Statistics
| Branch: | Revision:

root / block / qcow2-cluster.c @ 22f0dd29

History | View | Annotate | Download (54 kB)

1
/*
2
 * Block driver for the QCOW version 2 format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <zlib.h>
26

    
27
#include "qemu-common.h"
28
#include "block/block_int.h"
29
#include "block/qcow2.h"
30
#include "trace.h"
31

    
32
int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33
                        bool exact_size)
34
{
35
    BDRVQcowState *s = bs->opaque;
36
    int new_l1_size2, ret, i;
37
    uint64_t *new_l1_table;
38
    int64_t new_l1_table_offset, new_l1_size;
39
    uint8_t data[12];
40

    
41
    if (min_size <= s->l1_size)
42
        return 0;
43

    
44
    if (exact_size) {
45
        new_l1_size = min_size;
46
    } else {
47
        /* Bump size up to reduce the number of times we have to grow */
48
        new_l1_size = s->l1_size;
49
        if (new_l1_size == 0) {
50
            new_l1_size = 1;
51
        }
52
        while (min_size > new_l1_size) {
53
            new_l1_size = (new_l1_size * 3 + 1) / 2;
54
        }
55
    }
56

    
57
    if (new_l1_size > INT_MAX) {
58
        return -EFBIG;
59
    }
60

    
61
#ifdef DEBUG_ALLOC2
62
    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
63
            s->l1_size, new_l1_size);
64
#endif
65

    
66
    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
67
    new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
68
    memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
69

    
70
    /* write new table (align to cluster) */
71
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
72
    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
73
    if (new_l1_table_offset < 0) {
74
        g_free(new_l1_table);
75
        return new_l1_table_offset;
76
    }
77

    
78
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
79
    if (ret < 0) {
80
        goto fail;
81
    }
82

    
83
    /* the L1 position has not yet been updated, so these clusters must
84
     * indeed be completely free */
85
    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT,
86
                                        new_l1_table_offset, new_l1_size2);
87
    if (ret < 0) {
88
        goto fail;
89
    }
90

    
91
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
92
    for(i = 0; i < s->l1_size; i++)
93
        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
94
    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
95
    if (ret < 0)
96
        goto fail;
97
    for(i = 0; i < s->l1_size; i++)
98
        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
99

    
100
    /* set new table */
101
    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
102
    cpu_to_be32w((uint32_t*)data, new_l1_size);
103
    cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
104
    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
105
    if (ret < 0) {
106
        goto fail;
107
    }
108
    g_free(s->l1_table);
109
    qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t),
110
                        QCOW2_DISCARD_OTHER);
111
    s->l1_table_offset = new_l1_table_offset;
112
    s->l1_table = new_l1_table;
113
    s->l1_size = new_l1_size;
114
    return 0;
115
 fail:
116
    g_free(new_l1_table);
117
    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
118
                        QCOW2_DISCARD_OTHER);
119
    return ret;
120
}
121

    
122
/*
123
 * l2_load
124
 *
125
 * Loads a L2 table into memory. If the table is in the cache, the cache
126
 * is used; otherwise the L2 table is loaded from the image file.
127
 *
128
 * Returns a pointer to the L2 table on success, or NULL if the read from
129
 * the image file failed.
130
 */
131

    
132
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
133
    uint64_t **l2_table)
134
{
135
    BDRVQcowState *s = bs->opaque;
136
    int ret;
137

    
138
    ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
139

    
140
    return ret;
141
}
142

    
143
/*
144
 * Writes one sector of the L1 table to the disk (can't update single entries
145
 * and we really don't want bdrv_pread to perform a read-modify-write)
146
 */
147
#define L1_ENTRIES_PER_SECTOR (512 / 8)
148
int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
149
{
150
    BDRVQcowState *s = bs->opaque;
151
    uint64_t buf[L1_ENTRIES_PER_SECTOR];
152
    int l1_start_index;
153
    int i, ret;
154

    
155
    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
156
    for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
157
        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
158
    }
159

    
160
    ret = qcow2_pre_write_overlap_check(bs,
161
            QCOW2_OL_DEFAULT & ~QCOW2_OL_ACTIVE_L1,
162
            s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
163
    if (ret < 0) {
164
        return ret;
165
    }
166

    
167
    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
168
    ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
169
        buf, sizeof(buf));
170
    if (ret < 0) {
171
        return ret;
172
    }
173

    
174
    return 0;
175
}
176

    
177
/*
178
 * l2_allocate
179
 *
180
 * Allocate a new l2 entry in the file. If l1_index points to an already
181
 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
182
 * table) copy the contents of the old L2 table into the newly allocated one.
183
 * Otherwise the new table is initialized with zeros.
184
 *
185
 */
186

    
187
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
188
{
189
    BDRVQcowState *s = bs->opaque;
190
    uint64_t old_l2_offset;
191
    uint64_t *l2_table = NULL;
192
    int64_t l2_offset;
193
    int ret;
194

    
195
    old_l2_offset = s->l1_table[l1_index];
196

    
197
    trace_qcow2_l2_allocate(bs, l1_index);
198

    
199
    /* allocate a new l2 entry */
200

    
201
    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
202
    if (l2_offset < 0) {
203
        ret = l2_offset;
204
        goto fail;
205
    }
206

    
207
    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
208
    if (ret < 0) {
209
        goto fail;
210
    }
211

    
212
    /* allocate a new entry in the l2 cache */
213

    
214
    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
215
    ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
216
    if (ret < 0) {
217
        goto fail;
218
    }
219

    
220
    l2_table = *table;
221

    
222
    if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
223
        /* if there was no old l2 table, clear the new table */
224
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
225
    } else {
226
        uint64_t* old_table;
227

    
228
        /* if there was an old l2 table, read it from the disk */
229
        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
230
        ret = qcow2_cache_get(bs, s->l2_table_cache,
231
            old_l2_offset & L1E_OFFSET_MASK,
232
            (void**) &old_table);
233
        if (ret < 0) {
234
            goto fail;
235
        }
236

    
237
        memcpy(l2_table, old_table, s->cluster_size);
238

    
239
        ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
240
        if (ret < 0) {
241
            goto fail;
242
        }
243
    }
244

    
245
    /* write the l2 table to the file */
246
    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
247

    
248
    trace_qcow2_l2_allocate_write_l2(bs, l1_index);
249
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
250
    ret = qcow2_cache_flush(bs, s->l2_table_cache);
251
    if (ret < 0) {
252
        goto fail;
253
    }
254

    
255
    /* update the L1 entry */
256
    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
257
    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
258
    ret = qcow2_write_l1_entry(bs, l1_index);
259
    if (ret < 0) {
260
        goto fail;
261
    }
262

    
263
    *table = l2_table;
264
    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
265
    return 0;
266

    
267
fail:
268
    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
269
    if (l2_table != NULL) {
270
        qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
271
    }
272
    s->l1_table[l1_index] = old_l2_offset;
273
    return ret;
274
}
275

    
276
/*
277
 * Checks how many clusters in a given L2 table are contiguous in the image
278
 * file. As soon as one of the flags in the bitmask stop_flags changes compared
279
 * to the first cluster, the search is stopped and the cluster is not counted
280
 * as contiguous. (This allows it, for example, to stop at the first compressed
281
 * cluster which may require a different handling)
282
 */
283
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
284
        uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
285
{
286
    int i;
287
    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW2_CLUSTER_COMPRESSED;
288
    uint64_t first_entry = be64_to_cpu(l2_table[0]);
289
    uint64_t offset = first_entry & mask;
290

    
291
    if (!offset)
292
        return 0;
293

    
294
    assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
295

    
296
    for (i = start; i < start + nb_clusters; i++) {
297
        uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
298
        if (offset + (uint64_t) i * cluster_size != l2_entry) {
299
            break;
300
        }
301
    }
302

    
303
        return (i - start);
304
}
305

    
306
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
307
{
308
    int i;
309

    
310
    for (i = 0; i < nb_clusters; i++) {
311
        int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
312

    
313
        if (type != QCOW2_CLUSTER_UNALLOCATED) {
314
            break;
315
        }
316
    }
317

    
318
    return i;
319
}
320

    
321
/* The crypt function is compatible with the linux cryptoloop
322
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
323
   supported */
324
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
325
                           uint8_t *out_buf, const uint8_t *in_buf,
326
                           int nb_sectors, int enc,
327
                           const AES_KEY *key)
328
{
329
    union {
330
        uint64_t ll[2];
331
        uint8_t b[16];
332
    } ivec;
333
    int i;
334

    
335
    for(i = 0; i < nb_sectors; i++) {
336
        ivec.ll[0] = cpu_to_le64(sector_num);
337
        ivec.ll[1] = 0;
338
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
339
                        ivec.b, enc);
340
        sector_num++;
341
        in_buf += 512;
342
        out_buf += 512;
343
    }
344
}
345

    
346
static int coroutine_fn copy_sectors(BlockDriverState *bs,
347
                                     uint64_t start_sect,
348
                                     uint64_t cluster_offset,
349
                                     int n_start, int n_end)
350
{
351
    BDRVQcowState *s = bs->opaque;
352
    QEMUIOVector qiov;
353
    struct iovec iov;
354
    int n, ret;
355

    
356
    /*
357
     * If this is the last cluster and it is only partially used, we must only
358
     * copy until the end of the image, or bdrv_check_request will fail for the
359
     * bdrv_read/write calls below.
360
     */
361
    if (start_sect + n_end > bs->total_sectors) {
362
        n_end = bs->total_sectors - start_sect;
363
    }
364

    
365
    n = n_end - n_start;
366
    if (n <= 0) {
367
        return 0;
368
    }
369

    
370
    iov.iov_len = n * BDRV_SECTOR_SIZE;
371
    iov.iov_base = qemu_blockalign(bs, iov.iov_len);
372

    
373
    qemu_iovec_init_external(&qiov, &iov, 1);
374

    
375
    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
376

    
377
    /* Call .bdrv_co_readv() directly instead of using the public block-layer
378
     * interface.  This avoids double I/O throttling and request tracking,
379
     * which can lead to deadlock when block layer copy-on-read is enabled.
380
     */
381
    ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
382
    if (ret < 0) {
383
        goto out;
384
    }
385

    
386
    if (s->crypt_method) {
387
        qcow2_encrypt_sectors(s, start_sect + n_start,
388
                        iov.iov_base, iov.iov_base, n, 1,
389
                        &s->aes_encrypt_key);
390
    }
391

    
392
    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT,
393
            cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
394
    if (ret < 0) {
395
        goto out;
396
    }
397

    
398
    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
399
    ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
400
    if (ret < 0) {
401
        goto out;
402
    }
403

    
404
    ret = 0;
405
out:
406
    qemu_vfree(iov.iov_base);
407
    return ret;
408
}
409

    
410

    
411
/*
412
 * get_cluster_offset
413
 *
414
 * For a given offset of the disk image, find the cluster offset in
415
 * qcow2 file. The offset is stored in *cluster_offset.
416
 *
417
 * on entry, *num is the number of contiguous sectors we'd like to
418
 * access following offset.
419
 *
420
 * on exit, *num is the number of contiguous sectors we can read.
421
 *
422
 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
423
 * cases.
424
 */
425
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
426
    int *num, uint64_t *cluster_offset)
427
{
428
    BDRVQcowState *s = bs->opaque;
429
    unsigned int l2_index;
430
    uint64_t l1_index, l2_offset, *l2_table;
431
    int l1_bits, c;
432
    unsigned int index_in_cluster, nb_clusters;
433
    uint64_t nb_available, nb_needed;
434
    int ret;
435

    
436
    index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
437
    nb_needed = *num + index_in_cluster;
438

    
439
    l1_bits = s->l2_bits + s->cluster_bits;
440

    
441
    /* compute how many bytes there are between the offset and
442
     * the end of the l1 entry
443
     */
444

    
445
    nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
446

    
447
    /* compute the number of available sectors */
448

    
449
    nb_available = (nb_available >> 9) + index_in_cluster;
450

    
451
    if (nb_needed > nb_available) {
452
        nb_needed = nb_available;
453
    }
454

    
455
    *cluster_offset = 0;
456

    
457
    /* seek the the l2 offset in the l1 table */
458

    
459
    l1_index = offset >> l1_bits;
460
    if (l1_index >= s->l1_size) {
461
        ret = QCOW2_CLUSTER_UNALLOCATED;
462
        goto out;
463
    }
464

    
465
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
466
    if (!l2_offset) {
467
        ret = QCOW2_CLUSTER_UNALLOCATED;
468
        goto out;
469
    }
470

    
471
    /* load the l2 table in memory */
472

    
473
    ret = l2_load(bs, l2_offset, &l2_table);
474
    if (ret < 0) {
475
        return ret;
476
    }
477

    
478
    /* find the cluster offset for the given disk offset */
479

    
480
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
481
    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
482
    nb_clusters = size_to_clusters(s, nb_needed << 9);
483

    
484
    ret = qcow2_get_cluster_type(*cluster_offset);
485
    switch (ret) {
486
    case QCOW2_CLUSTER_COMPRESSED:
487
        /* Compressed clusters can only be processed one by one */
488
        c = 1;
489
        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
490
        break;
491
    case QCOW2_CLUSTER_ZERO:
492
        if (s->qcow_version < 3) {
493
            return -EIO;
494
        }
495
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
496
                &l2_table[l2_index], 0, QCOW_OFLAG_ZERO);
497
        *cluster_offset = 0;
498
        break;
499
    case QCOW2_CLUSTER_UNALLOCATED:
500
        /* how many empty clusters ? */
501
        c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
502
        *cluster_offset = 0;
503
        break;
504
    case QCOW2_CLUSTER_NORMAL:
505
        /* how many allocated clusters ? */
506
        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
507
                &l2_table[l2_index], 0, QCOW_OFLAG_ZERO);
508
        *cluster_offset &= L2E_OFFSET_MASK;
509
        break;
510
    default:
511
        abort();
512
    }
513

    
514
    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
515

    
516
    nb_available = (c * s->cluster_sectors);
517

    
518
out:
519
    if (nb_available > nb_needed)
520
        nb_available = nb_needed;
521

    
522
    *num = nb_available - index_in_cluster;
523

    
524
    return ret;
525
}
526

    
527
/*
528
 * get_cluster_table
529
 *
530
 * for a given disk offset, load (and allocate if needed)
531
 * the l2 table.
532
 *
533
 * the l2 table offset in the qcow2 file and the cluster index
534
 * in the l2 table are given to the caller.
535
 *
536
 * Returns 0 on success, -errno in failure case
537
 */
538
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
539
                             uint64_t **new_l2_table,
540
                             int *new_l2_index)
541
{
542
    BDRVQcowState *s = bs->opaque;
543
    unsigned int l2_index;
544
    uint64_t l1_index, l2_offset;
545
    uint64_t *l2_table = NULL;
546
    int ret;
547

    
548
    /* seek the the l2 offset in the l1 table */
549

    
550
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
551
    if (l1_index >= s->l1_size) {
552
        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
553
        if (ret < 0) {
554
            return ret;
555
        }
556
    }
557

    
558
    assert(l1_index < s->l1_size);
559
    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
560

    
561
    /* seek the l2 table of the given l2 offset */
562

    
563
    if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
564
        /* load the l2 table in memory */
565
        ret = l2_load(bs, l2_offset, &l2_table);
566
        if (ret < 0) {
567
            return ret;
568
        }
569
    } else {
570
        /* First allocate a new L2 table (and do COW if needed) */
571
        ret = l2_allocate(bs, l1_index, &l2_table);
572
        if (ret < 0) {
573
            return ret;
574
        }
575

    
576
        /* Then decrease the refcount of the old table */
577
        if (l2_offset) {
578
            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
579
                                QCOW2_DISCARD_OTHER);
580
        }
581
    }
582

    
583
    /* find the cluster offset for the given disk offset */
584

    
585
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
586

    
587
    *new_l2_table = l2_table;
588
    *new_l2_index = l2_index;
589

    
590
    return 0;
591
}
592

    
593
/*
594
 * alloc_compressed_cluster_offset
595
 *
596
 * For a given offset of the disk image, return cluster offset in
597
 * qcow2 file.
598
 *
599
 * If the offset is not found, allocate a new compressed cluster.
600
 *
601
 * Return the cluster offset if successful,
602
 * Return 0, otherwise.
603
 *
604
 */
605

    
606
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
607
                                               uint64_t offset,
608
                                               int compressed_size)
609
{
610
    BDRVQcowState *s = bs->opaque;
611
    int l2_index, ret;
612
    uint64_t *l2_table;
613
    int64_t cluster_offset;
614
    int nb_csectors;
615

    
616
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
617
    if (ret < 0) {
618
        return 0;
619
    }
620

    
621
    /* Compression can't overwrite anything. Fail if the cluster was already
622
     * allocated. */
623
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
624
    if (cluster_offset & L2E_OFFSET_MASK) {
625
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
626
        return 0;
627
    }
628

    
629
    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
630
    if (cluster_offset < 0) {
631
        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
632
        return 0;
633
    }
634

    
635
    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
636
                  (cluster_offset >> 9);
637

    
638
    cluster_offset |= QCOW_OFLAG_COMPRESSED |
639
                      ((uint64_t)nb_csectors << s->csize_shift);
640

    
641
    /* update L2 table */
642

    
643
    /* compressed clusters never have the copied flag */
644

    
645
    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
646
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
647
    l2_table[l2_index] = cpu_to_be64(cluster_offset);
648
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
649
    if (ret < 0) {
650
        return 0;
651
    }
652

    
653
    return cluster_offset;
654
}
655

    
656
static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
657
{
658
    BDRVQcowState *s = bs->opaque;
659
    int ret;
660

    
661
    if (r->nb_sectors == 0) {
662
        return 0;
663
    }
664

    
665
    qemu_co_mutex_unlock(&s->lock);
666
    ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
667
                       r->offset / BDRV_SECTOR_SIZE,
668
                       r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
669
    qemu_co_mutex_lock(&s->lock);
670

    
671
    if (ret < 0) {
672
        return ret;
673
    }
674

    
675
    /*
676
     * Before we update the L2 table to actually point to the new cluster, we
677
     * need to be sure that the refcounts have been increased and COW was
678
     * handled.
679
     */
680
    qcow2_cache_depends_on_flush(s->l2_table_cache);
681

    
682
    return 0;
683
}
684

    
685
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
686
{
687
    BDRVQcowState *s = bs->opaque;
688
    int i, j = 0, l2_index, ret;
689
    uint64_t *old_cluster, *l2_table;
690
    uint64_t cluster_offset = m->alloc_offset;
691

    
692
    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
693
    assert(m->nb_clusters > 0);
694

    
695
    old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
696

    
697
    /* copy content of unmodified sectors */
698
    ret = perform_cow(bs, m, &m->cow_start);
699
    if (ret < 0) {
700
        goto err;
701
    }
702

    
703
    ret = perform_cow(bs, m, &m->cow_end);
704
    if (ret < 0) {
705
        goto err;
706
    }
707

    
708
    /* Update L2 table. */
709
    if (s->use_lazy_refcounts) {
710
        qcow2_mark_dirty(bs);
711
    }
712
    if (qcow2_need_accurate_refcounts(s)) {
713
        qcow2_cache_set_dependency(bs, s->l2_table_cache,
714
                                   s->refcount_block_cache);
715
    }
716

    
717
    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
718
    if (ret < 0) {
719
        goto err;
720
    }
721
    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
722

    
723
    assert(l2_index + m->nb_clusters <= s->l2_size);
724
    for (i = 0; i < m->nb_clusters; i++) {
725
        /* if two concurrent writes happen to the same unallocated cluster
726
         * each write allocates separate cluster and writes data concurrently.
727
         * The first one to complete updates l2 table with pointer to its
728
         * cluster the second one has to do RMW (which is done above by
729
         * copy_sectors()), update l2 table with its cluster pointer and free
730
         * old cluster. This is what this loop does */
731
        if(l2_table[l2_index + i] != 0)
732
            old_cluster[j++] = l2_table[l2_index + i];
733

    
734
        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
735
                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
736
     }
737

    
738

    
739
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
740
    if (ret < 0) {
741
        goto err;
742
    }
743

    
744
    /*
745
     * If this was a COW, we need to decrease the refcount of the old cluster.
746
     * Also flush bs->file to get the right order for L2 and refcount update.
747
     *
748
     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
749
     * clusters), the next write will reuse them anyway.
750
     */
751
    if (j != 0) {
752
        for (i = 0; i < j; i++) {
753
            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
754
                                    QCOW2_DISCARD_NEVER);
755
        }
756
    }
757

    
758
    ret = 0;
759
err:
760
    g_free(old_cluster);
761
    return ret;
762
 }
763

    
764
/*
765
 * Returns the number of contiguous clusters that can be used for an allocating
766
 * write, but require COW to be performed (this includes yet unallocated space,
767
 * which must copy from the backing file)
768
 */
769
static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
770
    uint64_t *l2_table, int l2_index)
771
{
772
    int i;
773

    
774
    for (i = 0; i < nb_clusters; i++) {
775
        uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
776
        int cluster_type = qcow2_get_cluster_type(l2_entry);
777

    
778
        switch(cluster_type) {
779
        case QCOW2_CLUSTER_NORMAL:
780
            if (l2_entry & QCOW_OFLAG_COPIED) {
781
                goto out;
782
            }
783
            break;
784
        case QCOW2_CLUSTER_UNALLOCATED:
785
        case QCOW2_CLUSTER_COMPRESSED:
786
        case QCOW2_CLUSTER_ZERO:
787
            break;
788
        default:
789
            abort();
790
        }
791
    }
792

    
793
out:
794
    assert(i <= nb_clusters);
795
    return i;
796
}
797

    
798
/*
799
 * Check if there already is an AIO write request in flight which allocates
800
 * the same cluster. In this case we need to wait until the previous
801
 * request has completed and updated the L2 table accordingly.
802
 *
803
 * Returns:
804
 *   0       if there was no dependency. *cur_bytes indicates the number of
805
 *           bytes from guest_offset that can be read before the next
806
 *           dependency must be processed (or the request is complete)
807
 *
808
 *   -EAGAIN if we had to wait for another request, previously gathered
809
 *           information on cluster allocation may be invalid now. The caller
810
 *           must start over anyway, so consider *cur_bytes undefined.
811
 */
812
static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
813
    uint64_t *cur_bytes, QCowL2Meta **m)
814
{
815
    BDRVQcowState *s = bs->opaque;
816
    QCowL2Meta *old_alloc;
817
    uint64_t bytes = *cur_bytes;
818

    
819
    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
820

    
821
        uint64_t start = guest_offset;
822
        uint64_t end = start + bytes;
823
        uint64_t old_start = l2meta_cow_start(old_alloc);
824
        uint64_t old_end = l2meta_cow_end(old_alloc);
825

    
826
        if (end <= old_start || start >= old_end) {
827
            /* No intersection */
828
        } else {
829
            if (start < old_start) {
830
                /* Stop at the start of a running allocation */
831
                bytes = old_start - start;
832
            } else {
833
                bytes = 0;
834
            }
835

    
836
            /* Stop if already an l2meta exists. After yielding, it wouldn't
837
             * be valid any more, so we'd have to clean up the old L2Metas
838
             * and deal with requests depending on them before starting to
839
             * gather new ones. Not worth the trouble. */
840
            if (bytes == 0 && *m) {
841
                *cur_bytes = 0;
842
                return 0;
843
            }
844

    
845
            if (bytes == 0) {
846
                /* Wait for the dependency to complete. We need to recheck
847
                 * the free/allocated clusters when we continue. */
848
                qemu_co_mutex_unlock(&s->lock);
849
                qemu_co_queue_wait(&old_alloc->dependent_requests);
850
                qemu_co_mutex_lock(&s->lock);
851
                return -EAGAIN;
852
            }
853
        }
854
    }
855

    
856
    /* Make sure that existing clusters and new allocations are only used up to
857
     * the next dependency if we shortened the request above */
858
    *cur_bytes = bytes;
859

    
860
    return 0;
861
}
862

    
863
/*
864
 * Checks how many already allocated clusters that don't require a copy on
865
 * write there are at the given guest_offset (up to *bytes). If
866
 * *host_offset is not zero, only physically contiguous clusters beginning at
867
 * this host offset are counted.
868
 *
869
 * Note that guest_offset may not be cluster aligned. In this case, the
870
 * returned *host_offset points to exact byte referenced by guest_offset and
871
 * therefore isn't cluster aligned as well.
872
 *
873
 * Returns:
874
 *   0:     if no allocated clusters are available at the given offset.
875
 *          *bytes is normally unchanged. It is set to 0 if the cluster
876
 *          is allocated and doesn't need COW, but doesn't have the right
877
 *          physical offset.
878
 *
879
 *   1:     if allocated clusters that don't require a COW are available at
880
 *          the requested offset. *bytes may have decreased and describes
881
 *          the length of the area that can be written to.
882
 *
883
 *  -errno: in error cases
884
 */
885
static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
886
    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
887
{
888
    BDRVQcowState *s = bs->opaque;
889
    int l2_index;
890
    uint64_t cluster_offset;
891
    uint64_t *l2_table;
892
    unsigned int nb_clusters;
893
    unsigned int keep_clusters;
894
    int ret, pret;
895

    
896
    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
897
                              *bytes);
898

    
899
    assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
900
                                == offset_into_cluster(s, *host_offset));
901

    
902
    /*
903
     * Calculate the number of clusters to look for. We stop at L2 table
904
     * boundaries to keep things simple.
905
     */
906
    nb_clusters =
907
        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
908

    
909
    l2_index = offset_to_l2_index(s, guest_offset);
910
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
911

    
912
    /* Find L2 entry for the first involved cluster */
913
    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
914
    if (ret < 0) {
915
        return ret;
916
    }
917

    
918
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
919

    
920
    /* Check how many clusters are already allocated and don't need COW */
921
    if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
922
        && (cluster_offset & QCOW_OFLAG_COPIED))
923
    {
924
        /* If a specific host_offset is required, check it */
925
        bool offset_matches =
926
            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
927

    
928
        if (*host_offset != 0 && !offset_matches) {
929
            *bytes = 0;
930
            ret = 0;
931
            goto out;
932
        }
933

    
934
        /* We keep all QCOW_OFLAG_COPIED clusters */
935
        keep_clusters =
936
            count_contiguous_clusters(nb_clusters, s->cluster_size,
937
                                      &l2_table[l2_index], 0,
938
                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
939
        assert(keep_clusters <= nb_clusters);
940

    
941
        *bytes = MIN(*bytes,
942
                 keep_clusters * s->cluster_size
943
                 - offset_into_cluster(s, guest_offset));
944

    
945
        ret = 1;
946
    } else {
947
        ret = 0;
948
    }
949

    
950
    /* Cleanup */
951
out:
952
    pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
953
    if (pret < 0) {
954
        return pret;
955
    }
956

    
957
    /* Only return a host offset if we actually made progress. Otherwise we
958
     * would make requirements for handle_alloc() that it can't fulfill */
959
    if (ret) {
960
        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
961
                     + offset_into_cluster(s, guest_offset);
962
    }
963

    
964
    return ret;
965
}
966

    
967
/*
968
 * Allocates new clusters for the given guest_offset.
969
 *
970
 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
971
 * contain the number of clusters that have been allocated and are contiguous
972
 * in the image file.
973
 *
974
 * If *host_offset is non-zero, it specifies the offset in the image file at
975
 * which the new clusters must start. *nb_clusters can be 0 on return in this
976
 * case if the cluster at host_offset is already in use. If *host_offset is
977
 * zero, the clusters can be allocated anywhere in the image file.
978
 *
979
 * *host_offset is updated to contain the offset into the image file at which
980
 * the first allocated cluster starts.
981
 *
982
 * Return 0 on success and -errno in error cases. -EAGAIN means that the
983
 * function has been waiting for another request and the allocation must be
984
 * restarted, but the whole request should not be failed.
985
 */
986
static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
987
    uint64_t *host_offset, unsigned int *nb_clusters)
988
{
989
    BDRVQcowState *s = bs->opaque;
990

    
991
    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
992
                                         *host_offset, *nb_clusters);
993

    
994
    /* Allocate new clusters */
995
    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
996
    if (*host_offset == 0) {
997
        int64_t cluster_offset =
998
            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
999
        if (cluster_offset < 0) {
1000
            return cluster_offset;
1001
        }
1002
        *host_offset = cluster_offset;
1003
        return 0;
1004
    } else {
1005
        int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1006
        if (ret < 0) {
1007
            return ret;
1008
        }
1009
        *nb_clusters = ret;
1010
        return 0;
1011
    }
1012
}
1013

    
1014
/*
1015
 * Allocates new clusters for an area that either is yet unallocated or needs a
1016
 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1017
 * the new allocation can match the specified host offset.
1018
 *
1019
 * Note that guest_offset may not be cluster aligned. In this case, the
1020
 * returned *host_offset points to exact byte referenced by guest_offset and
1021
 * therefore isn't cluster aligned as well.
1022
 *
1023
 * Returns:
1024
 *   0:     if no clusters could be allocated. *bytes is set to 0,
1025
 *          *host_offset is left unchanged.
1026
 *
1027
 *   1:     if new clusters were allocated. *bytes may be decreased if the
1028
 *          new allocation doesn't cover all of the requested area.
1029
 *          *host_offset is updated to contain the host offset of the first
1030
 *          newly allocated cluster.
1031
 *
1032
 *  -errno: in error cases
1033
 */
1034
static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1035
    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1036
{
1037
    BDRVQcowState *s = bs->opaque;
1038
    int l2_index;
1039
    uint64_t *l2_table;
1040
    uint64_t entry;
1041
    unsigned int nb_clusters;
1042
    int ret;
1043

    
1044
    uint64_t alloc_cluster_offset;
1045

    
1046
    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1047
                             *bytes);
1048
    assert(*bytes > 0);
1049

    
1050
    /*
1051
     * Calculate the number of clusters to look for. We stop at L2 table
1052
     * boundaries to keep things simple.
1053
     */
1054
    nb_clusters =
1055
        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1056

    
1057
    l2_index = offset_to_l2_index(s, guest_offset);
1058
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1059

    
1060
    /* Find L2 entry for the first involved cluster */
1061
    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1062
    if (ret < 0) {
1063
        return ret;
1064
    }
1065

    
1066
    entry = be64_to_cpu(l2_table[l2_index]);
1067

    
1068
    /* For the moment, overwrite compressed clusters one by one */
1069
    if (entry & QCOW_OFLAG_COMPRESSED) {
1070
        nb_clusters = 1;
1071
    } else {
1072
        nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1073
    }
1074

    
1075
    /* This function is only called when there were no non-COW clusters, so if
1076
     * we can't find any unallocated or COW clusters either, something is
1077
     * wrong with our code. */
1078
    assert(nb_clusters > 0);
1079

    
1080
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1081
    if (ret < 0) {
1082
        return ret;
1083
    }
1084

    
1085
    /* Allocate, if necessary at a given offset in the image file */
1086
    alloc_cluster_offset = start_of_cluster(s, *host_offset);
1087
    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1088
                                  &nb_clusters);
1089
    if (ret < 0) {
1090
        goto fail;
1091
    }
1092

    
1093
    /* Can't extend contiguous allocation */
1094
    if (nb_clusters == 0) {
1095
        *bytes = 0;
1096
        return 0;
1097
    }
1098

    
1099
    /*
1100
     * Save info needed for meta data update.
1101
     *
1102
     * requested_sectors: Number of sectors from the start of the first
1103
     * newly allocated cluster to the end of the (possibly shortened
1104
     * before) write request.
1105
     *
1106
     * avail_sectors: Number of sectors from the start of the first
1107
     * newly allocated to the end of the last newly allocated cluster.
1108
     *
1109
     * nb_sectors: The number of sectors from the start of the first
1110
     * newly allocated cluster to the end of the area that the write
1111
     * request actually writes to (excluding COW at the end)
1112
     */
1113
    int requested_sectors =
1114
        (*bytes + offset_into_cluster(s, guest_offset))
1115
        >> BDRV_SECTOR_BITS;
1116
    int avail_sectors = nb_clusters
1117
                        << (s->cluster_bits - BDRV_SECTOR_BITS);
1118
    int alloc_n_start = offset_into_cluster(s, guest_offset)
1119
                        >> BDRV_SECTOR_BITS;
1120
    int nb_sectors = MIN(requested_sectors, avail_sectors);
1121
    QCowL2Meta *old_m = *m;
1122

    
1123
    *m = g_malloc0(sizeof(**m));
1124

    
1125
    **m = (QCowL2Meta) {
1126
        .next           = old_m,
1127

    
1128
        .alloc_offset   = alloc_cluster_offset,
1129
        .offset         = start_of_cluster(s, guest_offset),
1130
        .nb_clusters    = nb_clusters,
1131
        .nb_available   = nb_sectors,
1132

    
1133
        .cow_start = {
1134
            .offset     = 0,
1135
            .nb_sectors = alloc_n_start,
1136
        },
1137
        .cow_end = {
1138
            .offset     = nb_sectors * BDRV_SECTOR_SIZE,
1139
            .nb_sectors = avail_sectors - nb_sectors,
1140
        },
1141
    };
1142
    qemu_co_queue_init(&(*m)->dependent_requests);
1143
    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1144

    
1145
    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1146
    *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1147
                         - offset_into_cluster(s, guest_offset));
1148
    assert(*bytes != 0);
1149

    
1150
    return 1;
1151

    
1152
fail:
1153
    if (*m && (*m)->nb_clusters > 0) {
1154
        QLIST_REMOVE(*m, next_in_flight);
1155
    }
1156
    return ret;
1157
}
1158

    
1159
/*
1160
 * alloc_cluster_offset
1161
 *
1162
 * For a given offset on the virtual disk, find the cluster offset in qcow2
1163
 * file. If the offset is not found, allocate a new cluster.
1164
 *
1165
 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1166
 * other fields in m are meaningless.
1167
 *
1168
 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1169
 * contiguous clusters that have been allocated. In this case, the other
1170
 * fields of m are valid and contain information about the first allocated
1171
 * cluster.
1172
 *
1173
 * If the request conflicts with another write request in flight, the coroutine
1174
 * is queued and will be reentered when the dependency has completed.
1175
 *
1176
 * Return 0 on success and -errno in error cases
1177
 */
1178
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1179
    int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
1180
{
1181
    BDRVQcowState *s = bs->opaque;
1182
    uint64_t start, remaining;
1183
    uint64_t cluster_offset;
1184
    uint64_t cur_bytes;
1185
    int ret;
1186

    
1187
    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1188
                                      n_start, n_end);
1189

    
1190
    assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1191
    offset = start_of_cluster(s, offset);
1192

    
1193
again:
1194
    start = offset + (n_start << BDRV_SECTOR_BITS);
1195
    remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
1196
    cluster_offset = 0;
1197
    *host_offset = 0;
1198
    cur_bytes = 0;
1199
    *m = NULL;
1200

    
1201
    while (true) {
1202

    
1203
        if (!*host_offset) {
1204
            *host_offset = start_of_cluster(s, cluster_offset);
1205
        }
1206

    
1207
        assert(remaining >= cur_bytes);
1208

    
1209
        start           += cur_bytes;
1210
        remaining       -= cur_bytes;
1211
        cluster_offset  += cur_bytes;
1212

    
1213
        if (remaining == 0) {
1214
            break;
1215
        }
1216

    
1217
        cur_bytes = remaining;
1218

    
1219
        /*
1220
         * Now start gathering as many contiguous clusters as possible:
1221
         *
1222
         * 1. Check for overlaps with in-flight allocations
1223
         *
1224
         *      a) Overlap not in the first cluster -> shorten this request and
1225
         *         let the caller handle the rest in its next loop iteration.
1226
         *
1227
         *      b) Real overlaps of two requests. Yield and restart the search
1228
         *         for contiguous clusters (the situation could have changed
1229
         *         while we were sleeping)
1230
         *
1231
         *      c) TODO: Request starts in the same cluster as the in-flight
1232
         *         allocation ends. Shorten the COW of the in-fight allocation,
1233
         *         set cluster_offset to write to the same cluster and set up
1234
         *         the right synchronisation between the in-flight request and
1235
         *         the new one.
1236
         */
1237
        ret = handle_dependencies(bs, start, &cur_bytes, m);
1238
        if (ret == -EAGAIN) {
1239
            /* Currently handle_dependencies() doesn't yield if we already had
1240
             * an allocation. If it did, we would have to clean up the L2Meta
1241
             * structs before starting over. */
1242
            assert(*m == NULL);
1243
            goto again;
1244
        } else if (ret < 0) {
1245
            return ret;
1246
        } else if (cur_bytes == 0) {
1247
            break;
1248
        } else {
1249
            /* handle_dependencies() may have decreased cur_bytes (shortened
1250
             * the allocations below) so that the next dependency is processed
1251
             * correctly during the next loop iteration. */
1252
        }
1253

    
1254
        /*
1255
         * 2. Count contiguous COPIED clusters.
1256
         */
1257
        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1258
        if (ret < 0) {
1259
            return ret;
1260
        } else if (ret) {
1261
            continue;
1262
        } else if (cur_bytes == 0) {
1263
            break;
1264
        }
1265

    
1266
        /*
1267
         * 3. If the request still hasn't completed, allocate new clusters,
1268
         *    considering any cluster_offset of steps 1c or 2.
1269
         */
1270
        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1271
        if (ret < 0) {
1272
            return ret;
1273
        } else if (ret) {
1274
            continue;
1275
        } else {
1276
            assert(cur_bytes == 0);
1277
            break;
1278
        }
1279
    }
1280

    
1281
    *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1282
    assert(*num > 0);
1283
    assert(*host_offset != 0);
1284

    
1285
    return 0;
1286
}
1287

    
1288
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1289
                             const uint8_t *buf, int buf_size)
1290
{
1291
    z_stream strm1, *strm = &strm1;
1292
    int ret, out_len;
1293

    
1294
    memset(strm, 0, sizeof(*strm));
1295

    
1296
    strm->next_in = (uint8_t *)buf;
1297
    strm->avail_in = buf_size;
1298
    strm->next_out = out_buf;
1299
    strm->avail_out = out_buf_size;
1300

    
1301
    ret = inflateInit2(strm, -12);
1302
    if (ret != Z_OK)
1303
        return -1;
1304
    ret = inflate(strm, Z_FINISH);
1305
    out_len = strm->next_out - out_buf;
1306
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1307
        out_len != out_buf_size) {
1308
        inflateEnd(strm);
1309
        return -1;
1310
    }
1311
    inflateEnd(strm);
1312
    return 0;
1313
}
1314

    
1315
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1316
{
1317
    BDRVQcowState *s = bs->opaque;
1318
    int ret, csize, nb_csectors, sector_offset;
1319
    uint64_t coffset;
1320

    
1321
    coffset = cluster_offset & s->cluster_offset_mask;
1322
    if (s->cluster_cache_offset != coffset) {
1323
        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1324
        sector_offset = coffset & 511;
1325
        csize = nb_csectors * 512 - sector_offset;
1326
        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1327
        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1328
        if (ret < 0) {
1329
            return ret;
1330
        }
1331
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1332
                              s->cluster_data + sector_offset, csize) < 0) {
1333
            return -EIO;
1334
        }
1335
        s->cluster_cache_offset = coffset;
1336
    }
1337
    return 0;
1338
}
1339

    
1340
/*
1341
 * This discards as many clusters of nb_clusters as possible at once (i.e.
1342
 * all clusters in the same L2 table) and returns the number of discarded
1343
 * clusters.
1344
 */
1345
static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1346
    unsigned int nb_clusters, enum qcow2_discard_type type)
1347
{
1348
    BDRVQcowState *s = bs->opaque;
1349
    uint64_t *l2_table;
1350
    int l2_index;
1351
    int ret;
1352
    int i;
1353

    
1354
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1355
    if (ret < 0) {
1356
        return ret;
1357
    }
1358

    
1359
    /* Limit nb_clusters to one L2 table */
1360
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1361

    
1362
    for (i = 0; i < nb_clusters; i++) {
1363
        uint64_t old_offset;
1364

    
1365
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1366
        if ((old_offset & L2E_OFFSET_MASK) == 0) {
1367
            continue;
1368
        }
1369

    
1370
        /* First remove L2 entries */
1371
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1372
        l2_table[l2_index + i] = cpu_to_be64(0);
1373

    
1374
        /* Then decrease the refcount */
1375
        qcow2_free_any_clusters(bs, old_offset, 1, type);
1376
    }
1377

    
1378
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1379
    if (ret < 0) {
1380
        return ret;
1381
    }
1382

    
1383
    return nb_clusters;
1384
}
1385

    
1386
int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1387
    int nb_sectors, enum qcow2_discard_type type)
1388
{
1389
    BDRVQcowState *s = bs->opaque;
1390
    uint64_t end_offset;
1391
    unsigned int nb_clusters;
1392
    int ret;
1393

    
1394
    end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1395

    
1396
    /* Round start up and end down */
1397
    offset = align_offset(offset, s->cluster_size);
1398
    end_offset &= ~(s->cluster_size - 1);
1399

    
1400
    if (offset > end_offset) {
1401
        return 0;
1402
    }
1403

    
1404
    nb_clusters = size_to_clusters(s, end_offset - offset);
1405

    
1406
    s->cache_discards = true;
1407

    
1408
    /* Each L2 table is handled by its own loop iteration */
1409
    while (nb_clusters > 0) {
1410
        ret = discard_single_l2(bs, offset, nb_clusters, type);
1411
        if (ret < 0) {
1412
            goto fail;
1413
        }
1414

    
1415
        nb_clusters -= ret;
1416
        offset += (ret * s->cluster_size);
1417
    }
1418

    
1419
    ret = 0;
1420
fail:
1421
    s->cache_discards = false;
1422
    qcow2_process_discards(bs, ret);
1423

    
1424
    return ret;
1425
}
1426

    
1427
/*
1428
 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1429
 * all clusters in the same L2 table) and returns the number of zeroed
1430
 * clusters.
1431
 */
1432
static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1433
    unsigned int nb_clusters)
1434
{
1435
    BDRVQcowState *s = bs->opaque;
1436
    uint64_t *l2_table;
1437
    int l2_index;
1438
    int ret;
1439
    int i;
1440

    
1441
    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1442
    if (ret < 0) {
1443
        return ret;
1444
    }
1445

    
1446
    /* Limit nb_clusters to one L2 table */
1447
    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1448

    
1449
    for (i = 0; i < nb_clusters; i++) {
1450
        uint64_t old_offset;
1451

    
1452
        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1453

    
1454
        /* Update L2 entries */
1455
        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1456
        if (old_offset & QCOW_OFLAG_COMPRESSED) {
1457
            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1458
            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1459
        } else {
1460
            l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1461
        }
1462
    }
1463

    
1464
    ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1465
    if (ret < 0) {
1466
        return ret;
1467
    }
1468

    
1469
    return nb_clusters;
1470
}
1471

    
1472
int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1473
{
1474
    BDRVQcowState *s = bs->opaque;
1475
    unsigned int nb_clusters;
1476
    int ret;
1477

    
1478
    /* The zero flag is only supported by version 3 and newer */
1479
    if (s->qcow_version < 3) {
1480
        return -ENOTSUP;
1481
    }
1482

    
1483
    /* Each L2 table is handled by its own loop iteration */
1484
    nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1485

    
1486
    s->cache_discards = true;
1487

    
1488
    while (nb_clusters > 0) {
1489
        ret = zero_single_l2(bs, offset, nb_clusters);
1490
        if (ret < 0) {
1491
            goto fail;
1492
        }
1493

    
1494
        nb_clusters -= ret;
1495
        offset += (ret * s->cluster_size);
1496
    }
1497

    
1498
    ret = 0;
1499
fail:
1500
    s->cache_discards = false;
1501
    qcow2_process_discards(bs, ret);
1502

    
1503
    return ret;
1504
}
1505

    
1506
/*
1507
 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1508
 * non-backed non-pre-allocated zero clusters).
1509
 *
1510
 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1511
 * the image file; a bit gets set if the corresponding cluster has been used for
1512
 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1513
 * L2 table). nb_clusters contains the total cluster count of the image file,
1514
 * i.e., the number of bits in expanded_clusters.
1515
 */
1516
static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1517
                                      int l1_size, uint8_t **expanded_clusters,
1518
                                      uint64_t *nb_clusters)
1519
{
1520
    BDRVQcowState *s = bs->opaque;
1521
    bool is_active_l1 = (l1_table == s->l1_table);
1522
    uint64_t *l2_table = NULL;
1523
    int ret;
1524
    int i, j;
1525

    
1526
    if (!is_active_l1) {
1527
        /* inactive L2 tables require a buffer to be stored in when loading
1528
         * them from disk */
1529
        l2_table = qemu_blockalign(bs, s->cluster_size);
1530
    }
1531

    
1532
    for (i = 0; i < l1_size; i++) {
1533
        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1534
        bool l2_dirty = false;
1535

    
1536
        if (!l2_offset) {
1537
            /* unallocated */
1538
            continue;
1539
        }
1540

    
1541
        if (is_active_l1) {
1542
            /* get active L2 tables from cache */
1543
            ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1544
                    (void **)&l2_table);
1545
        } else {
1546
            /* load inactive L2 tables from disk */
1547
            ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1548
                    (void *)l2_table, s->cluster_sectors);
1549
        }
1550
        if (ret < 0) {
1551
            goto fail;
1552
        }
1553

    
1554
        for (j = 0; j < s->l2_size; j++) {
1555
            uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1556
            int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1557
            int cluster_type = qcow2_get_cluster_type(l2_entry);
1558
            bool preallocated = offset != 0;
1559

    
1560
            if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1561
                cluster_index = offset >> s->cluster_bits;
1562
                assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1563
                if ((*expanded_clusters)[cluster_index / 8] &
1564
                    (1 << (cluster_index % 8))) {
1565
                    /* Probably a shared L2 table; this cluster was a zero
1566
                     * cluster which has been expanded, its refcount
1567
                     * therefore most likely requires an update. */
1568
                    ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1569
                                                        QCOW2_DISCARD_NEVER);
1570
                    if (ret < 0) {
1571
                        goto fail;
1572
                    }
1573
                    /* Since we just increased the refcount, the COPIED flag may
1574
                     * no longer be set. */
1575
                    l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1576
                    l2_dirty = true;
1577
                }
1578
                continue;
1579
            }
1580
            else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1581
                continue;
1582
            }
1583

    
1584
            if (!preallocated) {
1585
                if (!bs->backing_hd) {
1586
                    /* not backed; therefore we can simply deallocate the
1587
                     * cluster */
1588
                    l2_table[j] = 0;
1589
                    l2_dirty = true;
1590
                    continue;
1591
                }
1592

    
1593
                offset = qcow2_alloc_clusters(bs, s->cluster_size);
1594
                if (offset < 0) {
1595
                    ret = offset;
1596
                    goto fail;
1597
                }
1598
            }
1599

    
1600
            ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT,
1601
                                                offset, s->cluster_size);
1602
            if (ret < 0) {
1603
                if (!preallocated) {
1604
                    qcow2_free_clusters(bs, offset, s->cluster_size,
1605
                                        QCOW2_DISCARD_ALWAYS);
1606
                }
1607
                goto fail;
1608
            }
1609

    
1610
            ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1611
                                    s->cluster_sectors);
1612
            if (ret < 0) {
1613
                if (!preallocated) {
1614
                    qcow2_free_clusters(bs, offset, s->cluster_size,
1615
                                        QCOW2_DISCARD_ALWAYS);
1616
                }
1617
                goto fail;
1618
            }
1619

    
1620
            l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1621
            l2_dirty = true;
1622

    
1623
            cluster_index = offset >> s->cluster_bits;
1624

    
1625
            if (cluster_index >= *nb_clusters) {
1626
                uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1627
                uint64_t new_bitmap_size;
1628
                /* The offset may lie beyond the old end of the underlying image
1629
                 * file for growable files only */
1630
                assert(bs->file->growable);
1631
                *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1632
                                                BDRV_SECTOR_SIZE);
1633
                new_bitmap_size = (*nb_clusters + 7) / 8;
1634
                *expanded_clusters = g_realloc(*expanded_clusters,
1635
                                               new_bitmap_size);
1636
                /* clear the newly allocated space */
1637
                memset(&(*expanded_clusters)[old_bitmap_size], 0,
1638
                       new_bitmap_size - old_bitmap_size);
1639
            }
1640

    
1641
            assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1642
            (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
1643
        }
1644

    
1645
        if (is_active_l1) {
1646
            if (l2_dirty) {
1647
                qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1648
                qcow2_cache_depends_on_flush(s->l2_table_cache);
1649
            }
1650
            ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1651
            if (ret < 0) {
1652
                l2_table = NULL;
1653
                goto fail;
1654
            }
1655
        } else {
1656
            if (l2_dirty) {
1657
                ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT &
1658
                        ~(QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2), l2_offset,
1659
                        s->cluster_size);
1660
                if (ret < 0) {
1661
                    goto fail;
1662
                }
1663

    
1664
                ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1665
                        (void *)l2_table, s->cluster_sectors);
1666
                if (ret < 0) {
1667
                    goto fail;
1668
                }
1669
            }
1670
        }
1671
    }
1672

    
1673
    ret = 0;
1674

    
1675
fail:
1676
    if (l2_table) {
1677
        if (!is_active_l1) {
1678
            qemu_vfree(l2_table);
1679
        } else {
1680
            if (ret < 0) {
1681
                qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1682
            } else {
1683
                ret = qcow2_cache_put(bs, s->l2_table_cache,
1684
                        (void **)&l2_table);
1685
            }
1686
        }
1687
    }
1688
    return ret;
1689
}
1690

    
1691
/*
1692
 * For backed images, expands all zero clusters on the image. For non-backed
1693
 * images, deallocates all non-pre-allocated zero clusters (and claims the
1694
 * allocation for pre-allocated ones). This is important for downgrading to a
1695
 * qcow2 version which doesn't yet support metadata zero clusters.
1696
 */
1697
int qcow2_expand_zero_clusters(BlockDriverState *bs)
1698
{
1699
    BDRVQcowState *s = bs->opaque;
1700
    uint64_t *l1_table = NULL;
1701
    uint64_t nb_clusters;
1702
    uint8_t *expanded_clusters;
1703
    int ret;
1704
    int i, j;
1705

    
1706
    nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1707
                                   BDRV_SECTOR_SIZE);
1708
    expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
1709

    
1710
    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1711
                                     &expanded_clusters, &nb_clusters);
1712
    if (ret < 0) {
1713
        goto fail;
1714
    }
1715

    
1716
    /* Inactive L1 tables may point to active L2 tables - therefore it is
1717
     * necessary to flush the L2 table cache before trying to access the L2
1718
     * tables pointed to by inactive L1 entries (else we might try to expand
1719
     * zero clusters that have already been expanded); furthermore, it is also
1720
     * necessary to empty the L2 table cache, since it may contain tables which
1721
     * are now going to be modified directly on disk, bypassing the cache.
1722
     * qcow2_cache_empty() does both for us. */
1723
    ret = qcow2_cache_empty(bs, s->l2_table_cache);
1724
    if (ret < 0) {
1725
        goto fail;
1726
    }
1727

    
1728
    for (i = 0; i < s->nb_snapshots; i++) {
1729
        int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1730
                BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1731

    
1732
        l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1733

    
1734
        ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1735
                BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1736
        if (ret < 0) {
1737
            goto fail;
1738
        }
1739

    
1740
        for (j = 0; j < s->snapshots[i].l1_size; j++) {
1741
            be64_to_cpus(&l1_table[j]);
1742
        }
1743

    
1744
        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1745
                                         &expanded_clusters, &nb_clusters);
1746
        if (ret < 0) {
1747
            goto fail;
1748
        }
1749
    }
1750

    
1751
    ret = 0;
1752

    
1753
fail:
1754
    g_free(expanded_clusters);
1755
    g_free(l1_table);
1756
    return ret;
1757
}