37
 * alarm and a watchdog timer and related control registers. In the
38
 * PPC platform there is also a nvram lock function.
39
 */
40
struct m48t59_t {
41
    /* Model parameters */
42
    int type; // 8 = m48t08, 59 = m48t59
43
    /* Hardware parameters */
44
    int      IRQ;
45
    int mem_index;
46
    uint32_t mem_base;
47
    uint32_t io_base;
48
    uint16_t size;
49
    /* RTC management */
50
    time_t   time_offset;
51
    time_t   stop_time;
52
    /* Alarm & watchdog */
53
    time_t   alarm;
54
    struct QEMUTimer *alrm_timer;
55
    struct QEMUTimer *wd_timer;
56
    /* NVRAM storage */
57
    uint8_t  lock;
58
    uint16_t addr;
59
    uint8_t *buffer;
60
};
61

    
62
/* Fake timer functions */
63
/* Generic helpers for BCD */
64
static inline uint8_t toBCD (uint8_t value)
65
{
66
    return (((value / 10) % 10) << 4) | (value % 10);
67
}
68

    
69
static inline uint8_t fromBCD (uint8_t BCD)
70
{
71
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
72
}
73

    
74
/* RTC management helpers */
75
static void get_time (m48t59_t *NVRAM, struct tm *tm)
76
{
77
    time_t t;
78

    
79
    t = time(NULL) + NVRAM->time_offset;
80
#ifdef _WIN32
81
    memcpy(tm,localtime(&t),sizeof(*tm));
82
#else
83
    localtime_r (&t, tm) ;
84
#endif
85
}
86

    
87
static void set_time (m48t59_t *NVRAM, struct tm *tm)
88
{
89
    time_t now, new_time;
90
    
91
    new_time = mktime(tm);
92
    now = time(NULL);
93
    NVRAM->time_offset = new_time - now;
94
}
95

    
96
/* Alarm management */
97
static void alarm_cb (void *opaque)
98
{
99
    struct tm tm, tm_now;
100
    uint64_t next_time;
101
    m48t59_t *NVRAM = opaque;
102

    
103
    pic_set_irq(NVRAM->IRQ, 1);
104
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 && 
105
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
106
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
107
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
108
        /* Repeat once a month */
109
        get_time(NVRAM, &tm_now);
110
        memcpy(&tm, &tm_now, sizeof(struct tm));
111
        tm.tm_mon++;
112
        if (tm.tm_mon == 13) {
113
            tm.tm_mon = 1;
114
            tm.tm_year++;
115
        }
116
        next_time = mktime(&tm);
117
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
118
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
119
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
120
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
121
        /* Repeat once a day */
122
        next_time = 24 * 60 * 60 + mktime(&tm_now);
123
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
124
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
125
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
126
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
127
        /* Repeat once an hour */
128
        next_time = 60 * 60 + mktime(&tm_now);
129
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
130
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
131
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
132
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
133
        /* Repeat once a minute */
134
        next_time = 60 + mktime(&tm_now);
135
    } else {
136
        /* Repeat once a second */
137
        next_time = 1 + mktime(&tm_now);
138
    }
139
    qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
140
    pic_set_irq(NVRAM->IRQ, 0);
141
}
142

    
143

    
144
static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
145
{
146
#ifdef _WIN32
147
    memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
148
#else
149
    localtime_r (&NVRAM->alarm, tm);
150
#endif
151
}
152

    
153
static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
154
{
155
    NVRAM->alarm = mktime(tm);
156
    if (NVRAM->alrm_timer != NULL) {
157
        qemu_del_timer(NVRAM->alrm_timer);
158
        NVRAM->alrm_timer = NULL;
159
    }
160
    if (NVRAM->alarm - time(NULL) > 0)
161
        qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
162
}
163

    
164
/* Watchdog management */
165
static void watchdog_cb (void *opaque)
166
{
167
    m48t59_t *NVRAM = opaque;
168

    
169
    NVRAM->buffer[0x1FF0] |= 0x80;
170
    if (NVRAM->buffer[0x1FF7] & 0x80) {
171
        NVRAM->buffer[0x1FF7] = 0x00;
172
        NVRAM->buffer[0x1FFC] &= ~0x40;
173
        /* May it be a hw CPU Reset instead ? */
174
        qemu_system_reset_request();
175
    } else {
176
        pic_set_irq(NVRAM->IRQ, 1);
177
        pic_set_irq(NVRAM->IRQ, 0);
178
    }
179
}
180

    
181
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
182
{
183
    uint64_t interval; /* in 1/16 seconds */
184

    
185
    if (NVRAM->wd_timer != NULL) {
186
        qemu_del_timer(NVRAM->wd_timer);
187
        NVRAM->wd_timer = NULL;
188
    }
189
    NVRAM->buffer[0x1FF0] &= ~0x80;
190
    if (value != 0) {
191
        interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
192
        qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
193
                       ((interval * 1000) >> 4));
194
    }
195
}
196

    
197
/* Direct access to NVRAM */
198
void m48t59_write (m48t59_t *NVRAM, uint32_t addr, uint32_t val)
199
{
200
    struct tm tm;
201
    int tmp;
202

    
203
    if (addr > 0x1FF8 && addr < 0x2000)
204
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
205
    if (NVRAM->type == 8 && 
206
        (addr >= 0x1ff0 && addr <= 0x1ff7))
207
        goto do_write;
208
    switch (addr) {
209
    case 0x1FF0:
210
        /* flags register : read-only */
211
        break;
212
    case 0x1FF1:
213
        /* unused */
214
        break;
215
    case 0x1FF2:
216
        /* alarm seconds */
217
        tmp = fromBCD(val & 0x7F);
218
        if (tmp >= 0 && tmp <= 59) {
219
            get_alarm(NVRAM, &tm);
220
            tm.tm_sec = tmp;
221
            NVRAM->buffer[0x1FF2] = val;
222
            set_alarm(NVRAM, &tm);
223
        }
224
        break;
225
    case 0x1FF3:
226
        /* alarm minutes */
227
        tmp = fromBCD(val & 0x7F);
228
        if (tmp >= 0 && tmp <= 59) {
229
            get_alarm(NVRAM, &tm);
230
            tm.tm_min = tmp;
231
            NVRAM->buffer[0x1FF3] = val;
232
            set_alarm(NVRAM, &tm);
233
        }
234
        break;
235
    case 0x1FF4:
236
        /* alarm hours */
237
        tmp = fromBCD(val & 0x3F);
238
        if (tmp >= 0 && tmp <= 23) {
239
            get_alarm(NVRAM, &tm);
240
            tm.tm_hour = tmp;
241
            NVRAM->buffer[0x1FF4] = val;
242
            set_alarm(NVRAM, &tm);
243
        }
244
        break;
245
    case 0x1FF5:
246
        /* alarm date */
247
        tmp = fromBCD(val & 0x1F);
248
        if (tmp != 0) {
249
            get_alarm(NVRAM, &tm);
250
            tm.tm_mday = tmp;
251
            NVRAM->buffer[0x1FF5] = val;
252
            set_alarm(NVRAM, &tm);
253
        }
254
        break;
255
    case 0x1FF6:
256
        /* interrupts */
257
        NVRAM->buffer[0x1FF6] = val;
258
        break;
259
    case 0x1FF7:
260
        /* watchdog */
261
        NVRAM->buffer[0x1FF7] = val;
262
        set_up_watchdog(NVRAM, val);
263
        break;
264
    case 0x1FF8:
265
        /* control */
266
        NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
267
        break;
268
    case 0x1FF9:
269
        /* seconds (BCD) */
270
        tmp = fromBCD(val & 0x7F);
271
        if (tmp >= 0 && tmp <= 59) {
272
            get_time(NVRAM, &tm);
273
            tm.tm_sec = tmp;
274
            set_time(NVRAM, &tm);
275
        }
276
        if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
277
            if (val & 0x80) {
278
                NVRAM->stop_time = time(NULL);
279
            } else {
280
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
281
                NVRAM->stop_time = 0;
282
            }
283
        }
284
        NVRAM->buffer[0x1FF9] = val & 0x80;
285
        break;
286
    case 0x1FFA:
287
        /* minutes (BCD) */
288
        tmp = fromBCD(val & 0x7F);
289
        if (tmp >= 0 && tmp <= 59) {
290
            get_time(NVRAM, &tm);
291
            tm.tm_min = tmp;
292
            set_time(NVRAM, &tm);
293
        }
294
        break;
295
    case 0x1FFB:
296
        /* hours (BCD) */
297
        tmp = fromBCD(val & 0x3F);
298
        if (tmp >= 0 && tmp <= 23) {
299
            get_time(NVRAM, &tm);
300
            tm.tm_hour = tmp;
301
            set_time(NVRAM, &tm);
302
        }
303
        break;
304
    case 0x1FFC:
305
        /* day of the week / century */
306
        tmp = fromBCD(val & 0x07);
307
        get_time(NVRAM, &tm);
308
        tm.tm_wday = tmp;
309
        set_time(NVRAM, &tm);
310
        NVRAM->buffer[0x1FFC] = val & 0x40;
311
        break;
312
    case 0x1FFD:
313
        /* date */
314
        tmp = fromBCD(val & 0x1F);
315
        if (tmp != 0) {
316
            get_time(NVRAM, &tm);
317
            tm.tm_mday = tmp;
318
            set_time(NVRAM, &tm);
319
        }
320
        break;
321
    case 0x1FFE:
322
        /* month */
323
        tmp = fromBCD(val & 0x1F);
324
        if (tmp >= 1 && tmp <= 12) {
325
            get_time(NVRAM, &tm);
326
            tm.tm_mon = tmp - 1;
327
            set_time(NVRAM, &tm);
328
        }
329
        break;
330
    case 0x1FFF:
331
        /* year */
332
        tmp = fromBCD(val);
333
        if (tmp >= 0 && tmp <= 99) {
334
            get_time(NVRAM, &tm);
335
            if (NVRAM->type == 8)
336
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
337
            else
338
                tm.tm_year = fromBCD(val);
339
            set_time(NVRAM, &tm);
340
        }
341
        break;
342
    default:
343
        /* Check lock registers state */
344
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
345
            break;
346
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
347
            break;
348
    do_write:
349
        if (addr < NVRAM->size) {
350
            NVRAM->buffer[addr] = val & 0xFF;
351
        }
352
        break;
353
    }
354
}
355

    
356
uint32_t m48t59_read (m48t59_t *NVRAM, uint32_t addr)
357
{
358
    struct tm tm;
359
    uint32_t retval = 0xFF;
360

    
361
    if (NVRAM->type == 8 && 
362
        (addr >= 0x1ff0 && addr <= 0x1ff7))
363
        goto do_read;
364
    switch (addr) {
365
    case 0x1FF0:
366
        /* flags register */
367
        goto do_read;
368
    case 0x1FF1:
369
        /* unused */
370
        retval = 0;
371
        break;
372
    case 0x1FF2:
373
        /* alarm seconds */
374
        goto do_read;
375
    case 0x1FF3:
376
        /* alarm minutes */
377
        goto do_read;
378
    case 0x1FF4:
379
        /* alarm hours */
380
        goto do_read;
381
    case 0x1FF5:
382
        /* alarm date */
383
        goto do_read;
384
    case 0x1FF6:
385
        /* interrupts */
386
        goto do_read;
387
    case 0x1FF7:
388
        /* A read resets the watchdog */
389
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
390
        goto do_read;
391
    case 0x1FF8:
392
        /* control */
393
        goto do_read;
394
    case 0x1FF9:
395
        /* seconds (BCD) */
396
        get_time(NVRAM, &tm);
397
        retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
398
        break;
399
    case 0x1FFA:
400
        /* minutes (BCD) */
401
        get_time(NVRAM, &tm);
402
        retval = toBCD(tm.tm_min);
403
        break;
404
    case 0x1FFB:
405
        /* hours (BCD) */
406
        get_time(NVRAM, &tm);
407
        retval = toBCD(tm.tm_hour);
408
        break;
409
    case 0x1FFC:
410
        /* day of the week / century */
411
        get_time(NVRAM, &tm);
412
        retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
413
        break;
414
    case 0x1FFD:
415
        /* date */
416
        get_time(NVRAM, &tm);
417
        retval = toBCD(tm.tm_mday);
418
        break;
419
    case 0x1FFE:
420
        /* month */
421
        get_time(NVRAM, &tm);
422
        retval = toBCD(tm.tm_mon + 1);
423
        break;
424
    case 0x1FFF:
425
        /* year */
426
        get_time(NVRAM, &tm);
427
        if (NVRAM->type == 8) 
428
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
429
        else
430
            retval = toBCD(tm.tm_year);
431
        break;
432
    default:
433
        /* Check lock registers state */
434
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
435
            break;
436
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
437
            break;
438
    do_read:
439
        if (addr < NVRAM->size) {
440
            retval = NVRAM->buffer[addr];
441
        }
442
        break;
443
    }
444
    if (addr > 0x1FF9 && addr < 0x2000)
445
        NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
446

    
447
    return retval;
448
}
449

    
450
void m48t59_set_addr (m48t59_t *NVRAM, uint32_t addr)
451
{
452
    NVRAM->addr = addr;
453
}
454

    
455
void m48t59_toggle_lock (m48t59_t *NVRAM, int lock)
456
{
457
    NVRAM->lock ^= 1 << lock;
458
}
459

    
460
/* IO access to NVRAM */
461
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
462
{
463
    m48t59_t *NVRAM = opaque;
464

    
465
    addr -= NVRAM->io_base;
466
    NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
467
    switch (addr) {
468
    case 0:
469
        NVRAM->addr &= ~0x00FF;
470
        NVRAM->addr |= val;
471
        break;
472
    case 1:
473
        NVRAM->addr &= ~0xFF00;
474
        NVRAM->addr |= val << 8;
475
        break;
476
    case 3:
477
        m48t59_write(NVRAM, val, NVRAM->addr);
478
        NVRAM->addr = 0x0000;
479
        break;
480
    default:
481
        break;
482
    }
483
}
484

    
485
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
486
{
487
    m48t59_t *NVRAM = opaque;
488
    uint32_t retval;
489

    
490
    addr -= NVRAM->io_base;
491
    switch (addr) {
492
    case 3:
493
        retval = m48t59_read(NVRAM, NVRAM->addr);
494
        break;
495
    default:
496
        retval = -1;
497
        break;
498
    }
499
    NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
500

    
501
    return retval;
502
}
503

    
504
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
505
{
506
    m48t59_t *NVRAM = opaque;
507
    
508
    addr -= NVRAM->mem_base;
509
    m48t59_write(NVRAM, addr, value & 0xff);
510
}
511

    
512
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
513
{
514
    m48t59_t *NVRAM = opaque;
515
    
516
    addr -= NVRAM->mem_base;
517
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
518
    m48t59_write(NVRAM, addr + 1, value & 0xff);
519
}
520

    
521
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
522
{
523
    m48t59_t *NVRAM = opaque;
524
    
525
    addr -= NVRAM->mem_base;
526
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
527
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
528
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
529
    m48t59_write(NVRAM, addr + 3, value & 0xff);
530
}
531

    
532
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
533
{
534
    m48t59_t *NVRAM = opaque;
535
    uint32_t retval;
536
    
537
    addr -= NVRAM->mem_base;
538
    retval = m48t59_read(NVRAM, addr);
539
    return retval;
540
}
541

    
542
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
543
{
544
    m48t59_t *NVRAM = opaque;
545
    uint32_t retval;
546
    
547
    addr -= NVRAM->mem_base;
548
    retval = m48t59_read(NVRAM, addr) << 8;
549
    retval |= m48t59_read(NVRAM, addr + 1);
550
    return retval;
551
}
552

    
553
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
554
{
555
    m48t59_t *NVRAM = opaque;
556
    uint32_t retval;
557

    
558
    addr -= NVRAM->mem_base;
559
    retval = m48t59_read(NVRAM, addr) << 24;
560
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
561
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
562
    retval |= m48t59_read(NVRAM, addr + 3);
563
    return retval;
564
}
565

    
566
static CPUWriteMemoryFunc *nvram_write[] = {
567
    &nvram_writeb,
568
    &nvram_writew,
569
    &nvram_writel,
570
};
571

    
572
static CPUReadMemoryFunc *nvram_read[] = {
573
    &nvram_readb,
574
    &nvram_readw,
575
    &nvram_readl,
576
};
577

    
578
/* Initialisation routine */
579
m48t59_t *m48t59_init (int IRQ, target_ulong mem_base,
580
                       uint32_t io_base, uint16_t size,
581
                       int type)
582
{
583
    m48t59_t *s;
584

    
585
    s = qemu_mallocz(sizeof(m48t59_t));
586
    if (!s)
587
        return NULL;
588
    s->buffer = qemu_mallocz(size);
589
    if (!s->buffer) {
590
        qemu_free(s);
591
        return NULL;
592
    }
593
    s->IRQ = IRQ;
594
    s->size = size;
595
    s->mem_base = mem_base;
596
    s->io_base = io_base;
597
    s->addr = 0;
598
    s->type = type;
599
    if (io_base != 0) {
600
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
601
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
602
    }
603
    if (mem_base != 0) {
604
        s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
605
        cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
606
    }
607
    if (type == 59) {
608
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
609
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
610
    }
611
    s->lock = 0;
612

    
613
    return s;
614
}