Statistics
| Branch: | Revision:

root / vl.c @ 1eec614b

History | View | Annotate | Download (153 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "cache-utils.h"
40
#include "block.h"
41
#include "audio/audio.h"
42
#include "migration.h"
43
#include "kvm.h"
44
#include "balloon.h"
45

    
46
#include <unistd.h>
47
#include <fcntl.h>
48
#include <signal.h>
49
#include <time.h>
50
#include <errno.h>
51
#include <sys/time.h>
52
#include <zlib.h>
53

    
54
#ifndef _WIN32
55
#include <sys/times.h>
56
#include <sys/wait.h>
57
#include <termios.h>
58
#include <sys/mman.h>
59
#include <sys/ioctl.h>
60
#include <sys/resource.h>
61
#include <sys/socket.h>
62
#include <netinet/in.h>
63
#include <net/if.h>
64
#if defined(__NetBSD__)
65
#include <net/if_tap.h>
66
#endif
67
#ifdef __linux__
68
#include <linux/if_tun.h>
69
#endif
70
#include <arpa/inet.h>
71
#include <dirent.h>
72
#include <netdb.h>
73
#include <sys/select.h>
74
#ifdef _BSD
75
#include <sys/stat.h>
76
#ifdef __FreeBSD__
77
#include <libutil.h>
78
#else
79
#include <util.h>
80
#endif
81
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82
#include <freebsd/stdlib.h>
83
#else
84
#ifdef __linux__
85
#include <pty.h>
86
#include <malloc.h>
87
#include <linux/rtc.h>
88

    
89
/* For the benefit of older linux systems which don't supply it,
90
   we use a local copy of hpet.h. */
91
/* #include <linux/hpet.h> */
92
#include "hpet.h"
93

    
94
#include <linux/ppdev.h>
95
#include <linux/parport.h>
96
#endif
97
#ifdef __sun__
98
#include <sys/stat.h>
99
#include <sys/ethernet.h>
100
#include <sys/sockio.h>
101
#include <netinet/arp.h>
102
#include <netinet/in.h>
103
#include <netinet/in_systm.h>
104
#include <netinet/ip.h>
105
#include <netinet/ip_icmp.h> // must come after ip.h
106
#include <netinet/udp.h>
107
#include <netinet/tcp.h>
108
#include <net/if.h>
109
#include <syslog.h>
110
#include <stropts.h>
111
#endif
112
#endif
113
#endif
114

    
115
#include "qemu_socket.h"
116

    
117
#if defined(CONFIG_SLIRP)
118
#include "libslirp.h"
119
#endif
120

    
121
#if defined(__OpenBSD__)
122
#include <util.h>
123
#endif
124

    
125
#if defined(CONFIG_VDE)
126
#include <libvdeplug.h>
127
#endif
128

    
129
#ifdef _WIN32
130
#include <malloc.h>
131
#include <sys/timeb.h>
132
#include <mmsystem.h>
133
#define getopt_long_only getopt_long
134
#define memalign(align, size) malloc(size)
135
#endif
136

    
137
#ifdef CONFIG_SDL
138
#ifdef __APPLE__
139
#include <SDL/SDL.h>
140
#endif
141
#endif /* CONFIG_SDL */
142

    
143
#ifdef CONFIG_COCOA
144
#undef main
145
#define main qemu_main
146
#endif /* CONFIG_COCOA */
147

    
148
#include "disas.h"
149

    
150
#include "exec-all.h"
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154
//#define DEBUG_NET
155
//#define DEBUG_SLIRP
156

    
157

    
158
#ifdef DEBUG_IOPORT
159
#  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
160
#else
161
#  define LOG_IOPORT(...) do { } while (0)
162
#endif
163

    
164
#define DEFAULT_RAM_SIZE 128
165

    
166
/* Max number of USB devices that can be specified on the commandline.  */
167
#define MAX_USB_CMDLINE 8
168

    
169
/* Max number of bluetooth switches on the commandline.  */
170
#define MAX_BT_CMDLINE 10
171

    
172
/* XXX: use a two level table to limit memory usage */
173
#define MAX_IOPORTS 65536
174

    
175
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
176
const char *bios_name = NULL;
177
static void *ioport_opaque[MAX_IOPORTS];
178
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
179
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
180
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181
   to store the VM snapshots */
182
DriveInfo drives_table[MAX_DRIVES+1];
183
int nb_drives;
184
static int vga_ram_size;
185
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186
static DisplayState *display_state;
187
int nographic;
188
static int curses;
189
static int sdl;
190
const char* keyboard_layout = NULL;
191
int64_t ticks_per_sec;
192
ram_addr_t ram_size;
193
int nb_nics;
194
NICInfo nd_table[MAX_NICS];
195
int vm_running;
196
static int rtc_utc = 1;
197
static int rtc_date_offset = -1; /* -1 means no change */
198
int cirrus_vga_enabled = 1;
199
int std_vga_enabled = 0;
200
int vmsvga_enabled = 0;
201
#ifdef TARGET_SPARC
202
int graphic_width = 1024;
203
int graphic_height = 768;
204
int graphic_depth = 8;
205
#else
206
int graphic_width = 800;
207
int graphic_height = 600;
208
int graphic_depth = 15;
209
#endif
210
static int full_screen = 0;
211
#ifdef CONFIG_SDL
212
static int no_frame = 0;
213
#endif
214
int no_quit = 0;
215
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
216
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
217
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
218
#ifdef TARGET_I386
219
int win2k_install_hack = 0;
220
int rtc_td_hack = 0;
221
#endif
222
int usb_enabled = 0;
223
int smp_cpus = 1;
224
const char *vnc_display;
225
int acpi_enabled = 1;
226
int no_hpet = 0;
227
int fd_bootchk = 1;
228
int no_reboot = 0;
229
int no_shutdown = 0;
230
int cursor_hide = 1;
231
int graphic_rotate = 0;
232
int daemonize = 0;
233
const char *option_rom[MAX_OPTION_ROMS];
234
int nb_option_roms;
235
int semihosting_enabled = 0;
236
#ifdef TARGET_ARM
237
int old_param = 0;
238
#endif
239
const char *qemu_name;
240
int alt_grab = 0;
241
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
242
unsigned int nb_prom_envs = 0;
243
const char *prom_envs[MAX_PROM_ENVS];
244
#endif
245
static int nb_drives_opt;
246
static struct drive_opt {
247
    const char *file;
248
    char opt[1024];
249
} drives_opt[MAX_DRIVES];
250

    
251
static CPUState *cur_cpu;
252
static CPUState *next_cpu;
253
static int event_pending = 1;
254
/* Conversion factor from emulated instructions to virtual clock ticks.  */
255
static int icount_time_shift;
256
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
257
#define MAX_ICOUNT_SHIFT 10
258
/* Compensate for varying guest execution speed.  */
259
static int64_t qemu_icount_bias;
260
static QEMUTimer *icount_rt_timer;
261
static QEMUTimer *icount_vm_timer;
262
static QEMUTimer *nographic_timer;
263

    
264
uint8_t qemu_uuid[16];
265

    
266
/***********************************************************/
267
/* x86 ISA bus support */
268

    
269
target_phys_addr_t isa_mem_base = 0;
270
PicState2 *isa_pic;
271

    
272
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
273
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
274

    
275
static uint32_t ioport_read(int index, uint32_t address)
276
{
277
    static IOPortReadFunc *default_func[3] = {
278
        default_ioport_readb,
279
        default_ioport_readw,
280
        default_ioport_readl
281
    };
282
    IOPortReadFunc *func = ioport_read_table[index][address];
283
    if (!func)
284
        func = default_func[index];
285
    return func(ioport_opaque[address], address);
286
}
287

    
288
static void ioport_write(int index, uint32_t address, uint32_t data)
289
{
290
    static IOPortWriteFunc *default_func[3] = {
291
        default_ioport_writeb,
292
        default_ioport_writew,
293
        default_ioport_writel
294
    };
295
    IOPortWriteFunc *func = ioport_write_table[index][address];
296
    if (!func)
297
        func = default_func[index];
298
    func(ioport_opaque[address], address, data);
299
}
300

    
301
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
302
{
303
#ifdef DEBUG_UNUSED_IOPORT
304
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
305
#endif
306
    return 0xff;
307
}
308

    
309
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
310
{
311
#ifdef DEBUG_UNUSED_IOPORT
312
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
313
#endif
314
}
315

    
316
/* default is to make two byte accesses */
317
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
318
{
319
    uint32_t data;
320
    data = ioport_read(0, address);
321
    address = (address + 1) & (MAX_IOPORTS - 1);
322
    data |= ioport_read(0, address) << 8;
323
    return data;
324
}
325

    
326
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
327
{
328
    ioport_write(0, address, data & 0xff);
329
    address = (address + 1) & (MAX_IOPORTS - 1);
330
    ioport_write(0, address, (data >> 8) & 0xff);
331
}
332

    
333
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
334
{
335
#ifdef DEBUG_UNUSED_IOPORT
336
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
337
#endif
338
    return 0xffffffff;
339
}
340

    
341
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
342
{
343
#ifdef DEBUG_UNUSED_IOPORT
344
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
345
#endif
346
}
347

    
348
/* size is the word size in byte */
349
int register_ioport_read(int start, int length, int size,
350
                         IOPortReadFunc *func, void *opaque)
351
{
352
    int i, bsize;
353

    
354
    if (size == 1) {
355
        bsize = 0;
356
    } else if (size == 2) {
357
        bsize = 1;
358
    } else if (size == 4) {
359
        bsize = 2;
360
    } else {
361
        hw_error("register_ioport_read: invalid size");
362
        return -1;
363
    }
364
    for(i = start; i < start + length; i += size) {
365
        ioport_read_table[bsize][i] = func;
366
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
367
            hw_error("register_ioport_read: invalid opaque");
368
        ioport_opaque[i] = opaque;
369
    }
370
    return 0;
371
}
372

    
373
/* size is the word size in byte */
374
int register_ioport_write(int start, int length, int size,
375
                          IOPortWriteFunc *func, void *opaque)
376
{
377
    int i, bsize;
378

    
379
    if (size == 1) {
380
        bsize = 0;
381
    } else if (size == 2) {
382
        bsize = 1;
383
    } else if (size == 4) {
384
        bsize = 2;
385
    } else {
386
        hw_error("register_ioport_write: invalid size");
387
        return -1;
388
    }
389
    for(i = start; i < start + length; i += size) {
390
        ioport_write_table[bsize][i] = func;
391
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392
            hw_error("register_ioport_write: invalid opaque");
393
        ioport_opaque[i] = opaque;
394
    }
395
    return 0;
396
}
397

    
398
void isa_unassign_ioport(int start, int length)
399
{
400
    int i;
401

    
402
    for(i = start; i < start + length; i++) {
403
        ioport_read_table[0][i] = default_ioport_readb;
404
        ioport_read_table[1][i] = default_ioport_readw;
405
        ioport_read_table[2][i] = default_ioport_readl;
406

    
407
        ioport_write_table[0][i] = default_ioport_writeb;
408
        ioport_write_table[1][i] = default_ioport_writew;
409
        ioport_write_table[2][i] = default_ioport_writel;
410
    }
411
}
412

    
413
/***********************************************************/
414

    
415
void cpu_outb(CPUState *env, int addr, int val)
416
{
417
    LOG_IOPORT("outb: %04x %02x\n", addr, val);
418
    ioport_write(0, addr, val);
419
#ifdef USE_KQEMU
420
    if (env)
421
        env->last_io_time = cpu_get_time_fast();
422
#endif
423
}
424

    
425
void cpu_outw(CPUState *env, int addr, int val)
426
{
427
    LOG_IOPORT("outw: %04x %04x\n", addr, val);
428
    ioport_write(1, addr, val);
429
#ifdef USE_KQEMU
430
    if (env)
431
        env->last_io_time = cpu_get_time_fast();
432
#endif
433
}
434

    
435
void cpu_outl(CPUState *env, int addr, int val)
436
{
437
    LOG_IOPORT("outl: %04x %08x\n", addr, val);
438
    ioport_write(2, addr, val);
439
#ifdef USE_KQEMU
440
    if (env)
441
        env->last_io_time = cpu_get_time_fast();
442
#endif
443
}
444

    
445
int cpu_inb(CPUState *env, int addr)
446
{
447
    int val;
448
    val = ioport_read(0, addr);
449
    LOG_IOPORT("inb : %04x %02x\n", addr, val);
450
#ifdef USE_KQEMU
451
    if (env)
452
        env->last_io_time = cpu_get_time_fast();
453
#endif
454
    return val;
455
}
456

    
457
int cpu_inw(CPUState *env, int addr)
458
{
459
    int val;
460
    val = ioport_read(1, addr);
461
    LOG_IOPORT("inw : %04x %04x\n", addr, val);
462
#ifdef USE_KQEMU
463
    if (env)
464
        env->last_io_time = cpu_get_time_fast();
465
#endif
466
    return val;
467
}
468

    
469
int cpu_inl(CPUState *env, int addr)
470
{
471
    int val;
472
    val = ioport_read(2, addr);
473
    LOG_IOPORT("inl : %04x %08x\n", addr, val);
474
#ifdef USE_KQEMU
475
    if (env)
476
        env->last_io_time = cpu_get_time_fast();
477
#endif
478
    return val;
479
}
480

    
481
/***********************************************************/
482
void hw_error(const char *fmt, ...)
483
{
484
    va_list ap;
485
    CPUState *env;
486

    
487
    va_start(ap, fmt);
488
    fprintf(stderr, "qemu: hardware error: ");
489
    vfprintf(stderr, fmt, ap);
490
    fprintf(stderr, "\n");
491
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
492
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
493
#ifdef TARGET_I386
494
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
495
#else
496
        cpu_dump_state(env, stderr, fprintf, 0);
497
#endif
498
    }
499
    va_end(ap);
500
    abort();
501
}
502
 
503
/***************/
504
/* ballooning */
505

    
506
static QEMUBalloonEvent *qemu_balloon_event;
507
void *qemu_balloon_event_opaque;
508

    
509
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
510
{
511
    qemu_balloon_event = func;
512
    qemu_balloon_event_opaque = opaque;
513
}
514

    
515
void qemu_balloon(ram_addr_t target)
516
{
517
    if (qemu_balloon_event)
518
        qemu_balloon_event(qemu_balloon_event_opaque, target);
519
}
520

    
521
ram_addr_t qemu_balloon_status(void)
522
{
523
    if (qemu_balloon_event)
524
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
525
    return 0;
526
}
527

    
528
/***********************************************************/
529
/* keyboard/mouse */
530

    
531
static QEMUPutKBDEvent *qemu_put_kbd_event;
532
static void *qemu_put_kbd_event_opaque;
533
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
534
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
535

    
536
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
537
{
538
    qemu_put_kbd_event_opaque = opaque;
539
    qemu_put_kbd_event = func;
540
}
541

    
542
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
543
                                                void *opaque, int absolute,
544
                                                const char *name)
545
{
546
    QEMUPutMouseEntry *s, *cursor;
547

    
548
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
549

    
550
    s->qemu_put_mouse_event = func;
551
    s->qemu_put_mouse_event_opaque = opaque;
552
    s->qemu_put_mouse_event_absolute = absolute;
553
    s->qemu_put_mouse_event_name = qemu_strdup(name);
554
    s->next = NULL;
555

    
556
    if (!qemu_put_mouse_event_head) {
557
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
558
        return s;
559
    }
560

    
561
    cursor = qemu_put_mouse_event_head;
562
    while (cursor->next != NULL)
563
        cursor = cursor->next;
564

    
565
    cursor->next = s;
566
    qemu_put_mouse_event_current = s;
567

    
568
    return s;
569
}
570

    
571
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
572
{
573
    QEMUPutMouseEntry *prev = NULL, *cursor;
574

    
575
    if (!qemu_put_mouse_event_head || entry == NULL)
576
        return;
577

    
578
    cursor = qemu_put_mouse_event_head;
579
    while (cursor != NULL && cursor != entry) {
580
        prev = cursor;
581
        cursor = cursor->next;
582
    }
583

    
584
    if (cursor == NULL) // does not exist or list empty
585
        return;
586
    else if (prev == NULL) { // entry is head
587
        qemu_put_mouse_event_head = cursor->next;
588
        if (qemu_put_mouse_event_current == entry)
589
            qemu_put_mouse_event_current = cursor->next;
590
        qemu_free(entry->qemu_put_mouse_event_name);
591
        qemu_free(entry);
592
        return;
593
    }
594

    
595
    prev->next = entry->next;
596

    
597
    if (qemu_put_mouse_event_current == entry)
598
        qemu_put_mouse_event_current = prev;
599

    
600
    qemu_free(entry->qemu_put_mouse_event_name);
601
    qemu_free(entry);
602
}
603

    
604
void kbd_put_keycode(int keycode)
605
{
606
    if (qemu_put_kbd_event) {
607
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
608
    }
609
}
610

    
611
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
612
{
613
    QEMUPutMouseEvent *mouse_event;
614
    void *mouse_event_opaque;
615
    int width;
616

    
617
    if (!qemu_put_mouse_event_current) {
618
        return;
619
    }
620

    
621
    mouse_event =
622
        qemu_put_mouse_event_current->qemu_put_mouse_event;
623
    mouse_event_opaque =
624
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
625

    
626
    if (mouse_event) {
627
        if (graphic_rotate) {
628
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
629
                width = 0x7fff;
630
            else
631
                width = graphic_width - 1;
632
            mouse_event(mouse_event_opaque,
633
                                 width - dy, dx, dz, buttons_state);
634
        } else
635
            mouse_event(mouse_event_opaque,
636
                                 dx, dy, dz, buttons_state);
637
    }
638
}
639

    
640
int kbd_mouse_is_absolute(void)
641
{
642
    if (!qemu_put_mouse_event_current)
643
        return 0;
644

    
645
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
646
}
647

    
648
void do_info_mice(void)
649
{
650
    QEMUPutMouseEntry *cursor;
651
    int index = 0;
652

    
653
    if (!qemu_put_mouse_event_head) {
654
        term_printf("No mouse devices connected\n");
655
        return;
656
    }
657

    
658
    term_printf("Mouse devices available:\n");
659
    cursor = qemu_put_mouse_event_head;
660
    while (cursor != NULL) {
661
        term_printf("%c Mouse #%d: %s\n",
662
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
663
                    index, cursor->qemu_put_mouse_event_name);
664
        index++;
665
        cursor = cursor->next;
666
    }
667
}
668

    
669
void do_mouse_set(int index)
670
{
671
    QEMUPutMouseEntry *cursor;
672
    int i = 0;
673

    
674
    if (!qemu_put_mouse_event_head) {
675
        term_printf("No mouse devices connected\n");
676
        return;
677
    }
678

    
679
    cursor = qemu_put_mouse_event_head;
680
    while (cursor != NULL && index != i) {
681
        i++;
682
        cursor = cursor->next;
683
    }
684

    
685
    if (cursor != NULL)
686
        qemu_put_mouse_event_current = cursor;
687
    else
688
        term_printf("Mouse at given index not found\n");
689
}
690

    
691
/* compute with 96 bit intermediate result: (a*b)/c */
692
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
693
{
694
    union {
695
        uint64_t ll;
696
        struct {
697
#ifdef WORDS_BIGENDIAN
698
            uint32_t high, low;
699
#else
700
            uint32_t low, high;
701
#endif
702
        } l;
703
    } u, res;
704
    uint64_t rl, rh;
705

    
706
    u.ll = a;
707
    rl = (uint64_t)u.l.low * (uint64_t)b;
708
    rh = (uint64_t)u.l.high * (uint64_t)b;
709
    rh += (rl >> 32);
710
    res.l.high = rh / c;
711
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
712
    return res.ll;
713
}
714

    
715
/***********************************************************/
716
/* real time host monotonic timer */
717

    
718
#define QEMU_TIMER_BASE 1000000000LL
719

    
720
#ifdef WIN32
721

    
722
static int64_t clock_freq;
723

    
724
static void init_get_clock(void)
725
{
726
    LARGE_INTEGER freq;
727
    int ret;
728
    ret = QueryPerformanceFrequency(&freq);
729
    if (ret == 0) {
730
        fprintf(stderr, "Could not calibrate ticks\n");
731
        exit(1);
732
    }
733
    clock_freq = freq.QuadPart;
734
}
735

    
736
static int64_t get_clock(void)
737
{
738
    LARGE_INTEGER ti;
739
    QueryPerformanceCounter(&ti);
740
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
741
}
742

    
743
#else
744

    
745
static int use_rt_clock;
746

    
747
static void init_get_clock(void)
748
{
749
    use_rt_clock = 0;
750
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
751
    {
752
        struct timespec ts;
753
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
754
            use_rt_clock = 1;
755
        }
756
    }
757
#endif
758
}
759

    
760
static int64_t get_clock(void)
761
{
762
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
763
    if (use_rt_clock) {
764
        struct timespec ts;
765
        clock_gettime(CLOCK_MONOTONIC, &ts);
766
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
767
    } else
768
#endif
769
    {
770
        /* XXX: using gettimeofday leads to problems if the date
771
           changes, so it should be avoided. */
772
        struct timeval tv;
773
        gettimeofday(&tv, NULL);
774
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
775
    }
776
}
777
#endif
778

    
779
/* Return the virtual CPU time, based on the instruction counter.  */
780
static int64_t cpu_get_icount(void)
781
{
782
    int64_t icount;
783
    CPUState *env = cpu_single_env;;
784
    icount = qemu_icount;
785
    if (env) {
786
        if (!can_do_io(env))
787
            fprintf(stderr, "Bad clock read\n");
788
        icount -= (env->icount_decr.u16.low + env->icount_extra);
789
    }
790
    return qemu_icount_bias + (icount << icount_time_shift);
791
}
792

    
793
/***********************************************************/
794
/* guest cycle counter */
795

    
796
static int64_t cpu_ticks_prev;
797
static int64_t cpu_ticks_offset;
798
static int64_t cpu_clock_offset;
799
static int cpu_ticks_enabled;
800

    
801
/* return the host CPU cycle counter and handle stop/restart */
802
int64_t cpu_get_ticks(void)
803
{
804
    if (use_icount) {
805
        return cpu_get_icount();
806
    }
807
    if (!cpu_ticks_enabled) {
808
        return cpu_ticks_offset;
809
    } else {
810
        int64_t ticks;
811
        ticks = cpu_get_real_ticks();
812
        if (cpu_ticks_prev > ticks) {
813
            /* Note: non increasing ticks may happen if the host uses
814
               software suspend */
815
            cpu_ticks_offset += cpu_ticks_prev - ticks;
816
        }
817
        cpu_ticks_prev = ticks;
818
        return ticks + cpu_ticks_offset;
819
    }
820
}
821

    
822
/* return the host CPU monotonic timer and handle stop/restart */
823
static int64_t cpu_get_clock(void)
824
{
825
    int64_t ti;
826
    if (!cpu_ticks_enabled) {
827
        return cpu_clock_offset;
828
    } else {
829
        ti = get_clock();
830
        return ti + cpu_clock_offset;
831
    }
832
}
833

    
834
/* enable cpu_get_ticks() */
835
void cpu_enable_ticks(void)
836
{
837
    if (!cpu_ticks_enabled) {
838
        cpu_ticks_offset -= cpu_get_real_ticks();
839
        cpu_clock_offset -= get_clock();
840
        cpu_ticks_enabled = 1;
841
    }
842
}
843

    
844
/* disable cpu_get_ticks() : the clock is stopped. You must not call
845
   cpu_get_ticks() after that.  */
846
void cpu_disable_ticks(void)
847
{
848
    if (cpu_ticks_enabled) {
849
        cpu_ticks_offset = cpu_get_ticks();
850
        cpu_clock_offset = cpu_get_clock();
851
        cpu_ticks_enabled = 0;
852
    }
853
}
854

    
855
/***********************************************************/
856
/* timers */
857

    
858
#define QEMU_TIMER_REALTIME 0
859
#define QEMU_TIMER_VIRTUAL  1
860

    
861
struct QEMUClock {
862
    int type;
863
    /* XXX: add frequency */
864
};
865

    
866
struct QEMUTimer {
867
    QEMUClock *clock;
868
    int64_t expire_time;
869
    QEMUTimerCB *cb;
870
    void *opaque;
871
    struct QEMUTimer *next;
872
};
873

    
874
struct qemu_alarm_timer {
875
    char const *name;
876
    unsigned int flags;
877

    
878
    int (*start)(struct qemu_alarm_timer *t);
879
    void (*stop)(struct qemu_alarm_timer *t);
880
    void (*rearm)(struct qemu_alarm_timer *t);
881
    void *priv;
882
};
883

    
884
#define ALARM_FLAG_DYNTICKS  0x1
885
#define ALARM_FLAG_EXPIRED   0x2
886

    
887
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
888
{
889
    return t->flags & ALARM_FLAG_DYNTICKS;
890
}
891

    
892
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
893
{
894
    if (!alarm_has_dynticks(t))
895
        return;
896

    
897
    t->rearm(t);
898
}
899

    
900
/* TODO: MIN_TIMER_REARM_US should be optimized */
901
#define MIN_TIMER_REARM_US 250
902

    
903
static struct qemu_alarm_timer *alarm_timer;
904
#ifndef _WIN32
905
static int alarm_timer_rfd, alarm_timer_wfd;
906
#endif
907

    
908
#ifdef _WIN32
909

    
910
struct qemu_alarm_win32 {
911
    MMRESULT timerId;
912
    HANDLE host_alarm;
913
    unsigned int period;
914
} alarm_win32_data = {0, NULL, -1};
915

    
916
static int win32_start_timer(struct qemu_alarm_timer *t);
917
static void win32_stop_timer(struct qemu_alarm_timer *t);
918
static void win32_rearm_timer(struct qemu_alarm_timer *t);
919

    
920
#else
921

    
922
static int unix_start_timer(struct qemu_alarm_timer *t);
923
static void unix_stop_timer(struct qemu_alarm_timer *t);
924

    
925
#ifdef __linux__
926

    
927
static int dynticks_start_timer(struct qemu_alarm_timer *t);
928
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
929
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
930

    
931
static int hpet_start_timer(struct qemu_alarm_timer *t);
932
static void hpet_stop_timer(struct qemu_alarm_timer *t);
933

    
934
static int rtc_start_timer(struct qemu_alarm_timer *t);
935
static void rtc_stop_timer(struct qemu_alarm_timer *t);
936

    
937
#endif /* __linux__ */
938

    
939
#endif /* _WIN32 */
940

    
941
/* Correlation between real and virtual time is always going to be
942
   fairly approximate, so ignore small variation.
943
   When the guest is idle real and virtual time will be aligned in
944
   the IO wait loop.  */
945
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
946

    
947
static void icount_adjust(void)
948
{
949
    int64_t cur_time;
950
    int64_t cur_icount;
951
    int64_t delta;
952
    static int64_t last_delta;
953
    /* If the VM is not running, then do nothing.  */
954
    if (!vm_running)
955
        return;
956

    
957
    cur_time = cpu_get_clock();
958
    cur_icount = qemu_get_clock(vm_clock);
959
    delta = cur_icount - cur_time;
960
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
961
    if (delta > 0
962
        && last_delta + ICOUNT_WOBBLE < delta * 2
963
        && icount_time_shift > 0) {
964
        /* The guest is getting too far ahead.  Slow time down.  */
965
        icount_time_shift--;
966
    }
967
    if (delta < 0
968
        && last_delta - ICOUNT_WOBBLE > delta * 2
969
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
970
        /* The guest is getting too far behind.  Speed time up.  */
971
        icount_time_shift++;
972
    }
973
    last_delta = delta;
974
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
975
}
976

    
977
static void icount_adjust_rt(void * opaque)
978
{
979
    qemu_mod_timer(icount_rt_timer,
980
                   qemu_get_clock(rt_clock) + 1000);
981
    icount_adjust();
982
}
983

    
984
static void icount_adjust_vm(void * opaque)
985
{
986
    qemu_mod_timer(icount_vm_timer,
987
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
988
    icount_adjust();
989
}
990

    
991
static void init_icount_adjust(void)
992
{
993
    /* Have both realtime and virtual time triggers for speed adjustment.
994
       The realtime trigger catches emulated time passing too slowly,
995
       the virtual time trigger catches emulated time passing too fast.
996
       Realtime triggers occur even when idle, so use them less frequently
997
       than VM triggers.  */
998
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
999
    qemu_mod_timer(icount_rt_timer,
1000
                   qemu_get_clock(rt_clock) + 1000);
1001
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1002
    qemu_mod_timer(icount_vm_timer,
1003
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1004
}
1005

    
1006
static struct qemu_alarm_timer alarm_timers[] = {
1007
#ifndef _WIN32
1008
#ifdef __linux__
1009
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1010
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1011
    /* HPET - if available - is preferred */
1012
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1013
    /* ...otherwise try RTC */
1014
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1015
#endif
1016
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1017
#else
1018
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1019
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1020
    {"win32", 0, win32_start_timer,
1021
     win32_stop_timer, NULL, &alarm_win32_data},
1022
#endif
1023
    {NULL, }
1024
};
1025

    
1026
static void show_available_alarms(void)
1027
{
1028
    int i;
1029

    
1030
    printf("Available alarm timers, in order of precedence:\n");
1031
    for (i = 0; alarm_timers[i].name; i++)
1032
        printf("%s\n", alarm_timers[i].name);
1033
}
1034

    
1035
static void configure_alarms(char const *opt)
1036
{
1037
    int i;
1038
    int cur = 0;
1039
    int count = ARRAY_SIZE(alarm_timers) - 1;
1040
    char *arg;
1041
    char *name;
1042
    struct qemu_alarm_timer tmp;
1043

    
1044
    if (!strcmp(opt, "?")) {
1045
        show_available_alarms();
1046
        exit(0);
1047
    }
1048

    
1049
    arg = strdup(opt);
1050

    
1051
    /* Reorder the array */
1052
    name = strtok(arg, ",");
1053
    while (name) {
1054
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1055
            if (!strcmp(alarm_timers[i].name, name))
1056
                break;
1057
        }
1058

    
1059
        if (i == count) {
1060
            fprintf(stderr, "Unknown clock %s\n", name);
1061
            goto next;
1062
        }
1063

    
1064
        if (i < cur)
1065
            /* Ignore */
1066
            goto next;
1067

    
1068
        /* Swap */
1069
        tmp = alarm_timers[i];
1070
        alarm_timers[i] = alarm_timers[cur];
1071
        alarm_timers[cur] = tmp;
1072

    
1073
        cur++;
1074
next:
1075
        name = strtok(NULL, ",");
1076
    }
1077

    
1078
    free(arg);
1079

    
1080
    if (cur) {
1081
        /* Disable remaining timers */
1082
        for (i = cur; i < count; i++)
1083
            alarm_timers[i].name = NULL;
1084
    } else {
1085
        show_available_alarms();
1086
        exit(1);
1087
    }
1088
}
1089

    
1090
QEMUClock *rt_clock;
1091
QEMUClock *vm_clock;
1092

    
1093
static QEMUTimer *active_timers[2];
1094

    
1095
static QEMUClock *qemu_new_clock(int type)
1096
{
1097
    QEMUClock *clock;
1098
    clock = qemu_mallocz(sizeof(QEMUClock));
1099
    clock->type = type;
1100
    return clock;
1101
}
1102

    
1103
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1104
{
1105
    QEMUTimer *ts;
1106

    
1107
    ts = qemu_mallocz(sizeof(QEMUTimer));
1108
    ts->clock = clock;
1109
    ts->cb = cb;
1110
    ts->opaque = opaque;
1111
    return ts;
1112
}
1113

    
1114
void qemu_free_timer(QEMUTimer *ts)
1115
{
1116
    qemu_free(ts);
1117
}
1118

    
1119
/* stop a timer, but do not dealloc it */
1120
void qemu_del_timer(QEMUTimer *ts)
1121
{
1122
    QEMUTimer **pt, *t;
1123

    
1124
    /* NOTE: this code must be signal safe because
1125
       qemu_timer_expired() can be called from a signal. */
1126
    pt = &active_timers[ts->clock->type];
1127
    for(;;) {
1128
        t = *pt;
1129
        if (!t)
1130
            break;
1131
        if (t == ts) {
1132
            *pt = t->next;
1133
            break;
1134
        }
1135
        pt = &t->next;
1136
    }
1137
}
1138

    
1139
/* modify the current timer so that it will be fired when current_time
1140
   >= expire_time. The corresponding callback will be called. */
1141
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1142
{
1143
    QEMUTimer **pt, *t;
1144

    
1145
    qemu_del_timer(ts);
1146

    
1147
    /* add the timer in the sorted list */
1148
    /* NOTE: this code must be signal safe because
1149
       qemu_timer_expired() can be called from a signal. */
1150
    pt = &active_timers[ts->clock->type];
1151
    for(;;) {
1152
        t = *pt;
1153
        if (!t)
1154
            break;
1155
        if (t->expire_time > expire_time)
1156
            break;
1157
        pt = &t->next;
1158
    }
1159
    ts->expire_time = expire_time;
1160
    ts->next = *pt;
1161
    *pt = ts;
1162

    
1163
    /* Rearm if necessary  */
1164
    if (pt == &active_timers[ts->clock->type]) {
1165
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1166
            qemu_rearm_alarm_timer(alarm_timer);
1167
        }
1168
        /* Interrupt execution to force deadline recalculation.  */
1169
        if (use_icount && cpu_single_env) {
1170
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1171
        }
1172
    }
1173
}
1174

    
1175
int qemu_timer_pending(QEMUTimer *ts)
1176
{
1177
    QEMUTimer *t;
1178
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1179
        if (t == ts)
1180
            return 1;
1181
    }
1182
    return 0;
1183
}
1184

    
1185
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1186
{
1187
    if (!timer_head)
1188
        return 0;
1189
    return (timer_head->expire_time <= current_time);
1190
}
1191

    
1192
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1193
{
1194
    QEMUTimer *ts;
1195

    
1196
    for(;;) {
1197
        ts = *ptimer_head;
1198
        if (!ts || ts->expire_time > current_time)
1199
            break;
1200
        /* remove timer from the list before calling the callback */
1201
        *ptimer_head = ts->next;
1202
        ts->next = NULL;
1203

    
1204
        /* run the callback (the timer list can be modified) */
1205
        ts->cb(ts->opaque);
1206
    }
1207
}
1208

    
1209
int64_t qemu_get_clock(QEMUClock *clock)
1210
{
1211
    switch(clock->type) {
1212
    case QEMU_TIMER_REALTIME:
1213
        return get_clock() / 1000000;
1214
    default:
1215
    case QEMU_TIMER_VIRTUAL:
1216
        if (use_icount) {
1217
            return cpu_get_icount();
1218
        } else {
1219
            return cpu_get_clock();
1220
        }
1221
    }
1222
}
1223

    
1224
static void init_timers(void)
1225
{
1226
    init_get_clock();
1227
    ticks_per_sec = QEMU_TIMER_BASE;
1228
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1229
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1230
}
1231

    
1232
/* save a timer */
1233
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1234
{
1235
    uint64_t expire_time;
1236

    
1237
    if (qemu_timer_pending(ts)) {
1238
        expire_time = ts->expire_time;
1239
    } else {
1240
        expire_time = -1;
1241
    }
1242
    qemu_put_be64(f, expire_time);
1243
}
1244

    
1245
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1246
{
1247
    uint64_t expire_time;
1248

    
1249
    expire_time = qemu_get_be64(f);
1250
    if (expire_time != -1) {
1251
        qemu_mod_timer(ts, expire_time);
1252
    } else {
1253
        qemu_del_timer(ts);
1254
    }
1255
}
1256

    
1257
static void timer_save(QEMUFile *f, void *opaque)
1258
{
1259
    if (cpu_ticks_enabled) {
1260
        hw_error("cannot save state if virtual timers are running");
1261
    }
1262
    qemu_put_be64(f, cpu_ticks_offset);
1263
    qemu_put_be64(f, ticks_per_sec);
1264
    qemu_put_be64(f, cpu_clock_offset);
1265
}
1266

    
1267
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1268
{
1269
    if (version_id != 1 && version_id != 2)
1270
        return -EINVAL;
1271
    if (cpu_ticks_enabled) {
1272
        return -EINVAL;
1273
    }
1274
    cpu_ticks_offset=qemu_get_be64(f);
1275
    ticks_per_sec=qemu_get_be64(f);
1276
    if (version_id == 2) {
1277
        cpu_clock_offset=qemu_get_be64(f);
1278
    }
1279
    return 0;
1280
}
1281

    
1282
#ifdef _WIN32
1283
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1284
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1285
#else
1286
static void host_alarm_handler(int host_signum)
1287
#endif
1288
{
1289
#if 0
1290
#define DISP_FREQ 1000
1291
    {
1292
        static int64_t delta_min = INT64_MAX;
1293
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1294
        static int count;
1295
        ti = qemu_get_clock(vm_clock);
1296
        if (last_clock != 0) {
1297
            delta = ti - last_clock;
1298
            if (delta < delta_min)
1299
                delta_min = delta;
1300
            if (delta > delta_max)
1301
                delta_max = delta;
1302
            delta_cum += delta;
1303
            if (++count == DISP_FREQ) {
1304
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1305
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1306
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1307
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1308
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1309
                count = 0;
1310
                delta_min = INT64_MAX;
1311
                delta_max = 0;
1312
                delta_cum = 0;
1313
            }
1314
        }
1315
        last_clock = ti;
1316
    }
1317
#endif
1318
    if (alarm_has_dynticks(alarm_timer) ||
1319
        (!use_icount &&
1320
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1321
                               qemu_get_clock(vm_clock))) ||
1322
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1323
                           qemu_get_clock(rt_clock))) {
1324
        CPUState *env = next_cpu;
1325

    
1326
#ifdef _WIN32
1327
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1328
        SetEvent(data->host_alarm);
1329
#else
1330
        static const char byte = 0;
1331
        write(alarm_timer_wfd, &byte, sizeof(byte));
1332
#endif
1333
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1334

    
1335
        if (env) {
1336
            /* stop the currently executing cpu because a timer occured */
1337
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1338
#ifdef USE_KQEMU
1339
            if (env->kqemu_enabled) {
1340
                kqemu_cpu_interrupt(env);
1341
            }
1342
#endif
1343
        }
1344
        event_pending = 1;
1345
    }
1346
}
1347

    
1348
static int64_t qemu_next_deadline(void)
1349
{
1350
    int64_t delta;
1351

    
1352
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1353
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1354
                     qemu_get_clock(vm_clock);
1355
    } else {
1356
        /* To avoid problems with overflow limit this to 2^32.  */
1357
        delta = INT32_MAX;
1358
    }
1359

    
1360
    if (delta < 0)
1361
        delta = 0;
1362

    
1363
    return delta;
1364
}
1365

    
1366
#if defined(__linux__) || defined(_WIN32)
1367
static uint64_t qemu_next_deadline_dyntick(void)
1368
{
1369
    int64_t delta;
1370
    int64_t rtdelta;
1371

    
1372
    if (use_icount)
1373
        delta = INT32_MAX;
1374
    else
1375
        delta = (qemu_next_deadline() + 999) / 1000;
1376

    
1377
    if (active_timers[QEMU_TIMER_REALTIME]) {
1378
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1379
                 qemu_get_clock(rt_clock))*1000;
1380
        if (rtdelta < delta)
1381
            delta = rtdelta;
1382
    }
1383

    
1384
    if (delta < MIN_TIMER_REARM_US)
1385
        delta = MIN_TIMER_REARM_US;
1386

    
1387
    return delta;
1388
}
1389
#endif
1390

    
1391
#ifndef _WIN32
1392

    
1393
/* Sets a specific flag */
1394
static int fcntl_setfl(int fd, int flag)
1395
{
1396
    int flags;
1397

    
1398
    flags = fcntl(fd, F_GETFL);
1399
    if (flags == -1)
1400
        return -errno;
1401

    
1402
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1403
        return -errno;
1404

    
1405
    return 0;
1406
}
1407

    
1408
#if defined(__linux__)
1409

    
1410
#define RTC_FREQ 1024
1411

    
1412
static void enable_sigio_timer(int fd)
1413
{
1414
    struct sigaction act;
1415

    
1416
    /* timer signal */
1417
    sigfillset(&act.sa_mask);
1418
    act.sa_flags = 0;
1419
    act.sa_handler = host_alarm_handler;
1420

    
1421
    sigaction(SIGIO, &act, NULL);
1422
    fcntl_setfl(fd, O_ASYNC);
1423
    fcntl(fd, F_SETOWN, getpid());
1424
}
1425

    
1426
static int hpet_start_timer(struct qemu_alarm_timer *t)
1427
{
1428
    struct hpet_info info;
1429
    int r, fd;
1430

    
1431
    fd = open("/dev/hpet", O_RDONLY);
1432
    if (fd < 0)
1433
        return -1;
1434

    
1435
    /* Set frequency */
1436
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1437
    if (r < 0) {
1438
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1439
                "error, but for better emulation accuracy type:\n"
1440
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1441
        goto fail;
1442
    }
1443

    
1444
    /* Check capabilities */
1445
    r = ioctl(fd, HPET_INFO, &info);
1446
    if (r < 0)
1447
        goto fail;
1448

    
1449
    /* Enable periodic mode */
1450
    r = ioctl(fd, HPET_EPI, 0);
1451
    if (info.hi_flags && (r < 0))
1452
        goto fail;
1453

    
1454
    /* Enable interrupt */
1455
    r = ioctl(fd, HPET_IE_ON, 0);
1456
    if (r < 0)
1457
        goto fail;
1458

    
1459
    enable_sigio_timer(fd);
1460
    t->priv = (void *)(long)fd;
1461

    
1462
    return 0;
1463
fail:
1464
    close(fd);
1465
    return -1;
1466
}
1467

    
1468
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1469
{
1470
    int fd = (long)t->priv;
1471

    
1472
    close(fd);
1473
}
1474

    
1475
static int rtc_start_timer(struct qemu_alarm_timer *t)
1476
{
1477
    int rtc_fd;
1478
    unsigned long current_rtc_freq = 0;
1479

    
1480
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1481
    if (rtc_fd < 0)
1482
        return -1;
1483
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1484
    if (current_rtc_freq != RTC_FREQ &&
1485
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1486
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1487
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1488
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1489
        goto fail;
1490
    }
1491
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1492
    fail:
1493
        close(rtc_fd);
1494
        return -1;
1495
    }
1496

    
1497
    enable_sigio_timer(rtc_fd);
1498

    
1499
    t->priv = (void *)(long)rtc_fd;
1500

    
1501
    return 0;
1502
}
1503

    
1504
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1505
{
1506
    int rtc_fd = (long)t->priv;
1507

    
1508
    close(rtc_fd);
1509
}
1510

    
1511
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1512
{
1513
    struct sigevent ev;
1514
    timer_t host_timer;
1515
    struct sigaction act;
1516

    
1517
    sigfillset(&act.sa_mask);
1518
    act.sa_flags = 0;
1519
    act.sa_handler = host_alarm_handler;
1520

    
1521
    sigaction(SIGALRM, &act, NULL);
1522

    
1523
    ev.sigev_value.sival_int = 0;
1524
    ev.sigev_notify = SIGEV_SIGNAL;
1525
    ev.sigev_signo = SIGALRM;
1526

    
1527
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1528
        perror("timer_create");
1529

    
1530
        /* disable dynticks */
1531
        fprintf(stderr, "Dynamic Ticks disabled\n");
1532

    
1533
        return -1;
1534
    }
1535

    
1536
    t->priv = (void *)(long)host_timer;
1537

    
1538
    return 0;
1539
}
1540

    
1541
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1542
{
1543
    timer_t host_timer = (timer_t)(long)t->priv;
1544

    
1545
    timer_delete(host_timer);
1546
}
1547

    
1548
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1549
{
1550
    timer_t host_timer = (timer_t)(long)t->priv;
1551
    struct itimerspec timeout;
1552
    int64_t nearest_delta_us = INT64_MAX;
1553
    int64_t current_us;
1554

    
1555
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1556
                !active_timers[QEMU_TIMER_VIRTUAL])
1557
        return;
1558

    
1559
    nearest_delta_us = qemu_next_deadline_dyntick();
1560

    
1561
    /* check whether a timer is already running */
1562
    if (timer_gettime(host_timer, &timeout)) {
1563
        perror("gettime");
1564
        fprintf(stderr, "Internal timer error: aborting\n");
1565
        exit(1);
1566
    }
1567
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1568
    if (current_us && current_us <= nearest_delta_us)
1569
        return;
1570

    
1571
    timeout.it_interval.tv_sec = 0;
1572
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1573
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1574
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1575
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1576
        perror("settime");
1577
        fprintf(stderr, "Internal timer error: aborting\n");
1578
        exit(1);
1579
    }
1580
}
1581

    
1582
#endif /* defined(__linux__) */
1583

    
1584
static int unix_start_timer(struct qemu_alarm_timer *t)
1585
{
1586
    struct sigaction act;
1587
    struct itimerval itv;
1588
    int err;
1589

    
1590
    /* timer signal */
1591
    sigfillset(&act.sa_mask);
1592
    act.sa_flags = 0;
1593
    act.sa_handler = host_alarm_handler;
1594

    
1595
    sigaction(SIGALRM, &act, NULL);
1596

    
1597
    itv.it_interval.tv_sec = 0;
1598
    /* for i386 kernel 2.6 to get 1 ms */
1599
    itv.it_interval.tv_usec = 999;
1600
    itv.it_value.tv_sec = 0;
1601
    itv.it_value.tv_usec = 10 * 1000;
1602

    
1603
    err = setitimer(ITIMER_REAL, &itv, NULL);
1604
    if (err)
1605
        return -1;
1606

    
1607
    return 0;
1608
}
1609

    
1610
static void unix_stop_timer(struct qemu_alarm_timer *t)
1611
{
1612
    struct itimerval itv;
1613

    
1614
    memset(&itv, 0, sizeof(itv));
1615
    setitimer(ITIMER_REAL, &itv, NULL);
1616
}
1617

    
1618
#endif /* !defined(_WIN32) */
1619

    
1620
static void try_to_rearm_timer(void *opaque)
1621
{
1622
    struct qemu_alarm_timer *t = opaque;
1623
#ifndef _WIN32
1624
    ssize_t len;
1625

    
1626
    /* Drain the notify pipe */
1627
    do {
1628
        char buffer[512];
1629
        len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1630
    } while ((len == -1 && errno == EINTR) || len > 0);
1631
#endif
1632

    
1633
    if (t->flags & ALARM_FLAG_EXPIRED) {
1634
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1635
        qemu_rearm_alarm_timer(alarm_timer);
1636
    }
1637
}
1638

    
1639
#ifdef _WIN32
1640

    
1641
static int win32_start_timer(struct qemu_alarm_timer *t)
1642
{
1643
    TIMECAPS tc;
1644
    struct qemu_alarm_win32 *data = t->priv;
1645
    UINT flags;
1646

    
1647
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1648
    if (!data->host_alarm) {
1649
        perror("Failed CreateEvent");
1650
        return -1;
1651
    }
1652

    
1653
    memset(&tc, 0, sizeof(tc));
1654
    timeGetDevCaps(&tc, sizeof(tc));
1655

    
1656
    if (data->period < tc.wPeriodMin)
1657
        data->period = tc.wPeriodMin;
1658

    
1659
    timeBeginPeriod(data->period);
1660

    
1661
    flags = TIME_CALLBACK_FUNCTION;
1662
    if (alarm_has_dynticks(t))
1663
        flags |= TIME_ONESHOT;
1664
    else
1665
        flags |= TIME_PERIODIC;
1666

    
1667
    data->timerId = timeSetEvent(1,         // interval (ms)
1668
                        data->period,       // resolution
1669
                        host_alarm_handler, // function
1670
                        (DWORD)t,           // parameter
1671
                        flags);
1672

    
1673
    if (!data->timerId) {
1674
        perror("Failed to initialize win32 alarm timer");
1675

    
1676
        timeEndPeriod(data->period);
1677
        CloseHandle(data->host_alarm);
1678
        return -1;
1679
    }
1680

    
1681
    qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1682

    
1683
    return 0;
1684
}
1685

    
1686
static void win32_stop_timer(struct qemu_alarm_timer *t)
1687
{
1688
    struct qemu_alarm_win32 *data = t->priv;
1689

    
1690
    timeKillEvent(data->timerId);
1691
    timeEndPeriod(data->period);
1692

    
1693
    CloseHandle(data->host_alarm);
1694
}
1695

    
1696
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1697
{
1698
    struct qemu_alarm_win32 *data = t->priv;
1699
    uint64_t nearest_delta_us;
1700

    
1701
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1702
                !active_timers[QEMU_TIMER_VIRTUAL])
1703
        return;
1704

    
1705
    nearest_delta_us = qemu_next_deadline_dyntick();
1706
    nearest_delta_us /= 1000;
1707

    
1708
    timeKillEvent(data->timerId);
1709

    
1710
    data->timerId = timeSetEvent(1,
1711
                        data->period,
1712
                        host_alarm_handler,
1713
                        (DWORD)t,
1714
                        TIME_ONESHOT | TIME_PERIODIC);
1715

    
1716
    if (!data->timerId) {
1717
        perror("Failed to re-arm win32 alarm timer");
1718

    
1719
        timeEndPeriod(data->period);
1720
        CloseHandle(data->host_alarm);
1721
        exit(1);
1722
    }
1723
}
1724

    
1725
#endif /* _WIN32 */
1726

    
1727
static int init_timer_alarm(void)
1728
{
1729
    struct qemu_alarm_timer *t = NULL;
1730
    int i, err = -1;
1731

    
1732
#ifndef _WIN32
1733
    int fds[2];
1734

    
1735
    err = pipe(fds);
1736
    if (err == -1)
1737
        return -errno;
1738

    
1739
    err = fcntl_setfl(fds[0], O_NONBLOCK);
1740
    if (err < 0)
1741
        goto fail;
1742

    
1743
    err = fcntl_setfl(fds[1], O_NONBLOCK);
1744
    if (err < 0)
1745
        goto fail;
1746

    
1747
    alarm_timer_rfd = fds[0];
1748
    alarm_timer_wfd = fds[1];
1749
#endif
1750

    
1751
    for (i = 0; alarm_timers[i].name; i++) {
1752
        t = &alarm_timers[i];
1753

    
1754
        err = t->start(t);
1755
        if (!err)
1756
            break;
1757
    }
1758

    
1759
    if (err) {
1760
        err = -ENOENT;
1761
        goto fail;
1762
    }
1763

    
1764
#ifndef _WIN32
1765
    qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1766
                         try_to_rearm_timer, NULL, t);
1767
#endif
1768

    
1769
    alarm_timer = t;
1770

    
1771
    return 0;
1772

    
1773
fail:
1774
#ifndef _WIN32
1775
    close(fds[0]);
1776
    close(fds[1]);
1777
#endif
1778
    return err;
1779
}
1780

    
1781
static void quit_timers(void)
1782
{
1783
    alarm_timer->stop(alarm_timer);
1784
    alarm_timer = NULL;
1785
}
1786

    
1787
/***********************************************************/
1788
/* host time/date access */
1789
void qemu_get_timedate(struct tm *tm, int offset)
1790
{
1791
    time_t ti;
1792
    struct tm *ret;
1793

    
1794
    time(&ti);
1795
    ti += offset;
1796
    if (rtc_date_offset == -1) {
1797
        if (rtc_utc)
1798
            ret = gmtime(&ti);
1799
        else
1800
            ret = localtime(&ti);
1801
    } else {
1802
        ti -= rtc_date_offset;
1803
        ret = gmtime(&ti);
1804
    }
1805

    
1806
    memcpy(tm, ret, sizeof(struct tm));
1807
}
1808

    
1809
int qemu_timedate_diff(struct tm *tm)
1810
{
1811
    time_t seconds;
1812

    
1813
    if (rtc_date_offset == -1)
1814
        if (rtc_utc)
1815
            seconds = mktimegm(tm);
1816
        else
1817
            seconds = mktime(tm);
1818
    else
1819
        seconds = mktimegm(tm) + rtc_date_offset;
1820

    
1821
    return seconds - time(NULL);
1822
}
1823

    
1824
#ifdef _WIN32
1825
static void socket_cleanup(void)
1826
{
1827
    WSACleanup();
1828
}
1829

    
1830
static int socket_init(void)
1831
{
1832
    WSADATA Data;
1833
    int ret, err;
1834

    
1835
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1836
    if (ret != 0) {
1837
        err = WSAGetLastError();
1838
        fprintf(stderr, "WSAStartup: %d\n", err);
1839
        return -1;
1840
    }
1841
    atexit(socket_cleanup);
1842
    return 0;
1843
}
1844
#endif
1845

    
1846
const char *get_opt_name(char *buf, int buf_size, const char *p)
1847
{
1848
    char *q;
1849

    
1850
    q = buf;
1851
    while (*p != '\0' && *p != '=') {
1852
        if (q && (q - buf) < buf_size - 1)
1853
            *q++ = *p;
1854
        p++;
1855
    }
1856
    if (q)
1857
        *q = '\0';
1858

    
1859
    return p;
1860
}
1861

    
1862
const char *get_opt_value(char *buf, int buf_size, const char *p)
1863
{
1864
    char *q;
1865

    
1866
    q = buf;
1867
    while (*p != '\0') {
1868
        if (*p == ',') {
1869
            if (*(p + 1) != ',')
1870
                break;
1871
            p++;
1872
        }
1873
        if (q && (q - buf) < buf_size - 1)
1874
            *q++ = *p;
1875
        p++;
1876
    }
1877
    if (q)
1878
        *q = '\0';
1879

    
1880
    return p;
1881
}
1882

    
1883
int get_param_value(char *buf, int buf_size,
1884
                    const char *tag, const char *str)
1885
{
1886
    const char *p;
1887
    char option[128];
1888

    
1889
    p = str;
1890
    for(;;) {
1891
        p = get_opt_name(option, sizeof(option), p);
1892
        if (*p != '=')
1893
            break;
1894
        p++;
1895
        if (!strcmp(tag, option)) {
1896
            (void)get_opt_value(buf, buf_size, p);
1897
            return strlen(buf);
1898
        } else {
1899
            p = get_opt_value(NULL, 0, p);
1900
        }
1901
        if (*p != ',')
1902
            break;
1903
        p++;
1904
    }
1905
    return 0;
1906
}
1907

    
1908
int check_params(char *buf, int buf_size,
1909
                 const char * const *params, const char *str)
1910
{
1911
    const char *p;
1912
    int i;
1913

    
1914
    p = str;
1915
    for(;;) {
1916
        p = get_opt_name(buf, buf_size, p);
1917
        if (*p != '=')
1918
            return -1;
1919
        p++;
1920
        for(i = 0; params[i] != NULL; i++)
1921
            if (!strcmp(params[i], buf))
1922
                break;
1923
        if (params[i] == NULL)
1924
            return -1;
1925
        p = get_opt_value(NULL, 0, p);
1926
        if (*p != ',')
1927
            break;
1928
        p++;
1929
    }
1930
    return 0;
1931
}
1932

    
1933
/***********************************************************/
1934
/* Bluetooth support */
1935
static int nb_hcis;
1936
static int cur_hci;
1937
static struct HCIInfo *hci_table[MAX_NICS];
1938

    
1939
static struct bt_vlan_s {
1940
    struct bt_scatternet_s net;
1941
    int id;
1942
    struct bt_vlan_s *next;
1943
} *first_bt_vlan;
1944

    
1945
/* find or alloc a new bluetooth "VLAN" */
1946
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1947
{
1948
    struct bt_vlan_s **pvlan, *vlan;
1949
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1950
        if (vlan->id == id)
1951
            return &vlan->net;
1952
    }
1953
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1954
    vlan->id = id;
1955
    pvlan = &first_bt_vlan;
1956
    while (*pvlan != NULL)
1957
        pvlan = &(*pvlan)->next;
1958
    *pvlan = vlan;
1959
    return &vlan->net;
1960
}
1961

    
1962
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1963
{
1964
}
1965

    
1966
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1967
{
1968
    return -ENOTSUP;
1969
}
1970

    
1971
static struct HCIInfo null_hci = {
1972
    .cmd_send = null_hci_send,
1973
    .sco_send = null_hci_send,
1974
    .acl_send = null_hci_send,
1975
    .bdaddr_set = null_hci_addr_set,
1976
};
1977

    
1978
struct HCIInfo *qemu_next_hci(void)
1979
{
1980
    if (cur_hci == nb_hcis)
1981
        return &null_hci;
1982

    
1983
    return hci_table[cur_hci++];
1984
}
1985

    
1986
static struct HCIInfo *hci_init(const char *str)
1987
{
1988
    char *endp;
1989
    struct bt_scatternet_s *vlan = 0;
1990

    
1991
    if (!strcmp(str, "null"))
1992
        /* null */
1993
        return &null_hci;
1994
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1995
        /* host[:hciN] */
1996
        return bt_host_hci(str[4] ? str + 5 : "hci0");
1997
    else if (!strncmp(str, "hci", 3)) {
1998
        /* hci[,vlan=n] */
1999
        if (str[3]) {
2000
            if (!strncmp(str + 3, ",vlan=", 6)) {
2001
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2002
                if (*endp)
2003
                    vlan = 0;
2004
            }
2005
        } else
2006
            vlan = qemu_find_bt_vlan(0);
2007
        if (vlan)
2008
           return bt_new_hci(vlan);
2009
    }
2010

    
2011
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2012

    
2013
    return 0;
2014
}
2015

    
2016
static int bt_hci_parse(const char *str)
2017
{
2018
    struct HCIInfo *hci;
2019
    bdaddr_t bdaddr;
2020

    
2021
    if (nb_hcis >= MAX_NICS) {
2022
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2023
        return -1;
2024
    }
2025

    
2026
    hci = hci_init(str);
2027
    if (!hci)
2028
        return -1;
2029

    
2030
    bdaddr.b[0] = 0x52;
2031
    bdaddr.b[1] = 0x54;
2032
    bdaddr.b[2] = 0x00;
2033
    bdaddr.b[3] = 0x12;
2034
    bdaddr.b[4] = 0x34;
2035
    bdaddr.b[5] = 0x56 + nb_hcis;
2036
    hci->bdaddr_set(hci, bdaddr.b);
2037

    
2038
    hci_table[nb_hcis++] = hci;
2039

    
2040
    return 0;
2041
}
2042

    
2043
static void bt_vhci_add(int vlan_id)
2044
{
2045
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2046

    
2047
    if (!vlan->slave)
2048
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2049
                        "an empty scatternet %i\n", vlan_id);
2050

    
2051
    bt_vhci_init(bt_new_hci(vlan));
2052
}
2053

    
2054
static struct bt_device_s *bt_device_add(const char *opt)
2055
{
2056
    struct bt_scatternet_s *vlan;
2057
    int vlan_id = 0;
2058
    char *endp = strstr(opt, ",vlan=");
2059
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2060
    char devname[10];
2061

    
2062
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2063

    
2064
    if (endp) {
2065
        vlan_id = strtol(endp + 6, &endp, 0);
2066
        if (*endp) {
2067
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2068
            return 0;
2069
        }
2070
    }
2071

    
2072
    vlan = qemu_find_bt_vlan(vlan_id);
2073

    
2074
    if (!vlan->slave)
2075
        fprintf(stderr, "qemu: warning: adding a slave device to "
2076
                        "an empty scatternet %i\n", vlan_id);
2077

    
2078
    if (!strcmp(devname, "keyboard"))
2079
        return bt_keyboard_init(vlan);
2080

    
2081
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2082
    return 0;
2083
}
2084

    
2085
static int bt_parse(const char *opt)
2086
{
2087
    const char *endp, *p;
2088
    int vlan;
2089

    
2090
    if (strstart(opt, "hci", &endp)) {
2091
        if (!*endp || *endp == ',') {
2092
            if (*endp)
2093
                if (!strstart(endp, ",vlan=", 0))
2094
                    opt = endp + 1;
2095

    
2096
            return bt_hci_parse(opt);
2097
       }
2098
    } else if (strstart(opt, "vhci", &endp)) {
2099
        if (!*endp || *endp == ',') {
2100
            if (*endp) {
2101
                if (strstart(endp, ",vlan=", &p)) {
2102
                    vlan = strtol(p, (char **) &endp, 0);
2103
                    if (*endp) {
2104
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2105
                        return 1;
2106
                    }
2107
                } else {
2108
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2109
                    return 1;
2110
                }
2111
            } else
2112
                vlan = 0;
2113

    
2114
            bt_vhci_add(vlan);
2115
            return 0;
2116
        }
2117
    } else if (strstart(opt, "device:", &endp))
2118
        return !bt_device_add(endp);
2119

    
2120
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2121
    return 1;
2122
}
2123

    
2124
/***********************************************************/
2125
/* QEMU Block devices */
2126

    
2127
#define HD_ALIAS "index=%d,media=disk"
2128
#ifdef TARGET_PPC
2129
#define CDROM_ALIAS "index=1,media=cdrom"
2130
#else
2131
#define CDROM_ALIAS "index=2,media=cdrom"
2132
#endif
2133
#define FD_ALIAS "index=%d,if=floppy"
2134
#define PFLASH_ALIAS "if=pflash"
2135
#define MTD_ALIAS "if=mtd"
2136
#define SD_ALIAS "index=0,if=sd"
2137

    
2138
static int drive_add(const char *file, const char *fmt, ...)
2139
{
2140
    va_list ap;
2141

    
2142
    if (nb_drives_opt >= MAX_DRIVES) {
2143
        fprintf(stderr, "qemu: too many drives\n");
2144
        exit(1);
2145
    }
2146

    
2147
    drives_opt[nb_drives_opt].file = file;
2148
    va_start(ap, fmt);
2149
    vsnprintf(drives_opt[nb_drives_opt].opt,
2150
              sizeof(drives_opt[0].opt), fmt, ap);
2151
    va_end(ap);
2152

    
2153
    return nb_drives_opt++;
2154
}
2155

    
2156
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2157
{
2158
    int index;
2159

    
2160
    /* seek interface, bus and unit */
2161

    
2162
    for (index = 0; index < nb_drives; index++)
2163
        if (drives_table[index].type == type &&
2164
            drives_table[index].bus == bus &&
2165
            drives_table[index].unit == unit)
2166
        return index;
2167

    
2168
    return -1;
2169
}
2170

    
2171
int drive_get_max_bus(BlockInterfaceType type)
2172
{
2173
    int max_bus;
2174
    int index;
2175

    
2176
    max_bus = -1;
2177
    for (index = 0; index < nb_drives; index++) {
2178
        if(drives_table[index].type == type &&
2179
           drives_table[index].bus > max_bus)
2180
            max_bus = drives_table[index].bus;
2181
    }
2182
    return max_bus;
2183
}
2184

    
2185
const char *drive_get_serial(BlockDriverState *bdrv)
2186
{
2187
    int index;
2188

    
2189
    for (index = 0; index < nb_drives; index++)
2190
        if (drives_table[index].bdrv == bdrv)
2191
            return drives_table[index].serial;
2192

    
2193
    return "\0";
2194
}
2195

    
2196
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2197
{
2198
    int index;
2199

    
2200
    for (index = 0; index < nb_drives; index++)
2201
        if (drives_table[index].bdrv == bdrv)
2202
            return drives_table[index].onerror;
2203

    
2204
    return BLOCK_ERR_REPORT;
2205
}
2206

    
2207
static void bdrv_format_print(void *opaque, const char *name)
2208
{
2209
    fprintf(stderr, " %s", name);
2210
}
2211

    
2212
static int drive_init(struct drive_opt *arg, int snapshot,
2213
                      QEMUMachine *machine)
2214
{
2215
    char buf[128];
2216
    char file[1024];
2217
    char devname[128];
2218
    char serial[21];
2219
    const char *mediastr = "";
2220
    BlockInterfaceType type;
2221
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2222
    int bus_id, unit_id;
2223
    int cyls, heads, secs, translation;
2224
    BlockDriverState *bdrv;
2225
    BlockDriver *drv = NULL;
2226
    int max_devs;
2227
    int index;
2228
    int cache;
2229
    int bdrv_flags, onerror;
2230
    char *str = arg->opt;
2231
    static const char * const params[] = { "bus", "unit", "if", "index",
2232
                                           "cyls", "heads", "secs", "trans",
2233
                                           "media", "snapshot", "file",
2234
                                           "cache", "format", "serial", "werror",
2235
                                           NULL };
2236

    
2237
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2238
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2239
                         buf, str);
2240
         return -1;
2241
    }
2242

    
2243
    file[0] = 0;
2244
    cyls = heads = secs = 0;
2245
    bus_id = 0;
2246
    unit_id = -1;
2247
    translation = BIOS_ATA_TRANSLATION_AUTO;
2248
    index = -1;
2249
    cache = 3;
2250

    
2251
    if (machine->use_scsi) {
2252
        type = IF_SCSI;
2253
        max_devs = MAX_SCSI_DEVS;
2254
        pstrcpy(devname, sizeof(devname), "scsi");
2255
    } else {
2256
        type = IF_IDE;
2257
        max_devs = MAX_IDE_DEVS;
2258
        pstrcpy(devname, sizeof(devname), "ide");
2259
    }
2260
    media = MEDIA_DISK;
2261

    
2262
    /* extract parameters */
2263

    
2264
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2265
        bus_id = strtol(buf, NULL, 0);
2266
        if (bus_id < 0) {
2267
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2268
            return -1;
2269
        }
2270
    }
2271

    
2272
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2273
        unit_id = strtol(buf, NULL, 0);
2274
        if (unit_id < 0) {
2275
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2276
            return -1;
2277
        }
2278
    }
2279

    
2280
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2281
        pstrcpy(devname, sizeof(devname), buf);
2282
        if (!strcmp(buf, "ide")) {
2283
            type = IF_IDE;
2284
            max_devs = MAX_IDE_DEVS;
2285
        } else if (!strcmp(buf, "scsi")) {
2286
            type = IF_SCSI;
2287
            max_devs = MAX_SCSI_DEVS;
2288
        } else if (!strcmp(buf, "floppy")) {
2289
            type = IF_FLOPPY;
2290
            max_devs = 0;
2291
        } else if (!strcmp(buf, "pflash")) {
2292
            type = IF_PFLASH;
2293
            max_devs = 0;
2294
        } else if (!strcmp(buf, "mtd")) {
2295
            type = IF_MTD;
2296
            max_devs = 0;
2297
        } else if (!strcmp(buf, "sd")) {
2298
            type = IF_SD;
2299
            max_devs = 0;
2300
        } else if (!strcmp(buf, "virtio")) {
2301
            type = IF_VIRTIO;
2302
            max_devs = 0;
2303
        } else {
2304
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2305
            return -1;
2306
        }
2307
    }
2308

    
2309
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2310
        index = strtol(buf, NULL, 0);
2311
        if (index < 0) {
2312
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2313
            return -1;
2314
        }
2315
    }
2316

    
2317
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2318
        cyls = strtol(buf, NULL, 0);
2319
    }
2320

    
2321
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2322
        heads = strtol(buf, NULL, 0);
2323
    }
2324

    
2325
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2326
        secs = strtol(buf, NULL, 0);
2327
    }
2328

    
2329
    if (cyls || heads || secs) {
2330
        if (cyls < 1 || cyls > 16383) {
2331
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2332
            return -1;
2333
        }
2334
        if (heads < 1 || heads > 16) {
2335
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2336
            return -1;
2337
        }
2338
        if (secs < 1 || secs > 63) {
2339
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2340
            return -1;
2341
        }
2342
    }
2343

    
2344
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2345
        if (!cyls) {
2346
            fprintf(stderr,
2347
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2348
                    str);
2349
            return -1;
2350
        }
2351
        if (!strcmp(buf, "none"))
2352
            translation = BIOS_ATA_TRANSLATION_NONE;
2353
        else if (!strcmp(buf, "lba"))
2354
            translation = BIOS_ATA_TRANSLATION_LBA;
2355
        else if (!strcmp(buf, "auto"))
2356
            translation = BIOS_ATA_TRANSLATION_AUTO;
2357
        else {
2358
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2359
            return -1;
2360
        }
2361
    }
2362

    
2363
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2364
        if (!strcmp(buf, "disk")) {
2365
            media = MEDIA_DISK;
2366
        } else if (!strcmp(buf, "cdrom")) {
2367
            if (cyls || secs || heads) {
2368
                fprintf(stderr,
2369
                        "qemu: '%s' invalid physical CHS format\n", str);
2370
                return -1;
2371
            }
2372
            media = MEDIA_CDROM;
2373
        } else {
2374
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2375
            return -1;
2376
        }
2377
    }
2378

    
2379
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2380
        if (!strcmp(buf, "on"))
2381
            snapshot = 1;
2382
        else if (!strcmp(buf, "off"))
2383
            snapshot = 0;
2384
        else {
2385
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2386
            return -1;
2387
        }
2388
    }
2389

    
2390
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2391
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2392
            cache = 0;
2393
        else if (!strcmp(buf, "writethrough"))
2394
            cache = 1;
2395
        else if (!strcmp(buf, "writeback"))
2396
            cache = 2;
2397
        else {
2398
           fprintf(stderr, "qemu: invalid cache option\n");
2399
           return -1;
2400
        }
2401
    }
2402

    
2403
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2404
       if (strcmp(buf, "?") == 0) {
2405
            fprintf(stderr, "qemu: Supported formats:");
2406
            bdrv_iterate_format(bdrv_format_print, NULL);
2407
            fprintf(stderr, "\n");
2408
            return -1;
2409
        }
2410
        drv = bdrv_find_format(buf);
2411
        if (!drv) {
2412
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2413
            return -1;
2414
        }
2415
    }
2416

    
2417
    if (arg->file == NULL)
2418
        get_param_value(file, sizeof(file), "file", str);
2419
    else
2420
        pstrcpy(file, sizeof(file), arg->file);
2421

    
2422
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2423
            memset(serial, 0,  sizeof(serial));
2424

    
2425
    onerror = BLOCK_ERR_REPORT;
2426
    if (get_param_value(buf, sizeof(serial), "werror", str)) {
2427
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2428
            fprintf(stderr, "werror is no supported by this format\n");
2429
            return -1;
2430
        }
2431
        if (!strcmp(buf, "ignore"))
2432
            onerror = BLOCK_ERR_IGNORE;
2433
        else if (!strcmp(buf, "enospc"))
2434
            onerror = BLOCK_ERR_STOP_ENOSPC;
2435
        else if (!strcmp(buf, "stop"))
2436
            onerror = BLOCK_ERR_STOP_ANY;
2437
        else if (!strcmp(buf, "report"))
2438
            onerror = BLOCK_ERR_REPORT;
2439
        else {
2440
            fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2441
            return -1;
2442
        }
2443
    }
2444

    
2445
    /* compute bus and unit according index */
2446

    
2447
    if (index != -1) {
2448
        if (bus_id != 0 || unit_id != -1) {
2449
            fprintf(stderr,
2450
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2451
            return -1;
2452
        }
2453
        if (max_devs == 0)
2454
        {
2455
            unit_id = index;
2456
            bus_id = 0;
2457
        } else {
2458
            unit_id = index % max_devs;
2459
            bus_id = index / max_devs;
2460
        }
2461
    }
2462

    
2463
    /* if user doesn't specify a unit_id,
2464
     * try to find the first free
2465
     */
2466

    
2467
    if (unit_id == -1) {
2468
       unit_id = 0;
2469
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2470
           unit_id++;
2471
           if (max_devs && unit_id >= max_devs) {
2472
               unit_id -= max_devs;
2473
               bus_id++;
2474
           }
2475
       }
2476
    }
2477

    
2478
    /* check unit id */
2479

    
2480
    if (max_devs && unit_id >= max_devs) {
2481
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2482
                        str, unit_id, max_devs - 1);
2483
        return -1;
2484
    }
2485

    
2486
    /*
2487
     * ignore multiple definitions
2488
     */
2489

    
2490
    if (drive_get_index(type, bus_id, unit_id) != -1)
2491
        return 0;
2492

    
2493
    /* init */
2494

    
2495
    if (type == IF_IDE || type == IF_SCSI)
2496
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2497
    if (max_devs)
2498
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2499
                 devname, bus_id, mediastr, unit_id);
2500
    else
2501
        snprintf(buf, sizeof(buf), "%s%s%i",
2502
                 devname, mediastr, unit_id);
2503
    bdrv = bdrv_new(buf);
2504
    drives_table[nb_drives].bdrv = bdrv;
2505
    drives_table[nb_drives].type = type;
2506
    drives_table[nb_drives].bus = bus_id;
2507
    drives_table[nb_drives].unit = unit_id;
2508
    drives_table[nb_drives].onerror = onerror;
2509
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2510
    nb_drives++;
2511

    
2512
    switch(type) {
2513
    case IF_IDE:
2514
    case IF_SCSI:
2515
        switch(media) {
2516
        case MEDIA_DISK:
2517
            if (cyls != 0) {
2518
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2519
                bdrv_set_translation_hint(bdrv, translation);
2520
            }
2521
            break;
2522
        case MEDIA_CDROM:
2523
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2524
            break;
2525
        }
2526
        break;
2527
    case IF_SD:
2528
        /* FIXME: This isn't really a floppy, but it's a reasonable
2529
           approximation.  */
2530
    case IF_FLOPPY:
2531
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2532
        break;
2533
    case IF_PFLASH:
2534
    case IF_MTD:
2535
    case IF_VIRTIO:
2536
        break;
2537
    }
2538
    if (!file[0])
2539
        return 0;
2540
    bdrv_flags = 0;
2541
    if (snapshot) {
2542
        bdrv_flags |= BDRV_O_SNAPSHOT;
2543
        cache = 2; /* always use write-back with snapshot */
2544
    }
2545
    if (cache == 0) /* no caching */
2546
        bdrv_flags |= BDRV_O_NOCACHE;
2547
    else if (cache == 2) /* write-back */
2548
        bdrv_flags |= BDRV_O_CACHE_WB;
2549
    else if (cache == 3) /* not specified */
2550
        bdrv_flags |= BDRV_O_CACHE_DEF;
2551
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2552
        fprintf(stderr, "qemu: could not open disk image %s\n",
2553
                        file);
2554
        return -1;
2555
    }
2556
    return 0;
2557
}
2558

    
2559
/***********************************************************/
2560
/* USB devices */
2561

    
2562
static USBPort *used_usb_ports;
2563
static USBPort *free_usb_ports;
2564

    
2565
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2566
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2567
                            usb_attachfn attach)
2568
{
2569
    port->opaque = opaque;
2570
    port->index = index;
2571
    port->attach = attach;
2572
    port->next = free_usb_ports;
2573
    free_usb_ports = port;
2574
}
2575

    
2576
int usb_device_add_dev(USBDevice *dev)
2577
{
2578
    USBPort *port;
2579

    
2580
    /* Find a USB port to add the device to.  */
2581
    port = free_usb_ports;
2582
    if (!port->next) {
2583
        USBDevice *hub;
2584

    
2585
        /* Create a new hub and chain it on.  */
2586
        free_usb_ports = NULL;
2587
        port->next = used_usb_ports;
2588
        used_usb_ports = port;
2589

    
2590
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2591
        usb_attach(port, hub);
2592
        port = free_usb_ports;
2593
    }
2594

    
2595
    free_usb_ports = port->next;
2596
    port->next = used_usb_ports;
2597
    used_usb_ports = port;
2598
    usb_attach(port, dev);
2599
    return 0;
2600
}
2601

    
2602
static int usb_device_add(const char *devname)
2603
{
2604
    const char *p;
2605
    USBDevice *dev;
2606

    
2607
    if (!free_usb_ports)
2608
        return -1;
2609

    
2610
    if (strstart(devname, "host:", &p)) {
2611
        dev = usb_host_device_open(p);
2612
    } else if (!strcmp(devname, "mouse")) {
2613
        dev = usb_mouse_init();
2614
    } else if (!strcmp(devname, "tablet")) {
2615
        dev = usb_tablet_init();
2616
    } else if (!strcmp(devname, "keyboard")) {
2617
        dev = usb_keyboard_init();
2618
    } else if (strstart(devname, "disk:", &p)) {
2619
        dev = usb_msd_init(p);
2620
    } else if (!strcmp(devname, "wacom-tablet")) {
2621
        dev = usb_wacom_init();
2622
    } else if (strstart(devname, "serial:", &p)) {
2623
        dev = usb_serial_init(p);
2624
#ifdef CONFIG_BRLAPI
2625
    } else if (!strcmp(devname, "braille")) {
2626
        dev = usb_baum_init();
2627
#endif
2628
    } else if (strstart(devname, "net:", &p)) {
2629
        int nic = nb_nics;
2630

    
2631
        if (net_client_init("nic", p) < 0)
2632
            return -1;
2633
        nd_table[nic].model = "usb";
2634
        dev = usb_net_init(&nd_table[nic]);
2635
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2636
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2637
                        bt_new_hci(qemu_find_bt_vlan(0)));
2638
    } else {
2639
        return -1;
2640
    }
2641
    if (!dev)
2642
        return -1;
2643

    
2644
    return usb_device_add_dev(dev);
2645
}
2646

    
2647
int usb_device_del_addr(int bus_num, int addr)
2648
{
2649
    USBPort *port;
2650
    USBPort **lastp;
2651
    USBDevice *dev;
2652

    
2653
    if (!used_usb_ports)
2654
        return -1;
2655

    
2656
    if (bus_num != 0)
2657
        return -1;
2658

    
2659
    lastp = &used_usb_ports;
2660
    port = used_usb_ports;
2661
    while (port && port->dev->addr != addr) {
2662
        lastp = &port->next;
2663
        port = port->next;
2664
    }
2665

    
2666
    if (!port)
2667
        return -1;
2668

    
2669
    dev = port->dev;
2670
    *lastp = port->next;
2671
    usb_attach(port, NULL);
2672
    dev->handle_destroy(dev);
2673
    port->next = free_usb_ports;
2674
    free_usb_ports = port;
2675
    return 0;
2676
}
2677

    
2678
static int usb_device_del(const char *devname)
2679
{
2680
    int bus_num, addr;
2681
    const char *p;
2682

    
2683
    if (strstart(devname, "host:", &p))
2684
        return usb_host_device_close(p);
2685

    
2686
    if (!used_usb_ports)
2687
        return -1;
2688

    
2689
    p = strchr(devname, '.');
2690
    if (!p)
2691
        return -1;
2692
    bus_num = strtoul(devname, NULL, 0);
2693
    addr = strtoul(p + 1, NULL, 0);
2694

    
2695
    return usb_device_del_addr(bus_num, addr);
2696
}
2697

    
2698
void do_usb_add(const char *devname)
2699
{
2700
    usb_device_add(devname);
2701
}
2702

    
2703
void do_usb_del(const char *devname)
2704
{
2705
    usb_device_del(devname);
2706
}
2707

    
2708
void usb_info(void)
2709
{
2710
    USBDevice *dev;
2711
    USBPort *port;
2712
    const char *speed_str;
2713

    
2714
    if (!usb_enabled) {
2715
        term_printf("USB support not enabled\n");
2716
        return;
2717
    }
2718

    
2719
    for (port = used_usb_ports; port; port = port->next) {
2720
        dev = port->dev;
2721
        if (!dev)
2722
            continue;
2723
        switch(dev->speed) {
2724
        case USB_SPEED_LOW:
2725
            speed_str = "1.5";
2726
            break;
2727
        case USB_SPEED_FULL:
2728
            speed_str = "12";
2729
            break;
2730
        case USB_SPEED_HIGH:
2731
            speed_str = "480";
2732
            break;
2733
        default:
2734
            speed_str = "?";
2735
            break;
2736
        }
2737
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
2738
                    0, dev->addr, speed_str, dev->devname);
2739
    }
2740
}
2741

    
2742
/***********************************************************/
2743
/* PCMCIA/Cardbus */
2744

    
2745
static struct pcmcia_socket_entry_s {
2746
    struct pcmcia_socket_s *socket;
2747
    struct pcmcia_socket_entry_s *next;
2748
} *pcmcia_sockets = 0;
2749

    
2750
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2751
{
2752
    struct pcmcia_socket_entry_s *entry;
2753

    
2754
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2755
    entry->socket = socket;
2756
    entry->next = pcmcia_sockets;
2757
    pcmcia_sockets = entry;
2758
}
2759

    
2760
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2761
{
2762
    struct pcmcia_socket_entry_s *entry, **ptr;
2763

    
2764
    ptr = &pcmcia_sockets;
2765
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2766
        if (entry->socket == socket) {
2767
            *ptr = entry->next;
2768
            qemu_free(entry);
2769
        }
2770
}
2771

    
2772
void pcmcia_info(void)
2773
{
2774
    struct pcmcia_socket_entry_s *iter;
2775
    if (!pcmcia_sockets)
2776
        term_printf("No PCMCIA sockets\n");
2777

    
2778
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2779
        term_printf("%s: %s\n", iter->socket->slot_string,
2780
                    iter->socket->attached ? iter->socket->card_string :
2781
                    "Empty");
2782
}
2783

    
2784
/***********************************************************/
2785
/* register display */
2786

    
2787
void register_displaystate(DisplayState *ds)
2788
{
2789
    DisplayState **s;
2790
    s = &display_state;
2791
    while (*s != NULL)
2792
        s = &(*s)->next;
2793
    ds->next = NULL;
2794
    *s = ds;
2795
}
2796

    
2797
DisplayState *get_displaystate(void)
2798
{
2799
    return display_state;
2800
}
2801

    
2802
/* dumb display */
2803

    
2804
static void dumb_display_init(void)
2805
{
2806
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2807
    ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2808
    register_displaystate(ds);
2809
}
2810

    
2811
/***********************************************************/
2812
/* I/O handling */
2813

    
2814
#define MAX_IO_HANDLERS 64
2815

    
2816
typedef struct IOHandlerRecord {
2817
    int fd;
2818
    IOCanRWHandler *fd_read_poll;
2819
    IOHandler *fd_read;
2820
    IOHandler *fd_write;
2821
    int deleted;
2822
    void *opaque;
2823
    /* temporary data */
2824
    struct pollfd *ufd;
2825
    struct IOHandlerRecord *next;
2826
} IOHandlerRecord;
2827

    
2828
static IOHandlerRecord *first_io_handler;
2829

    
2830
/* XXX: fd_read_poll should be suppressed, but an API change is
2831
   necessary in the character devices to suppress fd_can_read(). */
2832
int qemu_set_fd_handler2(int fd,
2833
                         IOCanRWHandler *fd_read_poll,
2834
                         IOHandler *fd_read,
2835
                         IOHandler *fd_write,
2836
                         void *opaque)
2837
{
2838
    IOHandlerRecord **pioh, *ioh;
2839

    
2840
    if (!fd_read && !fd_write) {
2841
        pioh = &first_io_handler;
2842
        for(;;) {
2843
            ioh = *pioh;
2844
            if (ioh == NULL)
2845
                break;
2846
            if (ioh->fd == fd) {
2847
                ioh->deleted = 1;
2848
                break;
2849
            }
2850
            pioh = &ioh->next;
2851
        }
2852
    } else {
2853
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2854
            if (ioh->fd == fd)
2855
                goto found;
2856
        }
2857
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2858
        ioh->next = first_io_handler;
2859
        first_io_handler = ioh;
2860
    found:
2861
        ioh->fd = fd;
2862
        ioh->fd_read_poll = fd_read_poll;
2863
        ioh->fd_read = fd_read;
2864
        ioh->fd_write = fd_write;
2865
        ioh->opaque = opaque;
2866
        ioh->deleted = 0;
2867
    }
2868
    return 0;
2869
}
2870

    
2871
int qemu_set_fd_handler(int fd,
2872
                        IOHandler *fd_read,
2873
                        IOHandler *fd_write,
2874
                        void *opaque)
2875
{
2876
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2877
}
2878

    
2879
#ifdef _WIN32
2880
/***********************************************************/
2881
/* Polling handling */
2882

    
2883
typedef struct PollingEntry {
2884
    PollingFunc *func;
2885
    void *opaque;
2886
    struct PollingEntry *next;
2887
} PollingEntry;
2888

    
2889
static PollingEntry *first_polling_entry;
2890

    
2891
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2892
{
2893
    PollingEntry **ppe, *pe;
2894
    pe = qemu_mallocz(sizeof(PollingEntry));
2895
    pe->func = func;
2896
    pe->opaque = opaque;
2897
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2898
    *ppe = pe;
2899
    return 0;
2900
}
2901

    
2902
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2903
{
2904
    PollingEntry **ppe, *pe;
2905
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2906
        pe = *ppe;
2907
        if (pe->func == func && pe->opaque == opaque) {
2908
            *ppe = pe->next;
2909
            qemu_free(pe);
2910
            break;
2911
        }
2912
    }
2913
}
2914

    
2915
/***********************************************************/
2916
/* Wait objects support */
2917
typedef struct WaitObjects {
2918
    int num;
2919
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2920
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2921
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2922
} WaitObjects;
2923

    
2924
static WaitObjects wait_objects = {0};
2925

    
2926
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2927
{
2928
    WaitObjects *w = &wait_objects;
2929

    
2930
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2931
        return -1;
2932
    w->events[w->num] = handle;
2933
    w->func[w->num] = func;
2934
    w->opaque[w->num] = opaque;
2935
    w->num++;
2936
    return 0;
2937
}
2938

    
2939
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2940
{
2941
    int i, found;
2942
    WaitObjects *w = &wait_objects;
2943

    
2944
    found = 0;
2945
    for (i = 0; i < w->num; i++) {
2946
        if (w->events[i] == handle)
2947
            found = 1;
2948
        if (found) {
2949
            w->events[i] = w->events[i + 1];
2950
            w->func[i] = w->func[i + 1];
2951
            w->opaque[i] = w->opaque[i + 1];
2952
        }
2953
    }
2954
    if (found)
2955
        w->num--;
2956
}
2957
#endif
2958

    
2959
/***********************************************************/
2960
/* ram save/restore */
2961

    
2962
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2963
{
2964
    int v;
2965

    
2966
    v = qemu_get_byte(f);
2967
    switch(v) {
2968
    case 0:
2969
        if (qemu_get_buffer(f, buf, len) != len)
2970
            return -EIO;
2971
        break;
2972
    case 1:
2973
        v = qemu_get_byte(f);
2974
        memset(buf, v, len);
2975
        break;
2976
    default:
2977
        return -EINVAL;
2978
    }
2979

    
2980
    if (qemu_file_has_error(f))
2981
        return -EIO;
2982

    
2983
    return 0;
2984
}
2985

    
2986
static int ram_load_v1(QEMUFile *f, void *opaque)
2987
{
2988
    int ret;
2989
    ram_addr_t i;
2990

    
2991
    if (qemu_get_be32(f) != phys_ram_size)
2992
        return -EINVAL;
2993
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2994
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2995
        if (ret)
2996
            return ret;
2997
    }
2998
    return 0;
2999
}
3000

    
3001
#define BDRV_HASH_BLOCK_SIZE 1024
3002
#define IOBUF_SIZE 4096
3003
#define RAM_CBLOCK_MAGIC 0xfabe
3004

    
3005
typedef struct RamDecompressState {
3006
    z_stream zstream;
3007
    QEMUFile *f;
3008
    uint8_t buf[IOBUF_SIZE];
3009
} RamDecompressState;
3010

    
3011
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3012
{
3013
    int ret;
3014
    memset(s, 0, sizeof(*s));
3015
    s->f = f;
3016
    ret = inflateInit(&s->zstream);
3017
    if (ret != Z_OK)
3018
        return -1;
3019
    return 0;
3020
}
3021

    
3022
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3023
{
3024
    int ret, clen;
3025

    
3026
    s->zstream.avail_out = len;
3027
    s->zstream.next_out = buf;
3028
    while (s->zstream.avail_out > 0) {
3029
        if (s->zstream.avail_in == 0) {
3030
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3031
                return -1;
3032
            clen = qemu_get_be16(s->f);
3033
            if (clen > IOBUF_SIZE)
3034
                return -1;
3035
            qemu_get_buffer(s->f, s->buf, clen);
3036
            s->zstream.avail_in = clen;
3037
            s->zstream.next_in = s->buf;
3038
        }
3039
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3040
        if (ret != Z_OK && ret != Z_STREAM_END) {
3041
            return -1;
3042
        }
3043
    }
3044
    return 0;
3045
}
3046

    
3047
static void ram_decompress_close(RamDecompressState *s)
3048
{
3049
    inflateEnd(&s->zstream);
3050
}
3051

    
3052
#define RAM_SAVE_FLAG_FULL        0x01
3053
#define RAM_SAVE_FLAG_COMPRESS        0x02
3054
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3055
#define RAM_SAVE_FLAG_PAGE        0x08
3056
#define RAM_SAVE_FLAG_EOS        0x10
3057

    
3058
static int is_dup_page(uint8_t *page, uint8_t ch)
3059
{
3060
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3061
    uint32_t *array = (uint32_t *)page;
3062
    int i;
3063

    
3064
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3065
        if (array[i] != val)
3066
            return 0;
3067
    }
3068

    
3069
    return 1;
3070
}
3071

    
3072
static int ram_save_block(QEMUFile *f)
3073
{
3074
    static ram_addr_t current_addr = 0;
3075
    ram_addr_t saved_addr = current_addr;
3076
    ram_addr_t addr = 0;
3077
    int found = 0;
3078

    
3079
    while (addr < phys_ram_size) {
3080
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3081
            uint8_t ch;
3082

    
3083
            cpu_physical_memory_reset_dirty(current_addr,
3084
                                            current_addr + TARGET_PAGE_SIZE,
3085
                                            MIGRATION_DIRTY_FLAG);
3086

    
3087
            ch = *(phys_ram_base + current_addr);
3088

    
3089
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
3090
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3091
                qemu_put_byte(f, ch);
3092
            } else {
3093
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3094
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3095
            }
3096

    
3097
            found = 1;
3098
            break;
3099
        }
3100
        addr += TARGET_PAGE_SIZE;
3101
        current_addr = (saved_addr + addr) % phys_ram_size;
3102
    }
3103

    
3104
    return found;
3105
}
3106

    
3107
static ram_addr_t ram_save_threshold = 10;
3108

    
3109
static ram_addr_t ram_save_remaining(void)
3110
{
3111
    ram_addr_t addr;
3112
    ram_addr_t count = 0;
3113

    
3114
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3115
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3116
            count++;
3117
    }
3118

    
3119
    return count;
3120
}
3121

    
3122
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3123
{
3124
    ram_addr_t addr;
3125

    
3126
    if (stage == 1) {
3127
        /* Make sure all dirty bits are set */
3128
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3129
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3130
                cpu_physical_memory_set_dirty(addr);
3131
        }
3132
        
3133
        /* Enable dirty memory tracking */
3134
        cpu_physical_memory_set_dirty_tracking(1);
3135

    
3136
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3137
    }
3138

    
3139
    while (!qemu_file_rate_limit(f)) {
3140
        int ret;
3141

    
3142
        ret = ram_save_block(f);
3143
        if (ret == 0) /* no more blocks */
3144
            break;
3145
    }
3146

    
3147
    /* try transferring iterative blocks of memory */
3148

    
3149
    if (stage == 3) {
3150
        cpu_physical_memory_set_dirty_tracking(0);
3151

    
3152
        /* flush all remaining blocks regardless of rate limiting */
3153
        while (ram_save_block(f) != 0);
3154
    }
3155

    
3156
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3157

    
3158
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3159
}
3160

    
3161
static int ram_load_dead(QEMUFile *f, void *opaque)
3162
{
3163
    RamDecompressState s1, *s = &s1;
3164
    uint8_t buf[10];
3165
    ram_addr_t i;
3166

    
3167
    if (ram_decompress_open(s, f) < 0)
3168
        return -EINVAL;
3169
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3170
        if (ram_decompress_buf(s, buf, 1) < 0) {
3171
            fprintf(stderr, "Error while reading ram block header\n");
3172
            goto error;
3173
        }
3174
        if (buf[0] == 0) {
3175
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3176
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3177
                goto error;
3178
            }
3179
        } else {
3180
        error:
3181
            printf("Error block header\n");
3182
            return -EINVAL;
3183
        }
3184
    }
3185
    ram_decompress_close(s);
3186

    
3187
    return 0;
3188
}
3189

    
3190
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3191
{
3192
    ram_addr_t addr;
3193
    int flags;
3194

    
3195
    if (version_id == 1)
3196
        return ram_load_v1(f, opaque);
3197

    
3198
    if (version_id == 2) {
3199
        if (qemu_get_be32(f) != phys_ram_size)
3200
            return -EINVAL;
3201
        return ram_load_dead(f, opaque);
3202
    }
3203

    
3204
    if (version_id != 3)
3205
        return -EINVAL;
3206

    
3207
    do {
3208
        addr = qemu_get_be64(f);
3209

    
3210
        flags = addr & ~TARGET_PAGE_MASK;
3211
        addr &= TARGET_PAGE_MASK;
3212

    
3213
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3214
            if (addr != phys_ram_size)
3215
                return -EINVAL;
3216
        }
3217

    
3218
        if (flags & RAM_SAVE_FLAG_FULL) {
3219
            if (ram_load_dead(f, opaque) < 0)
3220
                return -EINVAL;
3221
        }
3222
        
3223
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3224
            uint8_t ch = qemu_get_byte(f);
3225
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3226
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3227
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3228
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3229

    
3230
    return 0;
3231
}
3232

    
3233
void qemu_service_io(void)
3234
{
3235
    CPUState *env = cpu_single_env;
3236
    if (env) {
3237
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3238
#ifdef USE_KQEMU
3239
        if (env->kqemu_enabled) {
3240
            kqemu_cpu_interrupt(env);
3241
        }
3242
#endif
3243
    }
3244
}
3245

    
3246
/***********************************************************/
3247
/* bottom halves (can be seen as timers which expire ASAP) */
3248

    
3249
struct QEMUBH {
3250
    QEMUBHFunc *cb;
3251
    void *opaque;
3252
    int scheduled;
3253
    int idle;
3254
    int deleted;
3255
    QEMUBH *next;
3256
};
3257

    
3258
static QEMUBH *first_bh = NULL;
3259

    
3260
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3261
{
3262
    QEMUBH *bh;
3263
    bh = qemu_mallocz(sizeof(QEMUBH));
3264
    bh->cb = cb;
3265
    bh->opaque = opaque;
3266
    bh->next = first_bh;
3267
    first_bh = bh;
3268
    return bh;
3269
}
3270

    
3271
int qemu_bh_poll(void)
3272
{
3273
    QEMUBH *bh, **bhp;
3274
    int ret;
3275

    
3276
    ret = 0;
3277
    for (bh = first_bh; bh; bh = bh->next) {
3278
        if (!bh->deleted && bh->scheduled) {
3279
            bh->scheduled = 0;
3280
            if (!bh->idle)
3281
                ret = 1;
3282
            bh->idle = 0;
3283
            bh->cb(bh->opaque);
3284
        }
3285
    }
3286

    
3287
    /* remove deleted bhs */
3288
    bhp = &first_bh;
3289
    while (*bhp) {
3290
        bh = *bhp;
3291
        if (bh->deleted) {
3292
            *bhp = bh->next;
3293
            qemu_free(bh);
3294
        } else
3295
            bhp = &bh->next;
3296
    }
3297

    
3298
    return ret;
3299
}
3300

    
3301
void qemu_bh_schedule_idle(QEMUBH *bh)
3302
{
3303
    if (bh->scheduled)
3304
        return;
3305
    bh->scheduled = 1;
3306
    bh->idle = 1;
3307
}
3308

    
3309
void qemu_bh_schedule(QEMUBH *bh)
3310
{
3311
    CPUState *env = cpu_single_env;
3312
    if (bh->scheduled)
3313
        return;
3314
    bh->scheduled = 1;
3315
    bh->idle = 0;
3316
    /* stop the currently executing CPU to execute the BH ASAP */
3317
    if (env) {
3318
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3319
    }
3320
}
3321

    
3322
void qemu_bh_cancel(QEMUBH *bh)
3323
{
3324
    bh->scheduled = 0;
3325
}
3326

    
3327
void qemu_bh_delete(QEMUBH *bh)
3328
{
3329
    bh->scheduled = 0;
3330
    bh->deleted = 1;
3331
}
3332

    
3333
static void qemu_bh_update_timeout(int *timeout)
3334
{
3335
    QEMUBH *bh;
3336

    
3337
    for (bh = first_bh; bh; bh = bh->next) {
3338
        if (!bh->deleted && bh->scheduled) {
3339
            if (bh->idle) {
3340
                /* idle bottom halves will be polled at least
3341
                 * every 10ms */
3342
                *timeout = MIN(10, *timeout);
3343
            } else {
3344
                /* non-idle bottom halves will be executed
3345
                 * immediately */
3346
                *timeout = 0;
3347
                break;
3348
            }
3349
        }
3350
    }
3351
}
3352

    
3353
/***********************************************************/
3354
/* machine registration */
3355

    
3356
static QEMUMachine *first_machine = NULL;
3357

    
3358
int qemu_register_machine(QEMUMachine *m)
3359
{
3360
    QEMUMachine **pm;
3361
    pm = &first_machine;
3362
    while (*pm != NULL)
3363
        pm = &(*pm)->next;
3364
    m->next = NULL;
3365
    *pm = m;
3366
    return 0;
3367
}
3368

    
3369
static QEMUMachine *find_machine(const char *name)
3370
{
3371
    QEMUMachine *m;
3372

    
3373
    for(m = first_machine; m != NULL; m = m->next) {
3374
        if (!strcmp(m->name, name))
3375
            return m;
3376
    }
3377
    return NULL;
3378
}
3379

    
3380
/***********************************************************/
3381
/* main execution loop */
3382

    
3383
static void gui_update(void *opaque)
3384
{
3385
    uint64_t interval = GUI_REFRESH_INTERVAL;
3386
    DisplayState *ds = opaque;
3387
    DisplayChangeListener *dcl = ds->listeners;
3388

    
3389
    dpy_refresh(ds);
3390

    
3391
    while (dcl != NULL) {
3392
        if (dcl->gui_timer_interval &&
3393
            dcl->gui_timer_interval < interval)
3394
            interval = dcl->gui_timer_interval;
3395
        dcl = dcl->next;
3396
    }
3397
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3398
}
3399

    
3400
static void nographic_update(void *opaque)
3401
{
3402
    uint64_t interval = GUI_REFRESH_INTERVAL;
3403

    
3404
    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3405
}
3406

    
3407
struct vm_change_state_entry {
3408
    VMChangeStateHandler *cb;
3409
    void *opaque;
3410
    LIST_ENTRY (vm_change_state_entry) entries;
3411
};
3412

    
3413
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3414

    
3415
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3416
                                                     void *opaque)
3417
{
3418
    VMChangeStateEntry *e;
3419

    
3420
    e = qemu_mallocz(sizeof (*e));
3421

    
3422
    e->cb = cb;
3423
    e->opaque = opaque;
3424
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3425
    return e;
3426
}
3427

    
3428
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3429
{
3430
    LIST_REMOVE (e, entries);
3431
    qemu_free (e);
3432
}
3433

    
3434
static void vm_state_notify(int running, int reason)
3435
{
3436
    VMChangeStateEntry *e;
3437

    
3438
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3439
        e->cb(e->opaque, running, reason);
3440
    }
3441
}
3442

    
3443
void vm_start(void)
3444
{
3445
    if (!vm_running) {
3446
        cpu_enable_ticks();
3447
        vm_running = 1;
3448
        vm_state_notify(1, 0);
3449
        qemu_rearm_alarm_timer(alarm_timer);
3450
    }
3451
}
3452

    
3453
void vm_stop(int reason)
3454
{
3455
    if (vm_running) {
3456
        cpu_disable_ticks();
3457
        vm_running = 0;
3458
        vm_state_notify(0, reason);
3459
    }
3460
}
3461

    
3462
/* reset/shutdown handler */
3463

    
3464
typedef struct QEMUResetEntry {
3465
    QEMUResetHandler *func;
3466
    void *opaque;
3467
    struct QEMUResetEntry *next;
3468
} QEMUResetEntry;
3469

    
3470
static QEMUResetEntry *first_reset_entry;
3471
static int reset_requested;
3472
static int shutdown_requested;
3473
static int powerdown_requested;
3474

    
3475
int qemu_shutdown_requested(void)
3476
{
3477
    int r = shutdown_requested;
3478
    shutdown_requested = 0;
3479
    return r;
3480
}
3481

    
3482
int qemu_reset_requested(void)
3483
{
3484
    int r = reset_requested;
3485
    reset_requested = 0;
3486
    return r;
3487
}
3488

    
3489
int qemu_powerdown_requested(void)
3490
{
3491
    int r = powerdown_requested;
3492
    powerdown_requested = 0;
3493
    return r;
3494
}
3495

    
3496
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3497
{
3498
    QEMUResetEntry **pre, *re;
3499

    
3500
    pre = &first_reset_entry;
3501
    while (*pre != NULL)
3502
        pre = &(*pre)->next;
3503
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3504
    re->func = func;
3505
    re->opaque = opaque;
3506
    re->next = NULL;
3507
    *pre = re;
3508
}
3509

    
3510
void qemu_system_reset(void)
3511
{
3512
    QEMUResetEntry *re;
3513

    
3514
    /* reset all devices */
3515
    for(re = first_reset_entry; re != NULL; re = re->next) {
3516
        re->func(re->opaque);
3517
    }
3518
}
3519

    
3520
void qemu_system_reset_request(void)
3521
{
3522
    if (no_reboot) {
3523
        shutdown_requested = 1;
3524
    } else {
3525
        reset_requested = 1;
3526
    }
3527
    if (cpu_single_env)
3528
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3529
}
3530

    
3531
void qemu_system_shutdown_request(void)
3532
{
3533
    shutdown_requested = 1;
3534
    if (cpu_single_env)
3535
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3536
}
3537

    
3538
void qemu_system_powerdown_request(void)
3539
{
3540
    powerdown_requested = 1;
3541
    if (cpu_single_env)
3542
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3543
}
3544

    
3545
#ifdef _WIN32
3546
static void host_main_loop_wait(int *timeout)
3547
{
3548
    int ret, ret2, i;
3549
    PollingEntry *pe;
3550

    
3551

    
3552
    /* XXX: need to suppress polling by better using win32 events */
3553
    ret = 0;
3554
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3555
        ret |= pe->func(pe->opaque);
3556
    }
3557
    if (ret == 0) {
3558
        int err;
3559
        WaitObjects *w = &wait_objects;
3560

    
3561
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3562
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3563
            if (w->func[ret - WAIT_OBJECT_0])
3564
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3565

    
3566
            /* Check for additional signaled events */
3567
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3568

    
3569
                /* Check if event is signaled */
3570
                ret2 = WaitForSingleObject(w->events[i], 0);
3571
                if(ret2 == WAIT_OBJECT_0) {
3572
                    if (w->func[i])
3573
                        w->func[i](w->opaque[i]);
3574
                } else if (ret2 == WAIT_TIMEOUT) {
3575
                } else {
3576
                    err = GetLastError();
3577
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3578
                }
3579
            }
3580
        } else if (ret == WAIT_TIMEOUT) {
3581
        } else {
3582
            err = GetLastError();
3583
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3584
        }
3585
    }
3586

    
3587
    *timeout = 0;
3588
}
3589
#else
3590
static void host_main_loop_wait(int *timeout)
3591
{
3592
}
3593
#endif
3594

    
3595
void main_loop_wait(int timeout)
3596
{
3597
    IOHandlerRecord *ioh;
3598
    fd_set rfds, wfds, xfds;
3599
    int ret, nfds;
3600
    struct timeval tv;
3601

    
3602
    qemu_bh_update_timeout(&timeout);
3603

    
3604
    host_main_loop_wait(&timeout);
3605

    
3606
    /* poll any events */
3607
    /* XXX: separate device handlers from system ones */
3608
    nfds = -1;
3609
    FD_ZERO(&rfds);
3610
    FD_ZERO(&wfds);
3611
    FD_ZERO(&xfds);
3612
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3613
        if (ioh->deleted)
3614
            continue;
3615
        if (ioh->fd_read &&
3616
            (!ioh->fd_read_poll ||
3617
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3618
            FD_SET(ioh->fd, &rfds);
3619
            if (ioh->fd > nfds)
3620
                nfds = ioh->fd;
3621
        }
3622
        if (ioh->fd_write) {
3623
            FD_SET(ioh->fd, &wfds);
3624
            if (ioh->fd > nfds)
3625
                nfds = ioh->fd;
3626
        }
3627
    }
3628

    
3629
    tv.tv_sec = timeout / 1000;
3630
    tv.tv_usec = (timeout % 1000) * 1000;
3631

    
3632
#if defined(CONFIG_SLIRP)
3633
    if (slirp_is_inited()) {
3634
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3635
    }
3636
#endif
3637
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3638
    if (ret > 0) {
3639
        IOHandlerRecord **pioh;
3640

    
3641
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3642
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3643
                ioh->fd_read(ioh->opaque);
3644
            }
3645
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3646
                ioh->fd_write(ioh->opaque);
3647
            }
3648
        }
3649

    
3650
        /* remove deleted IO handlers */
3651
        pioh = &first_io_handler;
3652
        while (*pioh) {
3653
            ioh = *pioh;
3654
            if (ioh->deleted) {
3655
                *pioh = ioh->next;
3656
                qemu_free(ioh);
3657
            } else
3658
                pioh = &ioh->next;
3659
        }
3660
    }
3661
#if defined(CONFIG_SLIRP)
3662
    if (slirp_is_inited()) {
3663
        if (ret < 0) {
3664
            FD_ZERO(&rfds);
3665
            FD_ZERO(&wfds);
3666
            FD_ZERO(&xfds);
3667
        }
3668
        slirp_select_poll(&rfds, &wfds, &xfds);
3669
    }
3670
#endif
3671

    
3672
    /* vm time timers */
3673
    if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3674
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3675
                        qemu_get_clock(vm_clock));
3676

    
3677
    /* real time timers */
3678
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3679
                    qemu_get_clock(rt_clock));
3680

    
3681
    /* Check bottom-halves last in case any of the earlier events triggered
3682
       them.  */
3683
    qemu_bh_poll();
3684

    
3685
}
3686

    
3687
static int main_loop(void)
3688
{
3689
    int ret, timeout;
3690
#ifdef CONFIG_PROFILER
3691
    int64_t ti;
3692
#endif
3693
    CPUState *env;
3694

    
3695
    cur_cpu = first_cpu;
3696
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
3697
    for(;;) {
3698
        if (vm_running) {
3699

    
3700
            for(;;) {
3701
                /* get next cpu */
3702
                env = next_cpu;
3703
#ifdef CONFIG_PROFILER
3704
                ti = profile_getclock();
3705
#endif
3706
                if (use_icount) {
3707
                    int64_t count;
3708
                    int decr;
3709
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3710
                    env->icount_decr.u16.low = 0;
3711
                    env->icount_extra = 0;
3712
                    count = qemu_next_deadline();
3713
                    count = (count + (1 << icount_time_shift) - 1)
3714
                            >> icount_time_shift;
3715
                    qemu_icount += count;
3716
                    decr = (count > 0xffff) ? 0xffff : count;
3717
                    count -= decr;
3718
                    env->icount_decr.u16.low = decr;
3719
                    env->icount_extra = count;
3720
                }
3721
                ret = cpu_exec(env);
3722
#ifdef CONFIG_PROFILER
3723
                qemu_time += profile_getclock() - ti;
3724
#endif
3725
                if (use_icount) {
3726
                    /* Fold pending instructions back into the
3727
                       instruction counter, and clear the interrupt flag.  */
3728
                    qemu_icount -= (env->icount_decr.u16.low
3729
                                    + env->icount_extra);
3730
                    env->icount_decr.u32 = 0;
3731
                    env->icount_extra = 0;
3732
                }
3733
                next_cpu = env->next_cpu ?: first_cpu;
3734
                if (event_pending && likely(ret != EXCP_DEBUG)) {
3735
                    ret = EXCP_INTERRUPT;
3736
                    event_pending = 0;
3737
                    break;
3738
                }
3739
                if (ret == EXCP_HLT) {
3740
                    /* Give the next CPU a chance to run.  */
3741
                    cur_cpu = env;
3742
                    continue;
3743
                }
3744
                if (ret != EXCP_HALTED)
3745
                    break;
3746
                /* all CPUs are halted ? */
3747
                if (env == cur_cpu)
3748
                    break;
3749
            }
3750
            cur_cpu = env;
3751

    
3752
            if (shutdown_requested) {
3753
                ret = EXCP_INTERRUPT;
3754
                if (no_shutdown) {
3755
                    vm_stop(0);
3756
                    no_shutdown = 0;
3757
                }
3758
                else
3759
                    break;
3760
            }
3761
            if (reset_requested) {
3762
                reset_requested = 0;
3763
                qemu_system_reset();
3764
                ret = EXCP_INTERRUPT;
3765
            }
3766
            if (powerdown_requested) {
3767
                powerdown_requested = 0;
3768
                qemu_system_powerdown();
3769
                ret = EXCP_INTERRUPT;
3770
            }
3771
            if (unlikely(ret == EXCP_DEBUG)) {
3772
                gdb_set_stop_cpu(cur_cpu);
3773
                vm_stop(EXCP_DEBUG);
3774
            }
3775
            /* If all cpus are halted then wait until the next IRQ */
3776
            /* XXX: use timeout computed from timers */
3777
            if (ret == EXCP_HALTED) {
3778
                if (use_icount) {
3779
                    int64_t add;
3780
                    int64_t delta;
3781
                    /* Advance virtual time to the next event.  */
3782
                    if (use_icount == 1) {
3783
                        /* When not using an adaptive execution frequency
3784
                           we tend to get badly out of sync with real time,
3785
                           so just delay for a reasonable amount of time.  */
3786
                        delta = 0;
3787
                    } else {
3788
                        delta = cpu_get_icount() - cpu_get_clock();
3789
                    }
3790
                    if (delta > 0) {
3791
                        /* If virtual time is ahead of real time then just
3792
                           wait for IO.  */
3793
                        timeout = (delta / 1000000) + 1;
3794
                    } else {
3795
                        /* Wait for either IO to occur or the next
3796
                           timer event.  */
3797
                        add = qemu_next_deadline();
3798
                        /* We advance the timer before checking for IO.
3799
                           Limit the amount we advance so that early IO
3800
                           activity won't get the guest too far ahead.  */
3801
                        if (add > 10000000)
3802
                            add = 10000000;
3803
                        delta += add;
3804
                        add = (add + (1 << icount_time_shift) - 1)
3805
                              >> icount_time_shift;
3806
                        qemu_icount += add;
3807
                        timeout = delta / 1000000;
3808
                        if (timeout < 0)
3809
                            timeout = 0;
3810
                    }
3811
                } else {
3812
                    timeout = 5000;
3813
                }
3814
            } else {
3815
                timeout = 0;
3816
            }
3817
        } else {
3818
            if (shutdown_requested) {
3819
                ret = EXCP_INTERRUPT;
3820
                break;
3821
            }
3822
            timeout = 5000;
3823
        }
3824
#ifdef CONFIG_PROFILER
3825
        ti = profile_getclock();
3826
#endif
3827
        main_loop_wait(timeout);
3828
#ifdef CONFIG_PROFILER
3829
        dev_time += profile_getclock() - ti;
3830
#endif
3831
    }
3832
    cpu_disable_ticks();
3833
    return ret;
3834
}
3835

    
3836
static void help(int exitcode)
3837
{
3838
    /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3839
       and qemu-doc.texi */
3840
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3841
           "usage: %s [options] [disk_image]\n"
3842
           "\n"
3843
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3844
           "\n"
3845
           "Standard options:\n"
3846
           "-h or -help     display this help and exit\n"
3847
           "-M machine      select emulated machine (-M ? for list)\n"
3848
           "-cpu cpu        select CPU (-cpu ? for list)\n"
3849
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
3850
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
3851
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
3852
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
3853
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3854
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3855
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3856
           "       [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3857
           "                use 'file' as a drive image\n"
3858
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
3859
           "-sd file        use 'file' as SecureDigital card image\n"
3860
           "-pflash file    use 'file' as a parallel flash image\n"
3861
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3862
           "-snapshot       write to temporary files instead of disk image files\n"
3863
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
3864
#ifndef _WIN32
3865
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
3866
#endif
3867
#ifdef HAS_AUDIO
3868
           "-audio-help     print list of audio drivers and their options\n"
3869
           "-soundhw c1,... enable audio support\n"
3870
           "                and only specified sound cards (comma separated list)\n"
3871
           "                use -soundhw ? to get the list of supported cards\n"
3872
           "                use -soundhw all to enable all of them\n"
3873
#endif
3874
           "-usb            enable the USB driver (will be the default soon)\n"
3875
           "-usbdevice name add the host or guest USB device 'name'\n"
3876
           "-name string    set the name of the guest\n"
3877
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3878
           "                specify machine UUID\n"
3879
           "\n"
3880
           "Display options:\n"
3881
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
3882
#ifdef CONFIG_CURSES
3883
           "-curses         use a curses/ncurses interface instead of SDL\n"
3884
#endif
3885
#ifdef CONFIG_SDL
3886
           "-no-frame       open SDL window without a frame and window decorations\n"
3887
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3888
           "-no-quit        disable SDL window close capability\n"
3889
           "-sdl            enable SDL\n"
3890
#endif
3891
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
3892
           "-vga [std|cirrus|vmware|none]\n"
3893
           "                select video card type\n"
3894
           "-full-screen    start in full screen\n"
3895
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
3896
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
3897
#endif
3898
           "-vnc display    start a VNC server on display\n"
3899
           "\n"
3900
           "Network options:\n"
3901
           "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3902
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
3903
#ifdef CONFIG_SLIRP
3904
           "-net user[,vlan=n][,name=str][,hostname=host]\n"
3905
           "                connect the user mode network stack to VLAN 'n' and send\n"
3906
           "                hostname 'host' to DHCP clients\n"
3907
#endif
3908
#ifdef _WIN32
3909
           "-net tap[,vlan=n][,name=str],ifname=name\n"
3910
           "                connect the host TAP network interface to VLAN 'n'\n"
3911
#else
3912
           "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3913
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
3914
           "                network scripts 'file' (default=%s)\n"
3915
           "                and 'dfile' (default=%s);\n"
3916
           "                use '[down]script=no' to disable script execution;\n"
3917
           "                use 'fd=h' to connect to an already opened TAP interface\n"
3918
#endif
3919
           "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3920
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
3921
           "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3922
           "                connect the vlan 'n' to multicast maddr and port\n"
3923
#ifdef CONFIG_VDE
3924
           "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3925
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
3926
           "                on host and listening for incoming connections on 'socketpath'.\n"
3927
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
3928
           "                ownership and permissions for communication port.\n"
3929
#endif
3930
           "-net none       use it alone to have zero network devices; if no -net option\n"
3931
           "                is provided, the default is '-net nic -net user'\n"
3932
#ifdef CONFIG_SLIRP
3933
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
3934
           "-bootp file     advertise file in BOOTP replies\n"
3935
#ifndef _WIN32
3936
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
3937
#endif
3938
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3939
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
3940
#endif
3941
           "\n"
3942
           "-bt hci,null    dumb bluetooth HCI - doesn't respond to commands\n"
3943
           "-bt hci,host[:id]\n"
3944
           "                use host's HCI with the given name\n"
3945
           "-bt hci[,vlan=n]\n"
3946
           "                emulate a standard HCI in virtual scatternet 'n'\n"
3947
           "-bt vhci[,vlan=n]\n"
3948
           "                add host computer to virtual scatternet 'n' using VHCI\n"
3949
           "-bt device:dev[,vlan=n]\n"
3950
           "                emulate a bluetooth device 'dev' in scatternet 'n'\n"
3951
           "\n"
3952
#ifdef TARGET_I386
3953
           "\n"
3954
           "i386 target only:\n"
3955
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
3956
           "-rtc-td-hack    use it to fix time drift in Windows ACPI HAL\n"
3957
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
3958
           "-no-acpi        disable ACPI\n"
3959
           "-no-hpet        disable HPET\n"
3960
#endif
3961
           "Linux boot specific:\n"
3962
           "-kernel bzImage use 'bzImage' as kernel image\n"
3963
           "-append cmdline use 'cmdline' as kernel command line\n"
3964
           "-initrd file    use 'file' as initial ram disk\n"
3965
           "\n"
3966
           "Debug/Expert options:\n"
3967
           "-serial dev     redirect the serial port to char device 'dev'\n"
3968
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
3969
           "-monitor dev    redirect the monitor to char device 'dev'\n"
3970
           "-pidfile file   write PID to 'file'\n"
3971
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
3972
           "-s              wait gdb connection to port\n"
3973
           "-p port         set gdb connection port [default=%s]\n"
3974
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
3975
           "-hdachs c,h,s[,t]\n"
3976
           "                force hard disk 0 physical geometry and the optional BIOS\n"
3977
           "                translation (t=none or lba) (usually qemu can guess them)\n"
3978
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
3979
           "-bios file      set the filename for the BIOS\n"
3980
#ifdef USE_KQEMU
3981
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
3982
           "-no-kqemu       disable KQEMU kernel module usage\n"
3983
#endif
3984
#ifdef CONFIG_KVM
3985
           "-enable-kvm     enable KVM full virtualization support\n"
3986
#endif
3987
           "-no-reboot      exit instead of rebooting\n"
3988
           "-no-shutdown    stop before shutdown\n"
3989
           "-loadvm [tag|id]\n"
3990
           "                start right away with a saved state (loadvm in monitor)\n"
3991
#ifndef _WIN32
3992
           "-daemonize      daemonize QEMU after initializing\n"
3993
#endif
3994
           "-option-rom rom load a file, rom, into the option ROM space\n"
3995
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
3996
           "-prom-env variable=value\n"
3997
           "                set OpenBIOS nvram variables\n"
3998
#endif
3999
           "-clock          force the use of the given methods for timer alarm.\n"
4000
           "                To see what timers are available use -clock ?\n"
4001
           "-localtime      set the real time clock to local time [default=utc]\n"
4002
           "-startdate      select initial date of the clock\n"
4003
           "-icount [N|auto]\n"
4004
           "                enable virtual instruction counter with 2^N clock ticks per instruction\n"
4005
           "-echr chr       set terminal escape character instead of ctrl-a\n"
4006
           "-virtioconsole c\n"
4007
           "                set virtio console\n"
4008
           "-show-cursor    show cursor\n"
4009
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4010
           "-semihosting    semihosting mode\n"
4011
#endif
4012
#if defined(TARGET_ARM)
4013
           "-old-param      old param mode\n"
4014
#endif
4015
           "-tb-size n      set TB size\n"
4016
           "-incoming p     prepare for incoming migration, listen on port p\n"
4017
           "\n"
4018
           "During emulation, the following keys are useful:\n"
4019
           "ctrl-alt-f      toggle full screen\n"
4020
           "ctrl-alt-n      switch to virtual console 'n'\n"
4021
           "ctrl-alt        toggle mouse and keyboard grab\n"
4022
           "\n"
4023
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4024
           ,
4025
           "qemu",
4026
           DEFAULT_RAM_SIZE,
4027
#ifndef _WIN32
4028
           DEFAULT_NETWORK_SCRIPT,
4029
           DEFAULT_NETWORK_DOWN_SCRIPT,
4030
#endif
4031
           DEFAULT_GDBSTUB_PORT,
4032
           "/tmp/qemu.log");
4033
    exit(exitcode);
4034
}
4035

    
4036
#define HAS_ARG 0x0001
4037

    
4038
enum {
4039
    /* Please keep in synch with help, qemu_options[] and
4040
       qemu-doc.texi */
4041
    /* Standard options: */
4042
    QEMU_OPTION_h,
4043
    QEMU_OPTION_M,
4044
    QEMU_OPTION_cpu,
4045
    QEMU_OPTION_smp,
4046
    QEMU_OPTION_fda,
4047
    QEMU_OPTION_fdb,
4048
    QEMU_OPTION_hda,
4049
    QEMU_OPTION_hdb,
4050
    QEMU_OPTION_hdc,
4051
    QEMU_OPTION_hdd,
4052
    QEMU_OPTION_cdrom,
4053
    QEMU_OPTION_drive,
4054
    QEMU_OPTION_mtdblock,
4055
    QEMU_OPTION_sd,
4056
    QEMU_OPTION_pflash,
4057
    QEMU_OPTION_boot,
4058
    QEMU_OPTION_snapshot,
4059
    QEMU_OPTION_m,
4060
    QEMU_OPTION_k,
4061
    QEMU_OPTION_audio_help,
4062
    QEMU_OPTION_soundhw,
4063
    QEMU_OPTION_usb,
4064
    QEMU_OPTION_usbdevice,
4065
    QEMU_OPTION_name,
4066
    QEMU_OPTION_uuid,
4067

    
4068
    /* Display options: */
4069
    QEMU_OPTION_nographic,
4070
    QEMU_OPTION_curses,
4071
    QEMU_OPTION_no_frame,
4072
    QEMU_OPTION_alt_grab,
4073
    QEMU_OPTION_no_quit,
4074
    QEMU_OPTION_sdl,
4075
    QEMU_OPTION_portrait,
4076
    QEMU_OPTION_vga,
4077
    QEMU_OPTION_full_screen,
4078
    QEMU_OPTION_g,
4079
    QEMU_OPTION_vnc,
4080

    
4081
    /* Network options: */
4082
    QEMU_OPTION_net,
4083
    QEMU_OPTION_tftp,
4084
    QEMU_OPTION_bootp,
4085
    QEMU_OPTION_smb,
4086
    QEMU_OPTION_redir,
4087
    QEMU_OPTION_bt,
4088

    
4089
    /* i386 target only: */
4090
    QEMU_OPTION_win2k_hack,
4091
    QEMU_OPTION_rtc_td_hack,
4092
    QEMU_OPTION_no_fd_bootchk,
4093
    QEMU_OPTION_no_acpi,
4094
    QEMU_OPTION_no_hpet,
4095

    
4096
    /* Linux boot specific: */
4097
    QEMU_OPTION_kernel,
4098
    QEMU_OPTION_append,
4099
    QEMU_OPTION_initrd,
4100

    
4101
    /* Debug/Expert options: */
4102
    QEMU_OPTION_serial,
4103
    QEMU_OPTION_parallel,
4104
    QEMU_OPTION_monitor,
4105
    QEMU_OPTION_pidfile,
4106
    QEMU_OPTION_S,
4107
    QEMU_OPTION_s,
4108
    QEMU_OPTION_p,
4109
    QEMU_OPTION_d,
4110
    QEMU_OPTION_hdachs,
4111
    QEMU_OPTION_L,
4112
    QEMU_OPTION_bios,
4113
    QEMU_OPTION_kernel_kqemu,
4114
    QEMU_OPTION_no_kqemu,
4115
    QEMU_OPTION_enable_kvm,
4116
    QEMU_OPTION_no_reboot,
4117
    QEMU_OPTION_no_shutdown,
4118
    QEMU_OPTION_loadvm,
4119
    QEMU_OPTION_daemonize,
4120
    QEMU_OPTION_option_rom,
4121
    QEMU_OPTION_prom_env,
4122
    QEMU_OPTION_clock,
4123
    QEMU_OPTION_localtime,
4124
    QEMU_OPTION_startdate,
4125
    QEMU_OPTION_icount,
4126
    QEMU_OPTION_echr,
4127
    QEMU_OPTION_virtiocon,
4128
    QEMU_OPTION_show_cursor,
4129
    QEMU_OPTION_semihosting,
4130
    QEMU_OPTION_old_param,
4131
    QEMU_OPTION_tb_size,
4132
    QEMU_OPTION_incoming,
4133
};
4134

    
4135
typedef struct QEMUOption {
4136
    const char *name;
4137
    int flags;
4138
    int index;
4139
} QEMUOption;
4140

    
4141
static const QEMUOption qemu_options[] = {
4142
    /* Please keep in synch with help, QEMU_OPTION_ enums, and
4143
       qemu-doc.texi */
4144
    /* Standard options: */
4145
    { "h", 0, QEMU_OPTION_h },
4146
    { "help", 0, QEMU_OPTION_h },
4147
    { "M", HAS_ARG, QEMU_OPTION_M },
4148
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4149
    { "smp", HAS_ARG, QEMU_OPTION_smp },
4150
    { "fda", HAS_ARG, QEMU_OPTION_fda },
4151
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4152
    { "hda", HAS_ARG, QEMU_OPTION_hda },
4153
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4154
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4155
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4156
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4157
    { "drive", HAS_ARG, QEMU_OPTION_drive },
4158
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4159
    { "sd", HAS_ARG, QEMU_OPTION_sd },
4160
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4161
    { "boot", HAS_ARG, QEMU_OPTION_boot },
4162
    { "snapshot", 0, QEMU_OPTION_snapshot },
4163
    { "m", HAS_ARG, QEMU_OPTION_m },
4164
#ifndef _WIN32
4165
    { "k", HAS_ARG, QEMU_OPTION_k },
4166
#endif
4167
#ifdef HAS_AUDIO
4168
    { "audio-help", 0, QEMU_OPTION_audio_help },
4169
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4170
#endif
4171
    { "usb", 0, QEMU_OPTION_usb },
4172
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4173
    { "name", HAS_ARG, QEMU_OPTION_name },
4174
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4175

    
4176
    /* Display options: */
4177
    { "nographic", 0, QEMU_OPTION_nographic },
4178
#ifdef CONFIG_CURSES
4179
    { "curses", 0, QEMU_OPTION_curses },
4180
#endif
4181
#ifdef CONFIG_SDL
4182
    { "no-frame", 0, QEMU_OPTION_no_frame },
4183
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
4184
    { "no-quit", 0, QEMU_OPTION_no_quit },
4185
    { "sdl", 0, QEMU_OPTION_sdl },
4186
#endif
4187
    { "portrait", 0, QEMU_OPTION_portrait },
4188
    { "vga", HAS_ARG, QEMU_OPTION_vga },
4189
    { "full-screen", 0, QEMU_OPTION_full_screen },
4190
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4191
    { "g", 1, QEMU_OPTION_g },
4192
#endif
4193
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4194

    
4195
    /* Network options: */
4196
    { "net", HAS_ARG, QEMU_OPTION_net},
4197
#ifdef CONFIG_SLIRP
4198
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4199
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4200
#ifndef _WIN32
4201
    { "smb", HAS_ARG, QEMU_OPTION_smb },
4202
#endif
4203
    { "redir", HAS_ARG, QEMU_OPTION_redir },
4204
#endif
4205
    { "bt", HAS_ARG, QEMU_OPTION_bt },
4206
#ifdef TARGET_I386
4207
    /* i386 target only: */
4208
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4209
    { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4210
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4211
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
4212
    { "no-hpet", 0, QEMU_OPTION_no_hpet },
4213
#endif
4214

    
4215
    /* Linux boot specific: */
4216
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4217
    { "append", HAS_ARG, QEMU_OPTION_append },
4218
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4219

    
4220
    /* Debug/Expert options: */
4221
    { "serial", HAS_ARG, QEMU_OPTION_serial },
4222
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4223
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4224
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4225
    { "S", 0, QEMU_OPTION_S },
4226
    { "s", 0, QEMU_OPTION_s },
4227
    { "p", HAS_ARG, QEMU_OPTION_p },
4228
    { "d", HAS_ARG, QEMU_OPTION_d },
4229
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4230
    { "L", HAS_ARG, QEMU_OPTION_L },
4231
    { "bios", HAS_ARG, QEMU_OPTION_bios },
4232
#ifdef USE_KQEMU
4233
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4234
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4235
#endif
4236
#ifdef CONFIG_KVM
4237
    { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4238
#endif
4239
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
4240
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4241
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4242
    { "daemonize", 0, QEMU_OPTION_daemonize },
4243
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4244
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
4245
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4246
#endif
4247
    { "clock", HAS_ARG, QEMU_OPTION_clock },
4248
    { "localtime", 0, QEMU_OPTION_localtime },
4249
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4250
    { "icount", HAS_ARG, QEMU_OPTION_icount },
4251
    { "echr", HAS_ARG, QEMU_OPTION_echr },
4252
    { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4253
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
4254
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4255
    { "semihosting", 0, QEMU_OPTION_semihosting },
4256
#endif
4257
#if defined(TARGET_ARM)
4258
    { "old-param", 0, QEMU_OPTION_old_param },
4259
#endif
4260
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4261
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4262
    { NULL },
4263
};
4264

    
4265
/* password input */
4266

    
4267
int qemu_key_check(BlockDriverState *bs, const char *name)
4268
{
4269
    char password[256];
4270
    int i;
4271

    
4272
    if (!bdrv_is_encrypted(bs))
4273
        return 0;
4274

    
4275
    term_printf("%s is encrypted.\n", name);
4276
    for(i = 0; i < 3; i++) {
4277
        monitor_readline("Password: ", 1, password, sizeof(password));
4278
        if (bdrv_set_key(bs, password) == 0)
4279
            return 0;
4280
        term_printf("invalid password\n");
4281
    }
4282
    return -EPERM;
4283
}
4284

    
4285
static BlockDriverState *get_bdrv(int index)
4286
{
4287
    if (index > nb_drives)
4288
        return NULL;
4289
    return drives_table[index].bdrv;
4290
}
4291

    
4292
static void read_passwords(void)
4293
{
4294
    BlockDriverState *bs;
4295
    int i;
4296

    
4297
    for(i = 0; i < 6; i++) {
4298
        bs = get_bdrv(i);
4299
        if (bs)
4300
            qemu_key_check(bs, bdrv_get_device_name(bs));
4301
    }
4302
}
4303

    
4304
#ifdef HAS_AUDIO
4305
struct soundhw soundhw[] = {
4306
#ifdef HAS_AUDIO_CHOICE
4307
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4308
    {
4309
        "pcspk",
4310
        "PC speaker",
4311
        0,
4312
        1,
4313
        { .init_isa = pcspk_audio_init }
4314
    },
4315
#endif
4316

    
4317
#ifdef CONFIG_SB16
4318
    {
4319
        "sb16",
4320
        "Creative Sound Blaster 16",
4321
        0,
4322
        1,
4323
        { .init_isa = SB16_init }
4324
    },
4325
#endif
4326

    
4327
#ifdef CONFIG_CS4231A
4328
    {
4329
        "cs4231a",
4330
        "CS4231A",
4331
        0,
4332
        1,
4333
        { .init_isa = cs4231a_init }
4334
    },
4335
#endif
4336

    
4337
#ifdef CONFIG_ADLIB
4338
    {
4339
        "adlib",
4340
#ifdef HAS_YMF262
4341
        "Yamaha YMF262 (OPL3)",
4342
#else
4343
        "Yamaha YM3812 (OPL2)",
4344
#endif
4345
        0,
4346
        1,
4347
        { .init_isa = Adlib_init }
4348
    },
4349
#endif
4350

    
4351
#ifdef CONFIG_GUS
4352
    {
4353
        "gus",
4354
        "Gravis Ultrasound GF1",
4355
        0,
4356
        1,
4357
        { .init_isa = GUS_init }
4358
    },
4359
#endif
4360

    
4361
#ifdef CONFIG_AC97
4362
    {
4363
        "ac97",
4364
        "Intel 82801AA AC97 Audio",
4365
        0,
4366
        0,
4367
        { .init_pci = ac97_init }
4368
    },
4369
#endif
4370

    
4371
#ifdef CONFIG_ES1370
4372
    {
4373
        "es1370",
4374
        "ENSONIQ AudioPCI ES1370",
4375
        0,
4376
        0,
4377
        { .init_pci = es1370_init }
4378
    },
4379
#endif
4380

    
4381
#endif /* HAS_AUDIO_CHOICE */
4382

    
4383
    { NULL, NULL, 0, 0, { NULL } }
4384
};
4385

    
4386
static void select_soundhw (const char *optarg)
4387
{
4388
    struct soundhw *c;
4389

    
4390
    if (*optarg == '?') {
4391
    show_valid_cards:
4392

    
4393
        printf ("Valid sound card names (comma separated):\n");
4394
        for (c = soundhw; c->name; ++c) {
4395
            printf ("%-11s %s\n", c->name, c->descr);
4396
        }
4397
        printf ("\n-soundhw all will enable all of the above\n");
4398
        exit (*optarg != '?');
4399
    }
4400
    else {
4401
        size_t l;
4402
        const char *p;
4403
        char *e;
4404
        int bad_card = 0;
4405

    
4406
        if (!strcmp (optarg, "all")) {
4407
            for (c = soundhw; c->name; ++c) {
4408
                c->enabled = 1;
4409
            }
4410
            return;
4411
        }
4412

    
4413
        p = optarg;
4414
        while (*p) {
4415
            e = strchr (p, ',');
4416
            l = !e ? strlen (p) : (size_t) (e - p);
4417

    
4418
            for (c = soundhw; c->name; ++c) {
4419
                if (!strncmp (c->name, p, l)) {
4420
                    c->enabled = 1;
4421
                    break;
4422
                }
4423
            }
4424

    
4425
            if (!c->name) {
4426
                if (l > 80) {
4427
                    fprintf (stderr,
4428
                             "Unknown sound card name (too big to show)\n");
4429
                }
4430
                else {
4431
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4432
                             (int) l, p);
4433
                }
4434
                bad_card = 1;
4435
            }
4436
            p += l + (e != NULL);
4437
        }
4438

    
4439
        if (bad_card)
4440
            goto show_valid_cards;
4441
    }
4442
}
4443
#endif
4444

    
4445
static void select_vgahw (const char *p)
4446
{
4447
    const char *opts;
4448

    
4449
    if (strstart(p, "std", &opts)) {
4450
        std_vga_enabled = 1;
4451
        cirrus_vga_enabled = 0;
4452
        vmsvga_enabled = 0;
4453
    } else if (strstart(p, "cirrus", &opts)) {
4454
        cirrus_vga_enabled = 1;
4455
        std_vga_enabled = 0;
4456
        vmsvga_enabled = 0;
4457
    } else if (strstart(p, "vmware", &opts)) {
4458
        cirrus_vga_enabled = 0;
4459
        std_vga_enabled = 0;
4460
        vmsvga_enabled = 1;
4461
    } else if (strstart(p, "none", &opts)) {
4462
        cirrus_vga_enabled = 0;
4463
        std_vga_enabled = 0;
4464
        vmsvga_enabled = 0;
4465
    } else {
4466
    invalid_vga:
4467
        fprintf(stderr, "Unknown vga type: %s\n", p);
4468
        exit(1);
4469
    }
4470
    while (*opts) {
4471
        const char *nextopt;
4472

    
4473
        if (strstart(opts, ",retrace=", &nextopt)) {
4474
            opts = nextopt;
4475
            if (strstart(opts, "dumb", &nextopt))
4476
                vga_retrace_method = VGA_RETRACE_DUMB;
4477
            else if (strstart(opts, "precise", &nextopt))
4478
                vga_retrace_method = VGA_RETRACE_PRECISE;
4479
            else goto invalid_vga;
4480
        } else goto invalid_vga;
4481
        opts = nextopt;
4482
    }
4483
}
4484

    
4485
#ifdef _WIN32
4486
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4487
{
4488
    exit(STATUS_CONTROL_C_EXIT);
4489
    return TRUE;
4490
}
4491
#endif
4492

    
4493
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4494
{
4495
    int ret;
4496

    
4497
    if(strlen(str) != 36)
4498
        return -1;
4499

    
4500
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4501
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4502
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4503

    
4504
    if(ret != 16)
4505
        return -1;
4506

    
4507
    return 0;
4508
}
4509

    
4510
#define MAX_NET_CLIENTS 32
4511

    
4512
#ifndef _WIN32
4513

    
4514
static void termsig_handler(int signal)
4515
{
4516
    qemu_system_shutdown_request();
4517
}
4518

    
4519
static void termsig_setup(void)
4520
{
4521
    struct sigaction act;
4522

    
4523
    memset(&act, 0, sizeof(act));
4524
    act.sa_handler = termsig_handler;
4525
    sigaction(SIGINT,  &act, NULL);
4526
    sigaction(SIGHUP,  &act, NULL);
4527
    sigaction(SIGTERM, &act, NULL);
4528
}
4529

    
4530
#endif
4531

    
4532
int main(int argc, char **argv, char **envp)
4533
{
4534
#ifdef CONFIG_GDBSTUB
4535
    int use_gdbstub;
4536
    const char *gdbstub_port;
4537
#endif
4538
    uint32_t boot_devices_bitmap = 0;
4539
    int i;
4540
    int snapshot, linux_boot, net_boot;
4541
    const char *initrd_filename;
4542
    const char *kernel_filename, *kernel_cmdline;
4543
    const char *boot_devices = "";
4544
    DisplayState *ds;
4545
    DisplayChangeListener *dcl;
4546
    int cyls, heads, secs, translation;
4547
    const char *net_clients[MAX_NET_CLIENTS];
4548
    int nb_net_clients;
4549
    const char *bt_opts[MAX_BT_CMDLINE];
4550
    int nb_bt_opts;
4551
    int hda_index;
4552
    int optind;
4553
    const char *r, *optarg;
4554
    CharDriverState *monitor_hd = NULL;
4555
    const char *monitor_device;
4556
    const char *serial_devices[MAX_SERIAL_PORTS];
4557
    int serial_device_index;
4558
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4559
    int parallel_device_index;
4560
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4561
    int virtio_console_index;
4562
    const char *loadvm = NULL;
4563
    QEMUMachine *machine;
4564
    const char *cpu_model;
4565
    const char *usb_devices[MAX_USB_CMDLINE];
4566
    int usb_devices_index;
4567
    int fds[2];
4568
    int tb_size;
4569
    const char *pid_file = NULL;
4570
    int autostart;
4571
    const char *incoming = NULL;
4572

    
4573
    qemu_cache_utils_init(envp);
4574

    
4575
    LIST_INIT (&vm_change_state_head);
4576
#ifndef _WIN32
4577
    {
4578
        struct sigaction act;
4579
        sigfillset(&act.sa_mask);
4580
        act.sa_flags = 0;
4581
        act.sa_handler = SIG_IGN;
4582
        sigaction(SIGPIPE, &act, NULL);
4583
    }
4584
#else
4585
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4586
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4587
       QEMU to run on a single CPU */
4588
    {
4589
        HANDLE h;
4590
        DWORD mask, smask;
4591
        int i;
4592
        h = GetCurrentProcess();
4593
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4594
            for(i = 0; i < 32; i++) {
4595
                if (mask & (1 << i))
4596
                    break;
4597
            }
4598
            if (i != 32) {
4599
                mask = 1 << i;
4600
                SetProcessAffinityMask(h, mask);
4601
            }
4602
        }
4603
    }
4604
#endif
4605

    
4606
    register_machines();
4607
    machine = first_machine;
4608
    cpu_model = NULL;
4609
    initrd_filename = NULL;
4610
    ram_size = 0;
4611
    vga_ram_size = VGA_RAM_SIZE;
4612
#ifdef CONFIG_GDBSTUB
4613
    use_gdbstub = 0;
4614
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
4615
#endif
4616
    snapshot = 0;
4617
    nographic = 0;
4618
    curses = 0;
4619
    kernel_filename = NULL;
4620
    kernel_cmdline = "";
4621
    cyls = heads = secs = 0;
4622
    translation = BIOS_ATA_TRANSLATION_AUTO;
4623
    monitor_device = "vc";
4624

    
4625
    serial_devices[0] = "vc:80Cx24C";
4626
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4627
        serial_devices[i] = NULL;
4628
    serial_device_index = 0;
4629

    
4630
    parallel_devices[0] = "vc:640x480";
4631
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4632
        parallel_devices[i] = NULL;
4633
    parallel_device_index = 0;
4634

    
4635
    virtio_consoles[0] = "vc:80Cx24C";
4636
    for(i = 1; i < MAX_VIRTIO_CONSOLES; i++)
4637
        virtio_consoles[i] = NULL;
4638
    virtio_console_index = 0;
4639

    
4640
    usb_devices_index = 0;
4641

    
4642
    nb_net_clients = 0;
4643
    nb_bt_opts = 0;
4644
    nb_drives = 0;
4645
    nb_drives_opt = 0;
4646
    hda_index = -1;
4647

    
4648
    nb_nics = 0;
4649

    
4650
    tb_size = 0;
4651
    autostart= 1;
4652

    
4653
    optind = 1;
4654
    for(;;) {
4655
        if (optind >= argc)
4656
            break;
4657
        r = argv[optind];
4658
        if (r[0] != '-') {
4659
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4660
        } else {
4661
            const QEMUOption *popt;
4662

    
4663
            optind++;
4664
            /* Treat --foo the same as -foo.  */
4665
            if (r[1] == '-')
4666
                r++;
4667
            popt = qemu_options;
4668
            for(;;) {
4669
                if (!popt->name) {
4670
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4671
                            argv[0], r);
4672
                    exit(1);
4673
                }
4674
                if (!strcmp(popt->name, r + 1))
4675
                    break;
4676
                popt++;
4677
            }
4678
            if (popt->flags & HAS_ARG) {
4679
                if (optind >= argc) {
4680
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4681
                            argv[0], r);
4682
                    exit(1);
4683
                }
4684
                optarg = argv[optind++];
4685
            } else {
4686
                optarg = NULL;
4687
            }
4688

    
4689
            switch(popt->index) {
4690
            case QEMU_OPTION_M:
4691
                machine = find_machine(optarg);
4692
                if (!machine) {
4693
                    QEMUMachine *m;
4694
                    printf("Supported machines are:\n");
4695
                    for(m = first_machine; m != NULL; m = m->next) {
4696
                        printf("%-10s %s%s\n",
4697
                               m->name, m->desc,
4698
                               m == first_machine ? " (default)" : "");
4699
                    }
4700
                    exit(*optarg != '?');
4701
                }
4702
                break;
4703
            case QEMU_OPTION_cpu:
4704
                /* hw initialization will check this */
4705
                if (*optarg == '?') {
4706
/* XXX: implement xxx_cpu_list for targets that still miss it */
4707
#if defined(cpu_list)
4708
                    cpu_list(stdout, &fprintf);
4709
#endif
4710
                    exit(0);
4711
                } else {
4712
                    cpu_model = optarg;
4713
                }
4714
                break;
4715
            case QEMU_OPTION_initrd:
4716
                initrd_filename = optarg;
4717
                break;
4718
            case QEMU_OPTION_hda:
4719
                if (cyls == 0)
4720
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4721
                else
4722
                    hda_index = drive_add(optarg, HD_ALIAS
4723
                             ",cyls=%d,heads=%d,secs=%d%s",
4724
                             0, cyls, heads, secs,
4725
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4726
                                 ",trans=lba" :
4727
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4728
                                 ",trans=none" : "");
4729
                 break;
4730
            case QEMU_OPTION_hdb:
4731
            case QEMU_OPTION_hdc:
4732
            case QEMU_OPTION_hdd:
4733
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4734
                break;
4735
            case QEMU_OPTION_drive:
4736
                drive_add(NULL, "%s", optarg);
4737
                break;
4738
            case QEMU_OPTION_mtdblock:
4739
                drive_add(optarg, MTD_ALIAS);
4740
                break;
4741
            case QEMU_OPTION_sd:
4742
                drive_add(optarg, SD_ALIAS);
4743
                break;
4744
            case QEMU_OPTION_pflash:
4745
                drive_add(optarg, PFLASH_ALIAS);
4746
                break;
4747
            case QEMU_OPTION_snapshot:
4748
                snapshot = 1;
4749
                break;
4750
            case QEMU_OPTION_hdachs:
4751
                {
4752
                    const char *p;
4753
                    p = optarg;
4754
                    cyls = strtol(p, (char **)&p, 0);
4755
                    if (cyls < 1 || cyls > 16383)
4756
                        goto chs_fail;
4757
                    if (*p != ',')
4758
                        goto chs_fail;
4759
                    p++;
4760
                    heads = strtol(p, (char **)&p, 0);
4761
                    if (heads < 1 || heads > 16)
4762
                        goto chs_fail;
4763
                    if (*p != ',')
4764
                        goto chs_fail;
4765
                    p++;
4766
                    secs = strtol(p, (char **)&p, 0);
4767
                    if (secs < 1 || secs > 63)
4768
                        goto chs_fail;
4769
                    if (*p == ',') {
4770
                        p++;
4771
                        if (!strcmp(p, "none"))
4772
                            translation = BIOS_ATA_TRANSLATION_NONE;
4773
                        else if (!strcmp(p, "lba"))
4774
                            translation = BIOS_ATA_TRANSLATION_LBA;
4775
                        else if (!strcmp(p, "auto"))
4776
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4777
                        else
4778
                            goto chs_fail;
4779
                    } else if (*p != '\0') {
4780
                    chs_fail:
4781
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4782
                        exit(1);
4783
                    }
4784
                    if (hda_index != -1)
4785
                        snprintf(drives_opt[hda_index].opt,
4786
                                 sizeof(drives_opt[hda_index].opt),
4787
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4788
                                 0, cyls, heads, secs,
4789
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
4790
                                         ",trans=lba" :
4791
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
4792
                                     ",trans=none" : "");
4793
                }
4794
                break;
4795
            case QEMU_OPTION_nographic:
4796
                nographic = 1;
4797
                break;
4798
#ifdef CONFIG_CURSES
4799
            case QEMU_OPTION_curses:
4800
                curses = 1;
4801
                break;
4802
#endif
4803
            case QEMU_OPTION_portrait:
4804
                graphic_rotate = 1;
4805
                break;
4806
            case QEMU_OPTION_kernel:
4807
                kernel_filename = optarg;
4808
                break;
4809
            case QEMU_OPTION_append:
4810
                kernel_cmdline = optarg;
4811
                break;
4812
            case QEMU_OPTION_cdrom:
4813
                drive_add(optarg, CDROM_ALIAS);
4814
                break;
4815
            case QEMU_OPTION_boot:
4816
                boot_devices = optarg;
4817
                /* We just do some generic consistency checks */
4818
                {
4819
                    /* Could easily be extended to 64 devices if needed */
4820
                    const char *p;
4821
                    
4822
                    boot_devices_bitmap = 0;
4823
                    for (p = boot_devices; *p != '\0'; p++) {
4824
                        /* Allowed boot devices are:
4825
                         * a b     : floppy disk drives
4826
                         * c ... f : IDE disk drives
4827
                         * g ... m : machine implementation dependant drives
4828
                         * n ... p : network devices
4829
                         * It's up to each machine implementation to check
4830
                         * if the given boot devices match the actual hardware
4831
                         * implementation and firmware features.
4832
                         */
4833
                        if (*p < 'a' || *p > 'q') {
4834
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
4835
                            exit(1);
4836
                        }
4837
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4838
                            fprintf(stderr,
4839
                                    "Boot device '%c' was given twice\n",*p);
4840
                            exit(1);
4841
                        }
4842
                        boot_devices_bitmap |= 1 << (*p - 'a');
4843
                    }
4844
                }
4845
                break;
4846
            case QEMU_OPTION_fda:
4847
            case QEMU_OPTION_fdb:
4848
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4849
                break;
4850
#ifdef TARGET_I386
4851
            case QEMU_OPTION_no_fd_bootchk:
4852
                fd_bootchk = 0;
4853
                break;
4854
#endif
4855
            case QEMU_OPTION_net:
4856
                if (nb_net_clients >= MAX_NET_CLIENTS) {
4857
                    fprintf(stderr, "qemu: too many network clients\n");
4858
                    exit(1);
4859
                }
4860
                net_clients[nb_net_clients] = optarg;
4861
                nb_net_clients++;
4862
                break;
4863
#ifdef CONFIG_SLIRP
4864
            case QEMU_OPTION_tftp:
4865
                tftp_prefix = optarg;
4866
                break;
4867
            case QEMU_OPTION_bootp:
4868
                bootp_filename = optarg;
4869
                break;
4870
#ifndef _WIN32
4871
            case QEMU_OPTION_smb:
4872
                net_slirp_smb(optarg);
4873
                break;
4874
#endif
4875
            case QEMU_OPTION_redir:
4876
                net_slirp_redir(optarg);
4877
                break;
4878
#endif
4879
            case QEMU_OPTION_bt:
4880
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
4881
                    fprintf(stderr, "qemu: too many bluetooth options\n");
4882
                    exit(1);
4883
                }
4884
                bt_opts[nb_bt_opts++] = optarg;
4885
                break;
4886
#ifdef HAS_AUDIO
4887
            case QEMU_OPTION_audio_help:
4888
                AUD_help ();
4889
                exit (0);
4890
                break;
4891
            case QEMU_OPTION_soundhw:
4892
                select_soundhw (optarg);
4893
                break;
4894
#endif
4895
            case QEMU_OPTION_h:
4896
                help(0);
4897
                break;
4898
            case QEMU_OPTION_m: {
4899
                uint64_t value;
4900
                char *ptr;
4901

    
4902
                value = strtoul(optarg, &ptr, 10);
4903
                switch (*ptr) {
4904
                case 0: case 'M': case 'm':
4905
                    value <<= 20;
4906
                    break;
4907
                case 'G': case 'g':
4908
                    value <<= 30;
4909
                    break;
4910
                default:
4911
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4912
                    exit(1);
4913
                }
4914

    
4915
                /* On 32-bit hosts, QEMU is limited by virtual address space */
4916
                if (value > (2047 << 20)
4917
#ifndef USE_KQEMU
4918
                    && HOST_LONG_BITS == 32
4919
#endif
4920
                    ) {
4921
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4922
                    exit(1);
4923
                }
4924
                if (value != (uint64_t)(ram_addr_t)value) {
4925
                    fprintf(stderr, "qemu: ram size too large\n");
4926
                    exit(1);
4927
                }
4928
                ram_size = value;
4929
                break;
4930
            }
4931
            case QEMU_OPTION_d:
4932
                {
4933
                    int mask;
4934
                    const CPULogItem *item;
4935

    
4936
                    mask = cpu_str_to_log_mask(optarg);
4937
                    if (!mask) {
4938
                        printf("Log items (comma separated):\n");
4939
                    for(item = cpu_log_items; item->mask != 0; item++) {
4940
                        printf("%-10s %s\n", item->name, item->help);
4941
                    }
4942
                    exit(1);
4943
                    }
4944
                    cpu_set_log(mask);
4945
                }
4946
                break;
4947
#ifdef CONFIG_GDBSTUB
4948
            case QEMU_OPTION_s:
4949
                use_gdbstub = 1;
4950
                break;
4951
            case QEMU_OPTION_p:
4952
                gdbstub_port = optarg;
4953
                break;
4954
#endif
4955
            case QEMU_OPTION_L:
4956
                bios_dir = optarg;
4957
                break;
4958
            case QEMU_OPTION_bios:
4959
                bios_name = optarg;
4960
                break;
4961
            case QEMU_OPTION_S:
4962
                autostart = 0;
4963
                break;
4964
            case QEMU_OPTION_k:
4965
                keyboard_layout = optarg;
4966
                break;
4967
            case QEMU_OPTION_localtime:
4968
                rtc_utc = 0;
4969
                break;
4970
            case QEMU_OPTION_vga:
4971
                select_vgahw (optarg);
4972
                break;
4973
            case QEMU_OPTION_g:
4974
                {
4975
                    const char *p;
4976
                    int w, h, depth;
4977
                    p = optarg;
4978
                    w = strtol(p, (char **)&p, 10);
4979
                    if (w <= 0) {
4980
                    graphic_error:
4981
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
4982
                        exit(1);
4983
                    }
4984
                    if (*p != 'x')
4985
                        goto graphic_error;
4986
                    p++;
4987
                    h = strtol(p, (char **)&p, 10);
4988
                    if (h <= 0)
4989
                        goto graphic_error;
4990
                    if (*p == 'x') {
4991
                        p++;
4992
                        depth = strtol(p, (char **)&p, 10);
4993
                        if (depth != 8 && depth != 15 && depth != 16 &&
4994
                            depth != 24 && depth != 32)
4995
                            goto graphic_error;
4996
                    } else if (*p == '\0') {
4997
                        depth = graphic_depth;
4998
                    } else {
4999
                        goto graphic_error;
5000
                    }
5001

    
5002
                    graphic_width = w;
5003
                    graphic_height = h;
5004
                    graphic_depth = depth;
5005
                }
5006
                break;
5007
            case QEMU_OPTION_echr:
5008
                {
5009
                    char *r;
5010
                    term_escape_char = strtol(optarg, &r, 0);
5011
                    if (r == optarg)
5012
                        printf("Bad argument to echr\n");
5013
                    break;
5014
                }
5015
            case QEMU_OPTION_monitor:
5016
                monitor_device = optarg;
5017
                break;
5018
            case QEMU_OPTION_serial:
5019
                if (serial_device_index >= MAX_SERIAL_PORTS) {
5020
                    fprintf(stderr, "qemu: too many serial ports\n");
5021
                    exit(1);
5022
                }
5023
                serial_devices[serial_device_index] = optarg;
5024
                serial_device_index++;
5025
                break;
5026
            case QEMU_OPTION_virtiocon:
5027
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5028
                    fprintf(stderr, "qemu: too many virtio consoles\n");
5029
                    exit(1);
5030
                }
5031
                virtio_consoles[virtio_console_index] = optarg;
5032
                virtio_console_index++;
5033
                break;
5034
            case QEMU_OPTION_parallel:
5035
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5036
                    fprintf(stderr, "qemu: too many parallel ports\n");
5037
                    exit(1);
5038
                }
5039
                parallel_devices[parallel_device_index] = optarg;
5040
                parallel_device_index++;
5041
                break;
5042
            case QEMU_OPTION_loadvm:
5043
                loadvm = optarg;
5044
                break;
5045
            case QEMU_OPTION_full_screen:
5046
                full_screen = 1;
5047
                break;
5048
#ifdef CONFIG_SDL
5049
            case QEMU_OPTION_no_frame:
5050
                no_frame = 1;
5051
                break;
5052
            case QEMU_OPTION_alt_grab:
5053
                alt_grab = 1;
5054
                break;
5055
            case QEMU_OPTION_no_quit:
5056
                no_quit = 1;
5057
                break;
5058
            case QEMU_OPTION_sdl:
5059
                sdl = 1;
5060
                break;
5061
#endif
5062
            case QEMU_OPTION_pidfile:
5063
                pid_file = optarg;
5064
                break;
5065
#ifdef TARGET_I386
5066
            case QEMU_OPTION_win2k_hack:
5067
                win2k_install_hack = 1;
5068
                break;
5069
            case QEMU_OPTION_rtc_td_hack:
5070
                rtc_td_hack = 1;
5071
                break;
5072
#endif
5073
#ifdef USE_KQEMU
5074
            case QEMU_OPTION_no_kqemu:
5075
                kqemu_allowed = 0;
5076
                break;
5077
            case QEMU_OPTION_kernel_kqemu:
5078
                kqemu_allowed = 2;
5079
                break;
5080
#endif
5081
#ifdef CONFIG_KVM
5082
            case QEMU_OPTION_enable_kvm:
5083
                kvm_allowed = 1;
5084
#ifdef USE_KQEMU
5085
                kqemu_allowed = 0;
5086
#endif
5087
                break;
5088
#endif
5089
            case QEMU_OPTION_usb:
5090
                usb_enabled = 1;
5091
                break;
5092
            case QEMU_OPTION_usbdevice:
5093
                usb_enabled = 1;
5094
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5095
                    fprintf(stderr, "Too many USB devices\n");
5096
                    exit(1);
5097
                }
5098
                usb_devices[usb_devices_index] = optarg;
5099
                usb_devices_index++;
5100
                break;
5101
            case QEMU_OPTION_smp:
5102
                smp_cpus = atoi(optarg);
5103
                if (smp_cpus < 1) {
5104
                    fprintf(stderr, "Invalid number of CPUs\n");
5105
                    exit(1);
5106
                }
5107
                break;
5108
            case QEMU_OPTION_vnc:
5109
                vnc_display = optarg;
5110
                break;
5111
            case QEMU_OPTION_no_acpi:
5112
                acpi_enabled = 0;
5113
                break;
5114
            case QEMU_OPTION_no_hpet:
5115
                no_hpet = 1;
5116
                break;
5117
            case QEMU_OPTION_no_reboot:
5118
                no_reboot = 1;
5119
                break;
5120
            case QEMU_OPTION_no_shutdown:
5121
                no_shutdown = 1;
5122
                break;
5123
            case QEMU_OPTION_show_cursor:
5124
                cursor_hide = 0;
5125
                break;
5126
            case QEMU_OPTION_uuid:
5127
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5128
                    fprintf(stderr, "Fail to parse UUID string."
5129
                            " Wrong format.\n");
5130
                    exit(1);
5131
                }
5132
                break;
5133
            case QEMU_OPTION_daemonize:
5134
                daemonize = 1;
5135
                break;
5136
            case QEMU_OPTION_option_rom:
5137
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5138
                    fprintf(stderr, "Too many option ROMs\n");
5139
                    exit(1);
5140
                }
5141
                option_rom[nb_option_roms] = optarg;
5142
                nb_option_roms++;
5143
                break;
5144
            case QEMU_OPTION_semihosting:
5145
                semihosting_enabled = 1;
5146
                break;
5147
            case QEMU_OPTION_name:
5148
                qemu_name = optarg;
5149
                break;
5150
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5151
            case QEMU_OPTION_prom_env:
5152
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5153
                    fprintf(stderr, "Too many prom variables\n");
5154
                    exit(1);
5155
                }
5156
                prom_envs[nb_prom_envs] = optarg;
5157
                nb_prom_envs++;
5158
                break;
5159
#endif
5160
#ifdef TARGET_ARM
5161
            case QEMU_OPTION_old_param:
5162
                old_param = 1;
5163
                break;
5164
#endif
5165
            case QEMU_OPTION_clock:
5166
                configure_alarms(optarg);
5167
                break;
5168
            case QEMU_OPTION_startdate:
5169
                {
5170
                    struct tm tm;
5171
                    time_t rtc_start_date;
5172
                    if (!strcmp(optarg, "now")) {
5173
                        rtc_date_offset = -1;
5174
                    } else {
5175
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5176
                               &tm.tm_year,
5177
                               &tm.tm_mon,
5178
                               &tm.tm_mday,
5179
                               &tm.tm_hour,
5180
                               &tm.tm_min,
5181
                               &tm.tm_sec) == 6) {
5182
                            /* OK */
5183
                        } else if (sscanf(optarg, "%d-%d-%d",
5184
                                          &tm.tm_year,
5185
                                          &tm.tm_mon,
5186
                                          &tm.tm_mday) == 3) {
5187
                            tm.tm_hour = 0;
5188
                            tm.tm_min = 0;
5189
                            tm.tm_sec = 0;
5190
                        } else {
5191
                            goto date_fail;
5192
                        }
5193
                        tm.tm_year -= 1900;
5194
                        tm.tm_mon--;
5195
                        rtc_start_date = mktimegm(&tm);
5196
                        if (rtc_start_date == -1) {
5197
                        date_fail:
5198
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5199
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5200
                            exit(1);
5201
                        }
5202
                        rtc_date_offset = time(NULL) - rtc_start_date;
5203
                    }
5204
                }
5205
                break;
5206
            case QEMU_OPTION_tb_size:
5207
                tb_size = strtol(optarg, NULL, 0);
5208
                if (tb_size < 0)
5209
                    tb_size = 0;
5210
                break;
5211
            case QEMU_OPTION_icount:
5212
                use_icount = 1;
5213
                if (strcmp(optarg, "auto") == 0) {
5214
                    icount_time_shift = -1;
5215
                } else {
5216
                    icount_time_shift = strtol(optarg, NULL, 0);
5217
                }
5218
                break;
5219
            case QEMU_OPTION_incoming:
5220
                incoming = optarg;
5221
                break;
5222
            }
5223
        }
5224
    }
5225

    
5226
#if defined(CONFIG_KVM) && defined(USE_KQEMU)
5227
    if (kvm_allowed && kqemu_allowed) {
5228
        fprintf(stderr,
5229
                "You can not enable both KVM and kqemu at the same time\n");
5230
        exit(1);
5231
    }
5232
#endif
5233

    
5234
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5235
    if (smp_cpus > machine->max_cpus) {
5236
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5237
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5238
                machine->max_cpus);
5239
        exit(1);
5240
    }
5241

    
5242
    if (nographic) {
5243
       if (serial_device_index == 0)
5244
           serial_devices[0] = "stdio";
5245
       if (parallel_device_index == 0)
5246
           parallel_devices[0] = "null";
5247
       if (strncmp(monitor_device, "vc", 2) == 0)
5248
           monitor_device = "stdio";
5249
       if (virtio_console_index == 0)
5250
           virtio_consoles[0] = "null";
5251
    }
5252

    
5253
#ifndef _WIN32
5254
    if (daemonize) {
5255
        pid_t pid;
5256

    
5257
        if (pipe(fds) == -1)
5258
            exit(1);
5259

    
5260
        pid = fork();
5261
        if (pid > 0) {
5262
            uint8_t status;
5263
            ssize_t len;
5264

    
5265
            close(fds[1]);
5266

    
5267
        again:
5268
            len = read(fds[0], &status, 1);
5269
            if (len == -1 && (errno == EINTR))
5270
                goto again;
5271

    
5272
            if (len != 1)
5273
                exit(1);
5274
            else if (status == 1) {
5275
                fprintf(stderr, "Could not acquire pidfile\n");
5276
                exit(1);
5277
            } else
5278
                exit(0);
5279
        } else if (pid < 0)
5280
            exit(1);
5281

    
5282
        setsid();
5283

    
5284
        pid = fork();
5285
        if (pid > 0)
5286
            exit(0);
5287
        else if (pid < 0)
5288
            exit(1);
5289

    
5290
        umask(027);
5291

    
5292
        signal(SIGTSTP, SIG_IGN);
5293
        signal(SIGTTOU, SIG_IGN);
5294
        signal(SIGTTIN, SIG_IGN);
5295
    }
5296
#endif
5297

    
5298
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5299
        if (daemonize) {
5300
            uint8_t status = 1;
5301
            write(fds[1], &status, 1);
5302
        } else
5303
            fprintf(stderr, "Could not acquire pid file\n");
5304
        exit(1);
5305
    }
5306

    
5307
#ifdef USE_KQEMU
5308
    if (smp_cpus > 1)
5309
        kqemu_allowed = 0;
5310
#endif
5311
    linux_boot = (kernel_filename != NULL);
5312
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5313

    
5314
    if (!linux_boot && net_boot == 0 &&
5315
        !machine->nodisk_ok && nb_drives_opt == 0)
5316
        help(1);
5317

    
5318
    if (!linux_boot && *kernel_cmdline != '\0') {
5319
        fprintf(stderr, "-append only allowed with -kernel option\n");
5320
        exit(1);
5321
    }
5322

    
5323
    if (!linux_boot && initrd_filename != NULL) {
5324
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5325
        exit(1);
5326
    }
5327

    
5328
    /* boot to floppy or the default cd if no hard disk defined yet */
5329
    if (!boot_devices[0]) {
5330
        boot_devices = "cad";
5331
    }
5332
    setvbuf(stdout, NULL, _IOLBF, 0);
5333

    
5334
    init_timers();
5335
    if (init_timer_alarm() < 0) {
5336
        fprintf(stderr, "could not initialize alarm timer\n");
5337
        exit(1);
5338
    }
5339
    if (use_icount && icount_time_shift < 0) {
5340
        use_icount = 2;
5341
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5342
           It will be corrected fairly quickly anyway.  */
5343
        icount_time_shift = 3;
5344
        init_icount_adjust();
5345
    }
5346

    
5347
#ifdef _WIN32
5348
    socket_init();
5349
#endif
5350

    
5351
    /* init network clients */
5352
    if (nb_net_clients == 0) {
5353
        /* if no clients, we use a default config */
5354
        net_clients[nb_net_clients++] = "nic";
5355
#ifdef CONFIG_SLIRP
5356
        net_clients[nb_net_clients++] = "user";
5357
#endif
5358
    }
5359

    
5360
    for(i = 0;i < nb_net_clients; i++) {
5361
        if (net_client_parse(net_clients[i]) < 0)
5362
            exit(1);
5363
    }
5364
    net_client_check();
5365

    
5366
#ifdef TARGET_I386
5367
    /* XXX: this should be moved in the PC machine instantiation code */
5368
    if (net_boot != 0) {
5369
        int netroms = 0;
5370
        for (i = 0; i < nb_nics && i < 4; i++) {
5371
            const char *model = nd_table[i].model;
5372
            char buf[1024];
5373
            if (net_boot & (1 << i)) {
5374
                if (model == NULL)
5375
                    model = "ne2k_pci";
5376
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5377
                if (get_image_size(buf) > 0) {
5378
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5379
                        fprintf(stderr, "Too many option ROMs\n");
5380
                        exit(1);
5381
                    }
5382
                    option_rom[nb_option_roms] = strdup(buf);
5383
                    nb_option_roms++;
5384
                    netroms++;
5385
                }
5386
            }
5387
        }
5388
        if (netroms == 0) {
5389
            fprintf(stderr, "No valid PXE rom found for network device\n");
5390
            exit(1);
5391
        }
5392
    }
5393
#endif
5394

    
5395
    /* init the bluetooth world */
5396
    for (i = 0; i < nb_bt_opts; i++)
5397
        if (bt_parse(bt_opts[i]))
5398
            exit(1);
5399

    
5400
    /* init the memory */
5401
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5402

    
5403
    if (machine->ram_require & RAMSIZE_FIXED) {
5404
        if (ram_size > 0) {
5405
            if (ram_size < phys_ram_size) {
5406
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5407
                                machine->name, (unsigned long long) phys_ram_size);
5408
                exit(-1);
5409
            }
5410

    
5411
            phys_ram_size = ram_size;
5412
        } else
5413
            ram_size = phys_ram_size;
5414
    } else {
5415
        if (ram_size == 0)
5416
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5417

    
5418
        phys_ram_size += ram_size;
5419
    }
5420

    
5421
    phys_ram_base = qemu_vmalloc(phys_ram_size);
5422
    if (!phys_ram_base) {
5423
        fprintf(stderr, "Could not allocate physical memory\n");
5424
        exit(1);
5425
    }
5426

    
5427
    /* init the dynamic translator */
5428
    cpu_exec_init_all(tb_size * 1024 * 1024);
5429

    
5430
    bdrv_init();
5431

    
5432
    /* we always create the cdrom drive, even if no disk is there */
5433

    
5434
    if (nb_drives_opt < MAX_DRIVES)
5435
        drive_add(NULL, CDROM_ALIAS);
5436

    
5437
    /* we always create at least one floppy */
5438

    
5439
    if (nb_drives_opt < MAX_DRIVES)
5440
        drive_add(NULL, FD_ALIAS, 0);
5441

    
5442
    /* we always create one sd slot, even if no card is in it */
5443

    
5444
    if (nb_drives_opt < MAX_DRIVES)
5445
        drive_add(NULL, SD_ALIAS);
5446

    
5447
    /* open the virtual block devices */
5448

    
5449
    for(i = 0; i < nb_drives_opt; i++)
5450
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5451
            exit(1);
5452

    
5453
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5454
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5455

    
5456
#ifndef _WIN32
5457
    /* must be after terminal init, SDL library changes signal handlers */
5458
    termsig_setup();
5459
#endif
5460

    
5461
    /* Maintain compatibility with multiple stdio monitors */
5462
    if (!strcmp(monitor_device,"stdio")) {
5463
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5464
            const char *devname = serial_devices[i];
5465
            if (devname && !strcmp(devname,"mon:stdio")) {
5466
                monitor_device = NULL;
5467
                break;
5468
            } else if (devname && !strcmp(devname,"stdio")) {
5469
                monitor_device = NULL;
5470
                serial_devices[i] = "mon:stdio";
5471
                break;
5472
            }
5473
        }
5474
    }
5475

    
5476
    if (kvm_enabled()) {
5477
        int ret;
5478

    
5479
        ret = kvm_init(smp_cpus);
5480
        if (ret < 0) {
5481
            fprintf(stderr, "failed to initialize KVM\n");
5482
            exit(1);
5483
        }
5484
    }
5485

    
5486
    if (monitor_device) {
5487
        monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5488
        if (!monitor_hd) {
5489
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5490
            exit(1);
5491
        }
5492
    }
5493

    
5494
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5495
        const char *devname = serial_devices[i];
5496
        if (devname && strcmp(devname, "none")) {
5497
            char label[32];
5498
            snprintf(label, sizeof(label), "serial%d", i);
5499
            serial_hds[i] = qemu_chr_open(label, devname, NULL);
5500
            if (!serial_hds[i]) {
5501
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5502
                        devname);
5503
                exit(1);
5504
            }
5505
        }
5506
    }
5507

    
5508
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5509
        const char *devname = parallel_devices[i];
5510
        if (devname && strcmp(devname, "none")) {
5511
            char label[32];
5512
            snprintf(label, sizeof(label), "parallel%d", i);
5513
            parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5514
            if (!parallel_hds[i]) {
5515
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5516
                        devname);
5517
                exit(1);
5518
            }
5519
        }
5520
    }
5521

    
5522
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5523
        const char *devname = virtio_consoles[i];
5524
        if (devname && strcmp(devname, "none")) {
5525
            char label[32];
5526
            snprintf(label, sizeof(label), "virtcon%d", i);
5527
            virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5528
            if (!virtcon_hds[i]) {
5529
                fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5530
                        devname);
5531
                exit(1);
5532
            }
5533
        }
5534
    }
5535

    
5536
    machine->init(ram_size, vga_ram_size, boot_devices,
5537
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5538

    
5539
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5540
    if (kvm_enabled()) {
5541
        int ret;
5542

    
5543
        ret = kvm_sync_vcpus();
5544
        if (ret < 0) {
5545
            fprintf(stderr, "failed to initialize vcpus\n");
5546
            exit(1);
5547
        }
5548
    }
5549

    
5550
    /* init USB devices */
5551
    if (usb_enabled) {
5552
        for(i = 0; i < usb_devices_index; i++) {
5553
            if (usb_device_add(usb_devices[i]) < 0) {
5554
                fprintf(stderr, "Warning: could not add USB device %s\n",
5555
                        usb_devices[i]);
5556
            }
5557
        }
5558
    }
5559

    
5560
    if (!display_state)
5561
        dumb_display_init();
5562
    /* just use the first displaystate for the moment */
5563
    ds = display_state;
5564
    /* terminal init */
5565
    if (nographic) {
5566
        if (curses) {
5567
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5568
            exit(1);
5569
        }
5570
    } else { 
5571
#if defined(CONFIG_CURSES)
5572
            if (curses) {
5573
                /* At the moment curses cannot be used with other displays */
5574
                curses_display_init(ds, full_screen);
5575
            } else
5576
#endif
5577
            {
5578
                if (vnc_display != NULL) {
5579
                    vnc_display_init(ds);
5580
                    if (vnc_display_open(ds, vnc_display) < 0)
5581
                        exit(1);
5582
                }
5583
#if defined(CONFIG_SDL)
5584
                if (sdl || !vnc_display)
5585
                    sdl_display_init(ds, full_screen, no_frame);
5586
#elif defined(CONFIG_COCOA)
5587
                if (sdl || !vnc_display)
5588
                    cocoa_display_init(ds, full_screen);
5589
#endif
5590
            }
5591
    }
5592
    dpy_resize(ds);
5593

    
5594
    dcl = ds->listeners;
5595
    while (dcl != NULL) {
5596
        if (dcl->dpy_refresh != NULL) {
5597
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5598
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5599
        }
5600
        dcl = dcl->next;
5601
    }
5602

    
5603
    if (nographic || (vnc_display && !sdl)) {
5604
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5605
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5606
    }
5607

    
5608
    text_consoles_set_display(display_state);
5609

    
5610
    if (monitor_device && monitor_hd)
5611
        monitor_init(monitor_hd, !nographic);
5612

    
5613
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5614
        const char *devname = serial_devices[i];
5615
        if (devname && strcmp(devname, "none")) {
5616
            char label[32];
5617
            snprintf(label, sizeof(label), "serial%d", i);
5618
            if (strstart(devname, "vc", 0))
5619
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5620
        }
5621
    }
5622

    
5623
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5624
        const char *devname = parallel_devices[i];
5625
        if (devname && strcmp(devname, "none")) {
5626
            char label[32];
5627
            snprintf(label, sizeof(label), "parallel%d", i);
5628
            if (strstart(devname, "vc", 0))
5629
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5630
        }
5631
    }
5632

    
5633
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5634
        const char *devname = virtio_consoles[i];
5635
        if (virtcon_hds[i] && devname) {
5636
            char label[32];
5637
            snprintf(label, sizeof(label), "virtcon%d", i);
5638
            if (strstart(devname, "vc", 0))
5639
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5640
        }
5641
    }
5642

    
5643
#ifdef CONFIG_GDBSTUB
5644
    if (use_gdbstub) {
5645
        /* XXX: use standard host:port notation and modify options
5646
           accordingly. */
5647
        if (gdbserver_start(gdbstub_port) < 0) {
5648
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5649
                    gdbstub_port);
5650
            exit(1);
5651
        }
5652
    }
5653
#endif
5654

    
5655
    if (loadvm)
5656
        do_loadvm(loadvm);
5657

    
5658
    if (incoming) {
5659
        autostart = 0; /* fixme how to deal with -daemonize */
5660
        qemu_start_incoming_migration(incoming);
5661
    }
5662

    
5663
    {
5664
        /* XXX: simplify init */
5665
        read_passwords();
5666
        if (autostart) {
5667
            vm_start();
5668
        }
5669
    }
5670

    
5671
    if (daemonize) {
5672
        uint8_t status = 0;
5673
        ssize_t len;
5674
        int fd;
5675

    
5676
    again1:
5677
        len = write(fds[1], &status, 1);
5678
        if (len == -1 && (errno == EINTR))
5679
            goto again1;
5680

    
5681
        if (len != 1)
5682
            exit(1);
5683

    
5684
        chdir("/");
5685
        TFR(fd = open("/dev/null", O_RDWR));
5686
        if (fd == -1)
5687
            exit(1);
5688

    
5689
        dup2(fd, 0);
5690
        dup2(fd, 1);
5691
        dup2(fd, 2);
5692

    
5693
        close(fd);
5694
    }
5695

    
5696
    main_loop();
5697
    quit_timers();
5698
    net_cleanup();
5699

    
5700
    return 0;
5701
}