Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 1a5e9d2f

History | View | Annotate | Download (51.9 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
static int lm_capable_kernel;
58

    
59
#ifdef KVM_CAP_EXT_CPUID
60

    
61
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62
{
63
    struct kvm_cpuid2 *cpuid;
64
    int r, size;
65

    
66
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68
    cpuid->nent = max;
69
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70
    if (r == 0 && cpuid->nent >= max) {
71
        r = -E2BIG;
72
    }
73
    if (r < 0) {
74
        if (r == -E2BIG) {
75
            qemu_free(cpuid);
76
            return NULL;
77
        } else {
78
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79
                    strerror(-r));
80
            exit(1);
81
        }
82
    }
83
    return cpuid;
84
}
85

    
86
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87
                                      uint32_t index, int reg)
88
{
89
    struct kvm_cpuid2 *cpuid;
90
    int i, max;
91
    uint32_t ret = 0;
92
    uint32_t cpuid_1_edx;
93

    
94
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95
        return -1U;
96
    }
97

    
98
    max = 1;
99
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100
        max *= 2;
101
    }
102

    
103
    for (i = 0; i < cpuid->nent; ++i) {
104
        if (cpuid->entries[i].function == function &&
105
            cpuid->entries[i].index == index) {
106
            switch (reg) {
107
            case R_EAX:
108
                ret = cpuid->entries[i].eax;
109
                break;
110
            case R_EBX:
111
                ret = cpuid->entries[i].ebx;
112
                break;
113
            case R_ECX:
114
                ret = cpuid->entries[i].ecx;
115
                break;
116
            case R_EDX:
117
                ret = cpuid->entries[i].edx;
118
                switch (function) {
119
                case 1:
120
                    /* KVM before 2.6.30 misreports the following features */
121
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122
                    break;
123
                case 0x80000001:
124
                    /* On Intel, kvm returns cpuid according to the Intel spec,
125
                     * so add missing bits according to the AMD spec:
126
                     */
127
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128
                    ret |= cpuid_1_edx & 0x183f7ff;
129
                    break;
130
                }
131
                break;
132
            }
133
        }
134
    }
135

    
136
    qemu_free(cpuid);
137

    
138
    return ret;
139
}
140

    
141
#else
142

    
143
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144
                                      uint32_t index, int reg)
145
{
146
    return -1U;
147
}
148

    
149
#endif
150

    
151
#ifdef CONFIG_KVM_PARA
152
struct kvm_para_features {
153
    int cap;
154
    int feature;
155
} para_features[] = {
156
#ifdef KVM_CAP_CLOCKSOURCE
157
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158
#endif
159
#ifdef KVM_CAP_NOP_IO_DELAY
160
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161
#endif
162
#ifdef KVM_CAP_PV_MMU
163
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164
#endif
165
#ifdef KVM_CAP_ASYNC_PF
166
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167
#endif
168
    { -1, -1 }
169
};
170

    
171
static int get_para_features(CPUState *env)
172
{
173
    int i, features = 0;
174

    
175
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177
            features |= (1 << para_features[i].feature);
178
        }
179
    }
180
    return features;
181
}
182
#endif
183

    
184
#ifdef KVM_CAP_MCE
185
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186
                                     int *max_banks)
187
{
188
    int r;
189

    
190
    r = kvm_check_extension(s, KVM_CAP_MCE);
191
    if (r > 0) {
192
        *max_banks = r;
193
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194
    }
195
    return -ENOSYS;
196
}
197

    
198
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199
{
200
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201
}
202

    
203
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204
{
205
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206
}
207

    
208
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209
{
210
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211
    int r;
212

    
213
    kmsrs->nmsrs = n;
214
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217
    free(kmsrs);
218
    return r;
219
}
220

    
221
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222
static int kvm_mce_in_progress(CPUState *env)
223
{
224
    struct kvm_msr_entry msr_mcg_status = {
225
        .index = MSR_MCG_STATUS,
226
    };
227
    int r;
228

    
229
    r = kvm_get_msr(env, &msr_mcg_status, 1);
230
    if (r == -1 || r == 0) {
231
        fprintf(stderr, "Failed to get MCE status\n");
232
        return 0;
233
    }
234
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235
}
236

    
237
struct kvm_x86_mce_data
238
{
239
    CPUState *env;
240
    struct kvm_x86_mce *mce;
241
    int abort_on_error;
242
};
243

    
244
static void kvm_do_inject_x86_mce(void *_data)
245
{
246
    struct kvm_x86_mce_data *data = _data;
247
    int r;
248

    
249
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
250
    if ((data->env->mcg_cap & MCG_SER_P) &&
251
        !(data->mce->status & MCI_STATUS_AR)) {
252
        if (kvm_mce_in_progress(data->env)) {
253
            return;
254
        }
255
    }
256

    
257
    r = kvm_set_mce(data->env, data->mce);
258
    if (r < 0) {
259
        perror("kvm_set_mce FAILED");
260
        if (data->abort_on_error) {
261
            abort();
262
        }
263
    }
264
}
265

    
266
static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267
                                  int flag)
268
{
269
    struct kvm_x86_mce_data data = {
270
        .env = env,
271
        .mce = mce,
272
        .abort_on_error = (flag & ABORT_ON_ERROR),
273
    };
274

    
275
    if (!env->mcg_cap) {
276
        fprintf(stderr, "MCE support is not enabled!\n");
277
        return;
278
    }
279

    
280
    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
281
}
282

    
283
static void kvm_mce_broadcast_rest(CPUState *env);
284
#endif
285

    
286
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
287
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
288
                        int flag)
289
{
290
#ifdef KVM_CAP_MCE
291
    struct kvm_x86_mce mce = {
292
        .bank = bank,
293
        .status = status,
294
        .mcg_status = mcg_status,
295
        .addr = addr,
296
        .misc = misc,
297
    };
298

    
299
    if (flag & MCE_BROADCAST) {
300
        kvm_mce_broadcast_rest(cenv);
301
    }
302

    
303
    kvm_inject_x86_mce_on(cenv, &mce, flag);
304
#else
305
    if (flag & ABORT_ON_ERROR) {
306
        abort();
307
    }
308
#endif
309
}
310

    
311
int kvm_arch_init_vcpu(CPUState *env)
312
{
313
    struct {
314
        struct kvm_cpuid2 cpuid;
315
        struct kvm_cpuid_entry2 entries[100];
316
    } __attribute__((packed)) cpuid_data;
317
    uint32_t limit, i, j, cpuid_i;
318
    uint32_t unused;
319
    struct kvm_cpuid_entry2 *c;
320
#ifdef KVM_CPUID_SIGNATURE
321
    uint32_t signature[3];
322
#endif
323

    
324
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
325

    
326
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
327
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
328
    env->cpuid_ext_features |= i;
329

    
330
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
331
                                                             0, R_EDX);
332
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333
                                                             0, R_ECX);
334
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
335
                                                             0, R_EDX);
336

    
337

    
338
    cpuid_i = 0;
339

    
340
#ifdef CONFIG_KVM_PARA
341
    /* Paravirtualization CPUIDs */
342
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
343
    c = &cpuid_data.entries[cpuid_i++];
344
    memset(c, 0, sizeof(*c));
345
    c->function = KVM_CPUID_SIGNATURE;
346
    c->eax = 0;
347
    c->ebx = signature[0];
348
    c->ecx = signature[1];
349
    c->edx = signature[2];
350

    
351
    c = &cpuid_data.entries[cpuid_i++];
352
    memset(c, 0, sizeof(*c));
353
    c->function = KVM_CPUID_FEATURES;
354
    c->eax = env->cpuid_kvm_features & get_para_features(env);
355
#endif
356

    
357
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
358

    
359
    for (i = 0; i <= limit; i++) {
360
        c = &cpuid_data.entries[cpuid_i++];
361

    
362
        switch (i) {
363
        case 2: {
364
            /* Keep reading function 2 till all the input is received */
365
            int times;
366

    
367
            c->function = i;
368
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
369
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
370
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371
            times = c->eax & 0xff;
372

    
373
            for (j = 1; j < times; ++j) {
374
                c = &cpuid_data.entries[cpuid_i++];
375
                c->function = i;
376
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
377
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
378
            }
379
            break;
380
        }
381
        case 4:
382
        case 0xb:
383
        case 0xd:
384
            for (j = 0; ; j++) {
385
                c->function = i;
386
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387
                c->index = j;
388
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
389

    
390
                if (i == 4 && c->eax == 0) {
391
                    break;
392
                }
393
                if (i == 0xb && !(c->ecx & 0xff00)) {
394
                    break;
395
                }
396
                if (i == 0xd && c->eax == 0) {
397
                    break;
398
                }
399
                c = &cpuid_data.entries[cpuid_i++];
400
            }
401
            break;
402
        default:
403
            c->function = i;
404
            c->flags = 0;
405
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406
            break;
407
        }
408
    }
409
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
410

    
411
    for (i = 0x80000000; i <= limit; i++) {
412
        c = &cpuid_data.entries[cpuid_i++];
413

    
414
        c->function = i;
415
        c->flags = 0;
416
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417
    }
418

    
419
    cpuid_data.cpuid.nent = cpuid_i;
420

    
421
#ifdef KVM_CAP_MCE
422
    if (((env->cpuid_version >> 8)&0xF) >= 6
423
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
424
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
425
        uint64_t mcg_cap;
426
        int banks;
427

    
428
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
429
            perror("kvm_get_mce_cap_supported FAILED");
430
        } else {
431
            if (banks > MCE_BANKS_DEF)
432
                banks = MCE_BANKS_DEF;
433
            mcg_cap &= MCE_CAP_DEF;
434
            mcg_cap |= banks;
435
            if (kvm_setup_mce(env, &mcg_cap)) {
436
                perror("kvm_setup_mce FAILED");
437
            } else {
438
                env->mcg_cap = mcg_cap;
439
            }
440
        }
441
    }
442
#endif
443

    
444
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
445
}
446

    
447
void kvm_arch_reset_vcpu(CPUState *env)
448
{
449
    env->exception_injected = -1;
450
    env->interrupt_injected = -1;
451
    env->nmi_injected = 0;
452
    env->nmi_pending = 0;
453
    env->xcr0 = 1;
454
    if (kvm_irqchip_in_kernel()) {
455
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
456
                                          KVM_MP_STATE_UNINITIALIZED;
457
    } else {
458
        env->mp_state = KVM_MP_STATE_RUNNABLE;
459
    }
460
}
461

    
462
int has_msr_star;
463
int has_msr_hsave_pa;
464

    
465
static void kvm_supported_msrs(CPUState *env)
466
{
467
    static int kvm_supported_msrs;
468
    int ret;
469

    
470
    /* first time */
471
    if (kvm_supported_msrs == 0) {
472
        struct kvm_msr_list msr_list, *kvm_msr_list;
473

    
474
        kvm_supported_msrs = -1;
475

    
476
        /* Obtain MSR list from KVM.  These are the MSRs that we must
477
         * save/restore */
478
        msr_list.nmsrs = 0;
479
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
480
        if (ret < 0 && ret != -E2BIG) {
481
            return;
482
        }
483
        /* Old kernel modules had a bug and could write beyond the provided
484
           memory. Allocate at least a safe amount of 1K. */
485
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
486
                                              msr_list.nmsrs *
487
                                              sizeof(msr_list.indices[0])));
488

    
489
        kvm_msr_list->nmsrs = msr_list.nmsrs;
490
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
491
        if (ret >= 0) {
492
            int i;
493

    
494
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
495
                if (kvm_msr_list->indices[i] == MSR_STAR) {
496
                    has_msr_star = 1;
497
                    continue;
498
                }
499
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
500
                    has_msr_hsave_pa = 1;
501
                    continue;
502
                }
503
            }
504
        }
505

    
506
        free(kvm_msr_list);
507
    }
508

    
509
    return;
510
}
511

    
512
static int kvm_has_msr_hsave_pa(CPUState *env)
513
{
514
    kvm_supported_msrs(env);
515
    return has_msr_hsave_pa;
516
}
517

    
518
static int kvm_has_msr_star(CPUState *env)
519
{
520
    kvm_supported_msrs(env);
521
    return has_msr_star;
522
}
523

    
524
static int kvm_init_identity_map_page(KVMState *s)
525
{
526
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
527
    int ret;
528
    uint64_t addr = 0xfffbc000;
529

    
530
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
531
        return 0;
532
    }
533

    
534
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
535
    if (ret < 0) {
536
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
537
        return ret;
538
    }
539
#endif
540
    return 0;
541
}
542

    
543
int kvm_arch_init(KVMState *s, int smp_cpus)
544
{
545
    int ret;
546

    
547
    struct utsname utsname;
548

    
549
    uname(&utsname);
550
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
551

    
552
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
553
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
554
     * must be part of guest physical memory, we need to allocate it.  Older
555
     * versions of KVM just assumed that it would be at the end of physical
556
     * memory but that doesn't work with more than 4GB of memory.  We simply
557
     * refuse to work with those older versions of KVM. */
558
    ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
559
    if (ret <= 0) {
560
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
561
        return ret;
562
    }
563

    
564
    /* this address is 3 pages before the bios, and the bios should present
565
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
566
     * this?
567
     */
568
    /*
569
     * Tell fw_cfg to notify the BIOS to reserve the range.
570
     */
571
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
572
        perror("e820_add_entry() table is full");
573
        exit(1);
574
    }
575
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
576
    if (ret < 0) {
577
        return ret;
578
    }
579

    
580
    return kvm_init_identity_map_page(s);
581
}
582

    
583
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
584
{
585
    lhs->selector = rhs->selector;
586
    lhs->base = rhs->base;
587
    lhs->limit = rhs->limit;
588
    lhs->type = 3;
589
    lhs->present = 1;
590
    lhs->dpl = 3;
591
    lhs->db = 0;
592
    lhs->s = 1;
593
    lhs->l = 0;
594
    lhs->g = 0;
595
    lhs->avl = 0;
596
    lhs->unusable = 0;
597
}
598

    
599
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
600
{
601
    unsigned flags = rhs->flags;
602
    lhs->selector = rhs->selector;
603
    lhs->base = rhs->base;
604
    lhs->limit = rhs->limit;
605
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
606
    lhs->present = (flags & DESC_P_MASK) != 0;
607
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
608
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
609
    lhs->s = (flags & DESC_S_MASK) != 0;
610
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
611
    lhs->g = (flags & DESC_G_MASK) != 0;
612
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
613
    lhs->unusable = 0;
614
}
615

    
616
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
617
{
618
    lhs->selector = rhs->selector;
619
    lhs->base = rhs->base;
620
    lhs->limit = rhs->limit;
621
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
622
                 (rhs->present * DESC_P_MASK) |
623
                 (rhs->dpl << DESC_DPL_SHIFT) |
624
                 (rhs->db << DESC_B_SHIFT) |
625
                 (rhs->s * DESC_S_MASK) |
626
                 (rhs->l << DESC_L_SHIFT) |
627
                 (rhs->g * DESC_G_MASK) |
628
                 (rhs->avl * DESC_AVL_MASK);
629
}
630

    
631
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
632
{
633
    if (set) {
634
        *kvm_reg = *qemu_reg;
635
    } else {
636
        *qemu_reg = *kvm_reg;
637
    }
638
}
639

    
640
static int kvm_getput_regs(CPUState *env, int set)
641
{
642
    struct kvm_regs regs;
643
    int ret = 0;
644

    
645
    if (!set) {
646
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
647
        if (ret < 0) {
648
            return ret;
649
        }
650
    }
651

    
652
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
653
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
654
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
655
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
656
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
657
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
658
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
659
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
660
#ifdef TARGET_X86_64
661
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
662
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
663
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
664
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
665
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
666
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
667
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
668
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
669
#endif
670

    
671
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
672
    kvm_getput_reg(&regs.rip, &env->eip, set);
673

    
674
    if (set) {
675
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
676
    }
677

    
678
    return ret;
679
}
680

    
681
static int kvm_put_fpu(CPUState *env)
682
{
683
    struct kvm_fpu fpu;
684
    int i;
685

    
686
    memset(&fpu, 0, sizeof fpu);
687
    fpu.fsw = env->fpus & ~(7 << 11);
688
    fpu.fsw |= (env->fpstt & 7) << 11;
689
    fpu.fcw = env->fpuc;
690
    for (i = 0; i < 8; ++i) {
691
        fpu.ftwx |= (!env->fptags[i]) << i;
692
    }
693
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
694
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
695
    fpu.mxcsr = env->mxcsr;
696

    
697
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
698
}
699

    
700
#ifdef KVM_CAP_XSAVE
701
#define XSAVE_CWD_RIP     2
702
#define XSAVE_CWD_RDP     4
703
#define XSAVE_MXCSR       6
704
#define XSAVE_ST_SPACE    8
705
#define XSAVE_XMM_SPACE   40
706
#define XSAVE_XSTATE_BV   128
707
#define XSAVE_YMMH_SPACE  144
708
#endif
709

    
710
static int kvm_put_xsave(CPUState *env)
711
{
712
#ifdef KVM_CAP_XSAVE
713
    int i, r;
714
    struct kvm_xsave* xsave;
715
    uint16_t cwd, swd, twd, fop;
716

    
717
    if (!kvm_has_xsave()) {
718
        return kvm_put_fpu(env);
719
    }
720

    
721
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
722
    memset(xsave, 0, sizeof(struct kvm_xsave));
723
    cwd = swd = twd = fop = 0;
724
    swd = env->fpus & ~(7 << 11);
725
    swd |= (env->fpstt & 7) << 11;
726
    cwd = env->fpuc;
727
    for (i = 0; i < 8; ++i) {
728
        twd |= (!env->fptags[i]) << i;
729
    }
730
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
731
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
732
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
733
            sizeof env->fpregs);
734
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
735
            sizeof env->xmm_regs);
736
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
737
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
738
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
739
            sizeof env->ymmh_regs);
740
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
741
    qemu_free(xsave);
742
    return r;
743
#else
744
    return kvm_put_fpu(env);
745
#endif
746
}
747

    
748
static int kvm_put_xcrs(CPUState *env)
749
{
750
#ifdef KVM_CAP_XCRS
751
    struct kvm_xcrs xcrs;
752

    
753
    if (!kvm_has_xcrs()) {
754
        return 0;
755
    }
756

    
757
    xcrs.nr_xcrs = 1;
758
    xcrs.flags = 0;
759
    xcrs.xcrs[0].xcr = 0;
760
    xcrs.xcrs[0].value = env->xcr0;
761
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
762
#else
763
    return 0;
764
#endif
765
}
766

    
767
static int kvm_put_sregs(CPUState *env)
768
{
769
    struct kvm_sregs sregs;
770

    
771
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
772
    if (env->interrupt_injected >= 0) {
773
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
774
                (uint64_t)1 << (env->interrupt_injected % 64);
775
    }
776

    
777
    if ((env->eflags & VM_MASK)) {
778
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
779
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
780
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
781
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
782
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
783
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
784
    } else {
785
        set_seg(&sregs.cs, &env->segs[R_CS]);
786
        set_seg(&sregs.ds, &env->segs[R_DS]);
787
        set_seg(&sregs.es, &env->segs[R_ES]);
788
        set_seg(&sregs.fs, &env->segs[R_FS]);
789
        set_seg(&sregs.gs, &env->segs[R_GS]);
790
        set_seg(&sregs.ss, &env->segs[R_SS]);
791
    }
792

    
793
    set_seg(&sregs.tr, &env->tr);
794
    set_seg(&sregs.ldt, &env->ldt);
795

    
796
    sregs.idt.limit = env->idt.limit;
797
    sregs.idt.base = env->idt.base;
798
    sregs.gdt.limit = env->gdt.limit;
799
    sregs.gdt.base = env->gdt.base;
800

    
801
    sregs.cr0 = env->cr[0];
802
    sregs.cr2 = env->cr[2];
803
    sregs.cr3 = env->cr[3];
804
    sregs.cr4 = env->cr[4];
805

    
806
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
807
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
808

    
809
    sregs.efer = env->efer;
810

    
811
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
812
}
813

    
814
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
815
                              uint32_t index, uint64_t value)
816
{
817
    entry->index = index;
818
    entry->data = value;
819
}
820

    
821
static int kvm_put_msrs(CPUState *env, int level)
822
{
823
    struct {
824
        struct kvm_msrs info;
825
        struct kvm_msr_entry entries[100];
826
    } msr_data;
827
    struct kvm_msr_entry *msrs = msr_data.entries;
828
    int n = 0;
829

    
830
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
831
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
832
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
833
    if (kvm_has_msr_star(env)) {
834
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
835
    }
836
    if (kvm_has_msr_hsave_pa(env)) {
837
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
838
    }
839
#ifdef TARGET_X86_64
840
    if (lm_capable_kernel) {
841
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
842
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
843
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
844
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
845
    }
846
#endif
847
    if (level == KVM_PUT_FULL_STATE) {
848
        /*
849
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
850
         * writeback. Until this is fixed, we only write the offset to SMP
851
         * guests after migration, desynchronizing the VCPUs, but avoiding
852
         * huge jump-backs that would occur without any writeback at all.
853
         */
854
        if (smp_cpus == 1 || env->tsc != 0) {
855
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
856
        }
857
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
858
                          env->system_time_msr);
859
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
860
#ifdef KVM_CAP_ASYNC_PF
861
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
862
#endif
863
    }
864
#ifdef KVM_CAP_MCE
865
    if (env->mcg_cap) {
866
        int i;
867

    
868
        if (level == KVM_PUT_RESET_STATE) {
869
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
870
        } else if (level == KVM_PUT_FULL_STATE) {
871
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
872
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
873
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
874
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
875
            }
876
        }
877
    }
878
#endif
879

    
880
    msr_data.info.nmsrs = n;
881

    
882
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
883

    
884
}
885

    
886

    
887
static int kvm_get_fpu(CPUState *env)
888
{
889
    struct kvm_fpu fpu;
890
    int i, ret;
891

    
892
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
893
    if (ret < 0) {
894
        return ret;
895
    }
896

    
897
    env->fpstt = (fpu.fsw >> 11) & 7;
898
    env->fpus = fpu.fsw;
899
    env->fpuc = fpu.fcw;
900
    for (i = 0; i < 8; ++i) {
901
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
902
    }
903
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
904
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
905
    env->mxcsr = fpu.mxcsr;
906

    
907
    return 0;
908
}
909

    
910
static int kvm_get_xsave(CPUState *env)
911
{
912
#ifdef KVM_CAP_XSAVE
913
    struct kvm_xsave* xsave;
914
    int ret, i;
915
    uint16_t cwd, swd, twd, fop;
916

    
917
    if (!kvm_has_xsave()) {
918
        return kvm_get_fpu(env);
919
    }
920

    
921
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
922
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
923
    if (ret < 0) {
924
        qemu_free(xsave);
925
        return ret;
926
    }
927

    
928
    cwd = (uint16_t)xsave->region[0];
929
    swd = (uint16_t)(xsave->region[0] >> 16);
930
    twd = (uint16_t)xsave->region[1];
931
    fop = (uint16_t)(xsave->region[1] >> 16);
932
    env->fpstt = (swd >> 11) & 7;
933
    env->fpus = swd;
934
    env->fpuc = cwd;
935
    for (i = 0; i < 8; ++i) {
936
        env->fptags[i] = !((twd >> i) & 1);
937
    }
938
    env->mxcsr = xsave->region[XSAVE_MXCSR];
939
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
940
            sizeof env->fpregs);
941
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
942
            sizeof env->xmm_regs);
943
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
944
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
945
            sizeof env->ymmh_regs);
946
    qemu_free(xsave);
947
    return 0;
948
#else
949
    return kvm_get_fpu(env);
950
#endif
951
}
952

    
953
static int kvm_get_xcrs(CPUState *env)
954
{
955
#ifdef KVM_CAP_XCRS
956
    int i, ret;
957
    struct kvm_xcrs xcrs;
958

    
959
    if (!kvm_has_xcrs()) {
960
        return 0;
961
    }
962

    
963
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
964
    if (ret < 0) {
965
        return ret;
966
    }
967

    
968
    for (i = 0; i < xcrs.nr_xcrs; i++) {
969
        /* Only support xcr0 now */
970
        if (xcrs.xcrs[0].xcr == 0) {
971
            env->xcr0 = xcrs.xcrs[0].value;
972
            break;
973
        }
974
    }
975
    return 0;
976
#else
977
    return 0;
978
#endif
979
}
980

    
981
static int kvm_get_sregs(CPUState *env)
982
{
983
    struct kvm_sregs sregs;
984
    uint32_t hflags;
985
    int bit, i, ret;
986

    
987
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
988
    if (ret < 0) {
989
        return ret;
990
    }
991

    
992
    /* There can only be one pending IRQ set in the bitmap at a time, so try
993
       to find it and save its number instead (-1 for none). */
994
    env->interrupt_injected = -1;
995
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
996
        if (sregs.interrupt_bitmap[i]) {
997
            bit = ctz64(sregs.interrupt_bitmap[i]);
998
            env->interrupt_injected = i * 64 + bit;
999
            break;
1000
        }
1001
    }
1002

    
1003
    get_seg(&env->segs[R_CS], &sregs.cs);
1004
    get_seg(&env->segs[R_DS], &sregs.ds);
1005
    get_seg(&env->segs[R_ES], &sregs.es);
1006
    get_seg(&env->segs[R_FS], &sregs.fs);
1007
    get_seg(&env->segs[R_GS], &sregs.gs);
1008
    get_seg(&env->segs[R_SS], &sregs.ss);
1009

    
1010
    get_seg(&env->tr, &sregs.tr);
1011
    get_seg(&env->ldt, &sregs.ldt);
1012

    
1013
    env->idt.limit = sregs.idt.limit;
1014
    env->idt.base = sregs.idt.base;
1015
    env->gdt.limit = sregs.gdt.limit;
1016
    env->gdt.base = sregs.gdt.base;
1017

    
1018
    env->cr[0] = sregs.cr0;
1019
    env->cr[2] = sregs.cr2;
1020
    env->cr[3] = sregs.cr3;
1021
    env->cr[4] = sregs.cr4;
1022

    
1023
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1024

    
1025
    env->efer = sregs.efer;
1026
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1027

    
1028
#define HFLAG_COPY_MASK \
1029
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1030
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1031
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1032
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1033

    
1034
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1035
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1036
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1037
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1038
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1039
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1040
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1041

    
1042
    if (env->efer & MSR_EFER_LMA) {
1043
        hflags |= HF_LMA_MASK;
1044
    }
1045

    
1046
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1047
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1048
    } else {
1049
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1050
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1051
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1052
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1053
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1054
            !(hflags & HF_CS32_MASK)) {
1055
            hflags |= HF_ADDSEG_MASK;
1056
        } else {
1057
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1058
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1059
        }
1060
    }
1061
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1062

    
1063
    return 0;
1064
}
1065

    
1066
static int kvm_get_msrs(CPUState *env)
1067
{
1068
    struct {
1069
        struct kvm_msrs info;
1070
        struct kvm_msr_entry entries[100];
1071
    } msr_data;
1072
    struct kvm_msr_entry *msrs = msr_data.entries;
1073
    int ret, i, n;
1074

    
1075
    n = 0;
1076
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1077
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1078
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1079
    if (kvm_has_msr_star(env)) {
1080
        msrs[n++].index = MSR_STAR;
1081
    }
1082
    if (kvm_has_msr_hsave_pa(env)) {
1083
        msrs[n++].index = MSR_VM_HSAVE_PA;
1084
    }
1085
    msrs[n++].index = MSR_IA32_TSC;
1086
#ifdef TARGET_X86_64
1087
    if (lm_capable_kernel) {
1088
        msrs[n++].index = MSR_CSTAR;
1089
        msrs[n++].index = MSR_KERNELGSBASE;
1090
        msrs[n++].index = MSR_FMASK;
1091
        msrs[n++].index = MSR_LSTAR;
1092
    }
1093
#endif
1094
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1095
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1096
#ifdef KVM_CAP_ASYNC_PF
1097
    msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1098
#endif
1099

    
1100
#ifdef KVM_CAP_MCE
1101
    if (env->mcg_cap) {
1102
        msrs[n++].index = MSR_MCG_STATUS;
1103
        msrs[n++].index = MSR_MCG_CTL;
1104
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1105
            msrs[n++].index = MSR_MC0_CTL + i;
1106
        }
1107
    }
1108
#endif
1109

    
1110
    msr_data.info.nmsrs = n;
1111
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1112
    if (ret < 0) {
1113
        return ret;
1114
    }
1115

    
1116
    for (i = 0; i < ret; i++) {
1117
        switch (msrs[i].index) {
1118
        case MSR_IA32_SYSENTER_CS:
1119
            env->sysenter_cs = msrs[i].data;
1120
            break;
1121
        case MSR_IA32_SYSENTER_ESP:
1122
            env->sysenter_esp = msrs[i].data;
1123
            break;
1124
        case MSR_IA32_SYSENTER_EIP:
1125
            env->sysenter_eip = msrs[i].data;
1126
            break;
1127
        case MSR_STAR:
1128
            env->star = msrs[i].data;
1129
            break;
1130
#ifdef TARGET_X86_64
1131
        case MSR_CSTAR:
1132
            env->cstar = msrs[i].data;
1133
            break;
1134
        case MSR_KERNELGSBASE:
1135
            env->kernelgsbase = msrs[i].data;
1136
            break;
1137
        case MSR_FMASK:
1138
            env->fmask = msrs[i].data;
1139
            break;
1140
        case MSR_LSTAR:
1141
            env->lstar = msrs[i].data;
1142
            break;
1143
#endif
1144
        case MSR_IA32_TSC:
1145
            env->tsc = msrs[i].data;
1146
            break;
1147
        case MSR_VM_HSAVE_PA:
1148
            env->vm_hsave = msrs[i].data;
1149
            break;
1150
        case MSR_KVM_SYSTEM_TIME:
1151
            env->system_time_msr = msrs[i].data;
1152
            break;
1153
        case MSR_KVM_WALL_CLOCK:
1154
            env->wall_clock_msr = msrs[i].data;
1155
            break;
1156
#ifdef KVM_CAP_MCE
1157
        case MSR_MCG_STATUS:
1158
            env->mcg_status = msrs[i].data;
1159
            break;
1160
        case MSR_MCG_CTL:
1161
            env->mcg_ctl = msrs[i].data;
1162
            break;
1163
#endif
1164
        default:
1165
#ifdef KVM_CAP_MCE
1166
            if (msrs[i].index >= MSR_MC0_CTL &&
1167
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1168
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1169
            }
1170
#endif
1171
            break;
1172
#ifdef KVM_CAP_ASYNC_PF
1173
        case MSR_KVM_ASYNC_PF_EN:
1174
            env->async_pf_en_msr = msrs[i].data;
1175
            break;
1176
#endif
1177
        }
1178
    }
1179

    
1180
    return 0;
1181
}
1182

    
1183
static int kvm_put_mp_state(CPUState *env)
1184
{
1185
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1186

    
1187
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1188
}
1189

    
1190
static int kvm_get_mp_state(CPUState *env)
1191
{
1192
    struct kvm_mp_state mp_state;
1193
    int ret;
1194

    
1195
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1196
    if (ret < 0) {
1197
        return ret;
1198
    }
1199
    env->mp_state = mp_state.mp_state;
1200
    if (kvm_irqchip_in_kernel()) {
1201
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1202
    }
1203
    return 0;
1204
}
1205

    
1206
static int kvm_put_vcpu_events(CPUState *env, int level)
1207
{
1208
#ifdef KVM_CAP_VCPU_EVENTS
1209
    struct kvm_vcpu_events events;
1210

    
1211
    if (!kvm_has_vcpu_events()) {
1212
        return 0;
1213
    }
1214

    
1215
    events.exception.injected = (env->exception_injected >= 0);
1216
    events.exception.nr = env->exception_injected;
1217
    events.exception.has_error_code = env->has_error_code;
1218
    events.exception.error_code = env->error_code;
1219

    
1220
    events.interrupt.injected = (env->interrupt_injected >= 0);
1221
    events.interrupt.nr = env->interrupt_injected;
1222
    events.interrupt.soft = env->soft_interrupt;
1223

    
1224
    events.nmi.injected = env->nmi_injected;
1225
    events.nmi.pending = env->nmi_pending;
1226
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1227

    
1228
    events.sipi_vector = env->sipi_vector;
1229

    
1230
    events.flags = 0;
1231
    if (level >= KVM_PUT_RESET_STATE) {
1232
        events.flags |=
1233
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1234
    }
1235

    
1236
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1237
#else
1238
    return 0;
1239
#endif
1240
}
1241

    
1242
static int kvm_get_vcpu_events(CPUState *env)
1243
{
1244
#ifdef KVM_CAP_VCPU_EVENTS
1245
    struct kvm_vcpu_events events;
1246
    int ret;
1247

    
1248
    if (!kvm_has_vcpu_events()) {
1249
        return 0;
1250
    }
1251

    
1252
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1253
    if (ret < 0) {
1254
       return ret;
1255
    }
1256
    env->exception_injected =
1257
       events.exception.injected ? events.exception.nr : -1;
1258
    env->has_error_code = events.exception.has_error_code;
1259
    env->error_code = events.exception.error_code;
1260

    
1261
    env->interrupt_injected =
1262
        events.interrupt.injected ? events.interrupt.nr : -1;
1263
    env->soft_interrupt = events.interrupt.soft;
1264

    
1265
    env->nmi_injected = events.nmi.injected;
1266
    env->nmi_pending = events.nmi.pending;
1267
    if (events.nmi.masked) {
1268
        env->hflags2 |= HF2_NMI_MASK;
1269
    } else {
1270
        env->hflags2 &= ~HF2_NMI_MASK;
1271
    }
1272

    
1273
    env->sipi_vector = events.sipi_vector;
1274
#endif
1275

    
1276
    return 0;
1277
}
1278

    
1279
static int kvm_guest_debug_workarounds(CPUState *env)
1280
{
1281
    int ret = 0;
1282
#ifdef KVM_CAP_SET_GUEST_DEBUG
1283
    unsigned long reinject_trap = 0;
1284

    
1285
    if (!kvm_has_vcpu_events()) {
1286
        if (env->exception_injected == 1) {
1287
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1288
        } else if (env->exception_injected == 3) {
1289
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1290
        }
1291
        env->exception_injected = -1;
1292
    }
1293

    
1294
    /*
1295
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1296
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1297
     * by updating the debug state once again if single-stepping is on.
1298
     * Another reason to call kvm_update_guest_debug here is a pending debug
1299
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1300
     * reinject them via SET_GUEST_DEBUG.
1301
     */
1302
    if (reinject_trap ||
1303
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1304
        ret = kvm_update_guest_debug(env, reinject_trap);
1305
    }
1306
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1307
    return ret;
1308
}
1309

    
1310
static int kvm_put_debugregs(CPUState *env)
1311
{
1312
#ifdef KVM_CAP_DEBUGREGS
1313
    struct kvm_debugregs dbgregs;
1314
    int i;
1315

    
1316
    if (!kvm_has_debugregs()) {
1317
        return 0;
1318
    }
1319

    
1320
    for (i = 0; i < 4; i++) {
1321
        dbgregs.db[i] = env->dr[i];
1322
    }
1323
    dbgregs.dr6 = env->dr[6];
1324
    dbgregs.dr7 = env->dr[7];
1325
    dbgregs.flags = 0;
1326

    
1327
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1328
#else
1329
    return 0;
1330
#endif
1331
}
1332

    
1333
static int kvm_get_debugregs(CPUState *env)
1334
{
1335
#ifdef KVM_CAP_DEBUGREGS
1336
    struct kvm_debugregs dbgregs;
1337
    int i, ret;
1338

    
1339
    if (!kvm_has_debugregs()) {
1340
        return 0;
1341
    }
1342

    
1343
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1344
    if (ret < 0) {
1345
        return ret;
1346
    }
1347
    for (i = 0; i < 4; i++) {
1348
        env->dr[i] = dbgregs.db[i];
1349
    }
1350
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1351
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1352
#endif
1353

    
1354
    return 0;
1355
}
1356

    
1357
int kvm_arch_put_registers(CPUState *env, int level)
1358
{
1359
    int ret;
1360

    
1361
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1362

    
1363
    ret = kvm_getput_regs(env, 1);
1364
    if (ret < 0) {
1365
        return ret;
1366
    }
1367
    ret = kvm_put_xsave(env);
1368
    if (ret < 0) {
1369
        return ret;
1370
    }
1371
    ret = kvm_put_xcrs(env);
1372
    if (ret < 0) {
1373
        return ret;
1374
    }
1375
    ret = kvm_put_sregs(env);
1376
    if (ret < 0) {
1377
        return ret;
1378
    }
1379
    ret = kvm_put_msrs(env, level);
1380
    if (ret < 0) {
1381
        return ret;
1382
    }
1383
    if (level >= KVM_PUT_RESET_STATE) {
1384
        ret = kvm_put_mp_state(env);
1385
        if (ret < 0) {
1386
            return ret;
1387
        }
1388
    }
1389
    ret = kvm_put_vcpu_events(env, level);
1390
    if (ret < 0) {
1391
        return ret;
1392
    }
1393
    ret = kvm_put_debugregs(env);
1394
    if (ret < 0) {
1395
        return ret;
1396
    }
1397
    /* must be last */
1398
    ret = kvm_guest_debug_workarounds(env);
1399
    if (ret < 0) {
1400
        return ret;
1401
    }
1402
    return 0;
1403
}
1404

    
1405
int kvm_arch_get_registers(CPUState *env)
1406
{
1407
    int ret;
1408

    
1409
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1410

    
1411
    ret = kvm_getput_regs(env, 0);
1412
    if (ret < 0) {
1413
        return ret;
1414
    }
1415
    ret = kvm_get_xsave(env);
1416
    if (ret < 0) {
1417
        return ret;
1418
    }
1419
    ret = kvm_get_xcrs(env);
1420
    if (ret < 0) {
1421
        return ret;
1422
    }
1423
    ret = kvm_get_sregs(env);
1424
    if (ret < 0) {
1425
        return ret;
1426
    }
1427
    ret = kvm_get_msrs(env);
1428
    if (ret < 0) {
1429
        return ret;
1430
    }
1431
    ret = kvm_get_mp_state(env);
1432
    if (ret < 0) {
1433
        return ret;
1434
    }
1435
    ret = kvm_get_vcpu_events(env);
1436
    if (ret < 0) {
1437
        return ret;
1438
    }
1439
    ret = kvm_get_debugregs(env);
1440
    if (ret < 0) {
1441
        return ret;
1442
    }
1443
    return 0;
1444
}
1445

    
1446
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1447
{
1448
    /* Inject NMI */
1449
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1450
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1451
        DPRINTF("injected NMI\n");
1452
        kvm_vcpu_ioctl(env, KVM_NMI);
1453
    }
1454

    
1455
    /* Try to inject an interrupt if the guest can accept it */
1456
    if (run->ready_for_interrupt_injection &&
1457
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1458
        (env->eflags & IF_MASK)) {
1459
        int irq;
1460

    
1461
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1462
        irq = cpu_get_pic_interrupt(env);
1463
        if (irq >= 0) {
1464
            struct kvm_interrupt intr;
1465
            intr.irq = irq;
1466
            /* FIXME: errors */
1467
            DPRINTF("injected interrupt %d\n", irq);
1468
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1469
        }
1470
    }
1471

    
1472
    /* If we have an interrupt but the guest is not ready to receive an
1473
     * interrupt, request an interrupt window exit.  This will
1474
     * cause a return to userspace as soon as the guest is ready to
1475
     * receive interrupts. */
1476
    if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1477
        run->request_interrupt_window = 1;
1478
    } else {
1479
        run->request_interrupt_window = 0;
1480
    }
1481

    
1482
    DPRINTF("setting tpr\n");
1483
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1484

    
1485
    return 0;
1486
}
1487

    
1488
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1489
{
1490
    if (run->if_flag) {
1491
        env->eflags |= IF_MASK;
1492
    } else {
1493
        env->eflags &= ~IF_MASK;
1494
    }
1495
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1496
    cpu_set_apic_base(env->apic_state, run->apic_base);
1497

    
1498
    return 0;
1499
}
1500

    
1501
int kvm_arch_process_irqchip_events(CPUState *env)
1502
{
1503
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1504
        kvm_cpu_synchronize_state(env);
1505
        do_cpu_init(env);
1506
        env->exception_index = EXCP_HALTED;
1507
    }
1508

    
1509
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1510
        kvm_cpu_synchronize_state(env);
1511
        do_cpu_sipi(env);
1512
    }
1513

    
1514
    return env->halted;
1515
}
1516

    
1517
static int kvm_handle_halt(CPUState *env)
1518
{
1519
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1520
          (env->eflags & IF_MASK)) &&
1521
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1522
        env->halted = 1;
1523
        env->exception_index = EXCP_HLT;
1524
        return 0;
1525
    }
1526

    
1527
    return 1;
1528
}
1529

    
1530
static bool host_supports_vmx(void)
1531
{
1532
    uint32_t ecx, unused;
1533

    
1534
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1535
    return ecx & CPUID_EXT_VMX;
1536
}
1537

    
1538
#define VMX_INVALID_GUEST_STATE 0x80000021
1539

    
1540
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1541
{
1542
    uint64_t code;
1543
    int ret = 0;
1544

    
1545
    switch (run->exit_reason) {
1546
    case KVM_EXIT_HLT:
1547
        DPRINTF("handle_hlt\n");
1548
        ret = kvm_handle_halt(env);
1549
        break;
1550
    case KVM_EXIT_SET_TPR:
1551
        ret = 1;
1552
        break;
1553
    case KVM_EXIT_FAIL_ENTRY:
1554
        code = run->fail_entry.hardware_entry_failure_reason;
1555
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1556
                code);
1557
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1558
            fprintf(stderr,
1559
                    "\nIf you're runnning a guest on an Intel machine without "
1560
                        "unrestricted mode\n"
1561
                    "support, the failure can be most likely due to the guest "
1562
                        "entering an invalid\n"
1563
                    "state for Intel VT. For example, the guest maybe running "
1564
                        "in big real mode\n"
1565
                    "which is not supported on less recent Intel processors."
1566
                        "\n\n");
1567
        }
1568
        ret = -1;
1569
        break;
1570
    case KVM_EXIT_EXCEPTION:
1571
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1572
                run->ex.exception, run->ex.error_code);
1573
        ret = -1;
1574
        break;
1575
    default:
1576
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1577
        ret = -1;
1578
        break;
1579
    }
1580

    
1581
    return ret;
1582
}
1583

    
1584
#ifdef KVM_CAP_SET_GUEST_DEBUG
1585
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1586
{
1587
    static const uint8_t int3 = 0xcc;
1588

    
1589
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1590
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1591
        return -EINVAL;
1592
    }
1593
    return 0;
1594
}
1595

    
1596
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1597
{
1598
    uint8_t int3;
1599

    
1600
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1601
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1602
        return -EINVAL;
1603
    }
1604
    return 0;
1605
}
1606

    
1607
static struct {
1608
    target_ulong addr;
1609
    int len;
1610
    int type;
1611
} hw_breakpoint[4];
1612

    
1613
static int nb_hw_breakpoint;
1614

    
1615
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1616
{
1617
    int n;
1618

    
1619
    for (n = 0; n < nb_hw_breakpoint; n++) {
1620
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1621
            (hw_breakpoint[n].len == len || len == -1)) {
1622
            return n;
1623
        }
1624
    }
1625
    return -1;
1626
}
1627

    
1628
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1629
                                  target_ulong len, int type)
1630
{
1631
    switch (type) {
1632
    case GDB_BREAKPOINT_HW:
1633
        len = 1;
1634
        break;
1635
    case GDB_WATCHPOINT_WRITE:
1636
    case GDB_WATCHPOINT_ACCESS:
1637
        switch (len) {
1638
        case 1:
1639
            break;
1640
        case 2:
1641
        case 4:
1642
        case 8:
1643
            if (addr & (len - 1)) {
1644
                return -EINVAL;
1645
            }
1646
            break;
1647
        default:
1648
            return -EINVAL;
1649
        }
1650
        break;
1651
    default:
1652
        return -ENOSYS;
1653
    }
1654

    
1655
    if (nb_hw_breakpoint == 4) {
1656
        return -ENOBUFS;
1657
    }
1658
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1659
        return -EEXIST;
1660
    }
1661
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1662
    hw_breakpoint[nb_hw_breakpoint].len = len;
1663
    hw_breakpoint[nb_hw_breakpoint].type = type;
1664
    nb_hw_breakpoint++;
1665

    
1666
    return 0;
1667
}
1668

    
1669
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1670
                                  target_ulong len, int type)
1671
{
1672
    int n;
1673

    
1674
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1675
    if (n < 0) {
1676
        return -ENOENT;
1677
    }
1678
    nb_hw_breakpoint--;
1679
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1680

    
1681
    return 0;
1682
}
1683

    
1684
void kvm_arch_remove_all_hw_breakpoints(void)
1685
{
1686
    nb_hw_breakpoint = 0;
1687
}
1688

    
1689
static CPUWatchpoint hw_watchpoint;
1690

    
1691
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1692
{
1693
    int handle = 0;
1694
    int n;
1695

    
1696
    if (arch_info->exception == 1) {
1697
        if (arch_info->dr6 & (1 << 14)) {
1698
            if (cpu_single_env->singlestep_enabled) {
1699
                handle = 1;
1700
            }
1701
        } else {
1702
            for (n = 0; n < 4; n++) {
1703
                if (arch_info->dr6 & (1 << n)) {
1704
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1705
                    case 0x0:
1706
                        handle = 1;
1707
                        break;
1708
                    case 0x1:
1709
                        handle = 1;
1710
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1711
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1712
                        hw_watchpoint.flags = BP_MEM_WRITE;
1713
                        break;
1714
                    case 0x3:
1715
                        handle = 1;
1716
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1717
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1718
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1719
                        break;
1720
                    }
1721
                }
1722
            }
1723
        }
1724
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1725
        handle = 1;
1726
    }
1727
    if (!handle) {
1728
        cpu_synchronize_state(cpu_single_env);
1729
        assert(cpu_single_env->exception_injected == -1);
1730

    
1731
        cpu_single_env->exception_injected = arch_info->exception;
1732
        cpu_single_env->has_error_code = 0;
1733
    }
1734

    
1735
    return handle;
1736
}
1737

    
1738
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1739
{
1740
    const uint8_t type_code[] = {
1741
        [GDB_BREAKPOINT_HW] = 0x0,
1742
        [GDB_WATCHPOINT_WRITE] = 0x1,
1743
        [GDB_WATCHPOINT_ACCESS] = 0x3
1744
    };
1745
    const uint8_t len_code[] = {
1746
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1747
    };
1748
    int n;
1749

    
1750
    if (kvm_sw_breakpoints_active(env)) {
1751
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1752
    }
1753
    if (nb_hw_breakpoint > 0) {
1754
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1755
        dbg->arch.debugreg[7] = 0x0600;
1756
        for (n = 0; n < nb_hw_breakpoint; n++) {
1757
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1758
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1759
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1760
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1761
        }
1762
    }
1763
}
1764
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1765

    
1766
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1767
{
1768
    return !(env->cr[0] & CR0_PE_MASK) ||
1769
           ((env->segs[R_CS].selector  & 3) != 3);
1770
}
1771

    
1772
static void hardware_memory_error(void)
1773
{
1774
    fprintf(stderr, "Hardware memory error!\n");
1775
    exit(1);
1776
}
1777

    
1778
#ifdef KVM_CAP_MCE
1779
static void kvm_mce_broadcast_rest(CPUState *env)
1780
{
1781
    struct kvm_x86_mce mce = {
1782
        .bank = 1,
1783
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1784
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1785
        .addr = 0,
1786
        .misc = 0,
1787
    };
1788
    CPUState *cenv;
1789

    
1790
    /* Broadcast MCA signal for processor version 06H_EH and above */
1791
    if (cpu_x86_support_mca_broadcast(env)) {
1792
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1793
            if (cenv == env) {
1794
                continue;
1795
            }
1796
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1797
        }
1798
    }
1799
}
1800

    
1801
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1802
{
1803
    struct kvm_x86_mce mce = {
1804
        .bank = 9,
1805
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807
                  | MCI_STATUS_AR | 0x134,
1808
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1809
        .addr = paddr,
1810
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1811
    };
1812
    int r;
1813

    
1814
    r = kvm_set_mce(env, &mce);
1815
    if (r < 0) {
1816
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1817
        abort();
1818
    }
1819
    kvm_mce_broadcast_rest(env);
1820
}
1821

    
1822
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1823
{
1824
    struct kvm_x86_mce mce = {
1825
        .bank = 9,
1826
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1828
                  | 0xc0,
1829
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1830
        .addr = paddr,
1831
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1832
    };
1833
    int r;
1834

    
1835
    r = kvm_set_mce(env, &mce);
1836
    if (r < 0) {
1837
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1838
        abort();
1839
    }
1840
    kvm_mce_broadcast_rest(env);
1841
}
1842

    
1843
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1844
{
1845
    struct kvm_x86_mce mce = {
1846
        .bank = 9,
1847
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1848
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1849
                  | 0xc0,
1850
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1851
        .addr = paddr,
1852
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1853
    };
1854

    
1855
    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1856
    kvm_mce_broadcast_rest(env);
1857
}
1858

    
1859
#endif
1860

    
1861
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1862
{
1863
#if defined(KVM_CAP_MCE)
1864
    void *vaddr;
1865
    ram_addr_t ram_addr;
1866
    target_phys_addr_t paddr;
1867

    
1868
    if ((env->mcg_cap & MCG_SER_P) && addr
1869
        && (code == BUS_MCEERR_AR
1870
            || code == BUS_MCEERR_AO)) {
1871
        vaddr = (void *)addr;
1872
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1873
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1874
            fprintf(stderr, "Hardware memory error for memory used by "
1875
                    "QEMU itself instead of guest system!\n");
1876
            /* Hope we are lucky for AO MCE */
1877
            if (code == BUS_MCEERR_AO) {
1878
                return 0;
1879
            } else {
1880
                hardware_memory_error();
1881
            }
1882
        }
1883

    
1884
        if (code == BUS_MCEERR_AR) {
1885
            /* Fake an Intel architectural Data Load SRAR UCR */
1886
            kvm_mce_inj_srar_dataload(env, paddr);
1887
        } else {
1888
            /*
1889
             * If there is an MCE excpetion being processed, ignore
1890
             * this SRAO MCE
1891
             */
1892
            if (!kvm_mce_in_progress(env)) {
1893
                /* Fake an Intel architectural Memory scrubbing UCR */
1894
                kvm_mce_inj_srao_memscrub(env, paddr);
1895
            }
1896
        }
1897
    } else
1898
#endif
1899
    {
1900
        if (code == BUS_MCEERR_AO) {
1901
            return 0;
1902
        } else if (code == BUS_MCEERR_AR) {
1903
            hardware_memory_error();
1904
        } else {
1905
            return 1;
1906
        }
1907
    }
1908
    return 0;
1909
}
1910

    
1911
int kvm_on_sigbus(int code, void *addr)
1912
{
1913
#if defined(KVM_CAP_MCE)
1914
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1915
        void *vaddr;
1916
        ram_addr_t ram_addr;
1917
        target_phys_addr_t paddr;
1918

    
1919
        /* Hope we are lucky for AO MCE */
1920
        vaddr = addr;
1921
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1922
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1923
            fprintf(stderr, "Hardware memory error for memory used by "
1924
                    "QEMU itself instead of guest system!: %p\n", addr);
1925
            return 0;
1926
        }
1927
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1928
    } else
1929
#endif
1930
    {
1931
        if (code == BUS_MCEERR_AO) {
1932
            return 0;
1933
        } else if (code == BUS_MCEERR_AR) {
1934
            hardware_memory_error();
1935
        } else {
1936
            return 1;
1937
        }
1938
    }
1939
    return 0;
1940
}