Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 1ad2134f

History | View | Annotate | Download (56.9 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include "hw.h"
14
#include "pci.h"
15
#include "scsi-disk.h"
16
#include "block_int.h"
17

    
18
//#define DEBUG_LSI
19
//#define DEBUG_LSI_REG
20

    
21
#ifdef DEBUG_LSI
22
#define DPRINTF(fmt, ...) \
23
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
24
#define BADF(fmt, ...) \
25
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
26
#else
27
#define DPRINTF(fmt, ...) do {} while(0)
28
#define BADF(fmt, ...) \
29
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
30
#endif
31

    
32
#define LSI_SCNTL0_TRG    0x01
33
#define LSI_SCNTL0_AAP    0x02
34
#define LSI_SCNTL0_EPC    0x08
35
#define LSI_SCNTL0_WATN   0x10
36
#define LSI_SCNTL0_START  0x20
37

    
38
#define LSI_SCNTL1_SST    0x01
39
#define LSI_SCNTL1_IARB   0x02
40
#define LSI_SCNTL1_AESP   0x04
41
#define LSI_SCNTL1_RST    0x08
42
#define LSI_SCNTL1_CON    0x10
43
#define LSI_SCNTL1_DHP    0x20
44
#define LSI_SCNTL1_ADB    0x40
45
#define LSI_SCNTL1_EXC    0x80
46

    
47
#define LSI_SCNTL2_WSR    0x01
48
#define LSI_SCNTL2_VUE0   0x02
49
#define LSI_SCNTL2_VUE1   0x04
50
#define LSI_SCNTL2_WSS    0x08
51
#define LSI_SCNTL2_SLPHBEN 0x10
52
#define LSI_SCNTL2_SLPMD  0x20
53
#define LSI_SCNTL2_CHM    0x40
54
#define LSI_SCNTL2_SDU    0x80
55

    
56
#define LSI_ISTAT0_DIP    0x01
57
#define LSI_ISTAT0_SIP    0x02
58
#define LSI_ISTAT0_INTF   0x04
59
#define LSI_ISTAT0_CON    0x08
60
#define LSI_ISTAT0_SEM    0x10
61
#define LSI_ISTAT0_SIGP   0x20
62
#define LSI_ISTAT0_SRST   0x40
63
#define LSI_ISTAT0_ABRT   0x80
64

    
65
#define LSI_ISTAT1_SI     0x01
66
#define LSI_ISTAT1_SRUN   0x02
67
#define LSI_ISTAT1_FLSH   0x04
68

    
69
#define LSI_SSTAT0_SDP0   0x01
70
#define LSI_SSTAT0_RST    0x02
71
#define LSI_SSTAT0_WOA    0x04
72
#define LSI_SSTAT0_LOA    0x08
73
#define LSI_SSTAT0_AIP    0x10
74
#define LSI_SSTAT0_OLF    0x20
75
#define LSI_SSTAT0_ORF    0x40
76
#define LSI_SSTAT0_ILF    0x80
77

    
78
#define LSI_SIST0_PAR     0x01
79
#define LSI_SIST0_RST     0x02
80
#define LSI_SIST0_UDC     0x04
81
#define LSI_SIST0_SGE     0x08
82
#define LSI_SIST0_RSL     0x10
83
#define LSI_SIST0_SEL     0x20
84
#define LSI_SIST0_CMP     0x40
85
#define LSI_SIST0_MA      0x80
86

    
87
#define LSI_SIST1_HTH     0x01
88
#define LSI_SIST1_GEN     0x02
89
#define LSI_SIST1_STO     0x04
90
#define LSI_SIST1_SBMC    0x10
91

    
92
#define LSI_SOCL_IO       0x01
93
#define LSI_SOCL_CD       0x02
94
#define LSI_SOCL_MSG      0x04
95
#define LSI_SOCL_ATN      0x08
96
#define LSI_SOCL_SEL      0x10
97
#define LSI_SOCL_BSY      0x20
98
#define LSI_SOCL_ACK      0x40
99
#define LSI_SOCL_REQ      0x80
100

    
101
#define LSI_DSTAT_IID     0x01
102
#define LSI_DSTAT_SIR     0x04
103
#define LSI_DSTAT_SSI     0x08
104
#define LSI_DSTAT_ABRT    0x10
105
#define LSI_DSTAT_BF      0x20
106
#define LSI_DSTAT_MDPE    0x40
107
#define LSI_DSTAT_DFE     0x80
108

    
109
#define LSI_DCNTL_COM     0x01
110
#define LSI_DCNTL_IRQD    0x02
111
#define LSI_DCNTL_STD     0x04
112
#define LSI_DCNTL_IRQM    0x08
113
#define LSI_DCNTL_SSM     0x10
114
#define LSI_DCNTL_PFEN    0x20
115
#define LSI_DCNTL_PFF     0x40
116
#define LSI_DCNTL_CLSE    0x80
117

    
118
#define LSI_DMODE_MAN     0x01
119
#define LSI_DMODE_BOF     0x02
120
#define LSI_DMODE_ERMP    0x04
121
#define LSI_DMODE_ERL     0x08
122
#define LSI_DMODE_DIOM    0x10
123
#define LSI_DMODE_SIOM    0x20
124

    
125
#define LSI_CTEST2_DACK   0x01
126
#define LSI_CTEST2_DREQ   0x02
127
#define LSI_CTEST2_TEOP   0x04
128
#define LSI_CTEST2_PCICIE 0x08
129
#define LSI_CTEST2_CM     0x10
130
#define LSI_CTEST2_CIO    0x20
131
#define LSI_CTEST2_SIGP   0x40
132
#define LSI_CTEST2_DDIR   0x80
133

    
134
#define LSI_CTEST5_BL2    0x04
135
#define LSI_CTEST5_DDIR   0x08
136
#define LSI_CTEST5_MASR   0x10
137
#define LSI_CTEST5_DFSN   0x20
138
#define LSI_CTEST5_BBCK   0x40
139
#define LSI_CTEST5_ADCK   0x80
140

    
141
#define LSI_CCNTL0_DILS   0x01
142
#define LSI_CCNTL0_DISFC  0x10
143
#define LSI_CCNTL0_ENNDJ  0x20
144
#define LSI_CCNTL0_PMJCTL 0x40
145
#define LSI_CCNTL0_ENPMJ  0x80
146

    
147
#define LSI_CCNTL1_EN64DBMV  0x01
148
#define LSI_CCNTL1_EN64TIBMV 0x02
149
#define LSI_CCNTL1_64TIMOD   0x04
150
#define LSI_CCNTL1_DDAC      0x08
151
#define LSI_CCNTL1_ZMOD      0x80
152

    
153
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
154

    
155
#define PHASE_DO          0
156
#define PHASE_DI          1
157
#define PHASE_CMD         2
158
#define PHASE_ST          3
159
#define PHASE_MO          6
160
#define PHASE_MI          7
161
#define PHASE_MASK        7
162

    
163
/* Maximum length of MSG IN data.  */
164
#define LSI_MAX_MSGIN_LEN 8
165

    
166
/* Flag set if this is a tagged command.  */
167
#define LSI_TAG_VALID     (1 << 16)
168

    
169
typedef struct {
170
    uint32_t tag;
171
    uint32_t pending;
172
    int out;
173
} lsi_queue;
174

    
175
typedef struct {
176
    PCIDevice pci_dev;
177
    int mmio_io_addr;
178
    int ram_io_addr;
179
    uint32_t script_ram_base;
180

    
181
    int carry; /* ??? Should this be an a visible register somewhere?  */
182
    int sense;
183
    /* Action to take at the end of a MSG IN phase.
184
       0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
185
    int msg_action;
186
    int msg_len;
187
    uint8_t msg[LSI_MAX_MSGIN_LEN];
188
    /* 0 if SCRIPTS are running or stopped.
189
     * 1 if a Wait Reselect instruction has been issued.
190
     * 2 if processing DMA from lsi_execute_script.
191
     * 3 if a DMA operation is in progress.  */
192
    int waiting;
193
    SCSIDevice *scsi_dev[LSI_MAX_DEVS];
194
    SCSIDevice *current_dev;
195
    int current_lun;
196
    /* The tag is a combination of the device ID and the SCSI tag.  */
197
    uint32_t current_tag;
198
    uint32_t current_dma_len;
199
    int command_complete;
200
    uint8_t *dma_buf;
201
    lsi_queue *queue;
202
    int queue_len;
203
    int active_commands;
204

    
205
    uint32_t dsa;
206
    uint32_t temp;
207
    uint32_t dnad;
208
    uint32_t dbc;
209
    uint8_t istat0;
210
    uint8_t istat1;
211
    uint8_t dcmd;
212
    uint8_t dstat;
213
    uint8_t dien;
214
    uint8_t sist0;
215
    uint8_t sist1;
216
    uint8_t sien0;
217
    uint8_t sien1;
218
    uint8_t mbox0;
219
    uint8_t mbox1;
220
    uint8_t dfifo;
221
    uint8_t ctest2;
222
    uint8_t ctest3;
223
    uint8_t ctest4;
224
    uint8_t ctest5;
225
    uint8_t ccntl0;
226
    uint8_t ccntl1;
227
    uint32_t dsp;
228
    uint32_t dsps;
229
    uint8_t dmode;
230
    uint8_t dcntl;
231
    uint8_t scntl0;
232
    uint8_t scntl1;
233
    uint8_t scntl2;
234
    uint8_t scntl3;
235
    uint8_t sstat0;
236
    uint8_t sstat1;
237
    uint8_t scid;
238
    uint8_t sxfer;
239
    uint8_t socl;
240
    uint8_t sdid;
241
    uint8_t ssid;
242
    uint8_t sfbr;
243
    uint8_t stest1;
244
    uint8_t stest2;
245
    uint8_t stest3;
246
    uint8_t sidl;
247
    uint8_t stime0;
248
    uint8_t respid0;
249
    uint8_t respid1;
250
    uint32_t mmrs;
251
    uint32_t mmws;
252
    uint32_t sfs;
253
    uint32_t drs;
254
    uint32_t sbms;
255
    uint32_t dbms;
256
    uint32_t dnad64;
257
    uint32_t pmjad1;
258
    uint32_t pmjad2;
259
    uint32_t rbc;
260
    uint32_t ua;
261
    uint32_t ia;
262
    uint32_t sbc;
263
    uint32_t csbc;
264
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
265

    
266
    /* Script ram is stored as 32-bit words in host byteorder.  */
267
    uint32_t script_ram[2048];
268
} LSIState;
269

    
270
static void lsi_soft_reset(LSIState *s)
271
{
272
    DPRINTF("Reset\n");
273
    s->carry = 0;
274

    
275
    s->waiting = 0;
276
    s->dsa = 0;
277
    s->dnad = 0;
278
    s->dbc = 0;
279
    s->temp = 0;
280
    memset(s->scratch, 0, sizeof(s->scratch));
281
    s->istat0 = 0;
282
    s->istat1 = 0;
283
    s->dcmd = 0;
284
    s->dstat = 0;
285
    s->dien = 0;
286
    s->sist0 = 0;
287
    s->sist1 = 0;
288
    s->sien0 = 0;
289
    s->sien1 = 0;
290
    s->mbox0 = 0;
291
    s->mbox1 = 0;
292
    s->dfifo = 0;
293
    s->ctest2 = 0;
294
    s->ctest3 = 0;
295
    s->ctest4 = 0;
296
    s->ctest5 = 0;
297
    s->ccntl0 = 0;
298
    s->ccntl1 = 0;
299
    s->dsp = 0;
300
    s->dsps = 0;
301
    s->dmode = 0;
302
    s->dcntl = 0;
303
    s->scntl0 = 0xc0;
304
    s->scntl1 = 0;
305
    s->scntl2 = 0;
306
    s->scntl3 = 0;
307
    s->sstat0 = 0;
308
    s->sstat1 = 0;
309
    s->scid = 7;
310
    s->sxfer = 0;
311
    s->socl = 0;
312
    s->stest1 = 0;
313
    s->stest2 = 0;
314
    s->stest3 = 0;
315
    s->sidl = 0;
316
    s->stime0 = 0;
317
    s->respid0 = 0x80;
318
    s->respid1 = 0;
319
    s->mmrs = 0;
320
    s->mmws = 0;
321
    s->sfs = 0;
322
    s->drs = 0;
323
    s->sbms = 0;
324
    s->dbms = 0;
325
    s->dnad64 = 0;
326
    s->pmjad1 = 0;
327
    s->pmjad2 = 0;
328
    s->rbc = 0;
329
    s->ua = 0;
330
    s->ia = 0;
331
    s->sbc = 0;
332
    s->csbc = 0;
333
}
334

    
335
static int lsi_dma_40bit(LSIState *s)
336
{
337
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
338
        return 1;
339
    return 0;
340
}
341

    
342
static int lsi_dma_ti64bit(LSIState *s)
343
{
344
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
345
        return 1;
346
    return 0;
347
}
348

    
349
static int lsi_dma_64bit(LSIState *s)
350
{
351
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
352
        return 1;
353
    return 0;
354
}
355

    
356
static uint8_t lsi_reg_readb(LSIState *s, int offset);
357
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
358
static void lsi_execute_script(LSIState *s);
359

    
360
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
361
{
362
    uint32_t buf;
363

    
364
    /* Optimize reading from SCRIPTS RAM.  */
365
    if ((addr & 0xffffe000) == s->script_ram_base) {
366
        return s->script_ram[(addr & 0x1fff) >> 2];
367
    }
368
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
369
    return cpu_to_le32(buf);
370
}
371

    
372
static void lsi_stop_script(LSIState *s)
373
{
374
    s->istat1 &= ~LSI_ISTAT1_SRUN;
375
}
376

    
377
static void lsi_update_irq(LSIState *s)
378
{
379
    int level;
380
    static int last_level;
381

    
382
    /* It's unclear whether the DIP/SIP bits should be cleared when the
383
       Interrupt Status Registers are cleared or when istat0 is read.
384
       We currently do the formwer, which seems to work.  */
385
    level = 0;
386
    if (s->dstat) {
387
        if (s->dstat & s->dien)
388
            level = 1;
389
        s->istat0 |= LSI_ISTAT0_DIP;
390
    } else {
391
        s->istat0 &= ~LSI_ISTAT0_DIP;
392
    }
393

    
394
    if (s->sist0 || s->sist1) {
395
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
396
            level = 1;
397
        s->istat0 |= LSI_ISTAT0_SIP;
398
    } else {
399
        s->istat0 &= ~LSI_ISTAT0_SIP;
400
    }
401
    if (s->istat0 & LSI_ISTAT0_INTF)
402
        level = 1;
403

    
404
    if (level != last_level) {
405
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
406
                level, s->dstat, s->sist1, s->sist0);
407
        last_level = level;
408
    }
409
    qemu_set_irq(s->pci_dev.irq[0], level);
410
}
411

    
412
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
413
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
414
{
415
    uint32_t mask0;
416
    uint32_t mask1;
417

    
418
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
419
            stat1, stat0, s->sist1, s->sist0);
420
    s->sist0 |= stat0;
421
    s->sist1 |= stat1;
422
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
423
       we don't stop processing when raising STO.  Instead continue
424
       execution and stop at the next insn that accesses the SCSI bus.  */
425
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
426
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
427
    mask1 &= ~LSI_SIST1_STO;
428
    if (s->sist0 & mask0 || s->sist1 & mask1) {
429
        lsi_stop_script(s);
430
    }
431
    lsi_update_irq(s);
432
}
433

    
434
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
435
static void lsi_script_dma_interrupt(LSIState *s, int stat)
436
{
437
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
438
    s->dstat |= stat;
439
    lsi_update_irq(s);
440
    lsi_stop_script(s);
441
}
442

    
443
static inline void lsi_set_phase(LSIState *s, int phase)
444
{
445
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
446
}
447

    
448
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
449
{
450
    /* Trigger a phase mismatch.  */
451
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
452
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
453
            s->dsp = s->pmjad1;
454
        } else {
455
            s->dsp = s->pmjad2;
456
        }
457
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
458
    } else {
459
        DPRINTF("Phase mismatch interrupt\n");
460
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
461
        lsi_stop_script(s);
462
    }
463
    lsi_set_phase(s, new_phase);
464
}
465

    
466

    
467
/* Resume SCRIPTS execution after a DMA operation.  */
468
static void lsi_resume_script(LSIState *s)
469
{
470
    if (s->waiting != 2) {
471
        s->waiting = 0;
472
        lsi_execute_script(s);
473
    } else {
474
        s->waiting = 0;
475
    }
476
}
477

    
478
/* Initiate a SCSI layer data transfer.  */
479
static void lsi_do_dma(LSIState *s, int out)
480
{
481
    uint32_t count;
482
    target_phys_addr_t addr;
483

    
484
    if (!s->current_dma_len) {
485
        /* Wait until data is available.  */
486
        DPRINTF("DMA no data available\n");
487
        return;
488
    }
489

    
490
    count = s->dbc;
491
    if (count > s->current_dma_len)
492
        count = s->current_dma_len;
493

    
494
    addr = s->dnad;
495
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
496
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
497
        addr |= ((uint64_t)s->dnad64 << 32);
498
    else if (s->dbms)
499
        addr |= ((uint64_t)s->dbms << 32);
500
    else if (s->sbms)
501
        addr |= ((uint64_t)s->sbms << 32);
502

    
503
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
504
    s->csbc += count;
505
    s->dnad += count;
506
    s->dbc -= count;
507

    
508
    if (s->dma_buf == NULL) {
509
        s->dma_buf = s->current_dev->get_buf(s->current_dev,
510
                                             s->current_tag);
511
    }
512

    
513
    /* ??? Set SFBR to first data byte.  */
514
    if (out) {
515
        cpu_physical_memory_read(addr, s->dma_buf, count);
516
    } else {
517
        cpu_physical_memory_write(addr, s->dma_buf, count);
518
    }
519
    s->current_dma_len -= count;
520
    if (s->current_dma_len == 0) {
521
        s->dma_buf = NULL;
522
        if (out) {
523
            /* Write the data.  */
524
            s->current_dev->write_data(s->current_dev, s->current_tag);
525
        } else {
526
            /* Request any remaining data.  */
527
            s->current_dev->read_data(s->current_dev, s->current_tag);
528
        }
529
    } else {
530
        s->dma_buf += count;
531
        lsi_resume_script(s);
532
    }
533
}
534

    
535

    
536
/* Add a command to the queue.  */
537
static void lsi_queue_command(LSIState *s)
538
{
539
    lsi_queue *p;
540

    
541
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
542
    if (s->queue_len == s->active_commands) {
543
        s->queue_len++;
544
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
545
    }
546
    p = &s->queue[s->active_commands++];
547
    p->tag = s->current_tag;
548
    p->pending = 0;
549
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
550
}
551

    
552
/* Queue a byte for a MSG IN phase.  */
553
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
554
{
555
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
556
        BADF("MSG IN data too long\n");
557
    } else {
558
        DPRINTF("MSG IN 0x%02x\n", data);
559
        s->msg[s->msg_len++] = data;
560
    }
561
}
562

    
563
/* Perform reselection to continue a command.  */
564
static void lsi_reselect(LSIState *s, uint32_t tag)
565
{
566
    lsi_queue *p;
567
    int n;
568
    int id;
569

    
570
    p = NULL;
571
    for (n = 0; n < s->active_commands; n++) {
572
        p = &s->queue[n];
573
        if (p->tag == tag)
574
            break;
575
    }
576
    if (n == s->active_commands) {
577
        BADF("Reselected non-existant command tag=0x%x\n", tag);
578
        return;
579
    }
580
    id = (tag >> 8) & 0xf;
581
    s->ssid = id | 0x80;
582
    DPRINTF("Reselected target %d\n", id);
583
    s->current_dev = s->scsi_dev[id];
584
    s->current_tag = tag;
585
    s->scntl1 |= LSI_SCNTL1_CON;
586
    lsi_set_phase(s, PHASE_MI);
587
    s->msg_action = p->out ? 2 : 3;
588
    s->current_dma_len = p->pending;
589
    s->dma_buf = NULL;
590
    lsi_add_msg_byte(s, 0x80);
591
    if (s->current_tag & LSI_TAG_VALID) {
592
        lsi_add_msg_byte(s, 0x20);
593
        lsi_add_msg_byte(s, tag & 0xff);
594
    }
595

    
596
    s->active_commands--;
597
    if (n != s->active_commands) {
598
        s->queue[n] = s->queue[s->active_commands];
599
    }
600
}
601

    
602
/* Record that data is available for a queued command.  Returns zero if
603
   the device was reselected, nonzero if the IO is deferred.  */
604
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
605
{
606
    lsi_queue *p;
607
    int i;
608
    for (i = 0; i < s->active_commands; i++) {
609
        p = &s->queue[i];
610
        if (p->tag == tag) {
611
            if (p->pending) {
612
                BADF("Multiple IO pending for tag %d\n", tag);
613
            }
614
            p->pending = arg;
615
            if (s->waiting == 1) {
616
                /* Reselect device.  */
617
                lsi_reselect(s, tag);
618
                return 0;
619
            } else {
620
               DPRINTF("Queueing IO tag=0x%x\n", tag);
621
                p->pending = arg;
622
                return 1;
623
            }
624
        }
625
    }
626
    BADF("IO with unknown tag %d\n", tag);
627
    return 1;
628
}
629

    
630
/* Callback to indicate that the SCSI layer has completed a transfer.  */
631
static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
632
                                 uint32_t arg)
633
{
634
    LSIState *s = (LSIState *)opaque;
635
    int out;
636

    
637
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
638
    if (reason == SCSI_REASON_DONE) {
639
        DPRINTF("Command complete sense=%d\n", (int)arg);
640
        s->sense = arg;
641
        s->command_complete = 2;
642
        if (s->waiting && s->dbc != 0) {
643
            /* Raise phase mismatch for short transfers.  */
644
            lsi_bad_phase(s, out, PHASE_ST);
645
        } else {
646
            lsi_set_phase(s, PHASE_ST);
647
        }
648
        lsi_resume_script(s);
649
        return;
650
    }
651

    
652
    if (s->waiting == 1 || tag != s->current_tag) {
653
        if (lsi_queue_tag(s, tag, arg))
654
            return;
655
    }
656
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
657
    s->current_dma_len = arg;
658
    s->command_complete = 1;
659
    if (!s->waiting)
660
        return;
661
    if (s->waiting == 1 || s->dbc == 0) {
662
        lsi_resume_script(s);
663
    } else {
664
        lsi_do_dma(s, out);
665
    }
666
}
667

    
668
static void lsi_do_command(LSIState *s)
669
{
670
    uint8_t buf[16];
671
    int n;
672

    
673
    DPRINTF("Send command len=%d\n", s->dbc);
674
    if (s->dbc > 16)
675
        s->dbc = 16;
676
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
677
    s->sfbr = buf[0];
678
    s->command_complete = 0;
679
    n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
680
                                     s->current_lun);
681
    if (n > 0) {
682
        lsi_set_phase(s, PHASE_DI);
683
        s->current_dev->read_data(s->current_dev, s->current_tag);
684
    } else if (n < 0) {
685
        lsi_set_phase(s, PHASE_DO);
686
        s->current_dev->write_data(s->current_dev, s->current_tag);
687
    }
688

    
689
    if (!s->command_complete) {
690
        if (n) {
691
            /* Command did not complete immediately so disconnect.  */
692
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
693
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
694
            /* wait data */
695
            lsi_set_phase(s, PHASE_MI);
696
            s->msg_action = 1;
697
            lsi_queue_command(s);
698
        } else {
699
            /* wait command complete */
700
            lsi_set_phase(s, PHASE_DI);
701
        }
702
    }
703
}
704

    
705
static void lsi_do_status(LSIState *s)
706
{
707
    uint8_t sense;
708
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
709
    if (s->dbc != 1)
710
        BADF("Bad Status move\n");
711
    s->dbc = 1;
712
    sense = s->sense;
713
    s->sfbr = sense;
714
    cpu_physical_memory_write(s->dnad, &sense, 1);
715
    lsi_set_phase(s, PHASE_MI);
716
    s->msg_action = 1;
717
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
718
}
719

    
720
static void lsi_disconnect(LSIState *s)
721
{
722
    s->scntl1 &= ~LSI_SCNTL1_CON;
723
    s->sstat1 &= ~PHASE_MASK;
724
}
725

    
726
static void lsi_do_msgin(LSIState *s)
727
{
728
    int len;
729
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
730
    s->sfbr = s->msg[0];
731
    len = s->msg_len;
732
    if (len > s->dbc)
733
        len = s->dbc;
734
    cpu_physical_memory_write(s->dnad, s->msg, len);
735
    /* Linux drivers rely on the last byte being in the SIDL.  */
736
    s->sidl = s->msg[len - 1];
737
    s->msg_len -= len;
738
    if (s->msg_len) {
739
        memmove(s->msg, s->msg + len, s->msg_len);
740
    } else {
741
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
742
           switch to PHASE_MO.  */
743
        switch (s->msg_action) {
744
        case 0:
745
            lsi_set_phase(s, PHASE_CMD);
746
            break;
747
        case 1:
748
            lsi_disconnect(s);
749
            break;
750
        case 2:
751
            lsi_set_phase(s, PHASE_DO);
752
            break;
753
        case 3:
754
            lsi_set_phase(s, PHASE_DI);
755
            break;
756
        default:
757
            abort();
758
        }
759
    }
760
}
761

    
762
/* Read the next byte during a MSGOUT phase.  */
763
static uint8_t lsi_get_msgbyte(LSIState *s)
764
{
765
    uint8_t data;
766
    cpu_physical_memory_read(s->dnad, &data, 1);
767
    s->dnad++;
768
    s->dbc--;
769
    return data;
770
}
771

    
772
static void lsi_do_msgout(LSIState *s)
773
{
774
    uint8_t msg;
775
    int len;
776

    
777
    DPRINTF("MSG out len=%d\n", s->dbc);
778
    while (s->dbc) {
779
        msg = lsi_get_msgbyte(s);
780
        s->sfbr = msg;
781

    
782
        switch (msg) {
783
        case 0x00:
784
            DPRINTF("MSG: Disconnect\n");
785
            lsi_disconnect(s);
786
            break;
787
        case 0x08:
788
            DPRINTF("MSG: No Operation\n");
789
            lsi_set_phase(s, PHASE_CMD);
790
            break;
791
        case 0x01:
792
            len = lsi_get_msgbyte(s);
793
            msg = lsi_get_msgbyte(s);
794
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
795
            switch (msg) {
796
            case 1:
797
                DPRINTF("SDTR (ignored)\n");
798
                s->dbc -= 2;
799
                break;
800
            case 3:
801
                DPRINTF("WDTR (ignored)\n");
802
                s->dbc -= 1;
803
                break;
804
            default:
805
                goto bad;
806
            }
807
            break;
808
        case 0x20: /* SIMPLE queue */
809
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
810
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
811
            break;
812
        case 0x21: /* HEAD of queue */
813
            BADF("HEAD queue not implemented\n");
814
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
815
            break;
816
        case 0x22: /* ORDERED queue */
817
            BADF("ORDERED queue not implemented\n");
818
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
819
            break;
820
        default:
821
            if ((msg & 0x80) == 0) {
822
                goto bad;
823
            }
824
            s->current_lun = msg & 7;
825
            DPRINTF("Select LUN %d\n", s->current_lun);
826
            lsi_set_phase(s, PHASE_CMD);
827
            break;
828
        }
829
    }
830
    return;
831
bad:
832
    BADF("Unimplemented message 0x%02x\n", msg);
833
    lsi_set_phase(s, PHASE_MI);
834
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
835
    s->msg_action = 0;
836
}
837

    
838
/* Sign extend a 24-bit value.  */
839
static inline int32_t sxt24(int32_t n)
840
{
841
    return (n << 8) >> 8;
842
}
843

    
844
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
845
{
846
    int n;
847
    uint8_t buf[TARGET_PAGE_SIZE];
848

    
849
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
850
    while (count) {
851
        n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
852
        cpu_physical_memory_read(src, buf, n);
853
        cpu_physical_memory_write(dest, buf, n);
854
        src += n;
855
        dest += n;
856
        count -= n;
857
    }
858
}
859

    
860
static void lsi_wait_reselect(LSIState *s)
861
{
862
    int i;
863
    DPRINTF("Wait Reselect\n");
864
    if (s->current_dma_len)
865
        BADF("Reselect with pending DMA\n");
866
    for (i = 0; i < s->active_commands; i++) {
867
        if (s->queue[i].pending) {
868
            lsi_reselect(s, s->queue[i].tag);
869
            break;
870
        }
871
    }
872
    if (s->current_dma_len == 0) {
873
        s->waiting = 1;
874
    }
875
}
876

    
877
static void lsi_execute_script(LSIState *s)
878
{
879
    uint32_t insn;
880
    uint32_t addr, addr_high;
881
    int opcode;
882
    int insn_processed = 0;
883

    
884
    s->istat1 |= LSI_ISTAT1_SRUN;
885
again:
886
    insn_processed++;
887
    insn = read_dword(s, s->dsp);
888
    if (!insn) {
889
        /* If we receive an empty opcode increment the DSP by 4 bytes
890
           instead of 8 and execute the next opcode at that location */
891
        s->dsp += 4;
892
        goto again;
893
    }
894
    addr = read_dword(s, s->dsp + 4);
895
    addr_high = 0;
896
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
897
    s->dsps = addr;
898
    s->dcmd = insn >> 24;
899
    s->dsp += 8;
900
    switch (insn >> 30) {
901
    case 0: /* Block move.  */
902
        if (s->sist1 & LSI_SIST1_STO) {
903
            DPRINTF("Delayed select timeout\n");
904
            lsi_stop_script(s);
905
            break;
906
        }
907
        s->dbc = insn & 0xffffff;
908
        s->rbc = s->dbc;
909
        /* ??? Set ESA.  */
910
        s->ia = s->dsp - 8;
911
        if (insn & (1 << 29)) {
912
            /* Indirect addressing.  */
913
            addr = read_dword(s, addr);
914
        } else if (insn & (1 << 28)) {
915
            uint32_t buf[2];
916
            int32_t offset;
917
            /* Table indirect addressing.  */
918

    
919
            /* 32-bit Table indirect */
920
            offset = sxt24(addr);
921
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
922
            /* byte count is stored in bits 0:23 only */
923
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
924
            s->rbc = s->dbc;
925
            addr = cpu_to_le32(buf[1]);
926

    
927
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
928
             * table, bits [31:24] */
929
            if (lsi_dma_40bit(s))
930
                addr_high = cpu_to_le32(buf[0]) >> 24;
931
            else if (lsi_dma_ti64bit(s)) {
932
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
933
                switch (selector) {
934
                case 0 ... 0x0f:
935
                    /* offset index into scratch registers since
936
                     * TI64 mode can use registers C to R */
937
                    addr_high = s->scratch[2 + selector];
938
                    break;
939
                case 0x10:
940
                    addr_high = s->mmrs;
941
                    break;
942
                case 0x11:
943
                    addr_high = s->mmws;
944
                    break;
945
                case 0x12:
946
                    addr_high = s->sfs;
947
                    break;
948
                case 0x13:
949
                    addr_high = s->drs;
950
                    break;
951
                case 0x14:
952
                    addr_high = s->sbms;
953
                    break;
954
                case 0x15:
955
                    addr_high = s->dbms;
956
                    break;
957
                default:
958
                    BADF("Illegal selector specified (0x%x > 0x15)"
959
                         " for 64-bit DMA block move", selector);
960
                    break;
961
                }
962
            }
963
        } else if (lsi_dma_64bit(s)) {
964
            /* fetch a 3rd dword if 64-bit direct move is enabled and
965
               only if we're not doing table indirect or indirect addressing */
966
            s->dbms = read_dword(s, s->dsp);
967
            s->dsp += 4;
968
            s->ia = s->dsp - 12;
969
        }
970
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
971
            DPRINTF("Wrong phase got %d expected %d\n",
972
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
973
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
974
            break;
975
        }
976
        s->dnad = addr;
977
        s->dnad64 = addr_high;
978
        switch (s->sstat1 & 0x7) {
979
        case PHASE_DO:
980
            s->waiting = 2;
981
            lsi_do_dma(s, 1);
982
            if (s->waiting)
983
                s->waiting = 3;
984
            break;
985
        case PHASE_DI:
986
            s->waiting = 2;
987
            lsi_do_dma(s, 0);
988
            if (s->waiting)
989
                s->waiting = 3;
990
            break;
991
        case PHASE_CMD:
992
            lsi_do_command(s);
993
            break;
994
        case PHASE_ST:
995
            lsi_do_status(s);
996
            break;
997
        case PHASE_MO:
998
            lsi_do_msgout(s);
999
            break;
1000
        case PHASE_MI:
1001
            lsi_do_msgin(s);
1002
            break;
1003
        default:
1004
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1005
            exit(1);
1006
        }
1007
        s->dfifo = s->dbc & 0xff;
1008
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1009
        s->sbc = s->dbc;
1010
        s->rbc -= s->dbc;
1011
        s->ua = addr + s->dbc;
1012
        break;
1013

    
1014
    case 1: /* IO or Read/Write instruction.  */
1015
        opcode = (insn >> 27) & 7;
1016
        if (opcode < 5) {
1017
            uint32_t id;
1018

    
1019
            if (insn & (1 << 25)) {
1020
                id = read_dword(s, s->dsa + sxt24(insn));
1021
            } else {
1022
                id = addr;
1023
            }
1024
            id = (id >> 16) & 0xf;
1025
            if (insn & (1 << 26)) {
1026
                addr = s->dsp + sxt24(addr);
1027
            }
1028
            s->dnad = addr;
1029
            switch (opcode) {
1030
            case 0: /* Select */
1031
                s->sdid = id;
1032
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
1033
                    DPRINTF("Already reselected by target %d\n", id);
1034
                    break;
1035
                }
1036
                s->sstat0 |= LSI_SSTAT0_WOA;
1037
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1038
                if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1039
                    DPRINTF("Selected absent target %d\n", id);
1040
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1041
                    lsi_disconnect(s);
1042
                    break;
1043
                }
1044
                DPRINTF("Selected target %d%s\n",
1045
                        id, insn & (1 << 3) ? " ATN" : "");
1046
                /* ??? Linux drivers compain when this is set.  Maybe
1047
                   it only applies in low-level mode (unimplemented).
1048
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1049
                s->current_dev = s->scsi_dev[id];
1050
                s->current_tag = id << 8;
1051
                s->scntl1 |= LSI_SCNTL1_CON;
1052
                if (insn & (1 << 3)) {
1053
                    s->socl |= LSI_SOCL_ATN;
1054
                }
1055
                lsi_set_phase(s, PHASE_MO);
1056
                break;
1057
            case 1: /* Disconnect */
1058
                DPRINTF("Wait Disconect\n");
1059
                s->scntl1 &= ~LSI_SCNTL1_CON;
1060
                break;
1061
            case 2: /* Wait Reselect */
1062
                lsi_wait_reselect(s);
1063
                break;
1064
            case 3: /* Set */
1065
                DPRINTF("Set%s%s%s%s\n",
1066
                        insn & (1 << 3) ? " ATN" : "",
1067
                        insn & (1 << 6) ? " ACK" : "",
1068
                        insn & (1 << 9) ? " TM" : "",
1069
                        insn & (1 << 10) ? " CC" : "");
1070
                if (insn & (1 << 3)) {
1071
                    s->socl |= LSI_SOCL_ATN;
1072
                    lsi_set_phase(s, PHASE_MO);
1073
                }
1074
                if (insn & (1 << 9)) {
1075
                    BADF("Target mode not implemented\n");
1076
                    exit(1);
1077
                }
1078
                if (insn & (1 << 10))
1079
                    s->carry = 1;
1080
                break;
1081
            case 4: /* Clear */
1082
                DPRINTF("Clear%s%s%s%s\n",
1083
                        insn & (1 << 3) ? " ATN" : "",
1084
                        insn & (1 << 6) ? " ACK" : "",
1085
                        insn & (1 << 9) ? " TM" : "",
1086
                        insn & (1 << 10) ? " CC" : "");
1087
                if (insn & (1 << 3)) {
1088
                    s->socl &= ~LSI_SOCL_ATN;
1089
                }
1090
                if (insn & (1 << 10))
1091
                    s->carry = 0;
1092
                break;
1093
            }
1094
        } else {
1095
            uint8_t op0;
1096
            uint8_t op1;
1097
            uint8_t data8;
1098
            int reg;
1099
            int operator;
1100
#ifdef DEBUG_LSI
1101
            static const char *opcode_names[3] =
1102
                {"Write", "Read", "Read-Modify-Write"};
1103
            static const char *operator_names[8] =
1104
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1105
#endif
1106

    
1107
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1108
            data8 = (insn >> 8) & 0xff;
1109
            opcode = (insn >> 27) & 7;
1110
            operator = (insn >> 24) & 7;
1111
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1112
                    opcode_names[opcode - 5], reg,
1113
                    operator_names[operator], data8, s->sfbr,
1114
                    (insn & (1 << 23)) ? " SFBR" : "");
1115
            op0 = op1 = 0;
1116
            switch (opcode) {
1117
            case 5: /* From SFBR */
1118
                op0 = s->sfbr;
1119
                op1 = data8;
1120
                break;
1121
            case 6: /* To SFBR */
1122
                if (operator)
1123
                    op0 = lsi_reg_readb(s, reg);
1124
                op1 = data8;
1125
                break;
1126
            case 7: /* Read-modify-write */
1127
                if (operator)
1128
                    op0 = lsi_reg_readb(s, reg);
1129
                if (insn & (1 << 23)) {
1130
                    op1 = s->sfbr;
1131
                } else {
1132
                    op1 = data8;
1133
                }
1134
                break;
1135
            }
1136

    
1137
            switch (operator) {
1138
            case 0: /* move */
1139
                op0 = op1;
1140
                break;
1141
            case 1: /* Shift left */
1142
                op1 = op0 >> 7;
1143
                op0 = (op0 << 1) | s->carry;
1144
                s->carry = op1;
1145
                break;
1146
            case 2: /* OR */
1147
                op0 |= op1;
1148
                break;
1149
            case 3: /* XOR */
1150
                op0 ^= op1;
1151
                break;
1152
            case 4: /* AND */
1153
                op0 &= op1;
1154
                break;
1155
            case 5: /* SHR */
1156
                op1 = op0 & 1;
1157
                op0 = (op0 >> 1) | (s->carry << 7);
1158
                s->carry = op1;
1159
                break;
1160
            case 6: /* ADD */
1161
                op0 += op1;
1162
                s->carry = op0 < op1;
1163
                break;
1164
            case 7: /* ADC */
1165
                op0 += op1 + s->carry;
1166
                if (s->carry)
1167
                    s->carry = op0 <= op1;
1168
                else
1169
                    s->carry = op0 < op1;
1170
                break;
1171
            }
1172

    
1173
            switch (opcode) {
1174
            case 5: /* From SFBR */
1175
            case 7: /* Read-modify-write */
1176
                lsi_reg_writeb(s, reg, op0);
1177
                break;
1178
            case 6: /* To SFBR */
1179
                s->sfbr = op0;
1180
                break;
1181
            }
1182
        }
1183
        break;
1184

    
1185
    case 2: /* Transfer Control.  */
1186
        {
1187
            int cond;
1188
            int jmp;
1189

    
1190
            if ((insn & 0x002e0000) == 0) {
1191
                DPRINTF("NOP\n");
1192
                break;
1193
            }
1194
            if (s->sist1 & LSI_SIST1_STO) {
1195
                DPRINTF("Delayed select timeout\n");
1196
                lsi_stop_script(s);
1197
                break;
1198
            }
1199
            cond = jmp = (insn & (1 << 19)) != 0;
1200
            if (cond == jmp && (insn & (1 << 21))) {
1201
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1202
                cond = s->carry != 0;
1203
            }
1204
            if (cond == jmp && (insn & (1 << 17))) {
1205
                DPRINTF("Compare phase %d %c= %d\n",
1206
                        (s->sstat1 & PHASE_MASK),
1207
                        jmp ? '=' : '!',
1208
                        ((insn >> 24) & 7));
1209
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1210
            }
1211
            if (cond == jmp && (insn & (1 << 18))) {
1212
                uint8_t mask;
1213

    
1214
                mask = (~insn >> 8) & 0xff;
1215
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1216
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1217
                cond = (s->sfbr & mask) == (insn & mask);
1218
            }
1219
            if (cond == jmp) {
1220
                if (insn & (1 << 23)) {
1221
                    /* Relative address.  */
1222
                    addr = s->dsp + sxt24(addr);
1223
                }
1224
                switch ((insn >> 27) & 7) {
1225
                case 0: /* Jump */
1226
                    DPRINTF("Jump to 0x%08x\n", addr);
1227
                    s->dsp = addr;
1228
                    break;
1229
                case 1: /* Call */
1230
                    DPRINTF("Call 0x%08x\n", addr);
1231
                    s->temp = s->dsp;
1232
                    s->dsp = addr;
1233
                    break;
1234
                case 2: /* Return */
1235
                    DPRINTF("Return to 0x%08x\n", s->temp);
1236
                    s->dsp = s->temp;
1237
                    break;
1238
                case 3: /* Interrupt */
1239
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1240
                    if ((insn & (1 << 20)) != 0) {
1241
                        s->istat0 |= LSI_ISTAT0_INTF;
1242
                        lsi_update_irq(s);
1243
                    } else {
1244
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1245
                    }
1246
                    break;
1247
                default:
1248
                    DPRINTF("Illegal transfer control\n");
1249
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1250
                    break;
1251
                }
1252
            } else {
1253
                DPRINTF("Control condition failed\n");
1254
            }
1255
        }
1256
        break;
1257

    
1258
    case 3:
1259
        if ((insn & (1 << 29)) == 0) {
1260
            /* Memory move.  */
1261
            uint32_t dest;
1262
            /* ??? The docs imply the destination address is loaded into
1263
               the TEMP register.  However the Linux drivers rely on
1264
               the value being presrved.  */
1265
            dest = read_dword(s, s->dsp);
1266
            s->dsp += 4;
1267
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1268
        } else {
1269
            uint8_t data[7];
1270
            int reg;
1271
            int n;
1272
            int i;
1273

    
1274
            if (insn & (1 << 28)) {
1275
                addr = s->dsa + sxt24(addr);
1276
            }
1277
            n = (insn & 7);
1278
            reg = (insn >> 16) & 0xff;
1279
            if (insn & (1 << 24)) {
1280
                cpu_physical_memory_read(addr, data, n);
1281
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1282
                        addr, *(int *)data);
1283
                for (i = 0; i < n; i++) {
1284
                    lsi_reg_writeb(s, reg + i, data[i]);
1285
                }
1286
            } else {
1287
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1288
                for (i = 0; i < n; i++) {
1289
                    data[i] = lsi_reg_readb(s, reg + i);
1290
                }
1291
                cpu_physical_memory_write(addr, data, n);
1292
            }
1293
        }
1294
    }
1295
    if (insn_processed > 10000 && !s->waiting) {
1296
        /* Some windows drivers make the device spin waiting for a memory
1297
           location to change.  If we have been executed a lot of code then
1298
           assume this is the case and force an unexpected device disconnect.
1299
           This is apparently sufficient to beat the drivers into submission.
1300
         */
1301
        if (!(s->sien0 & LSI_SIST0_UDC))
1302
            fprintf(stderr, "inf. loop with UDC masked\n");
1303
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1304
        lsi_disconnect(s);
1305
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1306
        if (s->dcntl & LSI_DCNTL_SSM) {
1307
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1308
        } else {
1309
            goto again;
1310
        }
1311
    }
1312
    DPRINTF("SCRIPTS execution stopped\n");
1313
}
1314

    
1315
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1316
{
1317
    uint8_t tmp;
1318
#define CASE_GET_REG24(name, addr) \
1319
    case addr: return s->name & 0xff; \
1320
    case addr + 1: return (s->name >> 8) & 0xff; \
1321
    case addr + 2: return (s->name >> 16) & 0xff;
1322

    
1323
#define CASE_GET_REG32(name, addr) \
1324
    case addr: return s->name & 0xff; \
1325
    case addr + 1: return (s->name >> 8) & 0xff; \
1326
    case addr + 2: return (s->name >> 16) & 0xff; \
1327
    case addr + 3: return (s->name >> 24) & 0xff;
1328

    
1329
#ifdef DEBUG_LSI_REG
1330
    DPRINTF("Read reg %x\n", offset);
1331
#endif
1332
    switch (offset) {
1333
    case 0x00: /* SCNTL0 */
1334
        return s->scntl0;
1335
    case 0x01: /* SCNTL1 */
1336
        return s->scntl1;
1337
    case 0x02: /* SCNTL2 */
1338
        return s->scntl2;
1339
    case 0x03: /* SCNTL3 */
1340
        return s->scntl3;
1341
    case 0x04: /* SCID */
1342
        return s->scid;
1343
    case 0x05: /* SXFER */
1344
        return s->sxfer;
1345
    case 0x06: /* SDID */
1346
        return s->sdid;
1347
    case 0x07: /* GPREG0 */
1348
        return 0x7f;
1349
    case 0x08: /* Revision ID */
1350
        return 0x00;
1351
    case 0xa: /* SSID */
1352
        return s->ssid;
1353
    case 0xb: /* SBCL */
1354
        /* ??? This is not correct. However it's (hopefully) only
1355
           used for diagnostics, so should be ok.  */
1356
        return 0;
1357
    case 0xc: /* DSTAT */
1358
        tmp = s->dstat | 0x80;
1359
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1360
            s->dstat = 0;
1361
        lsi_update_irq(s);
1362
        return tmp;
1363
    case 0x0d: /* SSTAT0 */
1364
        return s->sstat0;
1365
    case 0x0e: /* SSTAT1 */
1366
        return s->sstat1;
1367
    case 0x0f: /* SSTAT2 */
1368
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1369
    CASE_GET_REG32(dsa, 0x10)
1370
    case 0x14: /* ISTAT0 */
1371
        return s->istat0;
1372
    case 0x15: /* ISTAT1 */
1373
        return s->istat1;
1374
    case 0x16: /* MBOX0 */
1375
        return s->mbox0;
1376
    case 0x17: /* MBOX1 */
1377
        return s->mbox1;
1378
    case 0x18: /* CTEST0 */
1379
        return 0xff;
1380
    case 0x19: /* CTEST1 */
1381
        return 0;
1382
    case 0x1a: /* CTEST2 */
1383
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1384
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1385
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1386
            tmp |= LSI_CTEST2_SIGP;
1387
        }
1388
        return tmp;
1389
    case 0x1b: /* CTEST3 */
1390
        return s->ctest3;
1391
    CASE_GET_REG32(temp, 0x1c)
1392
    case 0x20: /* DFIFO */
1393
        return 0;
1394
    case 0x21: /* CTEST4 */
1395
        return s->ctest4;
1396
    case 0x22: /* CTEST5 */
1397
        return s->ctest5;
1398
    case 0x23: /* CTEST6 */
1399
         return 0;
1400
    CASE_GET_REG24(dbc, 0x24)
1401
    case 0x27: /* DCMD */
1402
        return s->dcmd;
1403
    CASE_GET_REG32(dsp, 0x2c)
1404
    CASE_GET_REG32(dsps, 0x30)
1405
    CASE_GET_REG32(scratch[0], 0x34)
1406
    case 0x38: /* DMODE */
1407
        return s->dmode;
1408
    case 0x39: /* DIEN */
1409
        return s->dien;
1410
    case 0x3b: /* DCNTL */
1411
        return s->dcntl;
1412
    case 0x40: /* SIEN0 */
1413
        return s->sien0;
1414
    case 0x41: /* SIEN1 */
1415
        return s->sien1;
1416
    case 0x42: /* SIST0 */
1417
        tmp = s->sist0;
1418
        s->sist0 = 0;
1419
        lsi_update_irq(s);
1420
        return tmp;
1421
    case 0x43: /* SIST1 */
1422
        tmp = s->sist1;
1423
        s->sist1 = 0;
1424
        lsi_update_irq(s);
1425
        return tmp;
1426
    case 0x46: /* MACNTL */
1427
        return 0x0f;
1428
    case 0x47: /* GPCNTL0 */
1429
        return 0x0f;
1430
    case 0x48: /* STIME0 */
1431
        return s->stime0;
1432
    case 0x4a: /* RESPID0 */
1433
        return s->respid0;
1434
    case 0x4b: /* RESPID1 */
1435
        return s->respid1;
1436
    case 0x4d: /* STEST1 */
1437
        return s->stest1;
1438
    case 0x4e: /* STEST2 */
1439
        return s->stest2;
1440
    case 0x4f: /* STEST3 */
1441
        return s->stest3;
1442
    case 0x50: /* SIDL */
1443
        /* This is needed by the linux drivers.  We currently only update it
1444
           during the MSG IN phase.  */
1445
        return s->sidl;
1446
    case 0x52: /* STEST4 */
1447
        return 0xe0;
1448
    case 0x56: /* CCNTL0 */
1449
        return s->ccntl0;
1450
    case 0x57: /* CCNTL1 */
1451
        return s->ccntl1;
1452
    case 0x58: /* SBDL */
1453
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1454
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1455
            return s->msg[0];
1456
        return 0;
1457
    case 0x59: /* SBDL high */
1458
        return 0;
1459
    CASE_GET_REG32(mmrs, 0xa0)
1460
    CASE_GET_REG32(mmws, 0xa4)
1461
    CASE_GET_REG32(sfs, 0xa8)
1462
    CASE_GET_REG32(drs, 0xac)
1463
    CASE_GET_REG32(sbms, 0xb0)
1464
    CASE_GET_REG32(dbms, 0xb4)
1465
    CASE_GET_REG32(dnad64, 0xb8)
1466
    CASE_GET_REG32(pmjad1, 0xc0)
1467
    CASE_GET_REG32(pmjad2, 0xc4)
1468
    CASE_GET_REG32(rbc, 0xc8)
1469
    CASE_GET_REG32(ua, 0xcc)
1470
    CASE_GET_REG32(ia, 0xd4)
1471
    CASE_GET_REG32(sbc, 0xd8)
1472
    CASE_GET_REG32(csbc, 0xdc)
1473
    }
1474
    if (offset >= 0x5c && offset < 0xa0) {
1475
        int n;
1476
        int shift;
1477
        n = (offset - 0x58) >> 2;
1478
        shift = (offset & 3) * 8;
1479
        return (s->scratch[n] >> shift) & 0xff;
1480
    }
1481
    BADF("readb 0x%x\n", offset);
1482
    exit(1);
1483
#undef CASE_GET_REG24
1484
#undef CASE_GET_REG32
1485
}
1486

    
1487
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1488
{
1489
#define CASE_SET_REG32(name, addr) \
1490
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1491
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1492
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1493
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1494

    
1495
#ifdef DEBUG_LSI_REG
1496
    DPRINTF("Write reg %x = %02x\n", offset, val);
1497
#endif
1498
    switch (offset) {
1499
    case 0x00: /* SCNTL0 */
1500
        s->scntl0 = val;
1501
        if (val & LSI_SCNTL0_START) {
1502
            BADF("Start sequence not implemented\n");
1503
        }
1504
        break;
1505
    case 0x01: /* SCNTL1 */
1506
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1507
        if (val & LSI_SCNTL1_IARB) {
1508
            BADF("Immediate Arbritration not implemented\n");
1509
        }
1510
        if (val & LSI_SCNTL1_RST) {
1511
            s->sstat0 |= LSI_SSTAT0_RST;
1512
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1513
        } else {
1514
            s->sstat0 &= ~LSI_SSTAT0_RST;
1515
        }
1516
        break;
1517
    case 0x02: /* SCNTL2 */
1518
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1519
        s->scntl2 = val;
1520
        break;
1521
    case 0x03: /* SCNTL3 */
1522
        s->scntl3 = val;
1523
        break;
1524
    case 0x04: /* SCID */
1525
        s->scid = val;
1526
        break;
1527
    case 0x05: /* SXFER */
1528
        s->sxfer = val;
1529
        break;
1530
    case 0x06: /* SDID */
1531
        if ((val & 0xf) != (s->ssid & 0xf))
1532
            BADF("Destination ID does not match SSID\n");
1533
        s->sdid = val & 0xf;
1534
        break;
1535
    case 0x07: /* GPREG0 */
1536
        break;
1537
    case 0x08: /* SFBR */
1538
        /* The CPU is not allowed to write to this register.  However the
1539
           SCRIPTS register move instructions are.  */
1540
        s->sfbr = val;
1541
        break;
1542
    case 0x0a: case 0x0b: 
1543
        /* Openserver writes to these readonly registers on startup */
1544
        return;    
1545
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1546
        /* Linux writes to these readonly registers on startup.  */
1547
        return;
1548
    CASE_SET_REG32(dsa, 0x10)
1549
    case 0x14: /* ISTAT0 */
1550
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1551
        if (val & LSI_ISTAT0_ABRT) {
1552
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1553
        }
1554
        if (val & LSI_ISTAT0_INTF) {
1555
            s->istat0 &= ~LSI_ISTAT0_INTF;
1556
            lsi_update_irq(s);
1557
        }
1558
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1559
            DPRINTF("Woken by SIGP\n");
1560
            s->waiting = 0;
1561
            s->dsp = s->dnad;
1562
            lsi_execute_script(s);
1563
        }
1564
        if (val & LSI_ISTAT0_SRST) {
1565
            lsi_soft_reset(s);
1566
        }
1567
        break;
1568
    case 0x16: /* MBOX0 */
1569
        s->mbox0 = val;
1570
        break;
1571
    case 0x17: /* MBOX1 */
1572
        s->mbox1 = val;
1573
        break;
1574
    case 0x1a: /* CTEST2 */
1575
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1576
        break;
1577
    case 0x1b: /* CTEST3 */
1578
        s->ctest3 = val & 0x0f;
1579
        break;
1580
    CASE_SET_REG32(temp, 0x1c)
1581
    case 0x21: /* CTEST4 */
1582
        if (val & 7) {
1583
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1584
        }
1585
        s->ctest4 = val;
1586
        break;
1587
    case 0x22: /* CTEST5 */
1588
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1589
            BADF("CTEST5 DMA increment not implemented\n");
1590
        }
1591
        s->ctest5 = val;
1592
        break;
1593
    case 0x2c: /* DSP[0:7] */
1594
        s->dsp &= 0xffffff00;
1595
        s->dsp |= val;
1596
        break;
1597
    case 0x2d: /* DSP[8:15] */
1598
        s->dsp &= 0xffff00ff;
1599
        s->dsp |= val << 8;
1600
        break;
1601
    case 0x2e: /* DSP[16:23] */
1602
        s->dsp &= 0xff00ffff;
1603
        s->dsp |= val << 16;
1604
        break;
1605
    case 0x2f: /* DSP[24:31] */
1606
        s->dsp &= 0x00ffffff;
1607
        s->dsp |= val << 24;
1608
        if ((s->dmode & LSI_DMODE_MAN) == 0
1609
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1610
            lsi_execute_script(s);
1611
        break;
1612
    CASE_SET_REG32(dsps, 0x30)
1613
    CASE_SET_REG32(scratch[0], 0x34)
1614
    case 0x38: /* DMODE */
1615
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1616
            BADF("IO mappings not implemented\n");
1617
        }
1618
        s->dmode = val;
1619
        break;
1620
    case 0x39: /* DIEN */
1621
        s->dien = val;
1622
        lsi_update_irq(s);
1623
        break;
1624
    case 0x3b: /* DCNTL */
1625
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1626
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1627
            lsi_execute_script(s);
1628
        break;
1629
    case 0x40: /* SIEN0 */
1630
        s->sien0 = val;
1631
        lsi_update_irq(s);
1632
        break;
1633
    case 0x41: /* SIEN1 */
1634
        s->sien1 = val;
1635
        lsi_update_irq(s);
1636
        break;
1637
    case 0x47: /* GPCNTL0 */
1638
        break;
1639
    case 0x48: /* STIME0 */
1640
        s->stime0 = val;
1641
        break;
1642
    case 0x49: /* STIME1 */
1643
        if (val & 0xf) {
1644
            DPRINTF("General purpose timer not implemented\n");
1645
            /* ??? Raising the interrupt immediately seems to be sufficient
1646
               to keep the FreeBSD driver happy.  */
1647
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1648
        }
1649
        break;
1650
    case 0x4a: /* RESPID0 */
1651
        s->respid0 = val;
1652
        break;
1653
    case 0x4b: /* RESPID1 */
1654
        s->respid1 = val;
1655
        break;
1656
    case 0x4d: /* STEST1 */
1657
        s->stest1 = val;
1658
        break;
1659
    case 0x4e: /* STEST2 */
1660
        if (val & 1) {
1661
            BADF("Low level mode not implemented\n");
1662
        }
1663
        s->stest2 = val;
1664
        break;
1665
    case 0x4f: /* STEST3 */
1666
        if (val & 0x41) {
1667
            BADF("SCSI FIFO test mode not implemented\n");
1668
        }
1669
        s->stest3 = val;
1670
        break;
1671
    case 0x56: /* CCNTL0 */
1672
        s->ccntl0 = val;
1673
        break;
1674
    case 0x57: /* CCNTL1 */
1675
        s->ccntl1 = val;
1676
        break;
1677
    CASE_SET_REG32(mmrs, 0xa0)
1678
    CASE_SET_REG32(mmws, 0xa4)
1679
    CASE_SET_REG32(sfs, 0xa8)
1680
    CASE_SET_REG32(drs, 0xac)
1681
    CASE_SET_REG32(sbms, 0xb0)
1682
    CASE_SET_REG32(dbms, 0xb4)
1683
    CASE_SET_REG32(dnad64, 0xb8)
1684
    CASE_SET_REG32(pmjad1, 0xc0)
1685
    CASE_SET_REG32(pmjad2, 0xc4)
1686
    CASE_SET_REG32(rbc, 0xc8)
1687
    CASE_SET_REG32(ua, 0xcc)
1688
    CASE_SET_REG32(ia, 0xd4)
1689
    CASE_SET_REG32(sbc, 0xd8)
1690
    CASE_SET_REG32(csbc, 0xdc)
1691
    default:
1692
        if (offset >= 0x5c && offset < 0xa0) {
1693
            int n;
1694
            int shift;
1695
            n = (offset - 0x58) >> 2;
1696
            shift = (offset & 3) * 8;
1697
            s->scratch[n] &= ~(0xff << shift);
1698
            s->scratch[n] |= (val & 0xff) << shift;
1699
        } else {
1700
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1701
        }
1702
    }
1703
#undef CASE_SET_REG32
1704
}
1705

    
1706
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1707
{
1708
    LSIState *s = (LSIState *)opaque;
1709

    
1710
    lsi_reg_writeb(s, addr & 0xff, val);
1711
}
1712

    
1713
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1714
{
1715
    LSIState *s = (LSIState *)opaque;
1716

    
1717
    addr &= 0xff;
1718
    lsi_reg_writeb(s, addr, val & 0xff);
1719
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1720
}
1721

    
1722
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1723
{
1724
    LSIState *s = (LSIState *)opaque;
1725

    
1726
    addr &= 0xff;
1727
    lsi_reg_writeb(s, addr, val & 0xff);
1728
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1729
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1730
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1731
}
1732

    
1733
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1734
{
1735
    LSIState *s = (LSIState *)opaque;
1736

    
1737
    return lsi_reg_readb(s, addr & 0xff);
1738
}
1739

    
1740
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1741
{
1742
    LSIState *s = (LSIState *)opaque;
1743
    uint32_t val;
1744

    
1745
    addr &= 0xff;
1746
    val = lsi_reg_readb(s, addr);
1747
    val |= lsi_reg_readb(s, addr + 1) << 8;
1748
    return val;
1749
}
1750

    
1751
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1752
{
1753
    LSIState *s = (LSIState *)opaque;
1754
    uint32_t val;
1755
    addr &= 0xff;
1756
    val = lsi_reg_readb(s, addr);
1757
    val |= lsi_reg_readb(s, addr + 1) << 8;
1758
    val |= lsi_reg_readb(s, addr + 2) << 16;
1759
    val |= lsi_reg_readb(s, addr + 3) << 24;
1760
    return val;
1761
}
1762

    
1763
static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1764
    lsi_mmio_readb,
1765
    lsi_mmio_readw,
1766
    lsi_mmio_readl,
1767
};
1768

    
1769
static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1770
    lsi_mmio_writeb,
1771
    lsi_mmio_writew,
1772
    lsi_mmio_writel,
1773
};
1774

    
1775
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1776
{
1777
    LSIState *s = (LSIState *)opaque;
1778
    uint32_t newval;
1779
    int shift;
1780

    
1781
    addr &= 0x1fff;
1782
    newval = s->script_ram[addr >> 2];
1783
    shift = (addr & 3) * 8;
1784
    newval &= ~(0xff << shift);
1785
    newval |= val << shift;
1786
    s->script_ram[addr >> 2] = newval;
1787
}
1788

    
1789
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1790
{
1791
    LSIState *s = (LSIState *)opaque;
1792
    uint32_t newval;
1793

    
1794
    addr &= 0x1fff;
1795
    newval = s->script_ram[addr >> 2];
1796
    if (addr & 2) {
1797
        newval = (newval & 0xffff) | (val << 16);
1798
    } else {
1799
        newval = (newval & 0xffff0000) | val;
1800
    }
1801
    s->script_ram[addr >> 2] = newval;
1802
}
1803

    
1804

    
1805
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1806
{
1807
    LSIState *s = (LSIState *)opaque;
1808

    
1809
    addr &= 0x1fff;
1810
    s->script_ram[addr >> 2] = val;
1811
}
1812

    
1813
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1814
{
1815
    LSIState *s = (LSIState *)opaque;
1816
    uint32_t val;
1817

    
1818
    addr &= 0x1fff;
1819
    val = s->script_ram[addr >> 2];
1820
    val >>= (addr & 3) * 8;
1821
    return val & 0xff;
1822
}
1823

    
1824
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1825
{
1826
    LSIState *s = (LSIState *)opaque;
1827
    uint32_t val;
1828

    
1829
    addr &= 0x1fff;
1830
    val = s->script_ram[addr >> 2];
1831
    if (addr & 2)
1832
        val >>= 16;
1833
    return le16_to_cpu(val);
1834
}
1835

    
1836
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1837
{
1838
    LSIState *s = (LSIState *)opaque;
1839

    
1840
    addr &= 0x1fff;
1841
    return le32_to_cpu(s->script_ram[addr >> 2]);
1842
}
1843

    
1844
static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1845
    lsi_ram_readb,
1846
    lsi_ram_readw,
1847
    lsi_ram_readl,
1848
};
1849

    
1850
static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1851
    lsi_ram_writeb,
1852
    lsi_ram_writew,
1853
    lsi_ram_writel,
1854
};
1855

    
1856
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1857
{
1858
    LSIState *s = (LSIState *)opaque;
1859
    return lsi_reg_readb(s, addr & 0xff);
1860
}
1861

    
1862
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1863
{
1864
    LSIState *s = (LSIState *)opaque;
1865
    uint32_t val;
1866
    addr &= 0xff;
1867
    val = lsi_reg_readb(s, addr);
1868
    val |= lsi_reg_readb(s, addr + 1) << 8;
1869
    return val;
1870
}
1871

    
1872
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1873
{
1874
    LSIState *s = (LSIState *)opaque;
1875
    uint32_t val;
1876
    addr &= 0xff;
1877
    val = lsi_reg_readb(s, addr);
1878
    val |= lsi_reg_readb(s, addr + 1) << 8;
1879
    val |= lsi_reg_readb(s, addr + 2) << 16;
1880
    val |= lsi_reg_readb(s, addr + 3) << 24;
1881
    return val;
1882
}
1883

    
1884
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1885
{
1886
    LSIState *s = (LSIState *)opaque;
1887
    lsi_reg_writeb(s, addr & 0xff, val);
1888
}
1889

    
1890
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1891
{
1892
    LSIState *s = (LSIState *)opaque;
1893
    addr &= 0xff;
1894
    lsi_reg_writeb(s, addr, val & 0xff);
1895
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1896
}
1897

    
1898
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1899
{
1900
    LSIState *s = (LSIState *)opaque;
1901
    addr &= 0xff;
1902
    lsi_reg_writeb(s, addr, val & 0xff);
1903
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1904
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1905
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1906
}
1907

    
1908
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1909
                           uint32_t addr, uint32_t size, int type)
1910
{
1911
    LSIState *s = (LSIState *)pci_dev;
1912

    
1913
    DPRINTF("Mapping IO at %08x\n", addr);
1914

    
1915
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1916
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1917
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1918
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1919
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1920
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1921
}
1922

    
1923
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1924
                            uint32_t addr, uint32_t size, int type)
1925
{
1926
    LSIState *s = (LSIState *)pci_dev;
1927

    
1928
    DPRINTF("Mapping ram at %08x\n", addr);
1929
    s->script_ram_base = addr;
1930
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1931
}
1932

    
1933
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1934
                             uint32_t addr, uint32_t size, int type)
1935
{
1936
    LSIState *s = (LSIState *)pci_dev;
1937

    
1938
    DPRINTF("Mapping registers at %08x\n", addr);
1939
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1940
}
1941

    
1942
void lsi_scsi_attach(DeviceState *host, BlockDriverState *bd, int id)
1943
{
1944
    LSIState *s = (LSIState *)host;
1945

    
1946
    if (id < 0) {
1947
        for (id = 0; id < LSI_MAX_DEVS; id++) {
1948
            if (s->scsi_dev[id] == NULL)
1949
                break;
1950
        }
1951
    }
1952
    if (id >= LSI_MAX_DEVS) {
1953
        BADF("Bad Device ID %d\n", id);
1954
        return;
1955
    }
1956
    if (s->scsi_dev[id]) {
1957
        DPRINTF("Destroying device %d\n", id);
1958
        s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1959
    }
1960
    DPRINTF("Attaching block device %d\n", id);
1961
    s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1962
    if (s->scsi_dev[id] == NULL)
1963
        s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1964
    bd->private = &s->pci_dev;
1965
}
1966

    
1967
static int lsi_scsi_uninit(PCIDevice *d)
1968
{
1969
    LSIState *s = (LSIState *) d;
1970

    
1971
    cpu_unregister_io_memory(s->mmio_io_addr);
1972
    cpu_unregister_io_memory(s->ram_io_addr);
1973

    
1974
    qemu_free(s->queue);
1975

    
1976
    return 0;
1977
}
1978

    
1979
static void lsi_scsi_init(PCIDevice *dev)
1980
{
1981
    LSIState *s = (LSIState *)dev;
1982
    uint8_t *pci_conf;
1983

    
1984
    pci_conf = s->pci_dev.config;
1985

    
1986
    /* PCI Vendor ID (word) */
1987
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
1988
    /* PCI device ID (word) */
1989
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
1990
    /* PCI base class code */
1991
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
1992
    /* PCI subsystem ID */
1993
    pci_conf[0x2e] = 0x00;
1994
    pci_conf[0x2f] = 0x10;
1995
    /* PCI latency timer = 255 */
1996
    pci_conf[0x0d] = 0xff;
1997
    /* Interrupt pin 1 */
1998
    pci_conf[0x3d] = 0x01;
1999

    
2000
    s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
2001
                                             lsi_mmio_writefn, s);
2002
    s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
2003
                                            lsi_ram_writefn, s);
2004

    
2005
    pci_register_io_region((struct PCIDevice *)s, 0, 256,
2006
                           PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2007
    pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
2008
                           PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2009
    pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
2010
                           PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2011
    s->queue = qemu_malloc(sizeof(lsi_queue));
2012
    s->queue_len = 1;
2013
    s->active_commands = 0;
2014
    s->pci_dev.unregister = lsi_scsi_uninit;
2015

    
2016
    lsi_soft_reset(s);
2017

    
2018
    scsi_bus_new(&dev->qdev, lsi_scsi_attach);
2019
}
2020

    
2021
static void lsi53c895a_register_devices(void)
2022
{
2023
    pci_qdev_register("lsi53c895a", sizeof(LSIState), lsi_scsi_init);
2024
}
2025

    
2026
device_init(lsi53c895a_register_devices);