Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ 23e6c399

History | View | Annotate | Download (10.5 kB)

1 2c0262af bellard
/*
2 5fafdf24 ths
 *  i386 execution defines
3 2c0262af bellard
 *
4 2c0262af bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 2c0262af bellard
 *
6 2c0262af bellard
 * This library is free software; you can redistribute it and/or
7 2c0262af bellard
 * modify it under the terms of the GNU Lesser General Public
8 2c0262af bellard
 * License as published by the Free Software Foundation; either
9 2c0262af bellard
 * version 2 of the License, or (at your option) any later version.
10 2c0262af bellard
 *
11 2c0262af bellard
 * This library is distributed in the hope that it will be useful,
12 2c0262af bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 2c0262af bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 2c0262af bellard
 * Lesser General Public License for more details.
15 2c0262af bellard
 *
16 2c0262af bellard
 * You should have received a copy of the GNU Lesser General Public
17 2c0262af bellard
 * License along with this library; if not, write to the Free Software
18 2c0262af bellard
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 2c0262af bellard
 */
20 7d3505c5 bellard
#include "config.h"
21 2c0262af bellard
#include "dyngen-exec.h"
22 2c0262af bellard
23 14ce26e7 bellard
/* XXX: factorize this mess */
24 14ce26e7 bellard
#ifdef TARGET_X86_64
25 14ce26e7 bellard
#define TARGET_LONG_BITS 64
26 14ce26e7 bellard
#else
27 14ce26e7 bellard
#define TARGET_LONG_BITS 32
28 14ce26e7 bellard
#endif
29 14ce26e7 bellard
30 d785e6be bellard
#include "cpu-defs.h"
31 d785e6be bellard
32 2c0262af bellard
register struct CPUX86State *env asm(AREG0);
33 14ce26e7 bellard
34 2c0262af bellard
extern FILE *logfile;
35 2c0262af bellard
extern int loglevel;
36 2c0262af bellard
37 2c0262af bellard
#define EAX (env->regs[R_EAX])
38 2c0262af bellard
#define ECX (env->regs[R_ECX])
39 2c0262af bellard
#define EDX (env->regs[R_EDX])
40 2c0262af bellard
#define EBX (env->regs[R_EBX])
41 2c0262af bellard
#define ESP (env->regs[R_ESP])
42 2c0262af bellard
#define EBP (env->regs[R_EBP])
43 2c0262af bellard
#define ESI (env->regs[R_ESI])
44 2c0262af bellard
#define EDI (env->regs[R_EDI])
45 1e4840bf bellard
#define EIP (env->eip)
46 2c0262af bellard
#define DF  (env->df)
47 2c0262af bellard
48 2c0262af bellard
#define CC_SRC (env->cc_src)
49 2c0262af bellard
#define CC_DST (env->cc_dst)
50 2c0262af bellard
#define CC_OP  (env->cc_op)
51 2c0262af bellard
52 2c0262af bellard
/* float macros */
53 2c0262af bellard
#define FT0    (env->ft0)
54 664e0f19 bellard
#define ST0    (env->fpregs[env->fpstt].d)
55 664e0f19 bellard
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
56 2c0262af bellard
#define ST1    ST(1)
57 2c0262af bellard
58 2c0262af bellard
#include "cpu.h"
59 2c0262af bellard
#include "exec-all.h"
60 2c0262af bellard
61 1ac157da bellard
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62 14ce26e7 bellard
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63 1ac157da bellard
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
64 5fafdf24 ths
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
65 6ebbf390 j_mayer
                             int is_write, int mmu_idx, int is_softmmu);
66 6ebbf390 j_mayer
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
67 61382a50 bellard
              void *retaddr);
68 2c0262af bellard
void __hidden cpu_lock(void);
69 2c0262af bellard
void __hidden cpu_unlock(void);
70 5fafdf24 ths
void do_interrupt(int intno, int is_int, int error_code,
71 14ce26e7 bellard
                  target_ulong next_eip, int is_hw);
72 5fafdf24 ths
void do_interrupt_user(int intno, int is_int, int error_code,
73 14ce26e7 bellard
                       target_ulong next_eip);
74 5fafdf24 ths
void raise_interrupt(int intno, int is_int, int error_code,
75 a8ede8ba bellard
                     int next_eip_addend);
76 2c0262af bellard
void raise_exception_err(int exception_index, int error_code);
77 2c0262af bellard
void raise_exception(int exception_index);
78 3b21e03e bellard
void do_smm_enter(void);
79 2c0262af bellard
void __hidden cpu_loop_exit(void);
80 2c0262af bellard
81 2c0262af bellard
void OPPROTO op_movl_eflags_T0(void);
82 2c0262af bellard
void OPPROTO op_movl_T0_eflags(void);
83 57fec1fe bellard
84 b6abf97d bellard
/* n must be a constant to be efficient */
85 b6abf97d bellard
static inline target_long lshift(target_long x, int n)
86 b6abf97d bellard
{
87 b6abf97d bellard
    if (n >= 0)
88 b6abf97d bellard
        return x << n;
89 b6abf97d bellard
    else
90 b6abf97d bellard
        return x >> (-n);
91 b6abf97d bellard
}
92 b6abf97d bellard
93 57fec1fe bellard
#include "helper.h"
94 57fec1fe bellard
95 b8b6a50b bellard
static inline void svm_check_intercept(uint32_t type)
96 b8b6a50b bellard
{
97 b8b6a50b bellard
    helper_svm_check_intercept_param(type, 0);
98 b8b6a50b bellard
}
99 3e25f951 bellard
100 9951bf39 bellard
#if !defined(CONFIG_USER_ONLY)
101 9951bf39 bellard
102 a9049a07 bellard
#include "softmmu_exec.h"
103 9951bf39 bellard
104 9951bf39 bellard
#endif /* !defined(CONFIG_USER_ONLY) */
105 9951bf39 bellard
106 2c0262af bellard
#ifdef USE_X86LDOUBLE
107 2c0262af bellard
/* use long double functions */
108 7a0e1f41 bellard
#define floatx_to_int32 floatx80_to_int32
109 7a0e1f41 bellard
#define floatx_to_int64 floatx80_to_int64
110 465e9838 bellard
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
111 465e9838 bellard
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
112 19e6c4b8 bellard
#define int32_to_floatx int32_to_floatx80
113 19e6c4b8 bellard
#define int64_to_floatx int64_to_floatx80
114 19e6c4b8 bellard
#define float32_to_floatx float32_to_floatx80
115 19e6c4b8 bellard
#define float64_to_floatx float64_to_floatx80
116 19e6c4b8 bellard
#define floatx_to_float32 floatx80_to_float32
117 19e6c4b8 bellard
#define floatx_to_float64 floatx80_to_float64
118 7a0e1f41 bellard
#define floatx_abs floatx80_abs
119 7a0e1f41 bellard
#define floatx_chs floatx80_chs
120 7a0e1f41 bellard
#define floatx_round_to_int floatx80_round_to_int
121 8422b113 bellard
#define floatx_compare floatx80_compare
122 8422b113 bellard
#define floatx_compare_quiet floatx80_compare_quiet
123 2c0262af bellard
#define sin sinl
124 2c0262af bellard
#define cos cosl
125 2c0262af bellard
#define sqrt sqrtl
126 2c0262af bellard
#define pow powl
127 2c0262af bellard
#define log logl
128 2c0262af bellard
#define tan tanl
129 2c0262af bellard
#define atan2 atan2l
130 2c0262af bellard
#define floor floorl
131 2c0262af bellard
#define ceil ceill
132 57e4c06e bellard
#define ldexp ldexpl
133 7d3505c5 bellard
#else
134 7a0e1f41 bellard
#define floatx_to_int32 float64_to_int32
135 7a0e1f41 bellard
#define floatx_to_int64 float64_to_int64
136 465e9838 bellard
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
137 465e9838 bellard
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
138 19e6c4b8 bellard
#define int32_to_floatx int32_to_float64
139 19e6c4b8 bellard
#define int64_to_floatx int64_to_float64
140 19e6c4b8 bellard
#define float32_to_floatx float32_to_float64
141 19e6c4b8 bellard
#define float64_to_floatx(x, e) (x)
142 19e6c4b8 bellard
#define floatx_to_float32 float64_to_float32
143 19e6c4b8 bellard
#define floatx_to_float64(x, e) (x)
144 7a0e1f41 bellard
#define floatx_abs float64_abs
145 7a0e1f41 bellard
#define floatx_chs float64_chs
146 7a0e1f41 bellard
#define floatx_round_to_int float64_round_to_int
147 8422b113 bellard
#define floatx_compare float64_compare
148 8422b113 bellard
#define floatx_compare_quiet float64_compare_quiet
149 7d3505c5 bellard
#endif
150 7a0e1f41 bellard
151 2c0262af bellard
extern CPU86_LDouble sin(CPU86_LDouble x);
152 2c0262af bellard
extern CPU86_LDouble cos(CPU86_LDouble x);
153 2c0262af bellard
extern CPU86_LDouble sqrt(CPU86_LDouble x);
154 2c0262af bellard
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
155 2c0262af bellard
extern CPU86_LDouble log(CPU86_LDouble x);
156 2c0262af bellard
extern CPU86_LDouble tan(CPU86_LDouble x);
157 2c0262af bellard
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
158 2c0262af bellard
extern CPU86_LDouble floor(CPU86_LDouble x);
159 2c0262af bellard
extern CPU86_LDouble ceil(CPU86_LDouble x);
160 2c0262af bellard
161 2c0262af bellard
#define RC_MASK         0xc00
162 2c0262af bellard
#define RC_NEAR                0x000
163 2c0262af bellard
#define RC_DOWN                0x400
164 2c0262af bellard
#define RC_UP                0x800
165 2c0262af bellard
#define RC_CHOP                0xc00
166 2c0262af bellard
167 2c0262af bellard
#define MAXTAN 9223372036854775808.0
168 2c0262af bellard
169 2c0262af bellard
#ifdef USE_X86LDOUBLE
170 2c0262af bellard
171 2c0262af bellard
/* only for x86 */
172 2c0262af bellard
typedef union {
173 2c0262af bellard
    long double d;
174 2c0262af bellard
    struct {
175 2c0262af bellard
        unsigned long long lower;
176 2c0262af bellard
        unsigned short upper;
177 2c0262af bellard
    } l;
178 2c0262af bellard
} CPU86_LDoubleU;
179 2c0262af bellard
180 2c0262af bellard
/* the following deal with x86 long double-precision numbers */
181 2c0262af bellard
#define MAXEXPD 0x7fff
182 2c0262af bellard
#define EXPBIAS 16383
183 2c0262af bellard
#define EXPD(fp)        (fp.l.upper & 0x7fff)
184 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
185 2c0262af bellard
#define MANTD(fp)       (fp.l.lower)
186 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
187 2c0262af bellard
188 2c0262af bellard
#else
189 2c0262af bellard
190 2c0262af bellard
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
191 2c0262af bellard
typedef union {
192 2c0262af bellard
    double d;
193 2c0262af bellard
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
194 2c0262af bellard
    struct {
195 2c0262af bellard
        uint32_t lower;
196 2c0262af bellard
        int32_t upper;
197 2c0262af bellard
    } l;
198 2c0262af bellard
#else
199 2c0262af bellard
    struct {
200 2c0262af bellard
        int32_t upper;
201 2c0262af bellard
        uint32_t lower;
202 2c0262af bellard
    } l;
203 2c0262af bellard
#endif
204 2c0262af bellard
#ifndef __arm__
205 2c0262af bellard
    int64_t ll;
206 2c0262af bellard
#endif
207 2c0262af bellard
} CPU86_LDoubleU;
208 2c0262af bellard
209 2c0262af bellard
/* the following deal with IEEE double-precision numbers */
210 2c0262af bellard
#define MAXEXPD 0x7ff
211 2c0262af bellard
#define EXPBIAS 1023
212 2c0262af bellard
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
213 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
214 2c0262af bellard
#ifdef __arm__
215 2c0262af bellard
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
216 2c0262af bellard
#else
217 2c0262af bellard
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
218 2c0262af bellard
#endif
219 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
220 2c0262af bellard
#endif
221 2c0262af bellard
222 2c0262af bellard
static inline void fpush(void)
223 2c0262af bellard
{
224 2c0262af bellard
    env->fpstt = (env->fpstt - 1) & 7;
225 2c0262af bellard
    env->fptags[env->fpstt] = 0; /* validate stack entry */
226 2c0262af bellard
}
227 2c0262af bellard
228 2c0262af bellard
static inline void fpop(void)
229 2c0262af bellard
{
230 2c0262af bellard
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
231 2c0262af bellard
    env->fpstt = (env->fpstt + 1) & 7;
232 2c0262af bellard
}
233 2c0262af bellard
234 2c0262af bellard
#ifndef USE_X86LDOUBLE
235 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
236 2c0262af bellard
{
237 2c0262af bellard
    CPU86_LDoubleU temp;
238 2c0262af bellard
    int upper, e;
239 2c0262af bellard
    uint64_t ll;
240 2c0262af bellard
241 2c0262af bellard
    /* mantissa */
242 2c0262af bellard
    upper = lduw(ptr + 8);
243 2c0262af bellard
    /* XXX: handle overflow ? */
244 2c0262af bellard
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
245 2c0262af bellard
    e |= (upper >> 4) & 0x800; /* sign */
246 2c0262af bellard
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
247 2c0262af bellard
#ifdef __arm__
248 2c0262af bellard
    temp.l.upper = (e << 20) | (ll >> 32);
249 2c0262af bellard
    temp.l.lower = ll;
250 2c0262af bellard
#else
251 2c0262af bellard
    temp.ll = ll | ((uint64_t)e << 52);
252 2c0262af bellard
#endif
253 2c0262af bellard
    return temp.d;
254 2c0262af bellard
}
255 2c0262af bellard
256 664e0f19 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
257 2c0262af bellard
{
258 2c0262af bellard
    CPU86_LDoubleU temp;
259 2c0262af bellard
    int e;
260 2c0262af bellard
261 2c0262af bellard
    temp.d = f;
262 2c0262af bellard
    /* mantissa */
263 2c0262af bellard
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
264 2c0262af bellard
    /* exponent + sign */
265 2c0262af bellard
    e = EXPD(temp) - EXPBIAS + 16383;
266 2c0262af bellard
    e |= SIGND(temp) >> 16;
267 2c0262af bellard
    stw(ptr + 8, e);
268 2c0262af bellard
}
269 9951bf39 bellard
#else
270 9951bf39 bellard
271 9951bf39 bellard
/* we use memory access macros */
272 9951bf39 bellard
273 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
274 9951bf39 bellard
{
275 9951bf39 bellard
    CPU86_LDoubleU temp;
276 9951bf39 bellard
277 9951bf39 bellard
    temp.l.lower = ldq(ptr);
278 9951bf39 bellard
    temp.l.upper = lduw(ptr + 8);
279 9951bf39 bellard
    return temp.d;
280 9951bf39 bellard
}
281 9951bf39 bellard
282 14ce26e7 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
283 9951bf39 bellard
{
284 9951bf39 bellard
    CPU86_LDoubleU temp;
285 3b46e624 ths
286 9951bf39 bellard
    temp.d = f;
287 9951bf39 bellard
    stq(ptr, temp.l.lower);
288 9951bf39 bellard
    stw(ptr + 8, temp.l.upper);
289 9951bf39 bellard
}
290 9951bf39 bellard
291 9951bf39 bellard
#endif /* USE_X86LDOUBLE */
292 2c0262af bellard
293 2ee73ac3 bellard
#define FPUS_IE (1 << 0)
294 2ee73ac3 bellard
#define FPUS_DE (1 << 1)
295 2ee73ac3 bellard
#define FPUS_ZE (1 << 2)
296 2ee73ac3 bellard
#define FPUS_OE (1 << 3)
297 2ee73ac3 bellard
#define FPUS_UE (1 << 4)
298 2ee73ac3 bellard
#define FPUS_PE (1 << 5)
299 2ee73ac3 bellard
#define FPUS_SF (1 << 6)
300 2ee73ac3 bellard
#define FPUS_SE (1 << 7)
301 2ee73ac3 bellard
#define FPUS_B  (1 << 15)
302 2ee73ac3 bellard
303 2ee73ac3 bellard
#define FPUC_EM 0x3f
304 2ee73ac3 bellard
305 83fb7adf bellard
extern const CPU86_LDouble f15rk[7];
306 2c0262af bellard
307 2ee73ac3 bellard
void fpu_raise_exception(void);
308 03857e31 bellard
void restore_native_fp_state(CPUState *env);
309 03857e31 bellard
void save_native_fp_state(CPUState *env);
310 2c0262af bellard
311 83fb7adf bellard
extern const uint8_t parity_table[256];
312 83fb7adf bellard
extern const uint8_t rclw_table[32];
313 83fb7adf bellard
extern const uint8_t rclb_table[32];
314 2c0262af bellard
315 2c0262af bellard
static inline uint32_t compute_eflags(void)
316 2c0262af bellard
{
317 2c0262af bellard
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
318 2c0262af bellard
}
319 2c0262af bellard
320 2c0262af bellard
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
321 2c0262af bellard
static inline void load_eflags(int eflags, int update_mask)
322 2c0262af bellard
{
323 2c0262af bellard
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324 2c0262af bellard
    DF = 1 - (2 * ((eflags >> 10) & 1));
325 5fafdf24 ths
    env->eflags = (env->eflags & ~update_mask) |
326 093f8f06 bellard
        (eflags & update_mask) | 0x2;
327 2c0262af bellard
}
328 2c0262af bellard
329 0d1a29f9 bellard
static inline void env_to_regs(void)
330 0d1a29f9 bellard
{
331 0d1a29f9 bellard
#ifdef reg_EAX
332 0d1a29f9 bellard
    EAX = env->regs[R_EAX];
333 0d1a29f9 bellard
#endif
334 0d1a29f9 bellard
#ifdef reg_ECX
335 0d1a29f9 bellard
    ECX = env->regs[R_ECX];
336 0d1a29f9 bellard
#endif
337 0d1a29f9 bellard
#ifdef reg_EDX
338 0d1a29f9 bellard
    EDX = env->regs[R_EDX];
339 0d1a29f9 bellard
#endif
340 0d1a29f9 bellard
#ifdef reg_EBX
341 0d1a29f9 bellard
    EBX = env->regs[R_EBX];
342 0d1a29f9 bellard
#endif
343 0d1a29f9 bellard
#ifdef reg_ESP
344 0d1a29f9 bellard
    ESP = env->regs[R_ESP];
345 0d1a29f9 bellard
#endif
346 0d1a29f9 bellard
#ifdef reg_EBP
347 0d1a29f9 bellard
    EBP = env->regs[R_EBP];
348 0d1a29f9 bellard
#endif
349 0d1a29f9 bellard
#ifdef reg_ESI
350 0d1a29f9 bellard
    ESI = env->regs[R_ESI];
351 0d1a29f9 bellard
#endif
352 0d1a29f9 bellard
#ifdef reg_EDI
353 0d1a29f9 bellard
    EDI = env->regs[R_EDI];
354 0d1a29f9 bellard
#endif
355 0d1a29f9 bellard
}
356 0d1a29f9 bellard
357 0d1a29f9 bellard
static inline void regs_to_env(void)
358 0d1a29f9 bellard
{
359 0d1a29f9 bellard
#ifdef reg_EAX
360 0d1a29f9 bellard
    env->regs[R_EAX] = EAX;
361 0d1a29f9 bellard
#endif
362 0d1a29f9 bellard
#ifdef reg_ECX
363 0d1a29f9 bellard
    env->regs[R_ECX] = ECX;
364 0d1a29f9 bellard
#endif
365 0d1a29f9 bellard
#ifdef reg_EDX
366 0d1a29f9 bellard
    env->regs[R_EDX] = EDX;
367 0d1a29f9 bellard
#endif
368 0d1a29f9 bellard
#ifdef reg_EBX
369 0d1a29f9 bellard
    env->regs[R_EBX] = EBX;
370 0d1a29f9 bellard
#endif
371 0d1a29f9 bellard
#ifdef reg_ESP
372 0d1a29f9 bellard
    env->regs[R_ESP] = ESP;
373 0d1a29f9 bellard
#endif
374 0d1a29f9 bellard
#ifdef reg_EBP
375 0d1a29f9 bellard
    env->regs[R_EBP] = EBP;
376 0d1a29f9 bellard
#endif
377 0d1a29f9 bellard
#ifdef reg_ESI
378 0d1a29f9 bellard
    env->regs[R_ESI] = ESI;
379 0d1a29f9 bellard
#endif
380 0d1a29f9 bellard
#ifdef reg_EDI
381 0d1a29f9 bellard
    env->regs[R_EDI] = EDI;
382 0d1a29f9 bellard
#endif
383 0d1a29f9 bellard
}
384 bfed01fc ths
385 bfed01fc ths
static inline int cpu_halted(CPUState *env) {
386 bfed01fc ths
    /* handle exit of HALTED state */
387 ce5232c5 bellard
    if (!env->halted)
388 bfed01fc ths
        return 0;
389 bfed01fc ths
    /* disable halt condition */
390 474ea849 aurel32
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
391 474ea849 aurel32
         (env->eflags & IF_MASK)) ||
392 474ea849 aurel32
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
393 ce5232c5 bellard
        env->halted = 0;
394 bfed01fc ths
        return 0;
395 bfed01fc ths
    }
396 bfed01fc ths
    return EXCP_HALTED;
397 bfed01fc ths
}
398 0573fbfc ths
399 5efc27bb bellard
/* load efer and update the corresponding hflags. XXX: do consistency
400 5efc27bb bellard
   checks with cpuid bits ? */
401 5efc27bb bellard
static inline void cpu_load_efer(CPUState *env, uint64_t val)
402 5efc27bb bellard
{
403 5efc27bb bellard
    env->efer = val;
404 5efc27bb bellard
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
405 5efc27bb bellard
    if (env->efer & MSR_EFER_LMA)
406 5efc27bb bellard
        env->hflags |= HF_LMA_MASK;
407 5efc27bb bellard
    if (env->efer & MSR_EFER_SVME)
408 5efc27bb bellard
        env->hflags |= HF_SVME_MASK;
409 5efc27bb bellard
}