Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ 211315fb

History | View | Annotate | Download (25.1 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config.h"
47

    
48
/*----------------------------------------------------------------------------
49
| Each of the following `typedef's defines the most convenient type that holds
50
| integers of at least as many bits as specified.  For example, `uint8' should
51
| be the most convenient type that can hold unsigned integers of as many as
52
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
53
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54
| to the same as `int'.
55
*----------------------------------------------------------------------------*/
56
typedef uint8_t flag;
57
typedef uint8_t uint8;
58
typedef int8_t int8;
59
#ifndef _AIX
60
typedef int uint16;
61
typedef int int16;
62
#endif
63
typedef unsigned int uint32;
64
typedef signed int int32;
65
typedef uint64_t uint64;
66
typedef int64_t int64;
67

    
68
#define LIT64( a ) a##LL
69
#define INLINE static inline
70

    
71
#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
72
#define SNAN_BIT_IS_ONE                1
73
#else
74
#define SNAN_BIT_IS_ONE                0
75
#endif
76

    
77
/*----------------------------------------------------------------------------
78
| The macro `FLOATX80' must be defined to enable the extended double-precision
79
| floating-point format `floatx80'.  If this macro is not defined, the
80
| `floatx80' type will not be defined, and none of the functions that either
81
| input or output the `floatx80' type will be defined.  The same applies to
82
| the `FLOAT128' macro and the quadruple-precision format `float128'.
83
*----------------------------------------------------------------------------*/
84
#ifdef CONFIG_SOFTFLOAT
85
/* bit exact soft float support */
86
#define FLOATX80
87
#define FLOAT128
88
#else
89
/* native float support */
90
#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
91
#define FLOATX80
92
#endif
93
#endif /* !CONFIG_SOFTFLOAT */
94

    
95
#define STATUS_PARAM , float_status *status
96
#define STATUS(field) status->field
97
#define STATUS_VAR , status
98

    
99
/*----------------------------------------------------------------------------
100
| Software IEC/IEEE floating-point ordering relations
101
*----------------------------------------------------------------------------*/
102
enum {
103
    float_relation_less      = -1,
104
    float_relation_equal     =  0,
105
    float_relation_greater   =  1,
106
    float_relation_unordered =  2
107
};
108

    
109
#ifdef CONFIG_SOFTFLOAT
110
/*----------------------------------------------------------------------------
111
| Software IEC/IEEE floating-point types.
112
*----------------------------------------------------------------------------*/
113
/* Use structures for soft-float types.  This prevents accidentally mixing
114
   them with native int/float types.  A sufficiently clever compiler and
115
   sane ABI should be able to see though these structs.  However
116
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
117
//#define USE_SOFTFLOAT_STRUCT_TYPES
118
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
119
typedef struct {
120
    uint16_t v;
121
} float16;
122
#define float16_val(x) (((float16)(x)).v)
123
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
124
#define const_float16(x) { x }
125
typedef struct {
126
    uint32_t v;
127
} float32;
128
/* The cast ensures an error if the wrong type is passed.  */
129
#define float32_val(x) (((float32)(x)).v)
130
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
131
#define const_float32(x) { x }
132
typedef struct {
133
    uint64_t v;
134
} float64;
135
#define float64_val(x) (((float64)(x)).v)
136
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
137
#define const_float64(x) { x }
138
#else
139
typedef uint16_t float16;
140
typedef uint32_t float32;
141
typedef uint64_t float64;
142
#define float16_val(x) (x)
143
#define float32_val(x) (x)
144
#define float64_val(x) (x)
145
#define make_float16(x) (x)
146
#define make_float32(x) (x)
147
#define make_float64(x) (x)
148
#define const_float16(x) (x)
149
#define const_float32(x) (x)
150
#define const_float64(x) (x)
151
#endif
152
#ifdef FLOATX80
153
typedef struct {
154
    uint64_t low;
155
    uint16_t high;
156
} floatx80;
157
#endif
158
#ifdef FLOAT128
159
typedef struct {
160
#ifdef HOST_WORDS_BIGENDIAN
161
    uint64_t high, low;
162
#else
163
    uint64_t low, high;
164
#endif
165
} float128;
166
#endif
167

    
168
/*----------------------------------------------------------------------------
169
| Software IEC/IEEE floating-point underflow tininess-detection mode.
170
*----------------------------------------------------------------------------*/
171
enum {
172
    float_tininess_after_rounding  = 0,
173
    float_tininess_before_rounding = 1
174
};
175

    
176
/*----------------------------------------------------------------------------
177
| Software IEC/IEEE floating-point rounding mode.
178
*----------------------------------------------------------------------------*/
179
enum {
180
    float_round_nearest_even = 0,
181
    float_round_down         = 1,
182
    float_round_up           = 2,
183
    float_round_to_zero      = 3
184
};
185

    
186
/*----------------------------------------------------------------------------
187
| Software IEC/IEEE floating-point exception flags.
188
*----------------------------------------------------------------------------*/
189
enum {
190
    float_flag_invalid   =  1,
191
    float_flag_divbyzero =  4,
192
    float_flag_overflow  =  8,
193
    float_flag_underflow = 16,
194
    float_flag_inexact   = 32,
195
    float_flag_input_denormal = 64
196
};
197

    
198
typedef struct float_status {
199
    signed char float_detect_tininess;
200
    signed char float_rounding_mode;
201
    signed char float_exception_flags;
202
#ifdef FLOATX80
203
    signed char floatx80_rounding_precision;
204
#endif
205
    /* should denormalised results go to zero and set the inexact flag? */
206
    flag flush_to_zero;
207
    /* should denormalised inputs go to zero and set the input_denormal flag? */
208
    flag flush_inputs_to_zero;
209
    flag default_nan_mode;
210
} float_status;
211

    
212
void set_float_rounding_mode(int val STATUS_PARAM);
213
void set_float_exception_flags(int val STATUS_PARAM);
214
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
215
{
216
    STATUS(float_detect_tininess) = val;
217
}
218
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
219
{
220
    STATUS(flush_to_zero) = val;
221
}
222
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
223
{
224
    STATUS(flush_inputs_to_zero) = val;
225
}
226
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
227
{
228
    STATUS(default_nan_mode) = val;
229
}
230
INLINE int get_float_exception_flags(float_status *status)
231
{
232
    return STATUS(float_exception_flags);
233
}
234
#ifdef FLOATX80
235
void set_floatx80_rounding_precision(int val STATUS_PARAM);
236
#endif
237

    
238
/*----------------------------------------------------------------------------
239
| Routine to raise any or all of the software IEC/IEEE floating-point
240
| exception flags.
241
*----------------------------------------------------------------------------*/
242
void float_raise( int8 flags STATUS_PARAM);
243

    
244
/*----------------------------------------------------------------------------
245
| Software IEC/IEEE integer-to-floating-point conversion routines.
246
*----------------------------------------------------------------------------*/
247
float32 int32_to_float32( int32 STATUS_PARAM );
248
float64 int32_to_float64( int32 STATUS_PARAM );
249
float32 uint32_to_float32( unsigned int STATUS_PARAM );
250
float64 uint32_to_float64( unsigned int STATUS_PARAM );
251
#ifdef FLOATX80
252
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
253
#endif
254
#ifdef FLOAT128
255
float128 int32_to_float128( int32 STATUS_PARAM );
256
#endif
257
float32 int64_to_float32( int64 STATUS_PARAM );
258
float32 uint64_to_float32( uint64 STATUS_PARAM );
259
float64 int64_to_float64( int64 STATUS_PARAM );
260
float64 uint64_to_float64( uint64 STATUS_PARAM );
261
#ifdef FLOATX80
262
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
263
#endif
264
#ifdef FLOAT128
265
float128 int64_to_float128( int64 STATUS_PARAM );
266
#endif
267

    
268
/*----------------------------------------------------------------------------
269
| Software half-precision conversion routines.
270
*----------------------------------------------------------------------------*/
271
float16 float32_to_float16( float32, flag STATUS_PARAM );
272
float32 float16_to_float32( float16, flag STATUS_PARAM );
273

    
274
/*----------------------------------------------------------------------------
275
| Software half-precision operations.
276
*----------------------------------------------------------------------------*/
277
int float16_is_quiet_nan( float16 );
278
int float16_is_signaling_nan( float16 );
279
float16 float16_maybe_silence_nan( float16 );
280

    
281
/*----------------------------------------------------------------------------
282
| The pattern for a default generated half-precision NaN.
283
*----------------------------------------------------------------------------*/
284
#if defined(TARGET_ARM)
285
#define float16_default_nan make_float16(0x7E00)
286
#elif SNAN_BIT_IS_ONE
287
#define float16_default_nan make_float16(0x7DFF)
288
#else
289
#define float16_default_nan make_float16(0xFE00)
290
#endif
291

    
292
/*----------------------------------------------------------------------------
293
| Software IEC/IEEE single-precision conversion routines.
294
*----------------------------------------------------------------------------*/
295
int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
296
unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
297
int32 float32_to_int32( float32 STATUS_PARAM );
298
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
299
uint32 float32_to_uint32( float32 STATUS_PARAM );
300
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
301
int64 float32_to_int64( float32 STATUS_PARAM );
302
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
303
float64 float32_to_float64( float32 STATUS_PARAM );
304
#ifdef FLOATX80
305
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
306
#endif
307
#ifdef FLOAT128
308
float128 float32_to_float128( float32 STATUS_PARAM );
309
#endif
310

    
311
/*----------------------------------------------------------------------------
312
| Software IEC/IEEE single-precision operations.
313
*----------------------------------------------------------------------------*/
314
float32 float32_round_to_int( float32 STATUS_PARAM );
315
float32 float32_add( float32, float32 STATUS_PARAM );
316
float32 float32_sub( float32, float32 STATUS_PARAM );
317
float32 float32_mul( float32, float32 STATUS_PARAM );
318
float32 float32_div( float32, float32 STATUS_PARAM );
319
float32 float32_rem( float32, float32 STATUS_PARAM );
320
float32 float32_sqrt( float32 STATUS_PARAM );
321
float32 float32_exp2( float32 STATUS_PARAM );
322
float32 float32_log2( float32 STATUS_PARAM );
323
int float32_eq_quiet( float32, float32 STATUS_PARAM );
324
int float32_le( float32, float32 STATUS_PARAM );
325
int float32_lt( float32, float32 STATUS_PARAM );
326
int float32_unordered( float32, float32 STATUS_PARAM );
327
int float32_eq_signaling( float32, float32 STATUS_PARAM );
328
int float32_le_quiet( float32, float32 STATUS_PARAM );
329
int float32_lt_quiet( float32, float32 STATUS_PARAM );
330
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
331
int float32_compare( float32, float32 STATUS_PARAM );
332
int float32_compare_quiet( float32, float32 STATUS_PARAM );
333
float32 float32_min(float32, float32 STATUS_PARAM);
334
float32 float32_max(float32, float32 STATUS_PARAM);
335
int float32_is_quiet_nan( float32 );
336
int float32_is_signaling_nan( float32 );
337
float32 float32_maybe_silence_nan( float32 );
338
float32 float32_scalbn( float32, int STATUS_PARAM );
339

    
340
INLINE float32 float32_abs(float32 a)
341
{
342
    /* Note that abs does *not* handle NaN specially, nor does
343
     * it flush denormal inputs to zero.
344
     */
345
    return make_float32(float32_val(a) & 0x7fffffff);
346
}
347

    
348
INLINE float32 float32_chs(float32 a)
349
{
350
    /* Note that chs does *not* handle NaN specially, nor does
351
     * it flush denormal inputs to zero.
352
     */
353
    return make_float32(float32_val(a) ^ 0x80000000);
354
}
355

    
356
INLINE int float32_is_infinity(float32 a)
357
{
358
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
359
}
360

    
361
INLINE int float32_is_neg(float32 a)
362
{
363
    return float32_val(a) >> 31;
364
}
365

    
366
INLINE int float32_is_zero(float32 a)
367
{
368
    return (float32_val(a) & 0x7fffffff) == 0;
369
}
370

    
371
INLINE int float32_is_any_nan(float32 a)
372
{
373
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
374
}
375

    
376
INLINE int float32_is_zero_or_denormal(float32 a)
377
{
378
    return (float32_val(a) & 0x7f800000) == 0;
379
}
380

    
381
INLINE float32 float32_set_sign(float32 a, int sign)
382
{
383
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
384
}
385

    
386
#define float32_zero make_float32(0)
387
#define float32_one make_float32(0x3f800000)
388
#define float32_ln2 make_float32(0x3f317218)
389
#define float32_half make_float32(0x3f000000)
390
#define float32_infinity make_float32(0x7f800000)
391

    
392

    
393
/*----------------------------------------------------------------------------
394
| The pattern for a default generated single-precision NaN.
395
*----------------------------------------------------------------------------*/
396
#if defined(TARGET_SPARC)
397
#define float32_default_nan make_float32(0x7FFFFFFF)
398
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
399
#define float32_default_nan make_float32(0x7FC00000)
400
#elif SNAN_BIT_IS_ONE
401
#define float32_default_nan make_float32(0x7FBFFFFF)
402
#else
403
#define float32_default_nan make_float32(0xFFC00000)
404
#endif
405

    
406
/*----------------------------------------------------------------------------
407
| Software IEC/IEEE double-precision conversion routines.
408
*----------------------------------------------------------------------------*/
409
int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
410
unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
411
int32 float64_to_int32( float64 STATUS_PARAM );
412
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
413
uint32 float64_to_uint32( float64 STATUS_PARAM );
414
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
415
int64 float64_to_int64( float64 STATUS_PARAM );
416
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
417
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
418
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
419
float32 float64_to_float32( float64 STATUS_PARAM );
420
#ifdef FLOATX80
421
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
422
#endif
423
#ifdef FLOAT128
424
float128 float64_to_float128( float64 STATUS_PARAM );
425
#endif
426

    
427
/*----------------------------------------------------------------------------
428
| Software IEC/IEEE double-precision operations.
429
*----------------------------------------------------------------------------*/
430
float64 float64_round_to_int( float64 STATUS_PARAM );
431
float64 float64_trunc_to_int( float64 STATUS_PARAM );
432
float64 float64_add( float64, float64 STATUS_PARAM );
433
float64 float64_sub( float64, float64 STATUS_PARAM );
434
float64 float64_mul( float64, float64 STATUS_PARAM );
435
float64 float64_div( float64, float64 STATUS_PARAM );
436
float64 float64_rem( float64, float64 STATUS_PARAM );
437
float64 float64_sqrt( float64 STATUS_PARAM );
438
float64 float64_log2( float64 STATUS_PARAM );
439
int float64_eq_quiet( float64, float64 STATUS_PARAM );
440
int float64_le( float64, float64 STATUS_PARAM );
441
int float64_lt( float64, float64 STATUS_PARAM );
442
int float64_unordered( float64, float64 STATUS_PARAM );
443
int float64_eq_signaling( float64, float64 STATUS_PARAM );
444
int float64_le_quiet( float64, float64 STATUS_PARAM );
445
int float64_lt_quiet( float64, float64 STATUS_PARAM );
446
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
447
int float64_compare( float64, float64 STATUS_PARAM );
448
int float64_compare_quiet( float64, float64 STATUS_PARAM );
449
float64 float64_min(float64, float64 STATUS_PARAM);
450
float64 float64_max(float64, float64 STATUS_PARAM);
451
int float64_is_quiet_nan( float64 a );
452
int float64_is_signaling_nan( float64 );
453
float64 float64_maybe_silence_nan( float64 );
454
float64 float64_scalbn( float64, int STATUS_PARAM );
455

    
456
INLINE float64 float64_abs(float64 a)
457
{
458
    /* Note that abs does *not* handle NaN specially, nor does
459
     * it flush denormal inputs to zero.
460
     */
461
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
462
}
463

    
464
INLINE float64 float64_chs(float64 a)
465
{
466
    /* Note that chs does *not* handle NaN specially, nor does
467
     * it flush denormal inputs to zero.
468
     */
469
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
470
}
471

    
472
INLINE int float64_is_infinity(float64 a)
473
{
474
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
475
}
476

    
477
INLINE int float64_is_neg(float64 a)
478
{
479
    return float64_val(a) >> 63;
480
}
481

    
482
INLINE int float64_is_zero(float64 a)
483
{
484
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
485
}
486

    
487
INLINE int float64_is_any_nan(float64 a)
488
{
489
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
490
}
491

    
492
INLINE float64 float64_set_sign(float64 a, int sign)
493
{
494
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
495
                        | ((int64_t)sign << 63));
496
}
497

    
498
#define float64_zero make_float64(0)
499
#define float64_one make_float64(0x3ff0000000000000LL)
500
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
501
#define float64_half make_float64(0x3fe0000000000000LL)
502
#define float64_infinity make_float64(0x7ff0000000000000LL)
503

    
504
/*----------------------------------------------------------------------------
505
| The pattern for a default generated double-precision NaN.
506
*----------------------------------------------------------------------------*/
507
#if defined(TARGET_SPARC)
508
#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
509
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
510
#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
511
#elif SNAN_BIT_IS_ONE
512
#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
513
#else
514
#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
515
#endif
516

    
517
#ifdef FLOATX80
518

    
519
/*----------------------------------------------------------------------------
520
| Software IEC/IEEE extended double-precision conversion routines.
521
*----------------------------------------------------------------------------*/
522
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
523
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
524
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
525
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
526
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
527
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
528
#ifdef FLOAT128
529
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
530
#endif
531

    
532
/*----------------------------------------------------------------------------
533
| Software IEC/IEEE extended double-precision operations.
534
*----------------------------------------------------------------------------*/
535
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
536
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
537
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
538
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
539
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
540
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
541
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
542
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
543
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
544
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
545
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
546
int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
547
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
548
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
549
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
550
int floatx80_is_quiet_nan( floatx80 );
551
int floatx80_is_signaling_nan( floatx80 );
552
floatx80 floatx80_maybe_silence_nan( floatx80 );
553
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
554

    
555
INLINE floatx80 floatx80_abs(floatx80 a)
556
{
557
    a.high &= 0x7fff;
558
    return a;
559
}
560

    
561
INLINE floatx80 floatx80_chs(floatx80 a)
562
{
563
    a.high ^= 0x8000;
564
    return a;
565
}
566

    
567
INLINE int floatx80_is_infinity(floatx80 a)
568
{
569
    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
570
}
571

    
572
INLINE int floatx80_is_neg(floatx80 a)
573
{
574
    return a.high >> 15;
575
}
576

    
577
INLINE int floatx80_is_zero(floatx80 a)
578
{
579
    return (a.high & 0x7fff) == 0 && a.low == 0;
580
}
581

    
582
INLINE int floatx80_is_any_nan(floatx80 a)
583
{
584
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
585
}
586

    
587
/*----------------------------------------------------------------------------
588
| The pattern for a default generated extended double-precision NaN.  The
589
| `high' and `low' values hold the most- and least-significant bits,
590
| respectively.
591
*----------------------------------------------------------------------------*/
592
#if SNAN_BIT_IS_ONE
593
#define floatx80_default_nan_high 0x7FFF
594
#define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
595
#else
596
#define floatx80_default_nan_high 0xFFFF
597
#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
598
#endif
599

    
600
#endif
601

    
602
#ifdef FLOAT128
603

    
604
/*----------------------------------------------------------------------------
605
| Software IEC/IEEE quadruple-precision conversion routines.
606
*----------------------------------------------------------------------------*/
607
int32 float128_to_int32( float128 STATUS_PARAM );
608
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
609
int64 float128_to_int64( float128 STATUS_PARAM );
610
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
611
float32 float128_to_float32( float128 STATUS_PARAM );
612
float64 float128_to_float64( float128 STATUS_PARAM );
613
#ifdef FLOATX80
614
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
615
#endif
616

    
617
/*----------------------------------------------------------------------------
618
| Software IEC/IEEE quadruple-precision operations.
619
*----------------------------------------------------------------------------*/
620
float128 float128_round_to_int( float128 STATUS_PARAM );
621
float128 float128_add( float128, float128 STATUS_PARAM );
622
float128 float128_sub( float128, float128 STATUS_PARAM );
623
float128 float128_mul( float128, float128 STATUS_PARAM );
624
float128 float128_div( float128, float128 STATUS_PARAM );
625
float128 float128_rem( float128, float128 STATUS_PARAM );
626
float128 float128_sqrt( float128 STATUS_PARAM );
627
int float128_eq_quiet( float128, float128 STATUS_PARAM );
628
int float128_le( float128, float128 STATUS_PARAM );
629
int float128_lt( float128, float128 STATUS_PARAM );
630
int float128_unordered( float128, float128 STATUS_PARAM );
631
int float128_eq_signaling( float128, float128 STATUS_PARAM );
632
int float128_le_quiet( float128, float128 STATUS_PARAM );
633
int float128_lt_quiet( float128, float128 STATUS_PARAM );
634
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
635
int float128_compare( float128, float128 STATUS_PARAM );
636
int float128_compare_quiet( float128, float128 STATUS_PARAM );
637
int float128_is_quiet_nan( float128 );
638
int float128_is_signaling_nan( float128 );
639
float128 float128_maybe_silence_nan( float128 );
640
float128 float128_scalbn( float128, int STATUS_PARAM );
641

    
642
INLINE float128 float128_abs(float128 a)
643
{
644
    a.high &= 0x7fffffffffffffffLL;
645
    return a;
646
}
647

    
648
INLINE float128 float128_chs(float128 a)
649
{
650
    a.high ^= 0x8000000000000000LL;
651
    return a;
652
}
653

    
654
INLINE int float128_is_infinity(float128 a)
655
{
656
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
657
}
658

    
659
INLINE int float128_is_neg(float128 a)
660
{
661
    return a.high >> 63;
662
}
663

    
664
INLINE int float128_is_zero(float128 a)
665
{
666
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
667
}
668

    
669
INLINE int float128_is_any_nan(float128 a)
670
{
671
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
672
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
673
}
674

    
675
/*----------------------------------------------------------------------------
676
| The pattern for a default generated quadruple-precision NaN.  The `high' and
677
| `low' values hold the most- and least-significant bits, respectively.
678
*----------------------------------------------------------------------------*/
679
#if SNAN_BIT_IS_ONE
680
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
681
#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
682
#else
683
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
684
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
685
#endif
686

    
687
#endif
688

    
689
#else /* CONFIG_SOFTFLOAT */
690

    
691
#include "softfloat-native.h"
692

    
693
#endif /* !CONFIG_SOFTFLOAT */
694

    
695
#endif /* !SOFTFLOAT_H */