Statistics
| Branch: | Revision:

root / hw / spapr.c @ 18ebcc86

History | View | Annotate | Download (20.1 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44

    
45
#include "kvm.h"
46
#include "kvm_ppc.h"
47
#include "pci.h"
48

    
49
#include "exec-memory.h"
50

    
51
#include <libfdt.h>
52

    
53
#define KERNEL_LOAD_ADDR        0x00000000
54
#define INITRD_LOAD_ADDR        0x02800000
55
#define FDT_MAX_SIZE            0x10000
56
#define RTAS_MAX_SIZE           0x10000
57
#define FW_MAX_SIZE             0x400000
58
#define FW_FILE_NAME            "slof.bin"
59

    
60
#define MIN_RAM_SLOF                512UL
61

    
62
#define TIMEBASE_FREQ           512000000ULL
63

    
64
#define MAX_CPUS                256
65
#define XICS_IRQS                1024
66

    
67
#define SPAPR_PCI_BUID          0x800000020000001ULL
68
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
69
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
70
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
71

    
72
#define PHANDLE_XICP            0x00001111
73

    
74
sPAPREnvironment *spapr;
75

    
76
qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num)
77
{
78
    uint32_t irq;
79
    qemu_irq qirq;
80

    
81
    if (hint) {
82
        irq = hint;
83
        /* FIXME: we should probably check for collisions somehow */
84
    } else {
85
        irq = spapr->next_irq++;
86
    }
87

    
88
    qirq = xics_find_qirq(spapr->icp, irq);
89
    if (!qirq) {
90
        return NULL;
91
    }
92

    
93
    if (irq_num) {
94
        *irq_num = irq;
95
    }
96

    
97
    return qirq;
98
}
99

    
100
static void *spapr_create_fdt_skel(const char *cpu_model,
101
                                   target_phys_addr_t rma_size,
102
                                   target_phys_addr_t initrd_base,
103
                                   target_phys_addr_t initrd_size,
104
                                   const char *boot_device,
105
                                   const char *kernel_cmdline,
106
                                   long hash_shift)
107
{
108
    void *fdt;
109
    CPUState *env;
110
    uint64_t mem_reg_property_rma[] = { 0, cpu_to_be64(rma_size) };
111
    uint64_t mem_reg_property_nonrma[] = { cpu_to_be64(rma_size),
112
                                           cpu_to_be64(ram_size - rma_size) };
113
    uint32_t start_prop = cpu_to_be32(initrd_base);
114
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
115
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
116
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
117
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
118
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
119
    int i;
120
    char *modelname;
121
    int smt = kvmppc_smt_threads();
122

    
123
#define _FDT(exp) \
124
    do { \
125
        int ret = (exp);                                           \
126
        if (ret < 0) {                                             \
127
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
128
                    #exp, fdt_strerror(ret));                      \
129
            exit(1);                                               \
130
        }                                                          \
131
    } while (0)
132

    
133
    fdt = g_malloc0(FDT_MAX_SIZE);
134
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
135

    
136
    _FDT((fdt_finish_reservemap(fdt)));
137

    
138
    /* Root node */
139
    _FDT((fdt_begin_node(fdt, "")));
140
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
141
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
142

    
143
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
144
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
145

    
146
    /* /chosen */
147
    _FDT((fdt_begin_node(fdt, "chosen")));
148

    
149
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
150
    _FDT((fdt_property(fdt, "linux,initrd-start",
151
                       &start_prop, sizeof(start_prop))));
152
    _FDT((fdt_property(fdt, "linux,initrd-end",
153
                       &end_prop, sizeof(end_prop))));
154
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
155

    
156
    /*
157
     * Because we don't always invoke any firmware, we can't rely on
158
     * that to do BAR allocation.  Long term, we should probably do
159
     * that ourselves, but for now, this setting (plus advertising the
160
     * current BARs as 0) causes sufficiently recent kernels to to the
161
     * BAR assignment themselves */
162
    _FDT((fdt_property_cell(fdt, "linux,pci-probe-only", 0)));
163

    
164
    _FDT((fdt_end_node(fdt)));
165

    
166
    /* memory node(s) */
167
    _FDT((fdt_begin_node(fdt, "memory@0")));
168

    
169
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
170
    _FDT((fdt_property(fdt, "reg", mem_reg_property_rma,
171
                       sizeof(mem_reg_property_rma))));
172
    _FDT((fdt_end_node(fdt)));
173

    
174
    if (ram_size > rma_size) {
175
        char mem_name[32];
176

    
177
        sprintf(mem_name, "memory@%" PRIx64, (uint64_t)rma_size);
178
        _FDT((fdt_begin_node(fdt, mem_name)));
179
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
180
        _FDT((fdt_property(fdt, "reg", mem_reg_property_nonrma,
181
                           sizeof(mem_reg_property_nonrma))));
182
        _FDT((fdt_end_node(fdt)));
183
    }
184

    
185
    /* cpus */
186
    _FDT((fdt_begin_node(fdt, "cpus")));
187

    
188
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
189
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
190

    
191
    modelname = g_strdup(cpu_model);
192

    
193
    for (i = 0; i < strlen(modelname); i++) {
194
        modelname[i] = toupper(modelname[i]);
195
    }
196

    
197
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
198
        int index = env->cpu_index;
199
        uint32_t servers_prop[smp_threads];
200
        uint32_t gservers_prop[smp_threads * 2];
201
        char *nodename;
202
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
203
                           0xffffffff, 0xffffffff};
204
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
205
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
206

    
207
        if ((index % smt) != 0) {
208
            continue;
209
        }
210

    
211
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
212
            fprintf(stderr, "Allocation failure\n");
213
            exit(1);
214
        }
215

    
216
        _FDT((fdt_begin_node(fdt, nodename)));
217

    
218
        free(nodename);
219

    
220
        _FDT((fdt_property_cell(fdt, "reg", index)));
221
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
222

    
223
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
224
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
225
                                env->dcache_line_size)));
226
        _FDT((fdt_property_cell(fdt, "icache-block-size",
227
                                env->icache_line_size)));
228
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
229
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
230
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
231
        _FDT((fdt_property(fdt, "ibm,pft-size",
232
                           pft_size_prop, sizeof(pft_size_prop))));
233
        _FDT((fdt_property_string(fdt, "status", "okay")));
234
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
235

    
236
        /* Build interrupt servers and gservers properties */
237
        for (i = 0; i < smp_threads; i++) {
238
            servers_prop[i] = cpu_to_be32(index + i);
239
            /* Hack, direct the group queues back to cpu 0 */
240
            gservers_prop[i*2] = cpu_to_be32(index + i);
241
            gservers_prop[i*2 + 1] = 0;
242
        }
243
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
244
                           servers_prop, sizeof(servers_prop))));
245
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
246
                           gservers_prop, sizeof(gservers_prop))));
247

    
248
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
249
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
250
                               segs, sizeof(segs))));
251
        }
252

    
253
        /* Advertise VMX/VSX (vector extensions) if available
254
         *   0 / no property == no vector extensions
255
         *   1               == VMX / Altivec available
256
         *   2               == VSX available */
257
        if (env->insns_flags & PPC_ALTIVEC) {
258
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
259

    
260
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
261
        }
262

    
263
        /* Advertise DFP (Decimal Floating Point) if available
264
         *   0 / no property == no DFP
265
         *   1               == DFP available */
266
        if (env->insns_flags2 & PPC2_DFP) {
267
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
268
        }
269

    
270
        _FDT((fdt_end_node(fdt)));
271
    }
272

    
273
    g_free(modelname);
274

    
275
    _FDT((fdt_end_node(fdt)));
276

    
277
    /* RTAS */
278
    _FDT((fdt_begin_node(fdt, "rtas")));
279

    
280
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
281
                       sizeof(hypertas_prop))));
282

    
283
    _FDT((fdt_end_node(fdt)));
284

    
285
    /* interrupt controller */
286
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
287

    
288
    _FDT((fdt_property_string(fdt, "device_type",
289
                              "PowerPC-External-Interrupt-Presentation")));
290
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
291
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
292
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
293
                       interrupt_server_ranges_prop,
294
                       sizeof(interrupt_server_ranges_prop))));
295
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
296
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
297
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
298

    
299
    _FDT((fdt_end_node(fdt)));
300

    
301
    /* vdevice */
302
    _FDT((fdt_begin_node(fdt, "vdevice")));
303

    
304
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
305
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
306
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
307
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
308
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
309
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
310

    
311
    _FDT((fdt_end_node(fdt)));
312

    
313
    _FDT((fdt_end_node(fdt))); /* close root node */
314
    _FDT((fdt_finish(fdt)));
315

    
316
    return fdt;
317
}
318

    
319
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
320
                               target_phys_addr_t fdt_addr,
321
                               target_phys_addr_t rtas_addr,
322
                               target_phys_addr_t rtas_size)
323
{
324
    int ret;
325
    void *fdt;
326
    sPAPRPHBState *phb;
327

    
328
    fdt = g_malloc(FDT_MAX_SIZE);
329

    
330
    /* open out the base tree into a temp buffer for the final tweaks */
331
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
332

    
333
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
334
    if (ret < 0) {
335
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
336
        exit(1);
337
    }
338

    
339
    QLIST_FOREACH(phb, &spapr->phbs, list) {
340
        ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
341
    }
342

    
343
    if (ret < 0) {
344
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
345
        exit(1);
346
    }
347

    
348
    /* RTAS */
349
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
350
    if (ret < 0) {
351
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
352
    }
353

    
354
    _FDT((fdt_pack(fdt)));
355

    
356
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
357

    
358
    g_free(fdt);
359
}
360

    
361
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
362
{
363
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
364
}
365

    
366
static void emulate_spapr_hypercall(CPUState *env)
367
{
368
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
369
}
370

    
371
static void spapr_reset(void *opaque)
372
{
373
    sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
374

    
375
    fprintf(stderr, "sPAPR reset\n");
376

    
377
    /* flush out the hash table */
378
    memset(spapr->htab, 0, spapr->htab_size);
379

    
380
    /* Load the fdt */
381
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
382
                       spapr->rtas_size);
383

    
384
    /* Set up the entry state */
385
    first_cpu->gpr[3] = spapr->fdt_addr;
386
    first_cpu->gpr[5] = 0;
387
    first_cpu->halted = 0;
388
    first_cpu->nip = spapr->entry_point;
389

    
390
}
391

    
392
/* pSeries LPAR / sPAPR hardware init */
393
static void ppc_spapr_init(ram_addr_t ram_size,
394
                           const char *boot_device,
395
                           const char *kernel_filename,
396
                           const char *kernel_cmdline,
397
                           const char *initrd_filename,
398
                           const char *cpu_model)
399
{
400
    CPUState *env;
401
    int i;
402
    MemoryRegion *sysmem = get_system_memory();
403
    MemoryRegion *ram = g_new(MemoryRegion, 1);
404
    target_phys_addr_t rma_alloc_size, rma_size;
405
    uint32_t initrd_base;
406
    long kernel_size, initrd_size, fw_size;
407
    long pteg_shift = 17;
408
    char *filename;
409

    
410
    spapr = g_malloc(sizeof(*spapr));
411
    cpu_ppc_hypercall = emulate_spapr_hypercall;
412

    
413
    /* Allocate RMA if necessary */
414
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
415

    
416
    if (rma_alloc_size == -1) {
417
        hw_error("qemu: Unable to create RMA\n");
418
        exit(1);
419
    }
420
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
421
        rma_size = rma_alloc_size;
422
    } else {
423
        rma_size = ram_size;
424
    }
425

    
426
    /* We place the device tree just below either the top of the RMA,
427
     * or just below 2GB, whichever is lowere, so that it can be
428
     * processed with 32-bit real mode code if necessary */
429
    spapr->fdt_addr = MIN(rma_size, 0x80000000) - FDT_MAX_SIZE;
430
    spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE;
431

    
432
    /* init CPUs */
433
    if (cpu_model == NULL) {
434
        cpu_model = kvm_enabled() ? "host" : "POWER7";
435
    }
436
    for (i = 0; i < smp_cpus; i++) {
437
        env = cpu_init(cpu_model);
438

    
439
        if (!env) {
440
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
441
            exit(1);
442
        }
443
        /* Set time-base frequency to 512 MHz */
444
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
445
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
446

    
447
        env->hreset_vector = 0x60;
448
        env->hreset_excp_prefix = 0;
449
        env->gpr[3] = env->cpu_index;
450
    }
451

    
452
    /* allocate RAM */
453
    spapr->ram_limit = ram_size;
454
    if (spapr->ram_limit > rma_alloc_size) {
455
        ram_addr_t nonrma_base = rma_alloc_size;
456
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
457

    
458
        memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
459
        memory_region_add_subregion(sysmem, nonrma_base, ram);
460
    }
461

    
462
    /* allocate hash page table.  For now we always make this 16mb,
463
     * later we should probably make it scale to the size of guest
464
     * RAM */
465
    spapr->htab_size = 1ULL << (pteg_shift + 7);
466
    spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
467

    
468
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
469
        env->external_htab = spapr->htab;
470
        env->htab_base = -1;
471
        env->htab_mask = spapr->htab_size - 1;
472

    
473
        /* Tell KVM that we're in PAPR mode */
474
        env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
475
                             ((pteg_shift + 7) - 18);
476
        env->spr[SPR_HIOR] = 0;
477

    
478
        if (kvm_enabled()) {
479
            kvmppc_set_papr(env);
480
        }
481
    }
482

    
483
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
484
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
485
                                           ram_size - spapr->rtas_addr);
486
    if (spapr->rtas_size < 0) {
487
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
488
        exit(1);
489
    }
490
    g_free(filename);
491

    
492
    /* Set up Interrupt Controller */
493
    spapr->icp = xics_system_init(XICS_IRQS);
494
    spapr->next_irq = 16;
495

    
496
    /* Set up VIO bus */
497
    spapr->vio_bus = spapr_vio_bus_init();
498

    
499
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
500
        if (serial_hds[i]) {
501
            spapr_vty_create(spapr->vio_bus, SPAPR_VTY_BASE_ADDRESS + i,
502
                             serial_hds[i]);
503
        }
504
    }
505

    
506
    /* Set up PCI */
507
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
508
                     SPAPR_PCI_MEM_WIN_ADDR,
509
                     SPAPR_PCI_MEM_WIN_SIZE,
510
                     SPAPR_PCI_IO_WIN_ADDR);
511

    
512
    for (i = 0; i < nb_nics; i++) {
513
        NICInfo *nd = &nd_table[i];
514

    
515
        if (!nd->model) {
516
            nd->model = g_strdup("ibmveth");
517
        }
518

    
519
        if (strcmp(nd->model, "ibmveth") == 0) {
520
            spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd);
521
        } else {
522
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
523
        }
524
    }
525

    
526
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
527
        spapr_vscsi_create(spapr->vio_bus, 0x2000 + i);
528
    }
529

    
530
    if (kernel_filename) {
531
        uint64_t lowaddr = 0;
532

    
533
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
534
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
535
        if (kernel_size < 0) {
536
            kernel_size = load_image_targphys(kernel_filename,
537
                                              KERNEL_LOAD_ADDR,
538
                                              ram_size - KERNEL_LOAD_ADDR);
539
        }
540
        if (kernel_size < 0) {
541
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
542
                    kernel_filename);
543
            exit(1);
544
        }
545

    
546
        /* load initrd */
547
        if (initrd_filename) {
548
            initrd_base = INITRD_LOAD_ADDR;
549
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
550
                                              ram_size - initrd_base);
551
            if (initrd_size < 0) {
552
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
553
                        initrd_filename);
554
                exit(1);
555
            }
556
        } else {
557
            initrd_base = 0;
558
            initrd_size = 0;
559
        }
560

    
561
        spapr->entry_point = KERNEL_LOAD_ADDR;
562
    } else {
563
        if (ram_size < (MIN_RAM_SLOF << 20)) {
564
            fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
565
                    "%ldM guest RAM\n", MIN_RAM_SLOF);
566
            exit(1);
567
        }
568
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
569
        fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
570
        if (fw_size < 0) {
571
            hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
572
            exit(1);
573
        }
574
        g_free(filename);
575
        spapr->entry_point = 0x100;
576
        initrd_base = 0;
577
        initrd_size = 0;
578

    
579
        /* SLOF will startup the secondary CPUs using RTAS,
580
           rather than expecting a kexec() style entry */
581
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
582
            env->halted = 1;
583
        }
584
    }
585

    
586
    /* Prepare the device tree */
587
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
588
                                            initrd_base, initrd_size,
589
                                            boot_device, kernel_cmdline,
590
                                            pteg_shift + 7);
591
    assert(spapr->fdt_skel != NULL);
592

    
593
    qemu_register_reset(spapr_reset, spapr);
594
}
595

    
596
static QEMUMachine spapr_machine = {
597
    .name = "pseries",
598
    .desc = "pSeries Logical Partition (PAPR compliant)",
599
    .init = ppc_spapr_init,
600
    .max_cpus = MAX_CPUS,
601
    .no_vga = 1,
602
    .no_parallel = 1,
603
    .use_scsi = 1,
604
};
605

    
606
static void spapr_machine_init(void)
607
{
608
    qemu_register_machine(&spapr_machine);
609
}
610

    
611
machine_init(spapr_machine_init);