Statistics
| Branch: | Revision:

root / target-unicore32 / ucf64_helper.c @ 1e5cdaa1

History | View | Annotate | Download (8 kB)

1
/*
2
 * UniCore-F64 simulation helpers for QEMU.
3
 *
4
 * Copyright (C) 2010-2012 Guan Xuetao
5
 *
6
 * This program is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License version 2 as
8
 * published by the Free Software Foundation, or any later version.
9
 * See the COPYING file in the top-level directory.
10
 */
11
#include "cpu.h"
12
#include "helper.h"
13

    
14
/*
15
 * The convention used for UniCore-F64 instructions:
16
 *  Single precition routines have a "s" suffix
17
 *  Double precision routines have a "d" suffix.
18
 */
19

    
20
/* Convert host exception flags to f64 form.  */
21
static inline int ucf64_exceptbits_from_host(int host_bits)
22
{
23
    int target_bits = 0;
24

    
25
    if (host_bits & float_flag_invalid) {
26
        target_bits |= UCF64_FPSCR_FLAG_INVALID;
27
    }
28
    if (host_bits & float_flag_divbyzero) {
29
        target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
30
    }
31
    if (host_bits & float_flag_overflow) {
32
        target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
33
    }
34
    if (host_bits & float_flag_underflow) {
35
        target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
36
    }
37
    if (host_bits & float_flag_inexact) {
38
        target_bits |= UCF64_FPSCR_FLAG_INEXACT;
39
    }
40
    return target_bits;
41
}
42

    
43
uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
44
{
45
    int i;
46
    uint32_t fpscr;
47

    
48
    fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
49
    i = get_float_exception_flags(&env->ucf64.fp_status);
50
    fpscr |= ucf64_exceptbits_from_host(i);
51
    return fpscr;
52
}
53

    
54
/* Convert ucf64 exception flags to target form.  */
55
static inline int ucf64_exceptbits_to_host(int target_bits)
56
{
57
    int host_bits = 0;
58

    
59
    if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
60
        host_bits |= float_flag_invalid;
61
    }
62
    if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
63
        host_bits |= float_flag_divbyzero;
64
    }
65
    if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
66
        host_bits |= float_flag_overflow;
67
    }
68
    if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
69
        host_bits |= float_flag_underflow;
70
    }
71
    if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
72
        host_bits |= float_flag_inexact;
73
    }
74
    return host_bits;
75
}
76

    
77
void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
78
{
79
    int i;
80
    uint32_t changed;
81

    
82
    changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
83
    env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
84

    
85
    changed ^= val;
86
    if (changed & (UCF64_FPSCR_RND_MASK)) {
87
        i = UCF64_FPSCR_RND(val);
88
        switch (i) {
89
        case 0:
90
            i = float_round_nearest_even;
91
            break;
92
        case 1:
93
            i = float_round_to_zero;
94
            break;
95
        case 2:
96
            i = float_round_up;
97
            break;
98
        case 3:
99
            i = float_round_down;
100
            break;
101
        default: /* 100 and 101 not implement */
102
            cpu_abort(env, "Unsupported UniCore-F64 round mode");
103
        }
104
        set_float_rounding_mode(i, &env->ucf64.fp_status);
105
    }
106

    
107
    i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
108
    set_float_exception_flags(i, &env->ucf64.fp_status);
109
}
110

    
111
float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
112
{
113
    return float32_add(a, b, &env->ucf64.fp_status);
114
}
115

    
116
float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
117
{
118
    return float64_add(a, b, &env->ucf64.fp_status);
119
}
120

    
121
float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
122
{
123
    return float32_sub(a, b, &env->ucf64.fp_status);
124
}
125

    
126
float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
127
{
128
    return float64_sub(a, b, &env->ucf64.fp_status);
129
}
130

    
131
float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
132
{
133
    return float32_mul(a, b, &env->ucf64.fp_status);
134
}
135

    
136
float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
137
{
138
    return float64_mul(a, b, &env->ucf64.fp_status);
139
}
140

    
141
float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
142
{
143
    return float32_div(a, b, &env->ucf64.fp_status);
144
}
145

    
146
float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
147
{
148
    return float64_div(a, b, &env->ucf64.fp_status);
149
}
150

    
151
float32 HELPER(ucf64_negs)(float32 a)
152
{
153
    return float32_chs(a);
154
}
155

    
156
float64 HELPER(ucf64_negd)(float64 a)
157
{
158
    return float64_chs(a);
159
}
160

    
161
float32 HELPER(ucf64_abss)(float32 a)
162
{
163
    return float32_abs(a);
164
}
165

    
166
float64 HELPER(ucf64_absd)(float64 a)
167
{
168
    return float64_abs(a);
169
}
170

    
171
void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c,
172
        CPUUniCore32State *env)
173
{
174
    int flag;
175
    flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
176
    env->CF = 0;
177
    switch (c & 0x7) {
178
    case 0: /* F */
179
        break;
180
    case 1: /* UN */
181
        if (flag == 2) {
182
            env->CF = 1;
183
        }
184
        break;
185
    case 2: /* EQ */
186
        if (flag == 0) {
187
            env->CF = 1;
188
        }
189
        break;
190
    case 3: /* UEQ */
191
        if ((flag == 0) || (flag == 2)) {
192
            env->CF = 1;
193
        }
194
        break;
195
    case 4: /* OLT */
196
        if (flag == -1) {
197
            env->CF = 1;
198
        }
199
        break;
200
    case 5: /* ULT */
201
        if ((flag == -1) || (flag == 2)) {
202
            env->CF = 1;
203
        }
204
        break;
205
    case 6: /* OLE */
206
        if ((flag == -1) || (flag == 0)) {
207
            env->CF = 1;
208
        }
209
        break;
210
    case 7: /* ULE */
211
        if (flag != 1) {
212
            env->CF = 1;
213
        }
214
        break;
215
    }
216
    env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
217
                    | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
218
}
219

    
220
void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c,
221
        CPUUniCore32State *env)
222
{
223
    int flag;
224
    flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
225
    env->CF = 0;
226
    switch (c & 0x7) {
227
    case 0: /* F */
228
        break;
229
    case 1: /* UN */
230
        if (flag == 2) {
231
            env->CF = 1;
232
        }
233
        break;
234
    case 2: /* EQ */
235
        if (flag == 0) {
236
            env->CF = 1;
237
        }
238
        break;
239
    case 3: /* UEQ */
240
        if ((flag == 0) || (flag == 2)) {
241
            env->CF = 1;
242
        }
243
        break;
244
    case 4: /* OLT */
245
        if (flag == -1) {
246
            env->CF = 1;
247
        }
248
        break;
249
    case 5: /* ULT */
250
        if ((flag == -1) || (flag == 2)) {
251
            env->CF = 1;
252
        }
253
        break;
254
    case 6: /* OLE */
255
        if ((flag == -1) || (flag == 0)) {
256
            env->CF = 1;
257
        }
258
        break;
259
    case 7: /* ULE */
260
        if (flag != 1) {
261
            env->CF = 1;
262
        }
263
        break;
264
    }
265
    env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
266
                    | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
267
}
268

    
269
/* Helper routines to perform bitwise copies between float and int.  */
270
static inline float32 ucf64_itos(uint32_t i)
271
{
272
    union {
273
        uint32_t i;
274
        float32 s;
275
    } v;
276

    
277
    v.i = i;
278
    return v.s;
279
}
280

    
281
static inline uint32_t ucf64_stoi(float32 s)
282
{
283
    union {
284
        uint32_t i;
285
        float32 s;
286
    } v;
287

    
288
    v.s = s;
289
    return v.i;
290
}
291

    
292
static inline float64 ucf64_itod(uint64_t i)
293
{
294
    union {
295
        uint64_t i;
296
        float64 d;
297
    } v;
298

    
299
    v.i = i;
300
    return v.d;
301
}
302

    
303
static inline uint64_t ucf64_dtoi(float64 d)
304
{
305
    union {
306
        uint64_t i;
307
        float64 d;
308
    } v;
309

    
310
    v.d = d;
311
    return v.i;
312
}
313

    
314
/* Integer to float conversion.  */
315
float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
316
{
317
    return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
318
}
319

    
320
float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
321
{
322
    return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
323
}
324

    
325
/* Float to integer conversion.  */
326
float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
327
{
328
    return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
329
}
330

    
331
float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
332
{
333
    return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
334
}
335

    
336
/* floating point conversion */
337
float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
338
{
339
    return float32_to_float64(x, &env->ucf64.fp_status);
340
}
341

    
342
float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
343
{
344
    return float64_to_float32(x, &env->ucf64.fp_status);
345
}