Statistics
| Branch: | Revision:

root / hw / ppc / ppc.c @ 182735ef

History | View | Annotate | Download (39.8 kB)

1
/*
2
 * QEMU generic PowerPC hardware System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/ppc/ppc.h"
26
#include "qemu/timer.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/timer/m48t59.h"
29
#include "qemu/log.h"
30
#include "hw/loader.h"
31
#include "sysemu/kvm.h"
32
#include "kvm_ppc.h"
33

    
34
//#define PPC_DEBUG_IRQ
35
//#define PPC_DEBUG_TB
36

    
37
#ifdef PPC_DEBUG_IRQ
38
#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39
#else
40
#  define LOG_IRQ(...) do { } while (0)
41
#endif
42

    
43

    
44
#ifdef PPC_DEBUG_TB
45
#  define LOG_TB(...) qemu_log(__VA_ARGS__)
46
#else
47
#  define LOG_TB(...) do { } while (0)
48
#endif
49

    
50
static void cpu_ppc_tb_stop (CPUPPCState *env);
51
static void cpu_ppc_tb_start (CPUPPCState *env);
52

    
53
void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
54
{
55
    CPUState *cs = CPU(cpu);
56
    CPUPPCState *env = &cpu->env;
57
    unsigned int old_pending = env->pending_interrupts;
58

    
59
    if (level) {
60
        env->pending_interrupts |= 1 << n_IRQ;
61
        cpu_interrupt(cs, CPU_INTERRUPT_HARD);
62
    } else {
63
        env->pending_interrupts &= ~(1 << n_IRQ);
64
        if (env->pending_interrupts == 0) {
65
            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
66
        }
67
    }
68

    
69
    if (old_pending != env->pending_interrupts) {
70
#ifdef CONFIG_KVM
71
        kvmppc_set_interrupt(cpu, n_IRQ, level);
72
#endif
73
    }
74

    
75
    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
76
                "req %08x\n", __func__, env, n_IRQ, level,
77
                env->pending_interrupts, CPU(cpu)->interrupt_request);
78
}
79

    
80
/* PowerPC 6xx / 7xx internal IRQ controller */
81
static void ppc6xx_set_irq(void *opaque, int pin, int level)
82
{
83
    PowerPCCPU *cpu = opaque;
84
    CPUPPCState *env = &cpu->env;
85
    int cur_level;
86

    
87
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
88
                env, pin, level);
89
    cur_level = (env->irq_input_state >> pin) & 1;
90
    /* Don't generate spurious events */
91
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
92
        CPUState *cs = CPU(cpu);
93

    
94
        switch (pin) {
95
        case PPC6xx_INPUT_TBEN:
96
            /* Level sensitive - active high */
97
            LOG_IRQ("%s: %s the time base\n",
98
                        __func__, level ? "start" : "stop");
99
            if (level) {
100
                cpu_ppc_tb_start(env);
101
            } else {
102
                cpu_ppc_tb_stop(env);
103
            }
104
        case PPC6xx_INPUT_INT:
105
            /* Level sensitive - active high */
106
            LOG_IRQ("%s: set the external IRQ state to %d\n",
107
                        __func__, level);
108
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
109
            break;
110
        case PPC6xx_INPUT_SMI:
111
            /* Level sensitive - active high */
112
            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
113
                        __func__, level);
114
            ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
115
            break;
116
        case PPC6xx_INPUT_MCP:
117
            /* Negative edge sensitive */
118
            /* XXX: TODO: actual reaction may depends on HID0 status
119
             *            603/604/740/750: check HID0[EMCP]
120
             */
121
            if (cur_level == 1 && level == 0) {
122
                LOG_IRQ("%s: raise machine check state\n",
123
                            __func__);
124
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
125
            }
126
            break;
127
        case PPC6xx_INPUT_CKSTP_IN:
128
            /* Level sensitive - active low */
129
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
130
            /* XXX: Note that the only way to restart the CPU is to reset it */
131
            if (level) {
132
                LOG_IRQ("%s: stop the CPU\n", __func__);
133
                cs->halted = 1;
134
            }
135
            break;
136
        case PPC6xx_INPUT_HRESET:
137
            /* Level sensitive - active low */
138
            if (level) {
139
                LOG_IRQ("%s: reset the CPU\n", __func__);
140
                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
141
            }
142
            break;
143
        case PPC6xx_INPUT_SRESET:
144
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
145
                        __func__, level);
146
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
147
            break;
148
        default:
149
            /* Unknown pin - do nothing */
150
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
151
            return;
152
        }
153
        if (level)
154
            env->irq_input_state |= 1 << pin;
155
        else
156
            env->irq_input_state &= ~(1 << pin);
157
    }
158
}
159

    
160
void ppc6xx_irq_init(CPUPPCState *env)
161
{
162
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
163

    
164
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
165
                                                  PPC6xx_INPUT_NB);
166
}
167

    
168
#if defined(TARGET_PPC64)
169
/* PowerPC 970 internal IRQ controller */
170
static void ppc970_set_irq(void *opaque, int pin, int level)
171
{
172
    PowerPCCPU *cpu = opaque;
173
    CPUPPCState *env = &cpu->env;
174
    int cur_level;
175

    
176
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
177
                env, pin, level);
178
    cur_level = (env->irq_input_state >> pin) & 1;
179
    /* Don't generate spurious events */
180
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
181
        CPUState *cs = CPU(cpu);
182

    
183
        switch (pin) {
184
        case PPC970_INPUT_INT:
185
            /* Level sensitive - active high */
186
            LOG_IRQ("%s: set the external IRQ state to %d\n",
187
                        __func__, level);
188
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
189
            break;
190
        case PPC970_INPUT_THINT:
191
            /* Level sensitive - active high */
192
            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
193
                        level);
194
            ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
195
            break;
196
        case PPC970_INPUT_MCP:
197
            /* Negative edge sensitive */
198
            /* XXX: TODO: actual reaction may depends on HID0 status
199
             *            603/604/740/750: check HID0[EMCP]
200
             */
201
            if (cur_level == 1 && level == 0) {
202
                LOG_IRQ("%s: raise machine check state\n",
203
                            __func__);
204
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
205
            }
206
            break;
207
        case PPC970_INPUT_CKSTP:
208
            /* Level sensitive - active low */
209
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
210
            if (level) {
211
                LOG_IRQ("%s: stop the CPU\n", __func__);
212
                cs->halted = 1;
213
            } else {
214
                LOG_IRQ("%s: restart the CPU\n", __func__);
215
                cs->halted = 0;
216
                qemu_cpu_kick(cs);
217
            }
218
            break;
219
        case PPC970_INPUT_HRESET:
220
            /* Level sensitive - active low */
221
            if (level) {
222
                cpu_interrupt(cs, CPU_INTERRUPT_RESET);
223
            }
224
            break;
225
        case PPC970_INPUT_SRESET:
226
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
227
                        __func__, level);
228
            ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
229
            break;
230
        case PPC970_INPUT_TBEN:
231
            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
232
                        level);
233
            /* XXX: TODO */
234
            break;
235
        default:
236
            /* Unknown pin - do nothing */
237
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
238
            return;
239
        }
240
        if (level)
241
            env->irq_input_state |= 1 << pin;
242
        else
243
            env->irq_input_state &= ~(1 << pin);
244
    }
245
}
246

    
247
void ppc970_irq_init(CPUPPCState *env)
248
{
249
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
250

    
251
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
252
                                                  PPC970_INPUT_NB);
253
}
254

    
255
/* POWER7 internal IRQ controller */
256
static void power7_set_irq(void *opaque, int pin, int level)
257
{
258
    PowerPCCPU *cpu = opaque;
259
    CPUPPCState *env = &cpu->env;
260

    
261
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
262
                env, pin, level);
263

    
264
    switch (pin) {
265
    case POWER7_INPUT_INT:
266
        /* Level sensitive - active high */
267
        LOG_IRQ("%s: set the external IRQ state to %d\n",
268
                __func__, level);
269
        ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
270
        break;
271
    default:
272
        /* Unknown pin - do nothing */
273
        LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
274
        return;
275
    }
276
    if (level) {
277
        env->irq_input_state |= 1 << pin;
278
    } else {
279
        env->irq_input_state &= ~(1 << pin);
280
    }
281
}
282

    
283
void ppcPOWER7_irq_init(CPUPPCState *env)
284
{
285
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
286

    
287
    env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
288
                                                  POWER7_INPUT_NB);
289
}
290
#endif /* defined(TARGET_PPC64) */
291

    
292
/* PowerPC 40x internal IRQ controller */
293
static void ppc40x_set_irq(void *opaque, int pin, int level)
294
{
295
    PowerPCCPU *cpu = opaque;
296
    CPUPPCState *env = &cpu->env;
297
    int cur_level;
298

    
299
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
300
                env, pin, level);
301
    cur_level = (env->irq_input_state >> pin) & 1;
302
    /* Don't generate spurious events */
303
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
304
        CPUState *cs = CPU(cpu);
305

    
306
        switch (pin) {
307
        case PPC40x_INPUT_RESET_SYS:
308
            if (level) {
309
                LOG_IRQ("%s: reset the PowerPC system\n",
310
                            __func__);
311
                ppc40x_system_reset(cpu);
312
            }
313
            break;
314
        case PPC40x_INPUT_RESET_CHIP:
315
            if (level) {
316
                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
317
                ppc40x_chip_reset(cpu);
318
            }
319
            break;
320
        case PPC40x_INPUT_RESET_CORE:
321
            /* XXX: TODO: update DBSR[MRR] */
322
            if (level) {
323
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
324
                ppc40x_core_reset(cpu);
325
            }
326
            break;
327
        case PPC40x_INPUT_CINT:
328
            /* Level sensitive - active high */
329
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
330
                        __func__, level);
331
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
332
            break;
333
        case PPC40x_INPUT_INT:
334
            /* Level sensitive - active high */
335
            LOG_IRQ("%s: set the external IRQ state to %d\n",
336
                        __func__, level);
337
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
338
            break;
339
        case PPC40x_INPUT_HALT:
340
            /* Level sensitive - active low */
341
            if (level) {
342
                LOG_IRQ("%s: stop the CPU\n", __func__);
343
                cs->halted = 1;
344
            } else {
345
                LOG_IRQ("%s: restart the CPU\n", __func__);
346
                cs->halted = 0;
347
                qemu_cpu_kick(cs);
348
            }
349
            break;
350
        case PPC40x_INPUT_DEBUG:
351
            /* Level sensitive - active high */
352
            LOG_IRQ("%s: set the debug pin state to %d\n",
353
                        __func__, level);
354
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
355
            break;
356
        default:
357
            /* Unknown pin - do nothing */
358
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
359
            return;
360
        }
361
        if (level)
362
            env->irq_input_state |= 1 << pin;
363
        else
364
            env->irq_input_state &= ~(1 << pin);
365
    }
366
}
367

    
368
void ppc40x_irq_init(CPUPPCState *env)
369
{
370
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
371

    
372
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
373
                                                  cpu, PPC40x_INPUT_NB);
374
}
375

    
376
/* PowerPC E500 internal IRQ controller */
377
static void ppce500_set_irq(void *opaque, int pin, int level)
378
{
379
    PowerPCCPU *cpu = opaque;
380
    CPUPPCState *env = &cpu->env;
381
    int cur_level;
382

    
383
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
384
                env, pin, level);
385
    cur_level = (env->irq_input_state >> pin) & 1;
386
    /* Don't generate spurious events */
387
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
388
        switch (pin) {
389
        case PPCE500_INPUT_MCK:
390
            if (level) {
391
                LOG_IRQ("%s: reset the PowerPC system\n",
392
                            __func__);
393
                qemu_system_reset_request();
394
            }
395
            break;
396
        case PPCE500_INPUT_RESET_CORE:
397
            if (level) {
398
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
399
                ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
400
            }
401
            break;
402
        case PPCE500_INPUT_CINT:
403
            /* Level sensitive - active high */
404
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
405
                        __func__, level);
406
            ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
407
            break;
408
        case PPCE500_INPUT_INT:
409
            /* Level sensitive - active high */
410
            LOG_IRQ("%s: set the core IRQ state to %d\n",
411
                        __func__, level);
412
            ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
413
            break;
414
        case PPCE500_INPUT_DEBUG:
415
            /* Level sensitive - active high */
416
            LOG_IRQ("%s: set the debug pin state to %d\n",
417
                        __func__, level);
418
            ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
419
            break;
420
        default:
421
            /* Unknown pin - do nothing */
422
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
423
            return;
424
        }
425
        if (level)
426
            env->irq_input_state |= 1 << pin;
427
        else
428
            env->irq_input_state &= ~(1 << pin);
429
    }
430
}
431

    
432
void ppce500_irq_init(CPUPPCState *env)
433
{
434
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
435

    
436
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
437
                                                  cpu, PPCE500_INPUT_NB);
438
}
439

    
440
/* Enable or Disable the E500 EPR capability */
441
void ppce500_set_mpic_proxy(bool enabled)
442
{
443
    CPUState *cs;
444

    
445
    for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
446
        PowerPCCPU *cpu = POWERPC_CPU(cs);
447

    
448
        cpu->env.mpic_proxy = enabled;
449
        if (kvm_enabled()) {
450
            kvmppc_set_mpic_proxy(cpu, enabled);
451
        }
452
    }
453
}
454

    
455
/*****************************************************************************/
456
/* PowerPC time base and decrementer emulation */
457

    
458
uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
459
{
460
    /* TB time in tb periods */
461
    return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
462
}
463

    
464
uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
465
{
466
    ppc_tb_t *tb_env = env->tb_env;
467
    uint64_t tb;
468

    
469
    if (kvm_enabled()) {
470
        return env->spr[SPR_TBL];
471
    }
472

    
473
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
474
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
475

    
476
    return tb;
477
}
478

    
479
static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
480
{
481
    ppc_tb_t *tb_env = env->tb_env;
482
    uint64_t tb;
483

    
484
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
485
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
486

    
487
    return tb >> 32;
488
}
489

    
490
uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
491
{
492
    if (kvm_enabled()) {
493
        return env->spr[SPR_TBU];
494
    }
495

    
496
    return _cpu_ppc_load_tbu(env);
497
}
498

    
499
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
500
                                    int64_t *tb_offsetp, uint64_t value)
501
{
502
    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
503
    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
504
                __func__, value, *tb_offsetp);
505
}
506

    
507
void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
508
{
509
    ppc_tb_t *tb_env = env->tb_env;
510
    uint64_t tb;
511

    
512
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
513
    tb &= 0xFFFFFFFF00000000ULL;
514
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
515
                     &tb_env->tb_offset, tb | (uint64_t)value);
516
}
517

    
518
static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
519
{
520
    ppc_tb_t *tb_env = env->tb_env;
521
    uint64_t tb;
522

    
523
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
524
    tb &= 0x00000000FFFFFFFFULL;
525
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
526
                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
527
}
528

    
529
void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
530
{
531
    _cpu_ppc_store_tbu(env, value);
532
}
533

    
534
uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
535
{
536
    ppc_tb_t *tb_env = env->tb_env;
537
    uint64_t tb;
538

    
539
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
540
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
541

    
542
    return tb;
543
}
544

    
545
uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
546
{
547
    ppc_tb_t *tb_env = env->tb_env;
548
    uint64_t tb;
549

    
550
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
551
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
552

    
553
    return tb >> 32;
554
}
555

    
556
void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
557
{
558
    ppc_tb_t *tb_env = env->tb_env;
559
    uint64_t tb;
560

    
561
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
562
    tb &= 0xFFFFFFFF00000000ULL;
563
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
564
                     &tb_env->atb_offset, tb | (uint64_t)value);
565
}
566

    
567
void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
568
{
569
    ppc_tb_t *tb_env = env->tb_env;
570
    uint64_t tb;
571

    
572
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
573
    tb &= 0x00000000FFFFFFFFULL;
574
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
575
                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
576
}
577

    
578
static void cpu_ppc_tb_stop (CPUPPCState *env)
579
{
580
    ppc_tb_t *tb_env = env->tb_env;
581
    uint64_t tb, atb, vmclk;
582

    
583
    /* If the time base is already frozen, do nothing */
584
    if (tb_env->tb_freq != 0) {
585
        vmclk = qemu_get_clock_ns(vm_clock);
586
        /* Get the time base */
587
        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
588
        /* Get the alternate time base */
589
        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
590
        /* Store the time base value (ie compute the current offset) */
591
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
592
        /* Store the alternate time base value (compute the current offset) */
593
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
594
        /* Set the time base frequency to zero */
595
        tb_env->tb_freq = 0;
596
        /* Now, the time bases are frozen to tb_offset / atb_offset value */
597
    }
598
}
599

    
600
static void cpu_ppc_tb_start (CPUPPCState *env)
601
{
602
    ppc_tb_t *tb_env = env->tb_env;
603
    uint64_t tb, atb, vmclk;
604

    
605
    /* If the time base is not frozen, do nothing */
606
    if (tb_env->tb_freq == 0) {
607
        vmclk = qemu_get_clock_ns(vm_clock);
608
        /* Get the time base from tb_offset */
609
        tb = tb_env->tb_offset;
610
        /* Get the alternate time base from atb_offset */
611
        atb = tb_env->atb_offset;
612
        /* Restore the tb frequency from the decrementer frequency */
613
        tb_env->tb_freq = tb_env->decr_freq;
614
        /* Store the time base value */
615
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
616
        /* Store the alternate time base value */
617
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
618
    }
619
}
620

    
621
static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
622
{
623
    ppc_tb_t *tb_env = env->tb_env;
624
    uint32_t decr;
625
    int64_t diff;
626

    
627
    diff = next - qemu_get_clock_ns(vm_clock);
628
    if (diff >= 0) {
629
        decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
630
    } else if (tb_env->flags & PPC_TIMER_BOOKE) {
631
        decr = 0;
632
    }  else {
633
        decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
634
    }
635
    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
636

    
637
    return decr;
638
}
639

    
640
uint32_t cpu_ppc_load_decr (CPUPPCState *env)
641
{
642
    ppc_tb_t *tb_env = env->tb_env;
643

    
644
    if (kvm_enabled()) {
645
        return env->spr[SPR_DECR];
646
    }
647

    
648
    return _cpu_ppc_load_decr(env, tb_env->decr_next);
649
}
650

    
651
uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
652
{
653
    ppc_tb_t *tb_env = env->tb_env;
654

    
655
    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
656
}
657

    
658
uint64_t cpu_ppc_load_purr (CPUPPCState *env)
659
{
660
    ppc_tb_t *tb_env = env->tb_env;
661
    uint64_t diff;
662

    
663
    diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
664

    
665
    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
666
}
667

    
668
/* When decrementer expires,
669
 * all we need to do is generate or queue a CPU exception
670
 */
671
static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
672
{
673
    /* Raise it */
674
    LOG_TB("raise decrementer exception\n");
675
    ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
676
}
677

    
678
static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
679
{
680
    /* Raise it */
681
    LOG_TB("raise decrementer exception\n");
682
    ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
683
}
684

    
685
static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
686
                                 struct QEMUTimer *timer,
687
                                 void (*raise_excp)(PowerPCCPU *),
688
                                 uint32_t decr, uint32_t value,
689
                                 int is_excp)
690
{
691
    CPUPPCState *env = &cpu->env;
692
    ppc_tb_t *tb_env = env->tb_env;
693
    uint64_t now, next;
694

    
695
    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
696
                decr, value);
697

    
698
    if (kvm_enabled()) {
699
        /* KVM handles decrementer exceptions, we don't need our own timer */
700
        return;
701
    }
702

    
703
    now = qemu_get_clock_ns(vm_clock);
704
    next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
705
    if (is_excp) {
706
        next += *nextp - now;
707
    }
708
    if (next == now) {
709
        next++;
710
    }
711
    *nextp = next;
712
    /* Adjust timer */
713
    qemu_mod_timer(timer, next);
714

    
715
    /* If we set a negative value and the decrementer was positive, raise an
716
     * exception.
717
     */
718
    if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
719
        && (value & 0x80000000)
720
        && !(decr & 0x80000000)) {
721
        (*raise_excp)(cpu);
722
    }
723
}
724

    
725
static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
726
                                       uint32_t value, int is_excp)
727
{
728
    ppc_tb_t *tb_env = cpu->env.tb_env;
729

    
730
    __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
731
                         &cpu_ppc_decr_excp, decr, value, is_excp);
732
}
733

    
734
void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
735
{
736
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
737

    
738
    _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, 0);
739
}
740

    
741
static void cpu_ppc_decr_cb(void *opaque)
742
{
743
    PowerPCCPU *cpu = opaque;
744

    
745
    _cpu_ppc_store_decr(cpu, 0x00000000, 0xFFFFFFFF, 1);
746
}
747

    
748
static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
749
                                        uint32_t value, int is_excp)
750
{
751
    ppc_tb_t *tb_env = cpu->env.tb_env;
752

    
753
    if (tb_env->hdecr_timer != NULL) {
754
        __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
755
                             &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
756
    }
757
}
758

    
759
void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
760
{
761
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
762

    
763
    _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value, 0);
764
}
765

    
766
static void cpu_ppc_hdecr_cb(void *opaque)
767
{
768
    PowerPCCPU *cpu = opaque;
769

    
770
    _cpu_ppc_store_hdecr(cpu, 0x00000000, 0xFFFFFFFF, 1);
771
}
772

    
773
static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
774
{
775
    ppc_tb_t *tb_env = cpu->env.tb_env;
776

    
777
    tb_env->purr_load = value;
778
    tb_env->purr_start = qemu_get_clock_ns(vm_clock);
779
}
780

    
781
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
782
{
783
    CPUPPCState *env = opaque;
784
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
785
    ppc_tb_t *tb_env = env->tb_env;
786

    
787
    tb_env->tb_freq = freq;
788
    tb_env->decr_freq = freq;
789
    /* There is a bug in Linux 2.4 kernels:
790
     * if a decrementer exception is pending when it enables msr_ee at startup,
791
     * it's not ready to handle it...
792
     */
793
    _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
794
    _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 0);
795
    cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
796
}
797

    
798
/* Set up (once) timebase frequency (in Hz) */
799
clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
800
{
801
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
802
    ppc_tb_t *tb_env;
803

    
804
    tb_env = g_malloc0(sizeof(ppc_tb_t));
805
    env->tb_env = tb_env;
806
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
807
    /* Create new timer */
808
    tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, cpu);
809
    if (0) {
810
        /* XXX: find a suitable condition to enable the hypervisor decrementer
811
         */
812
        tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb,
813
                                                cpu);
814
    } else {
815
        tb_env->hdecr_timer = NULL;
816
    }
817
    cpu_ppc_set_tb_clk(env, freq);
818

    
819
    return &cpu_ppc_set_tb_clk;
820
}
821

    
822
/* Specific helpers for POWER & PowerPC 601 RTC */
823
#if 0
824
static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
825
{
826
    return cpu_ppc_tb_init(env, 7812500);
827
}
828
#endif
829

    
830
void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
831
{
832
    _cpu_ppc_store_tbu(env, value);
833
}
834

    
835
uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
836
{
837
    return _cpu_ppc_load_tbu(env);
838
}
839

    
840
void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
841
{
842
    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
843
}
844

    
845
uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
846
{
847
    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
848
}
849

    
850
/*****************************************************************************/
851
/* PowerPC 40x timers */
852

    
853
/* PIT, FIT & WDT */
854
typedef struct ppc40x_timer_t ppc40x_timer_t;
855
struct ppc40x_timer_t {
856
    uint64_t pit_reload;  /* PIT auto-reload value        */
857
    uint64_t fit_next;    /* Tick for next FIT interrupt  */
858
    struct QEMUTimer *fit_timer;
859
    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
860
    struct QEMUTimer *wdt_timer;
861

    
862
    /* 405 have the PIT, 440 have a DECR.  */
863
    unsigned int decr_excp;
864
};
865

    
866
/* Fixed interval timer */
867
static void cpu_4xx_fit_cb (void *opaque)
868
{
869
    PowerPCCPU *cpu;
870
    CPUPPCState *env;
871
    ppc_tb_t *tb_env;
872
    ppc40x_timer_t *ppc40x_timer;
873
    uint64_t now, next;
874

    
875
    env = opaque;
876
    cpu = ppc_env_get_cpu(env);
877
    tb_env = env->tb_env;
878
    ppc40x_timer = tb_env->opaque;
879
    now = qemu_get_clock_ns(vm_clock);
880
    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
881
    case 0:
882
        next = 1 << 9;
883
        break;
884
    case 1:
885
        next = 1 << 13;
886
        break;
887
    case 2:
888
        next = 1 << 17;
889
        break;
890
    case 3:
891
        next = 1 << 21;
892
        break;
893
    default:
894
        /* Cannot occur, but makes gcc happy */
895
        return;
896
    }
897
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
898
    if (next == now)
899
        next++;
900
    qemu_mod_timer(ppc40x_timer->fit_timer, next);
901
    env->spr[SPR_40x_TSR] |= 1 << 26;
902
    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
903
        ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
904
    }
905
    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
906
           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
907
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
908
}
909

    
910
/* Programmable interval timer */
911
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
912
{
913
    ppc40x_timer_t *ppc40x_timer;
914
    uint64_t now, next;
915

    
916
    ppc40x_timer = tb_env->opaque;
917
    if (ppc40x_timer->pit_reload <= 1 ||
918
        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
919
        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
920
        /* Stop PIT */
921
        LOG_TB("%s: stop PIT\n", __func__);
922
        qemu_del_timer(tb_env->decr_timer);
923
    } else {
924
        LOG_TB("%s: start PIT %016" PRIx64 "\n",
925
                    __func__, ppc40x_timer->pit_reload);
926
        now = qemu_get_clock_ns(vm_clock);
927
        next = now + muldiv64(ppc40x_timer->pit_reload,
928
                              get_ticks_per_sec(), tb_env->decr_freq);
929
        if (is_excp)
930
            next += tb_env->decr_next - now;
931
        if (next == now)
932
            next++;
933
        qemu_mod_timer(tb_env->decr_timer, next);
934
        tb_env->decr_next = next;
935
    }
936
}
937

    
938
static void cpu_4xx_pit_cb (void *opaque)
939
{
940
    PowerPCCPU *cpu;
941
    CPUPPCState *env;
942
    ppc_tb_t *tb_env;
943
    ppc40x_timer_t *ppc40x_timer;
944

    
945
    env = opaque;
946
    cpu = ppc_env_get_cpu(env);
947
    tb_env = env->tb_env;
948
    ppc40x_timer = tb_env->opaque;
949
    env->spr[SPR_40x_TSR] |= 1 << 27;
950
    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
951
        ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
952
    }
953
    start_stop_pit(env, tb_env, 1);
954
    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
955
           "%016" PRIx64 "\n", __func__,
956
           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
957
           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
958
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
959
           ppc40x_timer->pit_reload);
960
}
961

    
962
/* Watchdog timer */
963
static void cpu_4xx_wdt_cb (void *opaque)
964
{
965
    PowerPCCPU *cpu;
966
    CPUPPCState *env;
967
    ppc_tb_t *tb_env;
968
    ppc40x_timer_t *ppc40x_timer;
969
    uint64_t now, next;
970

    
971
    env = opaque;
972
    cpu = ppc_env_get_cpu(env);
973
    tb_env = env->tb_env;
974
    ppc40x_timer = tb_env->opaque;
975
    now = qemu_get_clock_ns(vm_clock);
976
    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
977
    case 0:
978
        next = 1 << 17;
979
        break;
980
    case 1:
981
        next = 1 << 21;
982
        break;
983
    case 2:
984
        next = 1 << 25;
985
        break;
986
    case 3:
987
        next = 1 << 29;
988
        break;
989
    default:
990
        /* Cannot occur, but makes gcc happy */
991
        return;
992
    }
993
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
994
    if (next == now)
995
        next++;
996
    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
997
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
998
    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
999
    case 0x0:
1000
    case 0x1:
1001
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
1002
        ppc40x_timer->wdt_next = next;
1003
        env->spr[SPR_40x_TSR] |= 1 << 31;
1004
        break;
1005
    case 0x2:
1006
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
1007
        ppc40x_timer->wdt_next = next;
1008
        env->spr[SPR_40x_TSR] |= 1 << 30;
1009
        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1010
            ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1011
        }
1012
        break;
1013
    case 0x3:
1014
        env->spr[SPR_40x_TSR] &= ~0x30000000;
1015
        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1016
        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1017
        case 0x0:
1018
            /* No reset */
1019
            break;
1020
        case 0x1: /* Core reset */
1021
            ppc40x_core_reset(cpu);
1022
            break;
1023
        case 0x2: /* Chip reset */
1024
            ppc40x_chip_reset(cpu);
1025
            break;
1026
        case 0x3: /* System reset */
1027
            ppc40x_system_reset(cpu);
1028
            break;
1029
        }
1030
    }
1031
}
1032

    
1033
void store_40x_pit (CPUPPCState *env, target_ulong val)
1034
{
1035
    ppc_tb_t *tb_env;
1036
    ppc40x_timer_t *ppc40x_timer;
1037

    
1038
    tb_env = env->tb_env;
1039
    ppc40x_timer = tb_env->opaque;
1040
    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1041
    ppc40x_timer->pit_reload = val;
1042
    start_stop_pit(env, tb_env, 0);
1043
}
1044

    
1045
target_ulong load_40x_pit (CPUPPCState *env)
1046
{
1047
    return cpu_ppc_load_decr(env);
1048
}
1049

    
1050
static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1051
{
1052
    CPUPPCState *env = opaque;
1053
    ppc_tb_t *tb_env = env->tb_env;
1054

    
1055
    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1056
                freq);
1057
    tb_env->tb_freq = freq;
1058
    tb_env->decr_freq = freq;
1059
    /* XXX: we should also update all timers */
1060
}
1061

    
1062
clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1063
                                  unsigned int decr_excp)
1064
{
1065
    ppc_tb_t *tb_env;
1066
    ppc40x_timer_t *ppc40x_timer;
1067

    
1068
    tb_env = g_malloc0(sizeof(ppc_tb_t));
1069
    env->tb_env = tb_env;
1070
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1071
    ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1072
    tb_env->tb_freq = freq;
1073
    tb_env->decr_freq = freq;
1074
    tb_env->opaque = ppc40x_timer;
1075
    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1076
    if (ppc40x_timer != NULL) {
1077
        /* We use decr timer for PIT */
1078
        tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1079
        ppc40x_timer->fit_timer =
1080
            qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1081
        ppc40x_timer->wdt_timer =
1082
            qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1083
        ppc40x_timer->decr_excp = decr_excp;
1084
    }
1085

    
1086
    return &ppc_40x_set_tb_clk;
1087
}
1088

    
1089
/*****************************************************************************/
1090
/* Embedded PowerPC Device Control Registers */
1091
typedef struct ppc_dcrn_t ppc_dcrn_t;
1092
struct ppc_dcrn_t {
1093
    dcr_read_cb dcr_read;
1094
    dcr_write_cb dcr_write;
1095
    void *opaque;
1096
};
1097

    
1098
/* XXX: on 460, DCR addresses are 32 bits wide,
1099
 *      using DCRIPR to get the 22 upper bits of the DCR address
1100
 */
1101
#define DCRN_NB 1024
1102
struct ppc_dcr_t {
1103
    ppc_dcrn_t dcrn[DCRN_NB];
1104
    int (*read_error)(int dcrn);
1105
    int (*write_error)(int dcrn);
1106
};
1107

    
1108
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1109
{
1110
    ppc_dcrn_t *dcr;
1111

    
1112
    if (dcrn < 0 || dcrn >= DCRN_NB)
1113
        goto error;
1114
    dcr = &dcr_env->dcrn[dcrn];
1115
    if (dcr->dcr_read == NULL)
1116
        goto error;
1117
    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1118

    
1119
    return 0;
1120

    
1121
 error:
1122
    if (dcr_env->read_error != NULL)
1123
        return (*dcr_env->read_error)(dcrn);
1124

    
1125
    return -1;
1126
}
1127

    
1128
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1129
{
1130
    ppc_dcrn_t *dcr;
1131

    
1132
    if (dcrn < 0 || dcrn >= DCRN_NB)
1133
        goto error;
1134
    dcr = &dcr_env->dcrn[dcrn];
1135
    if (dcr->dcr_write == NULL)
1136
        goto error;
1137
    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1138

    
1139
    return 0;
1140

    
1141
 error:
1142
    if (dcr_env->write_error != NULL)
1143
        return (*dcr_env->write_error)(dcrn);
1144

    
1145
    return -1;
1146
}
1147

    
1148
int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1149
                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1150
{
1151
    ppc_dcr_t *dcr_env;
1152
    ppc_dcrn_t *dcr;
1153

    
1154
    dcr_env = env->dcr_env;
1155
    if (dcr_env == NULL)
1156
        return -1;
1157
    if (dcrn < 0 || dcrn >= DCRN_NB)
1158
        return -1;
1159
    dcr = &dcr_env->dcrn[dcrn];
1160
    if (dcr->opaque != NULL ||
1161
        dcr->dcr_read != NULL ||
1162
        dcr->dcr_write != NULL)
1163
        return -1;
1164
    dcr->opaque = opaque;
1165
    dcr->dcr_read = dcr_read;
1166
    dcr->dcr_write = dcr_write;
1167

    
1168
    return 0;
1169
}
1170

    
1171
int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1172
                  int (*write_error)(int dcrn))
1173
{
1174
    ppc_dcr_t *dcr_env;
1175

    
1176
    dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1177
    dcr_env->read_error = read_error;
1178
    dcr_env->write_error = write_error;
1179
    env->dcr_env = dcr_env;
1180

    
1181
    return 0;
1182
}
1183

    
1184
/*****************************************************************************/
1185
/* Debug port */
1186
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1187
{
1188
    addr &= 0xF;
1189
    switch (addr) {
1190
    case 0:
1191
        printf("%c", val);
1192
        break;
1193
    case 1:
1194
        printf("\n");
1195
        fflush(stdout);
1196
        break;
1197
    case 2:
1198
        printf("Set loglevel to %04" PRIx32 "\n", val);
1199
        qemu_set_log(val | 0x100);
1200
        break;
1201
    }
1202
}
1203

    
1204
/*****************************************************************************/
1205
/* NVRAM helpers */
1206
static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1207
{
1208
    return (*nvram->read_fn)(nvram->opaque, addr);
1209
}
1210

    
1211
static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1212
{
1213
    (*nvram->write_fn)(nvram->opaque, addr, val);
1214
}
1215

    
1216
static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1217
{
1218
    nvram_write(nvram, addr, value);
1219
}
1220

    
1221
static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1222
{
1223
    return nvram_read(nvram, addr);
1224
}
1225

    
1226
static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1227
{
1228
    nvram_write(nvram, addr, value >> 8);
1229
    nvram_write(nvram, addr + 1, value & 0xFF);
1230
}
1231

    
1232
static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1233
{
1234
    uint16_t tmp;
1235

    
1236
    tmp = nvram_read(nvram, addr) << 8;
1237
    tmp |= nvram_read(nvram, addr + 1);
1238

    
1239
    return tmp;
1240
}
1241

    
1242
static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1243
{
1244
    nvram_write(nvram, addr, value >> 24);
1245
    nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1246
    nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1247
    nvram_write(nvram, addr + 3, value & 0xFF);
1248
}
1249

    
1250
uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1251
{
1252
    uint32_t tmp;
1253

    
1254
    tmp = nvram_read(nvram, addr) << 24;
1255
    tmp |= nvram_read(nvram, addr + 1) << 16;
1256
    tmp |= nvram_read(nvram, addr + 2) << 8;
1257
    tmp |= nvram_read(nvram, addr + 3);
1258

    
1259
    return tmp;
1260
}
1261

    
1262
static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1263
                             uint32_t max)
1264
{
1265
    int i;
1266

    
1267
    for (i = 0; i < max && str[i] != '\0'; i++) {
1268
        nvram_write(nvram, addr + i, str[i]);
1269
    }
1270
    nvram_write(nvram, addr + i, str[i]);
1271
    nvram_write(nvram, addr + max - 1, '\0');
1272
}
1273

    
1274
int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1275
{
1276
    int i;
1277

    
1278
    memset(dst, 0, max);
1279
    for (i = 0; i < max; i++) {
1280
        dst[i] = NVRAM_get_byte(nvram, addr + i);
1281
        if (dst[i] == '\0')
1282
            break;
1283
    }
1284

    
1285
    return i;
1286
}
1287

    
1288
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1289
{
1290
    uint16_t tmp;
1291
    uint16_t pd, pd1, pd2;
1292

    
1293
    tmp = prev >> 8;
1294
    pd = prev ^ value;
1295
    pd1 = pd & 0x000F;
1296
    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1297
    tmp ^= (pd1 << 3) | (pd1 << 8);
1298
    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1299

    
1300
    return tmp;
1301
}
1302

    
1303
static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1304
{
1305
    uint32_t i;
1306
    uint16_t crc = 0xFFFF;
1307
    int odd;
1308

    
1309
    odd = count & 1;
1310
    count &= ~1;
1311
    for (i = 0; i != count; i++) {
1312
        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1313
    }
1314
    if (odd) {
1315
        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1316
    }
1317

    
1318
    return crc;
1319
}
1320

    
1321
#define CMDLINE_ADDR 0x017ff000
1322

    
1323
int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1324
                          const char *arch,
1325
                          uint32_t RAM_size, int boot_device,
1326
                          uint32_t kernel_image, uint32_t kernel_size,
1327
                          const char *cmdline,
1328
                          uint32_t initrd_image, uint32_t initrd_size,
1329
                          uint32_t NVRAM_image,
1330
                          int width, int height, int depth)
1331
{
1332
    uint16_t crc;
1333

    
1334
    /* Set parameters for Open Hack'Ware BIOS */
1335
    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1336
    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1337
    NVRAM_set_word(nvram,   0x14, NVRAM_size);
1338
    NVRAM_set_string(nvram, 0x20, arch, 16);
1339
    NVRAM_set_lword(nvram,  0x30, RAM_size);
1340
    NVRAM_set_byte(nvram,   0x34, boot_device);
1341
    NVRAM_set_lword(nvram,  0x38, kernel_image);
1342
    NVRAM_set_lword(nvram,  0x3C, kernel_size);
1343
    if (cmdline) {
1344
        /* XXX: put the cmdline in NVRAM too ? */
1345
        pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1346
        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1347
        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1348
    } else {
1349
        NVRAM_set_lword(nvram,  0x40, 0);
1350
        NVRAM_set_lword(nvram,  0x44, 0);
1351
    }
1352
    NVRAM_set_lword(nvram,  0x48, initrd_image);
1353
    NVRAM_set_lword(nvram,  0x4C, initrd_size);
1354
    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1355

    
1356
    NVRAM_set_word(nvram,   0x54, width);
1357
    NVRAM_set_word(nvram,   0x56, height);
1358
    NVRAM_set_word(nvram,   0x58, depth);
1359
    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1360
    NVRAM_set_word(nvram,   0xFC, crc);
1361

    
1362
    return 0;
1363
}