Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ 1de7afc9

History | View | Annotate | Download (24.2 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config-host.h"
47
#include "qemu/osdep.h"
48

    
49
/*----------------------------------------------------------------------------
50
| Each of the following `typedef's defines the most convenient type that holds
51
| integers of at least as many bits as specified.  For example, `uint8' should
52
| be the most convenient type that can hold unsigned integers of as many as
53
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
54
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55
| to the same as `int'.
56
*----------------------------------------------------------------------------*/
57
typedef uint8_t flag;
58
typedef uint8_t uint8;
59
typedef int8_t int8;
60
typedef unsigned int uint32;
61
typedef signed int int32;
62
typedef uint64_t uint64;
63
typedef int64_t int64;
64

    
65
#define LIT64( a ) a##LL
66
#define INLINE static inline
67

    
68
#define STATUS_PARAM , float_status *status
69
#define STATUS(field) status->field
70
#define STATUS_VAR , status
71

    
72
/*----------------------------------------------------------------------------
73
| Software IEC/IEEE floating-point ordering relations
74
*----------------------------------------------------------------------------*/
75
enum {
76
    float_relation_less      = -1,
77
    float_relation_equal     =  0,
78
    float_relation_greater   =  1,
79
    float_relation_unordered =  2
80
};
81

    
82
/*----------------------------------------------------------------------------
83
| Software IEC/IEEE floating-point types.
84
*----------------------------------------------------------------------------*/
85
/* Use structures for soft-float types.  This prevents accidentally mixing
86
   them with native int/float types.  A sufficiently clever compiler and
87
   sane ABI should be able to see though these structs.  However
88
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
89
//#define USE_SOFTFLOAT_STRUCT_TYPES
90
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
91
typedef struct {
92
    uint16_t v;
93
} float16;
94
#define float16_val(x) (((float16)(x)).v)
95
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
96
#define const_float16(x) { x }
97
typedef struct {
98
    uint32_t v;
99
} float32;
100
/* The cast ensures an error if the wrong type is passed.  */
101
#define float32_val(x) (((float32)(x)).v)
102
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
103
#define const_float32(x) { x }
104
typedef struct {
105
    uint64_t v;
106
} float64;
107
#define float64_val(x) (((float64)(x)).v)
108
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
109
#define const_float64(x) { x }
110
#else
111
typedef uint16_t float16;
112
typedef uint32_t float32;
113
typedef uint64_t float64;
114
#define float16_val(x) (x)
115
#define float32_val(x) (x)
116
#define float64_val(x) (x)
117
#define make_float16(x) (x)
118
#define make_float32(x) (x)
119
#define make_float64(x) (x)
120
#define const_float16(x) (x)
121
#define const_float32(x) (x)
122
#define const_float64(x) (x)
123
#endif
124
typedef struct {
125
    uint64_t low;
126
    uint16_t high;
127
} floatx80;
128
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
129
#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
130
typedef struct {
131
#ifdef HOST_WORDS_BIGENDIAN
132
    uint64_t high, low;
133
#else
134
    uint64_t low, high;
135
#endif
136
} float128;
137
#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
138
#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
139

    
140
/*----------------------------------------------------------------------------
141
| Software IEC/IEEE floating-point underflow tininess-detection mode.
142
*----------------------------------------------------------------------------*/
143
enum {
144
    float_tininess_after_rounding  = 0,
145
    float_tininess_before_rounding = 1
146
};
147

    
148
/*----------------------------------------------------------------------------
149
| Software IEC/IEEE floating-point rounding mode.
150
*----------------------------------------------------------------------------*/
151
enum {
152
    float_round_nearest_even = 0,
153
    float_round_down         = 1,
154
    float_round_up           = 2,
155
    float_round_to_zero      = 3
156
};
157

    
158
/*----------------------------------------------------------------------------
159
| Software IEC/IEEE floating-point exception flags.
160
*----------------------------------------------------------------------------*/
161
enum {
162
    float_flag_invalid   =  1,
163
    float_flag_divbyzero =  4,
164
    float_flag_overflow  =  8,
165
    float_flag_underflow = 16,
166
    float_flag_inexact   = 32,
167
    float_flag_input_denormal = 64,
168
    float_flag_output_denormal = 128
169
};
170

    
171
typedef struct float_status {
172
    signed char float_detect_tininess;
173
    signed char float_rounding_mode;
174
    signed char float_exception_flags;
175
    signed char floatx80_rounding_precision;
176
    /* should denormalised results go to zero and set the inexact flag? */
177
    flag flush_to_zero;
178
    /* should denormalised inputs go to zero and set the input_denormal flag? */
179
    flag flush_inputs_to_zero;
180
    flag default_nan_mode;
181
} float_status;
182

    
183
void set_float_rounding_mode(int val STATUS_PARAM);
184
void set_float_exception_flags(int val STATUS_PARAM);
185
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
186
{
187
    STATUS(float_detect_tininess) = val;
188
}
189
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
190
{
191
    STATUS(flush_to_zero) = val;
192
}
193
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
194
{
195
    STATUS(flush_inputs_to_zero) = val;
196
}
197
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
198
{
199
    STATUS(default_nan_mode) = val;
200
}
201
INLINE int get_float_exception_flags(float_status *status)
202
{
203
    return STATUS(float_exception_flags);
204
}
205
void set_floatx80_rounding_precision(int val STATUS_PARAM);
206

    
207
/*----------------------------------------------------------------------------
208
| Routine to raise any or all of the software IEC/IEEE floating-point
209
| exception flags.
210
*----------------------------------------------------------------------------*/
211
void float_raise( int8 flags STATUS_PARAM);
212

    
213
/*----------------------------------------------------------------------------
214
| Options to indicate which negations to perform in float*_muladd()
215
| Using these differs from negating an input or output before calling
216
| the muladd function in that this means that a NaN doesn't have its
217
| sign bit inverted before it is propagated.
218
*----------------------------------------------------------------------------*/
219
enum {
220
    float_muladd_negate_c = 1,
221
    float_muladd_negate_product = 2,
222
    float_muladd_negate_result = 4,
223
};
224

    
225
/*----------------------------------------------------------------------------
226
| Software IEC/IEEE integer-to-floating-point conversion routines.
227
*----------------------------------------------------------------------------*/
228
float32 int32_to_float32( int32 STATUS_PARAM );
229
float64 int32_to_float64( int32 STATUS_PARAM );
230
float32 uint32_to_float32( uint32 STATUS_PARAM );
231
float64 uint32_to_float64( uint32 STATUS_PARAM );
232
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
233
float128 int32_to_float128( int32 STATUS_PARAM );
234
float32 int64_to_float32( int64 STATUS_PARAM );
235
float32 uint64_to_float32( uint64 STATUS_PARAM );
236
float64 int64_to_float64( int64 STATUS_PARAM );
237
float64 uint64_to_float64( uint64 STATUS_PARAM );
238
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
239
float128 int64_to_float128( int64 STATUS_PARAM );
240

    
241
/*----------------------------------------------------------------------------
242
| Software half-precision conversion routines.
243
*----------------------------------------------------------------------------*/
244
float16 float32_to_float16( float32, flag STATUS_PARAM );
245
float32 float16_to_float32( float16, flag STATUS_PARAM );
246

    
247
/*----------------------------------------------------------------------------
248
| Software half-precision operations.
249
*----------------------------------------------------------------------------*/
250
int float16_is_quiet_nan( float16 );
251
int float16_is_signaling_nan( float16 );
252
float16 float16_maybe_silence_nan( float16 );
253

    
254
INLINE int float16_is_any_nan(float16 a)
255
{
256
    return ((float16_val(a) & ~0x8000) > 0x7c00);
257
}
258

    
259
/*----------------------------------------------------------------------------
260
| The pattern for a default generated half-precision NaN.
261
*----------------------------------------------------------------------------*/
262
extern const float16 float16_default_nan;
263

    
264
/*----------------------------------------------------------------------------
265
| Software IEC/IEEE single-precision conversion routines.
266
*----------------------------------------------------------------------------*/
267
int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
268
uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
269
int32 float32_to_int32( float32 STATUS_PARAM );
270
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
271
uint32 float32_to_uint32( float32 STATUS_PARAM );
272
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
273
int64 float32_to_int64( float32 STATUS_PARAM );
274
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
275
float64 float32_to_float64( float32 STATUS_PARAM );
276
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
277
float128 float32_to_float128( float32 STATUS_PARAM );
278

    
279
/*----------------------------------------------------------------------------
280
| Software IEC/IEEE single-precision operations.
281
*----------------------------------------------------------------------------*/
282
float32 float32_round_to_int( float32 STATUS_PARAM );
283
float32 float32_add( float32, float32 STATUS_PARAM );
284
float32 float32_sub( float32, float32 STATUS_PARAM );
285
float32 float32_mul( float32, float32 STATUS_PARAM );
286
float32 float32_div( float32, float32 STATUS_PARAM );
287
float32 float32_rem( float32, float32 STATUS_PARAM );
288
float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
289
float32 float32_sqrt( float32 STATUS_PARAM );
290
float32 float32_exp2( float32 STATUS_PARAM );
291
float32 float32_log2( float32 STATUS_PARAM );
292
int float32_eq( float32, float32 STATUS_PARAM );
293
int float32_le( float32, float32 STATUS_PARAM );
294
int float32_lt( float32, float32 STATUS_PARAM );
295
int float32_unordered( float32, float32 STATUS_PARAM );
296
int float32_eq_quiet( float32, float32 STATUS_PARAM );
297
int float32_le_quiet( float32, float32 STATUS_PARAM );
298
int float32_lt_quiet( float32, float32 STATUS_PARAM );
299
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
300
int float32_compare( float32, float32 STATUS_PARAM );
301
int float32_compare_quiet( float32, float32 STATUS_PARAM );
302
float32 float32_min(float32, float32 STATUS_PARAM);
303
float32 float32_max(float32, float32 STATUS_PARAM);
304
int float32_is_quiet_nan( float32 );
305
int float32_is_signaling_nan( float32 );
306
float32 float32_maybe_silence_nan( float32 );
307
float32 float32_scalbn( float32, int STATUS_PARAM );
308

    
309
INLINE float32 float32_abs(float32 a)
310
{
311
    /* Note that abs does *not* handle NaN specially, nor does
312
     * it flush denormal inputs to zero.
313
     */
314
    return make_float32(float32_val(a) & 0x7fffffff);
315
}
316

    
317
INLINE float32 float32_chs(float32 a)
318
{
319
    /* Note that chs does *not* handle NaN specially, nor does
320
     * it flush denormal inputs to zero.
321
     */
322
    return make_float32(float32_val(a) ^ 0x80000000);
323
}
324

    
325
INLINE int float32_is_infinity(float32 a)
326
{
327
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
328
}
329

    
330
INLINE int float32_is_neg(float32 a)
331
{
332
    return float32_val(a) >> 31;
333
}
334

    
335
INLINE int float32_is_zero(float32 a)
336
{
337
    return (float32_val(a) & 0x7fffffff) == 0;
338
}
339

    
340
INLINE int float32_is_any_nan(float32 a)
341
{
342
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
343
}
344

    
345
INLINE int float32_is_zero_or_denormal(float32 a)
346
{
347
    return (float32_val(a) & 0x7f800000) == 0;
348
}
349

    
350
INLINE float32 float32_set_sign(float32 a, int sign)
351
{
352
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
353
}
354

    
355
#define float32_zero make_float32(0)
356
#define float32_one make_float32(0x3f800000)
357
#define float32_ln2 make_float32(0x3f317218)
358
#define float32_pi make_float32(0x40490fdb)
359
#define float32_half make_float32(0x3f000000)
360
#define float32_infinity make_float32(0x7f800000)
361

    
362

    
363
/*----------------------------------------------------------------------------
364
| The pattern for a default generated single-precision NaN.
365
*----------------------------------------------------------------------------*/
366
extern const float32 float32_default_nan;
367

    
368
/*----------------------------------------------------------------------------
369
| Software IEC/IEEE double-precision conversion routines.
370
*----------------------------------------------------------------------------*/
371
int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
372
uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
373
int32 float64_to_int32( float64 STATUS_PARAM );
374
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
375
uint32 float64_to_uint32( float64 STATUS_PARAM );
376
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
377
int64 float64_to_int64( float64 STATUS_PARAM );
378
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
379
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
380
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
381
float32 float64_to_float32( float64 STATUS_PARAM );
382
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
383
float128 float64_to_float128( float64 STATUS_PARAM );
384

    
385
/*----------------------------------------------------------------------------
386
| Software IEC/IEEE double-precision operations.
387
*----------------------------------------------------------------------------*/
388
float64 float64_round_to_int( float64 STATUS_PARAM );
389
float64 float64_trunc_to_int( float64 STATUS_PARAM );
390
float64 float64_add( float64, float64 STATUS_PARAM );
391
float64 float64_sub( float64, float64 STATUS_PARAM );
392
float64 float64_mul( float64, float64 STATUS_PARAM );
393
float64 float64_div( float64, float64 STATUS_PARAM );
394
float64 float64_rem( float64, float64 STATUS_PARAM );
395
float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
396
float64 float64_sqrt( float64 STATUS_PARAM );
397
float64 float64_log2( float64 STATUS_PARAM );
398
int float64_eq( float64, float64 STATUS_PARAM );
399
int float64_le( float64, float64 STATUS_PARAM );
400
int float64_lt( float64, float64 STATUS_PARAM );
401
int float64_unordered( float64, float64 STATUS_PARAM );
402
int float64_eq_quiet( float64, float64 STATUS_PARAM );
403
int float64_le_quiet( float64, float64 STATUS_PARAM );
404
int float64_lt_quiet( float64, float64 STATUS_PARAM );
405
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
406
int float64_compare( float64, float64 STATUS_PARAM );
407
int float64_compare_quiet( float64, float64 STATUS_PARAM );
408
float64 float64_min(float64, float64 STATUS_PARAM);
409
float64 float64_max(float64, float64 STATUS_PARAM);
410
int float64_is_quiet_nan( float64 a );
411
int float64_is_signaling_nan( float64 );
412
float64 float64_maybe_silence_nan( float64 );
413
float64 float64_scalbn( float64, int STATUS_PARAM );
414

    
415
INLINE float64 float64_abs(float64 a)
416
{
417
    /* Note that abs does *not* handle NaN specially, nor does
418
     * it flush denormal inputs to zero.
419
     */
420
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
421
}
422

    
423
INLINE float64 float64_chs(float64 a)
424
{
425
    /* Note that chs does *not* handle NaN specially, nor does
426
     * it flush denormal inputs to zero.
427
     */
428
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
429
}
430

    
431
INLINE int float64_is_infinity(float64 a)
432
{
433
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
434
}
435

    
436
INLINE int float64_is_neg(float64 a)
437
{
438
    return float64_val(a) >> 63;
439
}
440

    
441
INLINE int float64_is_zero(float64 a)
442
{
443
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
444
}
445

    
446
INLINE int float64_is_any_nan(float64 a)
447
{
448
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
449
}
450

    
451
INLINE int float64_is_zero_or_denormal(float64 a)
452
{
453
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
454
}
455

    
456
INLINE float64 float64_set_sign(float64 a, int sign)
457
{
458
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
459
                        | ((int64_t)sign << 63));
460
}
461

    
462
#define float64_zero make_float64(0)
463
#define float64_one make_float64(0x3ff0000000000000LL)
464
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
465
#define float64_pi make_float64(0x400921fb54442d18LL)
466
#define float64_half make_float64(0x3fe0000000000000LL)
467
#define float64_infinity make_float64(0x7ff0000000000000LL)
468

    
469
/*----------------------------------------------------------------------------
470
| The pattern for a default generated double-precision NaN.
471
*----------------------------------------------------------------------------*/
472
extern const float64 float64_default_nan;
473

    
474
/*----------------------------------------------------------------------------
475
| Software IEC/IEEE extended double-precision conversion routines.
476
*----------------------------------------------------------------------------*/
477
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
478
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
479
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
480
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
481
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
482
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
483
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
484

    
485
/*----------------------------------------------------------------------------
486
| Software IEC/IEEE extended double-precision operations.
487
*----------------------------------------------------------------------------*/
488
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
489
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
490
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
491
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
492
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
493
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
494
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
495
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
496
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
497
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
498
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
499
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
500
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
501
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
502
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
503
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
504
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
505
int floatx80_is_quiet_nan( floatx80 );
506
int floatx80_is_signaling_nan( floatx80 );
507
floatx80 floatx80_maybe_silence_nan( floatx80 );
508
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
509

    
510
INLINE floatx80 floatx80_abs(floatx80 a)
511
{
512
    a.high &= 0x7fff;
513
    return a;
514
}
515

    
516
INLINE floatx80 floatx80_chs(floatx80 a)
517
{
518
    a.high ^= 0x8000;
519
    return a;
520
}
521

    
522
INLINE int floatx80_is_infinity(floatx80 a)
523
{
524
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
525
}
526

    
527
INLINE int floatx80_is_neg(floatx80 a)
528
{
529
    return a.high >> 15;
530
}
531

    
532
INLINE int floatx80_is_zero(floatx80 a)
533
{
534
    return (a.high & 0x7fff) == 0 && a.low == 0;
535
}
536

    
537
INLINE int floatx80_is_zero_or_denormal(floatx80 a)
538
{
539
    return (a.high & 0x7fff) == 0;
540
}
541

    
542
INLINE int floatx80_is_any_nan(floatx80 a)
543
{
544
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
545
}
546

    
547
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
548
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
549
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
550
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
551
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
552
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
553

    
554
/*----------------------------------------------------------------------------
555
| The pattern for a default generated extended double-precision NaN.
556
*----------------------------------------------------------------------------*/
557
extern const floatx80 floatx80_default_nan;
558

    
559
/*----------------------------------------------------------------------------
560
| Software IEC/IEEE quadruple-precision conversion routines.
561
*----------------------------------------------------------------------------*/
562
int32 float128_to_int32( float128 STATUS_PARAM );
563
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
564
int64 float128_to_int64( float128 STATUS_PARAM );
565
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
566
float32 float128_to_float32( float128 STATUS_PARAM );
567
float64 float128_to_float64( float128 STATUS_PARAM );
568
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
569

    
570
/*----------------------------------------------------------------------------
571
| Software IEC/IEEE quadruple-precision operations.
572
*----------------------------------------------------------------------------*/
573
float128 float128_round_to_int( float128 STATUS_PARAM );
574
float128 float128_add( float128, float128 STATUS_PARAM );
575
float128 float128_sub( float128, float128 STATUS_PARAM );
576
float128 float128_mul( float128, float128 STATUS_PARAM );
577
float128 float128_div( float128, float128 STATUS_PARAM );
578
float128 float128_rem( float128, float128 STATUS_PARAM );
579
float128 float128_sqrt( float128 STATUS_PARAM );
580
int float128_eq( float128, float128 STATUS_PARAM );
581
int float128_le( float128, float128 STATUS_PARAM );
582
int float128_lt( float128, float128 STATUS_PARAM );
583
int float128_unordered( float128, float128 STATUS_PARAM );
584
int float128_eq_quiet( float128, float128 STATUS_PARAM );
585
int float128_le_quiet( float128, float128 STATUS_PARAM );
586
int float128_lt_quiet( float128, float128 STATUS_PARAM );
587
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
588
int float128_compare( float128, float128 STATUS_PARAM );
589
int float128_compare_quiet( float128, float128 STATUS_PARAM );
590
int float128_is_quiet_nan( float128 );
591
int float128_is_signaling_nan( float128 );
592
float128 float128_maybe_silence_nan( float128 );
593
float128 float128_scalbn( float128, int STATUS_PARAM );
594

    
595
INLINE float128 float128_abs(float128 a)
596
{
597
    a.high &= 0x7fffffffffffffffLL;
598
    return a;
599
}
600

    
601
INLINE float128 float128_chs(float128 a)
602
{
603
    a.high ^= 0x8000000000000000LL;
604
    return a;
605
}
606

    
607
INLINE int float128_is_infinity(float128 a)
608
{
609
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
610
}
611

    
612
INLINE int float128_is_neg(float128 a)
613
{
614
    return a.high >> 63;
615
}
616

    
617
INLINE int float128_is_zero(float128 a)
618
{
619
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
620
}
621

    
622
INLINE int float128_is_zero_or_denormal(float128 a)
623
{
624
    return (a.high & 0x7fff000000000000LL) == 0;
625
}
626

    
627
INLINE int float128_is_any_nan(float128 a)
628
{
629
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
630
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
631
}
632

    
633
/*----------------------------------------------------------------------------
634
| The pattern for a default generated quadruple-precision NaN.
635
*----------------------------------------------------------------------------*/
636
extern const float128 float128_default_nan;
637

    
638
#endif /* !SOFTFLOAT_H */