Statistics
| Branch: | Revision:

root / hw / ptimer.c @ 1de7afc9

History | View | Annotate | Download (6 kB)

1
/*
2
 * General purpose implementation of a simple periodic countdown timer.
3
 *
4
 * Copyright (c) 2007 CodeSourcery.
5
 *
6
 * This code is licensed under the GNU LGPL.
7
 */
8
#include "hw.h"
9
#include "qemu/timer.h"
10
#include "ptimer.h"
11
#include "qemu/host-utils.h"
12

    
13
struct ptimer_state
14
{
15
    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
16
    uint64_t limit;
17
    uint64_t delta;
18
    uint32_t period_frac;
19
    int64_t period;
20
    int64_t last_event;
21
    int64_t next_event;
22
    QEMUBH *bh;
23
    QEMUTimer *timer;
24
};
25

    
26
/* Use a bottom-half routine to avoid reentrancy issues.  */
27
static void ptimer_trigger(ptimer_state *s)
28
{
29
    if (s->bh) {
30
        qemu_bh_schedule(s->bh);
31
    }
32
}
33

    
34
static void ptimer_reload(ptimer_state *s)
35
{
36
    if (s->delta == 0) {
37
        ptimer_trigger(s);
38
        s->delta = s->limit;
39
    }
40
    if (s->delta == 0 || s->period == 0) {
41
        fprintf(stderr, "Timer with period zero, disabling\n");
42
        s->enabled = 0;
43
        return;
44
    }
45

    
46
    s->last_event = s->next_event;
47
    s->next_event = s->last_event + s->delta * s->period;
48
    if (s->period_frac) {
49
        s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
50
    }
51
    qemu_mod_timer(s->timer, s->next_event);
52
}
53

    
54
static void ptimer_tick(void *opaque)
55
{
56
    ptimer_state *s = (ptimer_state *)opaque;
57
    ptimer_trigger(s);
58
    s->delta = 0;
59
    if (s->enabled == 2) {
60
        s->enabled = 0;
61
    } else {
62
        ptimer_reload(s);
63
    }
64
}
65

    
66
uint64_t ptimer_get_count(ptimer_state *s)
67
{
68
    int64_t now;
69
    uint64_t counter;
70

    
71
    if (s->enabled) {
72
        now = qemu_get_clock_ns(vm_clock);
73
        /* Figure out the current counter value.  */
74
        if (now - s->next_event > 0
75
            || s->period == 0) {
76
            /* Prevent timer underflowing if it should already have
77
               triggered.  */
78
            counter = 0;
79
        } else {
80
            uint64_t rem;
81
            uint64_t div;
82
            int clz1, clz2;
83
            int shift;
84

    
85
            /* We need to divide time by period, where time is stored in
86
               rem (64-bit integer) and period is stored in period/period_frac
87
               (64.32 fixed point).
88
              
89
               Doing full precision division is hard, so scale values and
90
               do a 64-bit division.  The result should be rounded down,
91
               so that the rounding error never causes the timer to go
92
               backwards.
93
            */
94

    
95
            rem = s->next_event - now;
96
            div = s->period;
97

    
98
            clz1 = clz64(rem);
99
            clz2 = clz64(div);
100
            shift = clz1 < clz2 ? clz1 : clz2;
101

    
102
            rem <<= shift;
103
            div <<= shift;
104
            if (shift >= 32) {
105
                div |= ((uint64_t)s->period_frac << (shift - 32));
106
            } else {
107
                if (shift != 0)
108
                    div |= (s->period_frac >> (32 - shift));
109
                /* Look at remaining bits of period_frac and round div up if 
110
                   necessary.  */
111
                if ((uint32_t)(s->period_frac << shift))
112
                    div += 1;
113
            }
114
            counter = rem / div;
115
        }
116
    } else {
117
        counter = s->delta;
118
    }
119
    return counter;
120
}
121

    
122
void ptimer_set_count(ptimer_state *s, uint64_t count)
123
{
124
    s->delta = count;
125
    if (s->enabled) {
126
        s->next_event = qemu_get_clock_ns(vm_clock);
127
        ptimer_reload(s);
128
    }
129
}
130

    
131
void ptimer_run(ptimer_state *s, int oneshot)
132
{
133
    if (s->enabled) {
134
        return;
135
    }
136
    if (s->period == 0) {
137
        fprintf(stderr, "Timer with period zero, disabling\n");
138
        return;
139
    }
140
    s->enabled = oneshot ? 2 : 1;
141
    s->next_event = qemu_get_clock_ns(vm_clock);
142
    ptimer_reload(s);
143
}
144

    
145
/* Pause a timer.  Note that this may cause it to "lose" time, even if it
146
   is immediately restarted.  */
147
void ptimer_stop(ptimer_state *s)
148
{
149
    if (!s->enabled)
150
        return;
151

    
152
    s->delta = ptimer_get_count(s);
153
    qemu_del_timer(s->timer);
154
    s->enabled = 0;
155
}
156

    
157
/* Set counter increment interval in nanoseconds.  */
158
void ptimer_set_period(ptimer_state *s, int64_t period)
159
{
160
    s->period = period;
161
    s->period_frac = 0;
162
    if (s->enabled) {
163
        s->next_event = qemu_get_clock_ns(vm_clock);
164
        ptimer_reload(s);
165
    }
166
}
167

    
168
/* Set counter frequency in Hz.  */
169
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
170
{
171
    s->period = 1000000000ll / freq;
172
    s->period_frac = (1000000000ll << 32) / freq;
173
    if (s->enabled) {
174
        s->next_event = qemu_get_clock_ns(vm_clock);
175
        ptimer_reload(s);
176
    }
177
}
178

    
179
/* Set the initial countdown value.  If reload is nonzero then also set
180
   count = limit.  */
181
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
182
{
183
    /*
184
     * Artificially limit timeout rate to something
185
     * achievable under QEMU.  Otherwise, QEMU spends all
186
     * its time generating timer interrupts, and there
187
     * is no forward progress.
188
     * About ten microseconds is the fastest that really works
189
     * on the current generation of host machines.
190
     */
191

    
192
    if (limit * s->period < 10000 && s->period) {
193
        limit = 10000 / s->period;
194
    }
195

    
196
    s->limit = limit;
197
    if (reload)
198
        s->delta = limit;
199
    if (s->enabled && reload) {
200
        s->next_event = qemu_get_clock_ns(vm_clock);
201
        ptimer_reload(s);
202
    }
203
}
204

    
205
const VMStateDescription vmstate_ptimer = {
206
    .name = "ptimer",
207
    .version_id = 1,
208
    .minimum_version_id = 1,
209
    .minimum_version_id_old = 1,
210
    .fields      = (VMStateField[]) {
211
        VMSTATE_UINT8(enabled, ptimer_state),
212
        VMSTATE_UINT64(limit, ptimer_state),
213
        VMSTATE_UINT64(delta, ptimer_state),
214
        VMSTATE_UINT32(period_frac, ptimer_state),
215
        VMSTATE_INT64(period, ptimer_state),
216
        VMSTATE_INT64(last_event, ptimer_state),
217
        VMSTATE_INT64(next_event, ptimer_state),
218
        VMSTATE_TIMER(timer, ptimer_state),
219
        VMSTATE_END_OF_LIST()
220
    }
221
};
222

    
223
ptimer_state *ptimer_init(QEMUBH *bh)
224
{
225
    ptimer_state *s;
226

    
227
    s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
228
    s->bh = bh;
229
    s->timer = qemu_new_timer_ns(vm_clock, ptimer_tick, s);
230
    return s;
231
}