Statistics
| Branch: | Revision:

root / cpu-all.h @ 1dd9ffb9

History | View | Annotate | Download (28.5 kB)

1 5a9fdfec bellard
/*
2 5a9fdfec bellard
 * defines common to all virtual CPUs
3 5fafdf24 ths
 *
4 5a9fdfec bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 5a9fdfec bellard
 *
6 5a9fdfec bellard
 * This library is free software; you can redistribute it and/or
7 5a9fdfec bellard
 * modify it under the terms of the GNU Lesser General Public
8 5a9fdfec bellard
 * License as published by the Free Software Foundation; either
9 5a9fdfec bellard
 * version 2 of the License, or (at your option) any later version.
10 5a9fdfec bellard
 *
11 5a9fdfec bellard
 * This library is distributed in the hope that it will be useful,
12 5a9fdfec bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 5a9fdfec bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 5a9fdfec bellard
 * Lesser General Public License for more details.
15 5a9fdfec bellard
 *
16 5a9fdfec bellard
 * You should have received a copy of the GNU Lesser General Public
17 5a9fdfec bellard
 * License along with this library; if not, write to the Free Software
18 fad6cb1a aurel32
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19 5a9fdfec bellard
 */
20 5a9fdfec bellard
#ifndef CPU_ALL_H
21 5a9fdfec bellard
#define CPU_ALL_H
22 5a9fdfec bellard
23 f54b3f92 aurel32
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24 0ac4bd56 bellard
#define WORDS_ALIGNED
25 0ac4bd56 bellard
#endif
26 0ac4bd56 bellard
27 5fafdf24 ths
/* some important defines:
28 5fafdf24 ths
 *
29 0ac4bd56 bellard
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 0ac4bd56 bellard
 * memory accesses.
31 5fafdf24 ths
 *
32 0ac4bd56 bellard
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 0ac4bd56 bellard
 * otherwise little endian.
34 5fafdf24 ths
 *
35 0ac4bd56 bellard
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 5fafdf24 ths
 *
37 0ac4bd56 bellard
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 0ac4bd56 bellard
 */
39 0ac4bd56 bellard
40 f193c797 bellard
#include "bswap.h"
41 939ef593 aurel32
#include "softfloat.h"
42 f193c797 bellard
43 f193c797 bellard
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 f193c797 bellard
#define BSWAP_NEEDED
45 f193c797 bellard
#endif
46 f193c797 bellard
47 f193c797 bellard
#ifdef BSWAP_NEEDED
48 f193c797 bellard
49 f193c797 bellard
static inline uint16_t tswap16(uint16_t s)
50 f193c797 bellard
{
51 f193c797 bellard
    return bswap16(s);
52 f193c797 bellard
}
53 f193c797 bellard
54 f193c797 bellard
static inline uint32_t tswap32(uint32_t s)
55 f193c797 bellard
{
56 f193c797 bellard
    return bswap32(s);
57 f193c797 bellard
}
58 f193c797 bellard
59 f193c797 bellard
static inline uint64_t tswap64(uint64_t s)
60 f193c797 bellard
{
61 f193c797 bellard
    return bswap64(s);
62 f193c797 bellard
}
63 f193c797 bellard
64 f193c797 bellard
static inline void tswap16s(uint16_t *s)
65 f193c797 bellard
{
66 f193c797 bellard
    *s = bswap16(*s);
67 f193c797 bellard
}
68 f193c797 bellard
69 f193c797 bellard
static inline void tswap32s(uint32_t *s)
70 f193c797 bellard
{
71 f193c797 bellard
    *s = bswap32(*s);
72 f193c797 bellard
}
73 f193c797 bellard
74 f193c797 bellard
static inline void tswap64s(uint64_t *s)
75 f193c797 bellard
{
76 f193c797 bellard
    *s = bswap64(*s);
77 f193c797 bellard
}
78 f193c797 bellard
79 f193c797 bellard
#else
80 f193c797 bellard
81 f193c797 bellard
static inline uint16_t tswap16(uint16_t s)
82 f193c797 bellard
{
83 f193c797 bellard
    return s;
84 f193c797 bellard
}
85 f193c797 bellard
86 f193c797 bellard
static inline uint32_t tswap32(uint32_t s)
87 f193c797 bellard
{
88 f193c797 bellard
    return s;
89 f193c797 bellard
}
90 f193c797 bellard
91 f193c797 bellard
static inline uint64_t tswap64(uint64_t s)
92 f193c797 bellard
{
93 f193c797 bellard
    return s;
94 f193c797 bellard
}
95 f193c797 bellard
96 f193c797 bellard
static inline void tswap16s(uint16_t *s)
97 f193c797 bellard
{
98 f193c797 bellard
}
99 f193c797 bellard
100 f193c797 bellard
static inline void tswap32s(uint32_t *s)
101 f193c797 bellard
{
102 f193c797 bellard
}
103 f193c797 bellard
104 f193c797 bellard
static inline void tswap64s(uint64_t *s)
105 f193c797 bellard
{
106 f193c797 bellard
}
107 f193c797 bellard
108 f193c797 bellard
#endif
109 f193c797 bellard
110 f193c797 bellard
#if TARGET_LONG_SIZE == 4
111 f193c797 bellard
#define tswapl(s) tswap32(s)
112 f193c797 bellard
#define tswapls(s) tswap32s((uint32_t *)(s))
113 0a962c02 bellard
#define bswaptls(s) bswap32s(s)
114 f193c797 bellard
#else
115 f193c797 bellard
#define tswapl(s) tswap64(s)
116 f193c797 bellard
#define tswapls(s) tswap64s((uint64_t *)(s))
117 0a962c02 bellard
#define bswaptls(s) bswap64s(s)
118 f193c797 bellard
#endif
119 f193c797 bellard
120 0ca9d380 aurel32
typedef union {
121 0ca9d380 aurel32
    float32 f;
122 0ca9d380 aurel32
    uint32_t l;
123 0ca9d380 aurel32
} CPU_FloatU;
124 0ca9d380 aurel32
125 832ed0fa bellard
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 832ed0fa bellard
   endian ! */
127 0ac4bd56 bellard
typedef union {
128 53cd6637 bellard
    float64 d;
129 9d60cac0 bellard
#if defined(WORDS_BIGENDIAN) \
130 9d60cac0 bellard
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131 0ac4bd56 bellard
    struct {
132 0ac4bd56 bellard
        uint32_t upper;
133 832ed0fa bellard
        uint32_t lower;
134 0ac4bd56 bellard
    } l;
135 0ac4bd56 bellard
#else
136 0ac4bd56 bellard
    struct {
137 0ac4bd56 bellard
        uint32_t lower;
138 832ed0fa bellard
        uint32_t upper;
139 0ac4bd56 bellard
    } l;
140 0ac4bd56 bellard
#endif
141 0ac4bd56 bellard
    uint64_t ll;
142 0ac4bd56 bellard
} CPU_DoubleU;
143 0ac4bd56 bellard
144 1f587329 blueswir1
#ifdef TARGET_SPARC
145 1f587329 blueswir1
typedef union {
146 1f587329 blueswir1
    float128 q;
147 1f587329 blueswir1
#if defined(WORDS_BIGENDIAN) \
148 1f587329 blueswir1
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 1f587329 blueswir1
    struct {
150 1f587329 blueswir1
        uint32_t upmost;
151 1f587329 blueswir1
        uint32_t upper;
152 1f587329 blueswir1
        uint32_t lower;
153 1f587329 blueswir1
        uint32_t lowest;
154 1f587329 blueswir1
    } l;
155 1f587329 blueswir1
    struct {
156 1f587329 blueswir1
        uint64_t upper;
157 1f587329 blueswir1
        uint64_t lower;
158 1f587329 blueswir1
    } ll;
159 1f587329 blueswir1
#else
160 1f587329 blueswir1
    struct {
161 1f587329 blueswir1
        uint32_t lowest;
162 1f587329 blueswir1
        uint32_t lower;
163 1f587329 blueswir1
        uint32_t upper;
164 1f587329 blueswir1
        uint32_t upmost;
165 1f587329 blueswir1
    } l;
166 1f587329 blueswir1
    struct {
167 1f587329 blueswir1
        uint64_t lower;
168 1f587329 blueswir1
        uint64_t upper;
169 1f587329 blueswir1
    } ll;
170 1f587329 blueswir1
#endif
171 1f587329 blueswir1
} CPU_QuadU;
172 1f587329 blueswir1
#endif
173 1f587329 blueswir1
174 61382a50 bellard
/* CPU memory access without any memory or io remapping */
175 61382a50 bellard
176 83d73968 bellard
/*
177 83d73968 bellard
 * the generic syntax for the memory accesses is:
178 83d73968 bellard
 *
179 83d73968 bellard
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 83d73968 bellard
 *
181 83d73968 bellard
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182 83d73968 bellard
 *
183 83d73968 bellard
 * type is:
184 83d73968 bellard
 * (empty): integer access
185 83d73968 bellard
 *   f    : float access
186 5fafdf24 ths
 *
187 83d73968 bellard
 * sign is:
188 83d73968 bellard
 * (empty): for floats or 32 bit size
189 83d73968 bellard
 *   u    : unsigned
190 83d73968 bellard
 *   s    : signed
191 83d73968 bellard
 *
192 83d73968 bellard
 * size is:
193 83d73968 bellard
 *   b: 8 bits
194 83d73968 bellard
 *   w: 16 bits
195 83d73968 bellard
 *   l: 32 bits
196 83d73968 bellard
 *   q: 64 bits
197 5fafdf24 ths
 *
198 83d73968 bellard
 * endian is:
199 83d73968 bellard
 * (empty): target cpu endianness or 8 bit access
200 83d73968 bellard
 *   r    : reversed target cpu endianness (not implemented yet)
201 83d73968 bellard
 *   be   : big endian (not implemented yet)
202 83d73968 bellard
 *   le   : little endian (not implemented yet)
203 83d73968 bellard
 *
204 83d73968 bellard
 * access_type is:
205 83d73968 bellard
 *   raw    : host memory access
206 83d73968 bellard
 *   user   : user mode access using soft MMU
207 83d73968 bellard
 *   kernel : kernel mode access using soft MMU
208 83d73968 bellard
 */
209 8bba3ea1 balrog
static inline int ldub_p(const void *ptr)
210 5a9fdfec bellard
{
211 5a9fdfec bellard
    return *(uint8_t *)ptr;
212 5a9fdfec bellard
}
213 5a9fdfec bellard
214 8bba3ea1 balrog
static inline int ldsb_p(const void *ptr)
215 5a9fdfec bellard
{
216 5a9fdfec bellard
    return *(int8_t *)ptr;
217 5a9fdfec bellard
}
218 5a9fdfec bellard
219 c27004ec bellard
static inline void stb_p(void *ptr, int v)
220 5a9fdfec bellard
{
221 5a9fdfec bellard
    *(uint8_t *)ptr = v;
222 5a9fdfec bellard
}
223 5a9fdfec bellard
224 5a9fdfec bellard
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 5a9fdfec bellard
   kernel handles unaligned load/stores may give better results, but
226 5a9fdfec bellard
   it is a system wide setting : bad */
227 2df3b95d bellard
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228 5a9fdfec bellard
229 5a9fdfec bellard
/* conservative code for little endian unaligned accesses */
230 8bba3ea1 balrog
static inline int lduw_le_p(const void *ptr)
231 5a9fdfec bellard
{
232 5a9fdfec bellard
#ifdef __powerpc__
233 5a9fdfec bellard
    int val;
234 5a9fdfec bellard
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 5a9fdfec bellard
    return val;
236 5a9fdfec bellard
#else
237 e01fe6d5 malc
    const uint8_t *p = ptr;
238 5a9fdfec bellard
    return p[0] | (p[1] << 8);
239 5a9fdfec bellard
#endif
240 5a9fdfec bellard
}
241 5a9fdfec bellard
242 8bba3ea1 balrog
static inline int ldsw_le_p(const void *ptr)
243 5a9fdfec bellard
{
244 5a9fdfec bellard
#ifdef __powerpc__
245 5a9fdfec bellard
    int val;
246 5a9fdfec bellard
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247 5a9fdfec bellard
    return (int16_t)val;
248 5a9fdfec bellard
#else
249 e01fe6d5 malc
    const uint8_t *p = ptr;
250 5a9fdfec bellard
    return (int16_t)(p[0] | (p[1] << 8));
251 5a9fdfec bellard
#endif
252 5a9fdfec bellard
}
253 5a9fdfec bellard
254 8bba3ea1 balrog
static inline int ldl_le_p(const void *ptr)
255 5a9fdfec bellard
{
256 5a9fdfec bellard
#ifdef __powerpc__
257 5a9fdfec bellard
    int val;
258 5a9fdfec bellard
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259 5a9fdfec bellard
    return val;
260 5a9fdfec bellard
#else
261 e01fe6d5 malc
    const uint8_t *p = ptr;
262 5a9fdfec bellard
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263 5a9fdfec bellard
#endif
264 5a9fdfec bellard
}
265 5a9fdfec bellard
266 8bba3ea1 balrog
static inline uint64_t ldq_le_p(const void *ptr)
267 5a9fdfec bellard
{
268 e01fe6d5 malc
    const uint8_t *p = ptr;
269 5a9fdfec bellard
    uint32_t v1, v2;
270 f0aca822 bellard
    v1 = ldl_le_p(p);
271 f0aca822 bellard
    v2 = ldl_le_p(p + 4);
272 5a9fdfec bellard
    return v1 | ((uint64_t)v2 << 32);
273 5a9fdfec bellard
}
274 5a9fdfec bellard
275 2df3b95d bellard
static inline void stw_le_p(void *ptr, int v)
276 5a9fdfec bellard
{
277 5a9fdfec bellard
#ifdef __powerpc__
278 5a9fdfec bellard
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279 5a9fdfec bellard
#else
280 5a9fdfec bellard
    uint8_t *p = ptr;
281 5a9fdfec bellard
    p[0] = v;
282 5a9fdfec bellard
    p[1] = v >> 8;
283 5a9fdfec bellard
#endif
284 5a9fdfec bellard
}
285 5a9fdfec bellard
286 2df3b95d bellard
static inline void stl_le_p(void *ptr, int v)
287 5a9fdfec bellard
{
288 5a9fdfec bellard
#ifdef __powerpc__
289 5a9fdfec bellard
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290 5a9fdfec bellard
#else
291 5a9fdfec bellard
    uint8_t *p = ptr;
292 5a9fdfec bellard
    p[0] = v;
293 5a9fdfec bellard
    p[1] = v >> 8;
294 5a9fdfec bellard
    p[2] = v >> 16;
295 5a9fdfec bellard
    p[3] = v >> 24;
296 5a9fdfec bellard
#endif
297 5a9fdfec bellard
}
298 5a9fdfec bellard
299 2df3b95d bellard
static inline void stq_le_p(void *ptr, uint64_t v)
300 5a9fdfec bellard
{
301 5a9fdfec bellard
    uint8_t *p = ptr;
302 f0aca822 bellard
    stl_le_p(p, (uint32_t)v);
303 f0aca822 bellard
    stl_le_p(p + 4, v >> 32);
304 5a9fdfec bellard
}
305 5a9fdfec bellard
306 5a9fdfec bellard
/* float access */
307 5a9fdfec bellard
308 8bba3ea1 balrog
static inline float32 ldfl_le_p(const void *ptr)
309 5a9fdfec bellard
{
310 5a9fdfec bellard
    union {
311 53cd6637 bellard
        float32 f;
312 5a9fdfec bellard
        uint32_t i;
313 5a9fdfec bellard
    } u;
314 2df3b95d bellard
    u.i = ldl_le_p(ptr);
315 5a9fdfec bellard
    return u.f;
316 5a9fdfec bellard
}
317 5a9fdfec bellard
318 2df3b95d bellard
static inline void stfl_le_p(void *ptr, float32 v)
319 5a9fdfec bellard
{
320 5a9fdfec bellard
    union {
321 53cd6637 bellard
        float32 f;
322 5a9fdfec bellard
        uint32_t i;
323 5a9fdfec bellard
    } u;
324 5a9fdfec bellard
    u.f = v;
325 2df3b95d bellard
    stl_le_p(ptr, u.i);
326 5a9fdfec bellard
}
327 5a9fdfec bellard
328 8bba3ea1 balrog
static inline float64 ldfq_le_p(const void *ptr)
329 5a9fdfec bellard
{
330 0ac4bd56 bellard
    CPU_DoubleU u;
331 2df3b95d bellard
    u.l.lower = ldl_le_p(ptr);
332 2df3b95d bellard
    u.l.upper = ldl_le_p(ptr + 4);
333 5a9fdfec bellard
    return u.d;
334 5a9fdfec bellard
}
335 5a9fdfec bellard
336 2df3b95d bellard
static inline void stfq_le_p(void *ptr, float64 v)
337 5a9fdfec bellard
{
338 0ac4bd56 bellard
    CPU_DoubleU u;
339 5a9fdfec bellard
    u.d = v;
340 2df3b95d bellard
    stl_le_p(ptr, u.l.lower);
341 2df3b95d bellard
    stl_le_p(ptr + 4, u.l.upper);
342 5a9fdfec bellard
}
343 5a9fdfec bellard
344 2df3b95d bellard
#else
345 2df3b95d bellard
346 8bba3ea1 balrog
static inline int lduw_le_p(const void *ptr)
347 2df3b95d bellard
{
348 2df3b95d bellard
    return *(uint16_t *)ptr;
349 2df3b95d bellard
}
350 2df3b95d bellard
351 8bba3ea1 balrog
static inline int ldsw_le_p(const void *ptr)
352 2df3b95d bellard
{
353 2df3b95d bellard
    return *(int16_t *)ptr;
354 2df3b95d bellard
}
355 93ac68bc bellard
356 8bba3ea1 balrog
static inline int ldl_le_p(const void *ptr)
357 2df3b95d bellard
{
358 2df3b95d bellard
    return *(uint32_t *)ptr;
359 2df3b95d bellard
}
360 2df3b95d bellard
361 8bba3ea1 balrog
static inline uint64_t ldq_le_p(const void *ptr)
362 2df3b95d bellard
{
363 2df3b95d bellard
    return *(uint64_t *)ptr;
364 2df3b95d bellard
}
365 2df3b95d bellard
366 2df3b95d bellard
static inline void stw_le_p(void *ptr, int v)
367 2df3b95d bellard
{
368 2df3b95d bellard
    *(uint16_t *)ptr = v;
369 2df3b95d bellard
}
370 2df3b95d bellard
371 2df3b95d bellard
static inline void stl_le_p(void *ptr, int v)
372 2df3b95d bellard
{
373 2df3b95d bellard
    *(uint32_t *)ptr = v;
374 2df3b95d bellard
}
375 2df3b95d bellard
376 2df3b95d bellard
static inline void stq_le_p(void *ptr, uint64_t v)
377 2df3b95d bellard
{
378 2df3b95d bellard
    *(uint64_t *)ptr = v;
379 2df3b95d bellard
}
380 2df3b95d bellard
381 2df3b95d bellard
/* float access */
382 2df3b95d bellard
383 8bba3ea1 balrog
static inline float32 ldfl_le_p(const void *ptr)
384 2df3b95d bellard
{
385 2df3b95d bellard
    return *(float32 *)ptr;
386 2df3b95d bellard
}
387 2df3b95d bellard
388 8bba3ea1 balrog
static inline float64 ldfq_le_p(const void *ptr)
389 2df3b95d bellard
{
390 2df3b95d bellard
    return *(float64 *)ptr;
391 2df3b95d bellard
}
392 2df3b95d bellard
393 2df3b95d bellard
static inline void stfl_le_p(void *ptr, float32 v)
394 2df3b95d bellard
{
395 2df3b95d bellard
    *(float32 *)ptr = v;
396 2df3b95d bellard
}
397 2df3b95d bellard
398 2df3b95d bellard
static inline void stfq_le_p(void *ptr, float64 v)
399 2df3b95d bellard
{
400 2df3b95d bellard
    *(float64 *)ptr = v;
401 2df3b95d bellard
}
402 2df3b95d bellard
#endif
403 2df3b95d bellard
404 2df3b95d bellard
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405 2df3b95d bellard
406 8bba3ea1 balrog
static inline int lduw_be_p(const void *ptr)
407 93ac68bc bellard
{
408 83d73968 bellard
#if defined(__i386__)
409 83d73968 bellard
    int val;
410 83d73968 bellard
    asm volatile ("movzwl %1, %0\n"
411 83d73968 bellard
                  "xchgb %b0, %h0\n"
412 83d73968 bellard
                  : "=q" (val)
413 83d73968 bellard
                  : "m" (*(uint16_t *)ptr));
414 83d73968 bellard
    return val;
415 83d73968 bellard
#else
416 e01fe6d5 malc
    const uint8_t *b = ptr;
417 83d73968 bellard
    return ((b[0] << 8) | b[1]);
418 83d73968 bellard
#endif
419 93ac68bc bellard
}
420 93ac68bc bellard
421 8bba3ea1 balrog
static inline int ldsw_be_p(const void *ptr)
422 93ac68bc bellard
{
423 83d73968 bellard
#if defined(__i386__)
424 83d73968 bellard
    int val;
425 83d73968 bellard
    asm volatile ("movzwl %1, %0\n"
426 83d73968 bellard
                  "xchgb %b0, %h0\n"
427 83d73968 bellard
                  : "=q" (val)
428 83d73968 bellard
                  : "m" (*(uint16_t *)ptr));
429 83d73968 bellard
    return (int16_t)val;
430 83d73968 bellard
#else
431 e01fe6d5 malc
    const uint8_t *b = ptr;
432 83d73968 bellard
    return (int16_t)((b[0] << 8) | b[1]);
433 83d73968 bellard
#endif
434 93ac68bc bellard
}
435 93ac68bc bellard
436 8bba3ea1 balrog
static inline int ldl_be_p(const void *ptr)
437 93ac68bc bellard
{
438 4f2ac237 bellard
#if defined(__i386__) || defined(__x86_64__)
439 83d73968 bellard
    int val;
440 83d73968 bellard
    asm volatile ("movl %1, %0\n"
441 83d73968 bellard
                  "bswap %0\n"
442 83d73968 bellard
                  : "=r" (val)
443 83d73968 bellard
                  : "m" (*(uint32_t *)ptr));
444 83d73968 bellard
    return val;
445 83d73968 bellard
#else
446 e01fe6d5 malc
    const uint8_t *b = ptr;
447 83d73968 bellard
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448 83d73968 bellard
#endif
449 93ac68bc bellard
}
450 93ac68bc bellard
451 8bba3ea1 balrog
static inline uint64_t ldq_be_p(const void *ptr)
452 93ac68bc bellard
{
453 93ac68bc bellard
    uint32_t a,b;
454 2df3b95d bellard
    a = ldl_be_p(ptr);
455 4d7a0880 blueswir1
    b = ldl_be_p((uint8_t *)ptr + 4);
456 93ac68bc bellard
    return (((uint64_t)a<<32)|b);
457 93ac68bc bellard
}
458 93ac68bc bellard
459 2df3b95d bellard
static inline void stw_be_p(void *ptr, int v)
460 93ac68bc bellard
{
461 83d73968 bellard
#if defined(__i386__)
462 83d73968 bellard
    asm volatile ("xchgb %b0, %h0\n"
463 83d73968 bellard
                  "movw %w0, %1\n"
464 83d73968 bellard
                  : "=q" (v)
465 83d73968 bellard
                  : "m" (*(uint16_t *)ptr), "0" (v));
466 83d73968 bellard
#else
467 93ac68bc bellard
    uint8_t *d = (uint8_t *) ptr;
468 93ac68bc bellard
    d[0] = v >> 8;
469 93ac68bc bellard
    d[1] = v;
470 83d73968 bellard
#endif
471 93ac68bc bellard
}
472 93ac68bc bellard
473 2df3b95d bellard
static inline void stl_be_p(void *ptr, int v)
474 93ac68bc bellard
{
475 4f2ac237 bellard
#if defined(__i386__) || defined(__x86_64__)
476 83d73968 bellard
    asm volatile ("bswap %0\n"
477 83d73968 bellard
                  "movl %0, %1\n"
478 83d73968 bellard
                  : "=r" (v)
479 83d73968 bellard
                  : "m" (*(uint32_t *)ptr), "0" (v));
480 83d73968 bellard
#else
481 93ac68bc bellard
    uint8_t *d = (uint8_t *) ptr;
482 93ac68bc bellard
    d[0] = v >> 24;
483 93ac68bc bellard
    d[1] = v >> 16;
484 93ac68bc bellard
    d[2] = v >> 8;
485 93ac68bc bellard
    d[3] = v;
486 83d73968 bellard
#endif
487 93ac68bc bellard
}
488 93ac68bc bellard
489 2df3b95d bellard
static inline void stq_be_p(void *ptr, uint64_t v)
490 93ac68bc bellard
{
491 2df3b95d bellard
    stl_be_p(ptr, v >> 32);
492 4d7a0880 blueswir1
    stl_be_p((uint8_t *)ptr + 4, v);
493 0ac4bd56 bellard
}
494 0ac4bd56 bellard
495 0ac4bd56 bellard
/* float access */
496 0ac4bd56 bellard
497 8bba3ea1 balrog
static inline float32 ldfl_be_p(const void *ptr)
498 0ac4bd56 bellard
{
499 0ac4bd56 bellard
    union {
500 53cd6637 bellard
        float32 f;
501 0ac4bd56 bellard
        uint32_t i;
502 0ac4bd56 bellard
    } u;
503 2df3b95d bellard
    u.i = ldl_be_p(ptr);
504 0ac4bd56 bellard
    return u.f;
505 0ac4bd56 bellard
}
506 0ac4bd56 bellard
507 2df3b95d bellard
static inline void stfl_be_p(void *ptr, float32 v)
508 0ac4bd56 bellard
{
509 0ac4bd56 bellard
    union {
510 53cd6637 bellard
        float32 f;
511 0ac4bd56 bellard
        uint32_t i;
512 0ac4bd56 bellard
    } u;
513 0ac4bd56 bellard
    u.f = v;
514 2df3b95d bellard
    stl_be_p(ptr, u.i);
515 0ac4bd56 bellard
}
516 0ac4bd56 bellard
517 8bba3ea1 balrog
static inline float64 ldfq_be_p(const void *ptr)
518 0ac4bd56 bellard
{
519 0ac4bd56 bellard
    CPU_DoubleU u;
520 2df3b95d bellard
    u.l.upper = ldl_be_p(ptr);
521 4d7a0880 blueswir1
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522 0ac4bd56 bellard
    return u.d;
523 0ac4bd56 bellard
}
524 0ac4bd56 bellard
525 2df3b95d bellard
static inline void stfq_be_p(void *ptr, float64 v)
526 0ac4bd56 bellard
{
527 0ac4bd56 bellard
    CPU_DoubleU u;
528 0ac4bd56 bellard
    u.d = v;
529 2df3b95d bellard
    stl_be_p(ptr, u.l.upper);
530 4d7a0880 blueswir1
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531 93ac68bc bellard
}
532 93ac68bc bellard
533 5a9fdfec bellard
#else
534 5a9fdfec bellard
535 8bba3ea1 balrog
static inline int lduw_be_p(const void *ptr)
536 5a9fdfec bellard
{
537 5a9fdfec bellard
    return *(uint16_t *)ptr;
538 5a9fdfec bellard
}
539 5a9fdfec bellard
540 8bba3ea1 balrog
static inline int ldsw_be_p(const void *ptr)
541 5a9fdfec bellard
{
542 5a9fdfec bellard
    return *(int16_t *)ptr;
543 5a9fdfec bellard
}
544 5a9fdfec bellard
545 8bba3ea1 balrog
static inline int ldl_be_p(const void *ptr)
546 5a9fdfec bellard
{
547 5a9fdfec bellard
    return *(uint32_t *)ptr;
548 5a9fdfec bellard
}
549 5a9fdfec bellard
550 8bba3ea1 balrog
static inline uint64_t ldq_be_p(const void *ptr)
551 5a9fdfec bellard
{
552 5a9fdfec bellard
    return *(uint64_t *)ptr;
553 5a9fdfec bellard
}
554 5a9fdfec bellard
555 2df3b95d bellard
static inline void stw_be_p(void *ptr, int v)
556 5a9fdfec bellard
{
557 5a9fdfec bellard
    *(uint16_t *)ptr = v;
558 5a9fdfec bellard
}
559 5a9fdfec bellard
560 2df3b95d bellard
static inline void stl_be_p(void *ptr, int v)
561 5a9fdfec bellard
{
562 5a9fdfec bellard
    *(uint32_t *)ptr = v;
563 5a9fdfec bellard
}
564 5a9fdfec bellard
565 2df3b95d bellard
static inline void stq_be_p(void *ptr, uint64_t v)
566 5a9fdfec bellard
{
567 5a9fdfec bellard
    *(uint64_t *)ptr = v;
568 5a9fdfec bellard
}
569 5a9fdfec bellard
570 5a9fdfec bellard
/* float access */
571 5a9fdfec bellard
572 8bba3ea1 balrog
static inline float32 ldfl_be_p(const void *ptr)
573 5a9fdfec bellard
{
574 53cd6637 bellard
    return *(float32 *)ptr;
575 5a9fdfec bellard
}
576 5a9fdfec bellard
577 8bba3ea1 balrog
static inline float64 ldfq_be_p(const void *ptr)
578 5a9fdfec bellard
{
579 53cd6637 bellard
    return *(float64 *)ptr;
580 5a9fdfec bellard
}
581 5a9fdfec bellard
582 2df3b95d bellard
static inline void stfl_be_p(void *ptr, float32 v)
583 5a9fdfec bellard
{
584 53cd6637 bellard
    *(float32 *)ptr = v;
585 5a9fdfec bellard
}
586 5a9fdfec bellard
587 2df3b95d bellard
static inline void stfq_be_p(void *ptr, float64 v)
588 5a9fdfec bellard
{
589 53cd6637 bellard
    *(float64 *)ptr = v;
590 5a9fdfec bellard
}
591 2df3b95d bellard
592 2df3b95d bellard
#endif
593 2df3b95d bellard
594 2df3b95d bellard
/* target CPU memory access functions */
595 2df3b95d bellard
#if defined(TARGET_WORDS_BIGENDIAN)
596 2df3b95d bellard
#define lduw_p(p) lduw_be_p(p)
597 2df3b95d bellard
#define ldsw_p(p) ldsw_be_p(p)
598 2df3b95d bellard
#define ldl_p(p) ldl_be_p(p)
599 2df3b95d bellard
#define ldq_p(p) ldq_be_p(p)
600 2df3b95d bellard
#define ldfl_p(p) ldfl_be_p(p)
601 2df3b95d bellard
#define ldfq_p(p) ldfq_be_p(p)
602 2df3b95d bellard
#define stw_p(p, v) stw_be_p(p, v)
603 2df3b95d bellard
#define stl_p(p, v) stl_be_p(p, v)
604 2df3b95d bellard
#define stq_p(p, v) stq_be_p(p, v)
605 2df3b95d bellard
#define stfl_p(p, v) stfl_be_p(p, v)
606 2df3b95d bellard
#define stfq_p(p, v) stfq_be_p(p, v)
607 2df3b95d bellard
#else
608 2df3b95d bellard
#define lduw_p(p) lduw_le_p(p)
609 2df3b95d bellard
#define ldsw_p(p) ldsw_le_p(p)
610 2df3b95d bellard
#define ldl_p(p) ldl_le_p(p)
611 2df3b95d bellard
#define ldq_p(p) ldq_le_p(p)
612 2df3b95d bellard
#define ldfl_p(p) ldfl_le_p(p)
613 2df3b95d bellard
#define ldfq_p(p) ldfq_le_p(p)
614 2df3b95d bellard
#define stw_p(p, v) stw_le_p(p, v)
615 2df3b95d bellard
#define stl_p(p, v) stl_le_p(p, v)
616 2df3b95d bellard
#define stq_p(p, v) stq_le_p(p, v)
617 2df3b95d bellard
#define stfl_p(p, v) stfl_le_p(p, v)
618 2df3b95d bellard
#define stfq_p(p, v) stfq_le_p(p, v)
619 5a9fdfec bellard
#endif
620 5a9fdfec bellard
621 61382a50 bellard
/* MMU memory access macros */
622 61382a50 bellard
623 53a5960a pbrook
#if defined(CONFIG_USER_ONLY)
624 0e62fd79 aurel32
#include <assert.h>
625 0e62fd79 aurel32
#include "qemu-types.h"
626 0e62fd79 aurel32
627 53a5960a pbrook
/* On some host systems the guest address space is reserved on the host.
628 53a5960a pbrook
 * This allows the guest address space to be offset to a convenient location.
629 53a5960a pbrook
 */
630 53a5960a pbrook
//#define GUEST_BASE 0x20000000
631 53a5960a pbrook
#define GUEST_BASE 0
632 53a5960a pbrook
633 53a5960a pbrook
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
634 53a5960a pbrook
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
635 0e62fd79 aurel32
#define h2g(x) ({ \
636 0e62fd79 aurel32
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
637 0e62fd79 aurel32
    /* Check if given address fits target address space */ \
638 0e62fd79 aurel32
    assert(__ret == (abi_ulong)__ret); \
639 0e62fd79 aurel32
    (abi_ulong)__ret; \
640 0e62fd79 aurel32
})
641 14cc46b1 aurel32
#define h2g_valid(x) ({ \
642 14cc46b1 aurel32
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
643 14cc46b1 aurel32
    (__guest == (abi_ulong)__guest); \
644 14cc46b1 aurel32
})
645 53a5960a pbrook
646 53a5960a pbrook
#define saddr(x) g2h(x)
647 53a5960a pbrook
#define laddr(x) g2h(x)
648 53a5960a pbrook
649 53a5960a pbrook
#else /* !CONFIG_USER_ONLY */
650 c27004ec bellard
/* NOTE: we use double casts if pointers and target_ulong have
651 c27004ec bellard
   different sizes */
652 53a5960a pbrook
#define saddr(x) (uint8_t *)(long)(x)
653 53a5960a pbrook
#define laddr(x) (uint8_t *)(long)(x)
654 53a5960a pbrook
#endif
655 53a5960a pbrook
656 53a5960a pbrook
#define ldub_raw(p) ldub_p(laddr((p)))
657 53a5960a pbrook
#define ldsb_raw(p) ldsb_p(laddr((p)))
658 53a5960a pbrook
#define lduw_raw(p) lduw_p(laddr((p)))
659 53a5960a pbrook
#define ldsw_raw(p) ldsw_p(laddr((p)))
660 53a5960a pbrook
#define ldl_raw(p) ldl_p(laddr((p)))
661 53a5960a pbrook
#define ldq_raw(p) ldq_p(laddr((p)))
662 53a5960a pbrook
#define ldfl_raw(p) ldfl_p(laddr((p)))
663 53a5960a pbrook
#define ldfq_raw(p) ldfq_p(laddr((p)))
664 53a5960a pbrook
#define stb_raw(p, v) stb_p(saddr((p)), v)
665 53a5960a pbrook
#define stw_raw(p, v) stw_p(saddr((p)), v)
666 53a5960a pbrook
#define stl_raw(p, v) stl_p(saddr((p)), v)
667 53a5960a pbrook
#define stq_raw(p, v) stq_p(saddr((p)), v)
668 53a5960a pbrook
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
669 53a5960a pbrook
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
670 c27004ec bellard
671 c27004ec bellard
672 5fafdf24 ths
#if defined(CONFIG_USER_ONLY)
673 61382a50 bellard
674 61382a50 bellard
/* if user mode, no other memory access functions */
675 61382a50 bellard
#define ldub(p) ldub_raw(p)
676 61382a50 bellard
#define ldsb(p) ldsb_raw(p)
677 61382a50 bellard
#define lduw(p) lduw_raw(p)
678 61382a50 bellard
#define ldsw(p) ldsw_raw(p)
679 61382a50 bellard
#define ldl(p) ldl_raw(p)
680 61382a50 bellard
#define ldq(p) ldq_raw(p)
681 61382a50 bellard
#define ldfl(p) ldfl_raw(p)
682 61382a50 bellard
#define ldfq(p) ldfq_raw(p)
683 61382a50 bellard
#define stb(p, v) stb_raw(p, v)
684 61382a50 bellard
#define stw(p, v) stw_raw(p, v)
685 61382a50 bellard
#define stl(p, v) stl_raw(p, v)
686 61382a50 bellard
#define stq(p, v) stq_raw(p, v)
687 61382a50 bellard
#define stfl(p, v) stfl_raw(p, v)
688 61382a50 bellard
#define stfq(p, v) stfq_raw(p, v)
689 61382a50 bellard
690 61382a50 bellard
#define ldub_code(p) ldub_raw(p)
691 61382a50 bellard
#define ldsb_code(p) ldsb_raw(p)
692 61382a50 bellard
#define lduw_code(p) lduw_raw(p)
693 61382a50 bellard
#define ldsw_code(p) ldsw_raw(p)
694 61382a50 bellard
#define ldl_code(p) ldl_raw(p)
695 bc98a7ef j_mayer
#define ldq_code(p) ldq_raw(p)
696 61382a50 bellard
697 61382a50 bellard
#define ldub_kernel(p) ldub_raw(p)
698 61382a50 bellard
#define ldsb_kernel(p) ldsb_raw(p)
699 61382a50 bellard
#define lduw_kernel(p) lduw_raw(p)
700 61382a50 bellard
#define ldsw_kernel(p) ldsw_raw(p)
701 61382a50 bellard
#define ldl_kernel(p) ldl_raw(p)
702 bc98a7ef j_mayer
#define ldq_kernel(p) ldq_raw(p)
703 0ac4bd56 bellard
#define ldfl_kernel(p) ldfl_raw(p)
704 0ac4bd56 bellard
#define ldfq_kernel(p) ldfq_raw(p)
705 61382a50 bellard
#define stb_kernel(p, v) stb_raw(p, v)
706 61382a50 bellard
#define stw_kernel(p, v) stw_raw(p, v)
707 61382a50 bellard
#define stl_kernel(p, v) stl_raw(p, v)
708 61382a50 bellard
#define stq_kernel(p, v) stq_raw(p, v)
709 0ac4bd56 bellard
#define stfl_kernel(p, v) stfl_raw(p, v)
710 0ac4bd56 bellard
#define stfq_kernel(p, vt) stfq_raw(p, v)
711 61382a50 bellard
712 61382a50 bellard
#endif /* defined(CONFIG_USER_ONLY) */
713 61382a50 bellard
714 5a9fdfec bellard
/* page related stuff */
715 5a9fdfec bellard
716 03875444 aurel32
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
717 5a9fdfec bellard
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
718 5a9fdfec bellard
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
719 5a9fdfec bellard
720 53a5960a pbrook
/* ??? These should be the larger of unsigned long and target_ulong.  */
721 83fb7adf bellard
extern unsigned long qemu_real_host_page_size;
722 83fb7adf bellard
extern unsigned long qemu_host_page_bits;
723 83fb7adf bellard
extern unsigned long qemu_host_page_size;
724 83fb7adf bellard
extern unsigned long qemu_host_page_mask;
725 5a9fdfec bellard
726 83fb7adf bellard
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
727 5a9fdfec bellard
728 5a9fdfec bellard
/* same as PROT_xxx */
729 5a9fdfec bellard
#define PAGE_READ      0x0001
730 5a9fdfec bellard
#define PAGE_WRITE     0x0002
731 5a9fdfec bellard
#define PAGE_EXEC      0x0004
732 5a9fdfec bellard
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
733 5a9fdfec bellard
#define PAGE_VALID     0x0008
734 5a9fdfec bellard
/* original state of the write flag (used when tracking self-modifying
735 5a9fdfec bellard
   code */
736 5fafdf24 ths
#define PAGE_WRITE_ORG 0x0010
737 50a9569b balrog
#define PAGE_RESERVED  0x0020
738 5a9fdfec bellard
739 5a9fdfec bellard
void page_dump(FILE *f);
740 53a5960a pbrook
int page_get_flags(target_ulong address);
741 53a5960a pbrook
void page_set_flags(target_ulong start, target_ulong end, int flags);
742 3d97b40b ths
int page_check_range(target_ulong start, target_ulong len, int flags);
743 5a9fdfec bellard
744 26a5f13b bellard
void cpu_exec_init_all(unsigned long tb_size);
745 c5be9f08 ths
CPUState *cpu_copy(CPUState *env);
746 c5be9f08 ths
747 5fafdf24 ths
void cpu_dump_state(CPUState *env, FILE *f,
748 7fe48483 bellard
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
749 7fe48483 bellard
                    int flags);
750 76a66253 j_mayer
void cpu_dump_statistics (CPUState *env, FILE *f,
751 76a66253 j_mayer
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
752 76a66253 j_mayer
                          int flags);
753 7fe48483 bellard
754 a90b7318 balrog
void cpu_abort(CPUState *env, const char *fmt, ...)
755 c3d2689d balrog
    __attribute__ ((__format__ (__printf__, 2, 3)))
756 c3d2689d balrog
    __attribute__ ((__noreturn__));
757 f0aca822 bellard
extern CPUState *first_cpu;
758 e2f22898 bellard
extern CPUState *cpu_single_env;
759 2e70f6ef pbrook
extern int64_t qemu_icount;
760 2e70f6ef pbrook
extern int use_icount;
761 5a9fdfec bellard
762 9acbed06 bellard
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
763 9acbed06 bellard
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
764 9acbed06 bellard
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
765 ef792f9d bellard
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
766 98699967 bellard
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
767 ba3c64fb bellard
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
768 3b21e03e bellard
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
769 6658ffb8 pbrook
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
770 0573fbfc ths
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
771 474ea849 aurel32
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
772 98699967 bellard
773 4690764b bellard
void cpu_interrupt(CPUState *s, int mask);
774 b54ad049 bellard
void cpu_reset_interrupt(CPUState *env, int mask);
775 68a79315 bellard
776 a1d1bb31 aliguori
/* Breakpoint/watchpoint flags */
777 a1d1bb31 aliguori
#define BP_MEM_READ           0x01
778 a1d1bb31 aliguori
#define BP_MEM_WRITE          0x02
779 a1d1bb31 aliguori
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
780 06d55cc1 aliguori
#define BP_STOP_BEFORE_ACCESS 0x04
781 6e140f28 aliguori
#define BP_WATCHPOINT_HIT     0x08
782 a1d1bb31 aliguori
#define BP_GDB                0x10
783 2dc9f411 aliguori
#define BP_CPU                0x20
784 a1d1bb31 aliguori
785 a1d1bb31 aliguori
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
786 a1d1bb31 aliguori
                          CPUBreakpoint **breakpoint);
787 a1d1bb31 aliguori
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
788 a1d1bb31 aliguori
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
789 a1d1bb31 aliguori
void cpu_breakpoint_remove_all(CPUState *env, int mask);
790 a1d1bb31 aliguori
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
791 a1d1bb31 aliguori
                          int flags, CPUWatchpoint **watchpoint);
792 a1d1bb31 aliguori
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
793 a1d1bb31 aliguori
                          target_ulong len, int flags);
794 a1d1bb31 aliguori
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
795 a1d1bb31 aliguori
void cpu_watchpoint_remove_all(CPUState *env, int mask);
796 60897d36 edgar_igl
797 60897d36 edgar_igl
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
798 60897d36 edgar_igl
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
799 60897d36 edgar_igl
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
800 60897d36 edgar_igl
801 c33a346e bellard
void cpu_single_step(CPUState *env, int enabled);
802 d95dc32d bellard
void cpu_reset(CPUState *s);
803 4c3a88a2 bellard
804 13eb76e0 bellard
/* Return the physical page corresponding to a virtual one. Use it
805 13eb76e0 bellard
   only for debugging because no protection checks are done. Return -1
806 13eb76e0 bellard
   if no page found. */
807 9b3c35e0 j_mayer
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
808 13eb76e0 bellard
809 5fafdf24 ths
#define CPU_LOG_TB_OUT_ASM (1 << 0)
810 9fddaa0c bellard
#define CPU_LOG_TB_IN_ASM  (1 << 1)
811 f193c797 bellard
#define CPU_LOG_TB_OP      (1 << 2)
812 f193c797 bellard
#define CPU_LOG_TB_OP_OPT  (1 << 3)
813 f193c797 bellard
#define CPU_LOG_INT        (1 << 4)
814 f193c797 bellard
#define CPU_LOG_EXEC       (1 << 5)
815 f193c797 bellard
#define CPU_LOG_PCALL      (1 << 6)
816 fd872598 bellard
#define CPU_LOG_IOPORT     (1 << 7)
817 9fddaa0c bellard
#define CPU_LOG_TB_CPU     (1 << 8)
818 f193c797 bellard
819 f193c797 bellard
/* define log items */
820 f193c797 bellard
typedef struct CPULogItem {
821 f193c797 bellard
    int mask;
822 f193c797 bellard
    const char *name;
823 f193c797 bellard
    const char *help;
824 f193c797 bellard
} CPULogItem;
825 f193c797 bellard
826 c7cd6a37 blueswir1
extern const CPULogItem cpu_log_items[];
827 f193c797 bellard
828 34865134 bellard
void cpu_set_log(int log_flags);
829 34865134 bellard
void cpu_set_log_filename(const char *filename);
830 f193c797 bellard
int cpu_str_to_log_mask(const char *str);
831 34865134 bellard
832 09683d35 bellard
/* IO ports API */
833 09683d35 bellard
834 09683d35 bellard
/* NOTE: as these functions may be even used when there is an isa
835 09683d35 bellard
   brige on non x86 targets, we always defined them */
836 09683d35 bellard
#ifndef NO_CPU_IO_DEFS
837 09683d35 bellard
void cpu_outb(CPUState *env, int addr, int val);
838 09683d35 bellard
void cpu_outw(CPUState *env, int addr, int val);
839 09683d35 bellard
void cpu_outl(CPUState *env, int addr, int val);
840 09683d35 bellard
int cpu_inb(CPUState *env, int addr);
841 09683d35 bellard
int cpu_inw(CPUState *env, int addr);
842 09683d35 bellard
int cpu_inl(CPUState *env, int addr);
843 09683d35 bellard
#endif
844 09683d35 bellard
845 00f82b8a aurel32
/* address in the RAM (different from a physical address) */
846 00f82b8a aurel32
#ifdef USE_KQEMU
847 00f82b8a aurel32
typedef uint32_t ram_addr_t;
848 00f82b8a aurel32
#else
849 00f82b8a aurel32
typedef unsigned long ram_addr_t;
850 00f82b8a aurel32
#endif
851 00f82b8a aurel32
852 33417e70 bellard
/* memory API */
853 33417e70 bellard
854 00f82b8a aurel32
extern ram_addr_t phys_ram_size;
855 edf75d59 bellard
extern int phys_ram_fd;
856 edf75d59 bellard
extern uint8_t *phys_ram_base;
857 1ccde1cb bellard
extern uint8_t *phys_ram_dirty;
858 00f82b8a aurel32
extern ram_addr_t ram_size;
859 edf75d59 bellard
860 edf75d59 bellard
/* physical memory access */
861 0f459d16 pbrook
862 0f459d16 pbrook
/* MMIO pages are identified by a combination of an IO device index and
863 0f459d16 pbrook
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
864 0f459d16 pbrook
   so only a limited number of ids are avaiable.  */
865 0f459d16 pbrook
866 0f459d16 pbrook
#define IO_MEM_SHIFT       3
867 98699967 bellard
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
868 edf75d59 bellard
869 edf75d59 bellard
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
870 edf75d59 bellard
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
871 edf75d59 bellard
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
872 0f459d16 pbrook
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
873 0f459d16 pbrook
874 0f459d16 pbrook
/* Acts like a ROM when read and like a device when written.  */
875 2a4188a3 bellard
#define IO_MEM_ROMD        (1)
876 db7b5426 blueswir1
#define IO_MEM_SUBPAGE     (2)
877 4254fab8 blueswir1
#define IO_MEM_SUBWIDTH    (4)
878 edf75d59 bellard
879 0f459d16 pbrook
/* Flags stored in the low bits of the TLB virtual address.  These are
880 0f459d16 pbrook
   defined so that fast path ram access is all zeros.  */
881 0f459d16 pbrook
/* Zero if TLB entry is valid.  */
882 0f459d16 pbrook
#define TLB_INVALID_MASK   (1 << 3)
883 0f459d16 pbrook
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
884 0f459d16 pbrook
   contain the page physical address.  */
885 0f459d16 pbrook
#define TLB_NOTDIRTY    (1 << 4)
886 0f459d16 pbrook
/* Set if TLB entry is an IO callback.  */
887 0f459d16 pbrook
#define TLB_MMIO        (1 << 5)
888 0f459d16 pbrook
889 7727994d bellard
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
890 7727994d bellard
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
891 33417e70 bellard
892 8da3ff18 pbrook
void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
893 8da3ff18 pbrook
                                         ram_addr_t size,
894 8da3ff18 pbrook
                                         ram_addr_t phys_offset,
895 8da3ff18 pbrook
                                         ram_addr_t region_offset);
896 8da3ff18 pbrook
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
897 8da3ff18 pbrook
                                                ram_addr_t size,
898 8da3ff18 pbrook
                                                ram_addr_t phys_offset)
899 8da3ff18 pbrook
{
900 8da3ff18 pbrook
    cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
901 8da3ff18 pbrook
}
902 8da3ff18 pbrook
903 00f82b8a aurel32
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
904 00f82b8a aurel32
ram_addr_t qemu_ram_alloc(ram_addr_t);
905 e9a1ab19 bellard
void qemu_ram_free(ram_addr_t addr);
906 33417e70 bellard
int cpu_register_io_memory(int io_index,
907 33417e70 bellard
                           CPUReadMemoryFunc **mem_read,
908 7727994d bellard
                           CPUWriteMemoryFunc **mem_write,
909 7727994d bellard
                           void *opaque);
910 8926b517 bellard
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
911 8926b517 bellard
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
912 33417e70 bellard
913 2e12669a bellard
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
914 13eb76e0 bellard
                            int len, int is_write);
915 5fafdf24 ths
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
916 2e12669a bellard
                                            uint8_t *buf, int len)
917 8b1f24b0 bellard
{
918 8b1f24b0 bellard
    cpu_physical_memory_rw(addr, buf, len, 0);
919 8b1f24b0 bellard
}
920 5fafdf24 ths
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
921 2e12669a bellard
                                             const uint8_t *buf, int len)
922 8b1f24b0 bellard
{
923 8b1f24b0 bellard
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
924 8b1f24b0 bellard
}
925 aab33094 bellard
uint32_t ldub_phys(target_phys_addr_t addr);
926 aab33094 bellard
uint32_t lduw_phys(target_phys_addr_t addr);
927 8df1cd07 bellard
uint32_t ldl_phys(target_phys_addr_t addr);
928 aab33094 bellard
uint64_t ldq_phys(target_phys_addr_t addr);
929 8df1cd07 bellard
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
930 bc98a7ef j_mayer
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
931 aab33094 bellard
void stb_phys(target_phys_addr_t addr, uint32_t val);
932 aab33094 bellard
void stw_phys(target_phys_addr_t addr, uint32_t val);
933 8df1cd07 bellard
void stl_phys(target_phys_addr_t addr, uint32_t val);
934 aab33094 bellard
void stq_phys(target_phys_addr_t addr, uint64_t val);
935 8b1f24b0 bellard
936 5fafdf24 ths
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
937 d0ecd2aa bellard
                                   const uint8_t *buf, int len);
938 5fafdf24 ths
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
939 8b1f24b0 bellard
                        uint8_t *buf, int len, int is_write);
940 13eb76e0 bellard
941 74576198 aliguori
#define VGA_DIRTY_FLAG       0x01
942 74576198 aliguori
#define CODE_DIRTY_FLAG      0x02
943 74576198 aliguori
#define KQEMU_DIRTY_FLAG     0x04
944 74576198 aliguori
#define MIGRATION_DIRTY_FLAG 0x08
945 0a962c02 bellard
946 1ccde1cb bellard
/* read dirty bit (return 0 or 1) */
947 04c504cc bellard
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
948 1ccde1cb bellard
{
949 0a962c02 bellard
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
950 0a962c02 bellard
}
951 0a962c02 bellard
952 5fafdf24 ths
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
953 0a962c02 bellard
                                                int dirty_flags)
954 0a962c02 bellard
{
955 0a962c02 bellard
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
956 1ccde1cb bellard
}
957 1ccde1cb bellard
958 04c504cc bellard
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
959 1ccde1cb bellard
{
960 0a962c02 bellard
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
961 1ccde1cb bellard
}
962 1ccde1cb bellard
963 04c504cc bellard
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
964 0a962c02 bellard
                                     int dirty_flags);
965 04c504cc bellard
void cpu_tlb_update_dirty(CPUState *env);
966 1ccde1cb bellard
967 74576198 aliguori
int cpu_physical_memory_set_dirty_tracking(int enable);
968 74576198 aliguori
969 74576198 aliguori
int cpu_physical_memory_get_dirty_tracking(void);
970 74576198 aliguori
971 2bec46dc aliguori
void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
972 2bec46dc aliguori
973 e3db7226 bellard
void dump_exec_info(FILE *f,
974 e3db7226 bellard
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
975 e3db7226 bellard
976 f65ed4c1 aliguori
/* Coalesced MMIO regions are areas where write operations can be reordered.
977 f65ed4c1 aliguori
 * This usually implies that write operations are side-effect free.  This allows
978 f65ed4c1 aliguori
 * batching which can make a major impact on performance when using
979 f65ed4c1 aliguori
 * virtualization.
980 f65ed4c1 aliguori
 */
981 f65ed4c1 aliguori
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
982 f65ed4c1 aliguori
983 f65ed4c1 aliguori
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
984 f65ed4c1 aliguori
985 effedbc9 bellard
/*******************************************/
986 effedbc9 bellard
/* host CPU ticks (if available) */
987 effedbc9 bellard
988 effedbc9 bellard
#if defined(__powerpc__)
989 effedbc9 bellard
990 5fafdf24 ths
static inline uint32_t get_tbl(void)
991 effedbc9 bellard
{
992 effedbc9 bellard
    uint32_t tbl;
993 effedbc9 bellard
    asm volatile("mftb %0" : "=r" (tbl));
994 effedbc9 bellard
    return tbl;
995 effedbc9 bellard
}
996 effedbc9 bellard
997 5fafdf24 ths
static inline uint32_t get_tbu(void)
998 effedbc9 bellard
{
999 effedbc9 bellard
        uint32_t tbl;
1000 effedbc9 bellard
        asm volatile("mftbu %0" : "=r" (tbl));
1001 effedbc9 bellard
        return tbl;
1002 effedbc9 bellard
}
1003 effedbc9 bellard
1004 effedbc9 bellard
static inline int64_t cpu_get_real_ticks(void)
1005 effedbc9 bellard
{
1006 effedbc9 bellard
    uint32_t l, h, h1;
1007 effedbc9 bellard
    /* NOTE: we test if wrapping has occurred */
1008 effedbc9 bellard
    do {
1009 effedbc9 bellard
        h = get_tbu();
1010 effedbc9 bellard
        l = get_tbl();
1011 effedbc9 bellard
        h1 = get_tbu();
1012 effedbc9 bellard
    } while (h != h1);
1013 effedbc9 bellard
    return ((int64_t)h << 32) | l;
1014 effedbc9 bellard
}
1015 effedbc9 bellard
1016 effedbc9 bellard
#elif defined(__i386__)
1017 effedbc9 bellard
1018 effedbc9 bellard
static inline int64_t cpu_get_real_ticks(void)
1019 5f1ce948 bellard
{
1020 5f1ce948 bellard
    int64_t val;
1021 5f1ce948 bellard
    asm volatile ("rdtsc" : "=A" (val));
1022 5f1ce948 bellard
    return val;
1023 5f1ce948 bellard
}
1024 5f1ce948 bellard
1025 effedbc9 bellard
#elif defined(__x86_64__)
1026 effedbc9 bellard
1027 effedbc9 bellard
static inline int64_t cpu_get_real_ticks(void)
1028 effedbc9 bellard
{
1029 effedbc9 bellard
    uint32_t low,high;
1030 effedbc9 bellard
    int64_t val;
1031 effedbc9 bellard
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
1032 effedbc9 bellard
    val = high;
1033 effedbc9 bellard
    val <<= 32;
1034 effedbc9 bellard
    val |= low;
1035 effedbc9 bellard
    return val;
1036 effedbc9 bellard
}
1037 effedbc9 bellard
1038 f54b3f92 aurel32
#elif defined(__hppa__)
1039 f54b3f92 aurel32
1040 f54b3f92 aurel32
static inline int64_t cpu_get_real_ticks(void)
1041 f54b3f92 aurel32
{
1042 f54b3f92 aurel32
    int val;
1043 f54b3f92 aurel32
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1044 f54b3f92 aurel32
    return val;
1045 f54b3f92 aurel32
}
1046 f54b3f92 aurel32
1047 effedbc9 bellard
#elif defined(__ia64)
1048 effedbc9 bellard
1049 effedbc9 bellard
static inline int64_t cpu_get_real_ticks(void)
1050 effedbc9 bellard
{
1051 effedbc9 bellard
        int64_t val;
1052 effedbc9 bellard
        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1053 effedbc9 bellard
        return val;
1054 effedbc9 bellard
}
1055 effedbc9 bellard
1056 effedbc9 bellard
#elif defined(__s390__)
1057 effedbc9 bellard
1058 effedbc9 bellard
static inline int64_t cpu_get_real_ticks(void)
1059 effedbc9 bellard
{
1060 effedbc9 bellard
    int64_t val;
1061 effedbc9 bellard
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1062 effedbc9 bellard
    return val;
1063 effedbc9 bellard
}
1064 effedbc9 bellard
1065 3142255c blueswir1
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1066 effedbc9 bellard
1067 effedbc9 bellard
static inline int64_t cpu_get_real_ticks (void)
1068 effedbc9 bellard
{
1069 effedbc9 bellard
#if     defined(_LP64)
1070 effedbc9 bellard
        uint64_t        rval;
1071 effedbc9 bellard
        asm volatile("rd %%tick,%0" : "=r"(rval));
1072 effedbc9 bellard
        return rval;
1073 effedbc9 bellard
#else
1074 effedbc9 bellard
        union {
1075 effedbc9 bellard
                uint64_t i64;
1076 effedbc9 bellard
                struct {
1077 effedbc9 bellard
                        uint32_t high;
1078 effedbc9 bellard
                        uint32_t low;
1079 effedbc9 bellard
                }       i32;
1080 effedbc9 bellard
        } rval;
1081 effedbc9 bellard
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
1082 effedbc9 bellard
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1083 effedbc9 bellard
        return rval.i64;
1084 effedbc9 bellard
#endif
1085 effedbc9 bellard
}
1086 c4b89d18 ths
1087 c4b89d18 ths
#elif defined(__mips__)
1088 c4b89d18 ths
1089 c4b89d18 ths
static inline int64_t cpu_get_real_ticks(void)
1090 c4b89d18 ths
{
1091 c4b89d18 ths
#if __mips_isa_rev >= 2
1092 c4b89d18 ths
    uint32_t count;
1093 c4b89d18 ths
    static uint32_t cyc_per_count = 0;
1094 c4b89d18 ths
1095 c4b89d18 ths
    if (!cyc_per_count)
1096 c4b89d18 ths
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1097 c4b89d18 ths
1098 c4b89d18 ths
    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1099 c4b89d18 ths
    return (int64_t)(count * cyc_per_count);
1100 c4b89d18 ths
#else
1101 c4b89d18 ths
    /* FIXME */
1102 c4b89d18 ths
    static int64_t ticks = 0;
1103 c4b89d18 ths
    return ticks++;
1104 c4b89d18 ths
#endif
1105 c4b89d18 ths
}
1106 c4b89d18 ths
1107 46152182 pbrook
#else
1108 46152182 pbrook
/* The host CPU doesn't have an easily accessible cycle counter.
1109 85028e4d ths
   Just return a monotonically increasing value.  This will be
1110 85028e4d ths
   totally wrong, but hopefully better than nothing.  */
1111 46152182 pbrook
static inline int64_t cpu_get_real_ticks (void)
1112 46152182 pbrook
{
1113 46152182 pbrook
    static int64_t ticks = 0;
1114 46152182 pbrook
    return ticks++;
1115 46152182 pbrook
}
1116 effedbc9 bellard
#endif
1117 effedbc9 bellard
1118 effedbc9 bellard
/* profiling */
1119 effedbc9 bellard
#ifdef CONFIG_PROFILER
1120 effedbc9 bellard
static inline int64_t profile_getclock(void)
1121 effedbc9 bellard
{
1122 effedbc9 bellard
    return cpu_get_real_ticks();
1123 effedbc9 bellard
}
1124 effedbc9 bellard
1125 5f1ce948 bellard
extern int64_t kqemu_time, kqemu_time_start;
1126 5f1ce948 bellard
extern int64_t qemu_time, qemu_time_start;
1127 5f1ce948 bellard
extern int64_t tlb_flush_time;
1128 5f1ce948 bellard
extern int64_t kqemu_exec_count;
1129 5f1ce948 bellard
extern int64_t dev_time;
1130 5f1ce948 bellard
extern int64_t kqemu_ret_int_count;
1131 5f1ce948 bellard
extern int64_t kqemu_ret_excp_count;
1132 5f1ce948 bellard
extern int64_t kqemu_ret_intr_count;
1133 5f1ce948 bellard
#endif
1134 5f1ce948 bellard
1135 5a9fdfec bellard
#endif /* CPU_ALL_H */