Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 24988dc2

History | View | Annotate | Download (83.6 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item ARM Integrator/CP (ARM)
81
@item ARM Versatile baseboard (ARM)
82
@item ARM RealView Emulation baseboard (ARM)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86
@item Freescale MCF5208EVB (ColdFire V2).
87
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
88
@item Palm Tungsten|E PDA (OMAP310 processor)
89
@end itemize
90

    
91
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92

    
93
@node Installation
94
@chapter Installation
95

    
96
If you want to compile QEMU yourself, see @ref{compilation}.
97

    
98
@menu
99
* install_linux::   Linux
100
* install_windows:: Windows
101
* install_mac::     Macintosh
102
@end menu
103

    
104
@node install_linux
105
@section Linux
106

    
107
If a precompiled package is available for your distribution - you just
108
have to install it. Otherwise, see @ref{compilation}.
109

    
110
@node install_windows
111
@section Windows
112

    
113
Download the experimental binary installer at
114
@url{http://www.free.oszoo.org/@/download.html}.
115

    
116
@node install_mac
117
@section Mac OS X
118

    
119
Download the experimental binary installer at
120
@url{http://www.free.oszoo.org/@/download.html}.
121

    
122
@node QEMU PC System emulator
123
@chapter QEMU PC System emulator
124

    
125
@menu
126
* pcsys_introduction:: Introduction
127
* pcsys_quickstart::   Quick Start
128
* sec_invocation::     Invocation
129
* pcsys_keys::         Keys
130
* pcsys_monitor::      QEMU Monitor
131
* disk_images::        Disk Images
132
* pcsys_network::      Network emulation
133
* direct_linux_boot::  Direct Linux Boot
134
* pcsys_usb::          USB emulation
135
* vnc_security::       VNC security
136
* gdb_usage::          GDB usage
137
* pcsys_os_specific::  Target OS specific information
138
@end menu
139

    
140
@node pcsys_introduction
141
@section Introduction
142

    
143
@c man begin DESCRIPTION
144

    
145
The QEMU PC System emulator simulates the
146
following peripherals:
147

    
148
@itemize @minus
149
@item
150
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151
@item
152
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153
extensions (hardware level, including all non standard modes).
154
@item
155
PS/2 mouse and keyboard
156
@item
157
2 PCI IDE interfaces with hard disk and CD-ROM support
158
@item
159
Floppy disk
160
@item
161
PCI/ISA PCI network adapters
162
@item
163
Serial ports
164
@item
165
Creative SoundBlaster 16 sound card
166
@item
167
ENSONIQ AudioPCI ES1370 sound card
168
@item
169
Intel 82801AA AC97 Audio compatible sound card
170
@item
171
Adlib(OPL2) - Yamaha YM3812 compatible chip
172
@item
173
Gravis Ultrasound GF1 sound card
174
@item
175
PCI UHCI USB controller and a virtual USB hub.
176
@end itemize
177

    
178
SMP is supported with up to 255 CPUs.
179

    
180
Note that adlib, ac97 and gus are only available when QEMU was configured
181
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
182

    
183
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
184
VGA BIOS.
185

    
186
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
187

    
188
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
189
by Tibor "TS" Schütz.
190

    
191
@c man end
192

    
193
@node pcsys_quickstart
194
@section Quick Start
195

    
196
Download and uncompress the linux image (@file{linux.img}) and type:
197

    
198
@example
199
qemu linux.img
200
@end example
201

    
202
Linux should boot and give you a prompt.
203

    
204
@node sec_invocation
205
@section Invocation
206

    
207
@example
208
@c man begin SYNOPSIS
209
usage: qemu [options] [@var{disk_image}]
210
@c man end
211
@end example
212

    
213
@c man begin OPTIONS
214
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
215

    
216
General options:
217
@table @option
218
@item -M @var{machine}
219
Select the emulated @var{machine} (@code{-M ?} for list)
220

    
221
@item -fda @var{file}
222
@item -fdb @var{file}
223
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
224
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
225

    
226
@item -hda @var{file}
227
@item -hdb @var{file}
228
@item -hdc @var{file}
229
@item -hdd @var{file}
230
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
231

    
232
@item -cdrom @var{file}
233
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
234
@option{-cdrom} at the same time). You can use the host CD-ROM by
235
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
236

    
237
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
238

    
239
Define a new drive. Valid options are:
240

    
241
@table @code
242
@item file=@var{file}
243
This option defines which disk image (@pxref{disk_images}) to use with
244
this drive. If the filename contains comma, you must double it
245
(for instance, "file=my,,file" to use file "my,file").
246
@item if=@var{interface}
247
This option defines on which type on interface the drive is connected.
248
Available types are: ide, scsi, sd, mtd, floppy, pflash.
249
@item bus=@var{bus},unit=@var{unit}
250
These options define where is connected the drive by defining the bus number and
251
the unit id.
252
@item index=@var{index}
253
This option defines where is connected the drive by using an index in the list
254
of available connectors of a given interface type.
255
@item media=@var{media}
256
This option defines the type of the media: disk or cdrom.
257
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
258
These options have the same definition as they have in @option{-hdachs}.
259
@item snapshot=@var{snapshot}
260
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
261
@item cache=@var{cache}
262
@var{cache} is "on" or "off" and allows to disable host cache to access data.
263
@end table
264

    
265
Instead of @option{-cdrom} you can use:
266
@example
267
qemu -drive file=file,index=2,media=cdrom
268
@end example
269

    
270
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
271
use:
272
@example
273
qemu -drive file=file,index=0,media=disk
274
qemu -drive file=file,index=1,media=disk
275
qemu -drive file=file,index=2,media=disk
276
qemu -drive file=file,index=3,media=disk
277
@end example
278

    
279
You can connect a CDROM to the slave of ide0:
280
@example
281
qemu -drive file=file,if=ide,index=1,media=cdrom
282
@end example
283

    
284
If you don't specify the "file=" argument, you define an empty drive:
285
@example
286
qemu -drive if=ide,index=1,media=cdrom
287
@end example
288

    
289
You can connect a SCSI disk with unit ID 6 on the bus #0:
290
@example
291
qemu -drive file=file,if=scsi,bus=0,unit=6
292
@end example
293

    
294
Instead of @option{-fda}, @option{-fdb}, you can use:
295
@example
296
qemu -drive file=file,index=0,if=floppy
297
qemu -drive file=file,index=1,if=floppy
298
@end example
299

    
300
By default, @var{interface} is "ide" and @var{index} is automatically
301
incremented:
302
@example
303
qemu -drive file=a -drive file=b"
304
@end example
305
is interpreted like:
306
@example
307
qemu -hda a -hdb b
308
@end example
309

    
310
@item -boot [a|c|d|n]
311
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
312
is the default.
313

    
314
@item -snapshot
315
Write to temporary files instead of disk image files. In this case,
316
the raw disk image you use is not written back. You can however force
317
the write back by pressing @key{C-a s} (@pxref{disk_images}).
318

    
319
@item -no-fd-bootchk
320
Disable boot signature checking for floppy disks in Bochs BIOS. It may
321
be needed to boot from old floppy disks.
322

    
323
@item -m @var{megs}
324
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
325

    
326
@item -smp @var{n}
327
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
328
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
329
to 4.
330

    
331
@item -audio-help
332

    
333
Will show the audio subsystem help: list of drivers, tunable
334
parameters.
335

    
336
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
337

    
338
Enable audio and selected sound hardware. Use ? to print all
339
available sound hardware.
340

    
341
@example
342
qemu -soundhw sb16,adlib hda
343
qemu -soundhw es1370 hda
344
qemu -soundhw ac97 hda
345
qemu -soundhw all hda
346
qemu -soundhw ?
347
@end example
348

    
349
Note that Linux's i810_audio OSS kernel (for AC97) module might
350
require manually specifying clocking.
351

    
352
@example
353
modprobe i810_audio clocking=48000
354
@end example
355

    
356
@item -localtime
357
Set the real time clock to local time (the default is to UTC
358
time). This option is needed to have correct date in MS-DOS or
359
Windows.
360

    
361
@item -startdate @var{date}
362
Set the initial date of the real time clock. Valid format for
363
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
364
@code{2006-06-17}. The default value is @code{now}.
365

    
366
@item -pidfile @var{file}
367
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
368
from a script.
369

    
370
@item -daemonize
371
Daemonize the QEMU process after initialization.  QEMU will not detach from
372
standard IO until it is ready to receive connections on any of its devices.
373
This option is a useful way for external programs to launch QEMU without having
374
to cope with initialization race conditions.
375

    
376
@item -win2k-hack
377
Use it when installing Windows 2000 to avoid a disk full bug. After
378
Windows 2000 is installed, you no longer need this option (this option
379
slows down the IDE transfers).
380

    
381
@item -option-rom @var{file}
382
Load the contents of @var{file} as an option ROM.
383
This option is useful to load things like EtherBoot.
384

    
385
@item -name @var{name}
386
Sets the @var{name} of the guest.
387
This name will be display in the SDL window caption.
388
The @var{name} will also be used for the VNC server.
389

    
390
@end table
391

    
392
Display options:
393
@table @option
394

    
395
@item -nographic
396

    
397
Normally, QEMU uses SDL to display the VGA output. With this option,
398
you can totally disable graphical output so that QEMU is a simple
399
command line application. The emulated serial port is redirected on
400
the console. Therefore, you can still use QEMU to debug a Linux kernel
401
with a serial console.
402

    
403
@item -no-frame
404

    
405
Do not use decorations for SDL windows and start them using the whole
406
available screen space. This makes the using QEMU in a dedicated desktop
407
workspace more convenient.
408

    
409
@item -full-screen
410
Start in full screen.
411

    
412
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
413

    
414
Normally, QEMU uses SDL to display the VGA output.  With this option,
415
you can have QEMU listen on VNC display @var{display} and redirect the VGA
416
display over the VNC session.  It is very useful to enable the usb
417
tablet device when using this option (option @option{-usbdevice
418
tablet}). When using the VNC display, you must use the @option{-k}
419
parameter to set the keyboard layout if you are not using en-us. Valid
420
syntax for the @var{display} is
421

    
422
@table @code
423

    
424
@item @var{host}:@var{d}
425

    
426
TCP connections will only be allowed from @var{host} on display @var{d}.
427
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
428
be omitted in which case the server will accept connections from any host.
429

    
430
@item @code{unix}:@var{path}
431

    
432
Connections will be allowed over UNIX domain sockets where @var{path} is the
433
location of a unix socket to listen for connections on.
434

    
435
@item none
436

    
437
VNC is initialized but not started. The monitor @code{change} command
438
can be used to later start the VNC server.
439

    
440
@end table
441

    
442
Following the @var{display} value there may be one or more @var{option} flags
443
separated by commas. Valid options are
444

    
445
@table @code
446

    
447
@item reverse
448

    
449
Connect to a listening VNC client via a ``reverse'' connection. The
450
client is specified by the @var{display}. For reverse network
451
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
452
is a TCP port number, not a display number.
453

    
454
@item password
455

    
456
Require that password based authentication is used for client connections.
457
The password must be set separately using the @code{change} command in the
458
@ref{pcsys_monitor}
459

    
460
@item tls
461

    
462
Require that client use TLS when communicating with the VNC server. This
463
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
464
attack. It is recommended that this option be combined with either the
465
@var{x509} or @var{x509verify} options.
466

    
467
@item x509=@var{/path/to/certificate/dir}
468

    
469
Valid if @option{tls} is specified. Require that x509 credentials are used
470
for negotiating the TLS session. The server will send its x509 certificate
471
to the client. It is recommended that a password be set on the VNC server
472
to provide authentication of the client when this is used. The path following
473
this option specifies where the x509 certificates are to be loaded from.
474
See the @ref{vnc_security} section for details on generating certificates.
475

    
476
@item x509verify=@var{/path/to/certificate/dir}
477

    
478
Valid if @option{tls} is specified. Require that x509 credentials are used
479
for negotiating the TLS session. The server will send its x509 certificate
480
to the client, and request that the client send its own x509 certificate.
481
The server will validate the client's certificate against the CA certificate,
482
and reject clients when validation fails. If the certificate authority is
483
trusted, this is a sufficient authentication mechanism. You may still wish
484
to set a password on the VNC server as a second authentication layer. The
485
path following this option specifies where the x509 certificates are to
486
be loaded from. See the @ref{vnc_security} section for details on generating
487
certificates.
488

    
489
@end table
490

    
491
@item -k @var{language}
492

    
493
Use keyboard layout @var{language} (for example @code{fr} for
494
French). This option is only needed where it is not easy to get raw PC
495
keycodes (e.g. on Macs, with some X11 servers or with a VNC
496
display). You don't normally need to use it on PC/Linux or PC/Windows
497
hosts.
498

    
499
The available layouts are:
500
@example
501
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
502
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
503
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
504
@end example
505

    
506
The default is @code{en-us}.
507

    
508
@end table
509

    
510
USB options:
511
@table @option
512

    
513
@item -usb
514
Enable the USB driver (will be the default soon)
515

    
516
@item -usbdevice @var{devname}
517
Add the USB device @var{devname}. @xref{usb_devices}.
518

    
519
@table @code
520

    
521
@item mouse
522
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
523

    
524
@item tablet
525
Pointer device that uses absolute coordinates (like a touchscreen). This
526
means qemu is able to report the mouse position without having to grab the
527
mouse. Also overrides the PS/2 mouse emulation when activated.
528

    
529
@item disk:file
530
Mass storage device based on file
531

    
532
@item host:bus.addr
533
Pass through the host device identified by bus.addr (Linux only).
534

    
535
@item host:vendor_id:product_id
536
Pass through the host device identified by vendor_id:product_id (Linux only).
537

    
538
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
539
Serial converter to host character device @var{dev}, see @code{-serial} for the
540
available devices.
541

    
542
@end table
543

    
544
@end table
545

    
546
Network options:
547

    
548
@table @option
549

    
550
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
551
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
552
= 0 is the default). The NIC is an ne2k_pci by default on the PC
553
target. Optionally, the MAC address can be changed. If no
554
@option{-net} option is specified, a single NIC is created.
555
Qemu can emulate several different models of network card.
556
Valid values for @var{type} are
557
@code{i82551}, @code{i82557b}, @code{i82559er},
558
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
559
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
560
Not all devices are supported on all targets.  Use -net nic,model=?
561
for a list of available devices for your target.
562

    
563
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
564
Use the user mode network stack which requires no administrator
565
privilege to run.  @option{hostname=name} can be used to specify the client
566
hostname reported by the builtin DHCP server.
567

    
568
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
569
Connect the host TAP network interface @var{name} to VLAN @var{n} and
570
use the network script @var{file} to configure it. The default
571
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
572
disable script execution. If @var{name} is not
573
provided, the OS automatically provides one. @option{fd}=@var{h} can be
574
used to specify the handle of an already opened host TAP interface. Example:
575

    
576
@example
577
qemu linux.img -net nic -net tap
578
@end example
579

    
580
More complicated example (two NICs, each one connected to a TAP device)
581
@example
582
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
583
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
584
@end example
585

    
586

    
587
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
588

    
589
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
590
machine using a TCP socket connection. If @option{listen} is
591
specified, QEMU waits for incoming connections on @var{port}
592
(@var{host} is optional). @option{connect} is used to connect to
593
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
594
specifies an already opened TCP socket.
595

    
596
Example:
597
@example
598
# launch a first QEMU instance
599
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
600
               -net socket,listen=:1234
601
# connect the VLAN 0 of this instance to the VLAN 0
602
# of the first instance
603
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
604
               -net socket,connect=127.0.0.1:1234
605
@end example
606

    
607
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
608

    
609
Create a VLAN @var{n} shared with another QEMU virtual
610
machines using a UDP multicast socket, effectively making a bus for
611
every QEMU with same multicast address @var{maddr} and @var{port}.
612
NOTES:
613
@enumerate
614
@item
615
Several QEMU can be running on different hosts and share same bus (assuming
616
correct multicast setup for these hosts).
617
@item
618
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
619
@url{http://user-mode-linux.sf.net}.
620
@item
621
Use @option{fd=h} to specify an already opened UDP multicast socket.
622
@end enumerate
623

    
624
Example:
625
@example
626
# launch one QEMU instance
627
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628
               -net socket,mcast=230.0.0.1:1234
629
# launch another QEMU instance on same "bus"
630
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
631
               -net socket,mcast=230.0.0.1:1234
632
# launch yet another QEMU instance on same "bus"
633
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
634
               -net socket,mcast=230.0.0.1:1234
635
@end example
636

    
637
Example (User Mode Linux compat.):
638
@example
639
# launch QEMU instance (note mcast address selected
640
# is UML's default)
641
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
642
               -net socket,mcast=239.192.168.1:1102
643
# launch UML
644
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
645
@end example
646

    
647
@item -net none
648
Indicate that no network devices should be configured. It is used to
649
override the default configuration (@option{-net nic -net user}) which
650
is activated if no @option{-net} options are provided.
651

    
652
@item -tftp @var{dir}
653
When using the user mode network stack, activate a built-in TFTP
654
server. The files in @var{dir} will be exposed as the root of a TFTP server.
655
The TFTP client on the guest must be configured in binary mode (use the command
656
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
657
usual 10.0.2.2.
658

    
659
@item -bootp @var{file}
660
When using the user mode network stack, broadcast @var{file} as the BOOTP
661
filename.  In conjunction with @option{-tftp}, this can be used to network boot
662
a guest from a local directory.
663

    
664
Example (using pxelinux):
665
@example
666
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
667
@end example
668

    
669
@item -smb @var{dir}
670
When using the user mode network stack, activate a built-in SMB
671
server so that Windows OSes can access to the host files in @file{@var{dir}}
672
transparently.
673

    
674
In the guest Windows OS, the line:
675
@example
676
10.0.2.4 smbserver
677
@end example
678
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
679
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
680

    
681
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
682

    
683
Note that a SAMBA server must be installed on the host OS in
684
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
685
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
686

    
687
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
688

    
689
When using the user mode network stack, redirect incoming TCP or UDP
690
connections to the host port @var{host-port} to the guest
691
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
692
is not specified, its value is 10.0.2.15 (default address given by the
693
built-in DHCP server).
694

    
695
For example, to redirect host X11 connection from screen 1 to guest
696
screen 0, use the following:
697

    
698
@example
699
# on the host
700
qemu -redir tcp:6001::6000 [...]
701
# this host xterm should open in the guest X11 server
702
xterm -display :1
703
@end example
704

    
705
To redirect telnet connections from host port 5555 to telnet port on
706
the guest, use the following:
707

    
708
@example
709
# on the host
710
qemu -redir tcp:5555::23 [...]
711
telnet localhost 5555
712
@end example
713

    
714
Then when you use on the host @code{telnet localhost 5555}, you
715
connect to the guest telnet server.
716

    
717
@end table
718

    
719
Linux boot specific: When using these options, you can use a given
720
Linux kernel without installing it in the disk image. It can be useful
721
for easier testing of various kernels.
722

    
723
@table @option
724

    
725
@item -kernel @var{bzImage}
726
Use @var{bzImage} as kernel image.
727

    
728
@item -append @var{cmdline}
729
Use @var{cmdline} as kernel command line
730

    
731
@item -initrd @var{file}
732
Use @var{file} as initial ram disk.
733

    
734
@end table
735

    
736
Debug/Expert options:
737
@table @option
738

    
739
@item -serial @var{dev}
740
Redirect the virtual serial port to host character device
741
@var{dev}. The default device is @code{vc} in graphical mode and
742
@code{stdio} in non graphical mode.
743

    
744
This option can be used several times to simulate up to 4 serials
745
ports.
746

    
747
Use @code{-serial none} to disable all serial ports.
748

    
749
Available character devices are:
750
@table @code
751
@item vc[:WxH]
752
Virtual console. Optionally, a width and height can be given in pixel with
753
@example
754
vc:800x600
755
@end example
756
It is also possible to specify width or height in characters:
757
@example
758
vc:80Cx24C
759
@end example
760
@item pty
761
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
762
@item none
763
No device is allocated.
764
@item null
765
void device
766
@item /dev/XXX
767
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
768
parameters are set according to the emulated ones.
769
@item /dev/parport@var{N}
770
[Linux only, parallel port only] Use host parallel port
771
@var{N}. Currently SPP and EPP parallel port features can be used.
772
@item file:@var{filename}
773
Write output to @var{filename}. No character can be read.
774
@item stdio
775
[Unix only] standard input/output
776
@item pipe:@var{filename}
777
name pipe @var{filename}
778
@item COM@var{n}
779
[Windows only] Use host serial port @var{n}
780
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
781
This implements UDP Net Console.
782
When @var{remote_host} or @var{src_ip} are not specified
783
they default to @code{0.0.0.0}.
784
When not using a specified @var{src_port} a random port is automatically chosen.
785

    
786
If you just want a simple readonly console you can use @code{netcat} or
787
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
788
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
789
will appear in the netconsole session.
790

    
791
If you plan to send characters back via netconsole or you want to stop
792
and start qemu a lot of times, you should have qemu use the same
793
source port each time by using something like @code{-serial
794
udp::4555@@:4556} to qemu. Another approach is to use a patched
795
version of netcat which can listen to a TCP port and send and receive
796
characters via udp.  If you have a patched version of netcat which
797
activates telnet remote echo and single char transfer, then you can
798
use the following options to step up a netcat redirector to allow
799
telnet on port 5555 to access the qemu port.
800
@table @code
801
@item Qemu Options:
802
-serial udp::4555@@:4556
803
@item netcat options:
804
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
805
@item telnet options:
806
localhost 5555
807
@end table
808

    
809

    
810
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
811
The TCP Net Console has two modes of operation.  It can send the serial
812
I/O to a location or wait for a connection from a location.  By default
813
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
814
the @var{server} option QEMU will wait for a client socket application
815
to connect to the port before continuing, unless the @code{nowait}
816
option was specified.  The @code{nodelay} option disables the Nagle buffering
817
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
818
one TCP connection at a time is accepted. You can use @code{telnet} to
819
connect to the corresponding character device.
820
@table @code
821
@item Example to send tcp console to 192.168.0.2 port 4444
822
-serial tcp:192.168.0.2:4444
823
@item Example to listen and wait on port 4444 for connection
824
-serial tcp::4444,server
825
@item Example to not wait and listen on ip 192.168.0.100 port 4444
826
-serial tcp:192.168.0.100:4444,server,nowait
827
@end table
828

    
829
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
830
The telnet protocol is used instead of raw tcp sockets.  The options
831
work the same as if you had specified @code{-serial tcp}.  The
832
difference is that the port acts like a telnet server or client using
833
telnet option negotiation.  This will also allow you to send the
834
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
835
sequence.  Typically in unix telnet you do it with Control-] and then
836
type "send break" followed by pressing the enter key.
837

    
838
@item unix:@var{path}[,server][,nowait]
839
A unix domain socket is used instead of a tcp socket.  The option works the
840
same as if you had specified @code{-serial tcp} except the unix domain socket
841
@var{path} is used for connections.
842

    
843
@item mon:@var{dev_string}
844
This is a special option to allow the monitor to be multiplexed onto
845
another serial port.  The monitor is accessed with key sequence of
846
@key{Control-a} and then pressing @key{c}. See monitor access
847
@ref{pcsys_keys} in the -nographic section for more keys.
848
@var{dev_string} should be any one of the serial devices specified
849
above.  An example to multiplex the monitor onto a telnet server
850
listening on port 4444 would be:
851
@table @code
852
@item -serial mon:telnet::4444,server,nowait
853
@end table
854

    
855
@end table
856

    
857
@item -parallel @var{dev}
858
Redirect the virtual parallel port to host device @var{dev} (same
859
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
860
be used to use hardware devices connected on the corresponding host
861
parallel port.
862

    
863
This option can be used several times to simulate up to 3 parallel
864
ports.
865

    
866
Use @code{-parallel none} to disable all parallel ports.
867

    
868
@item -monitor @var{dev}
869
Redirect the monitor to host device @var{dev} (same devices as the
870
serial port).
871
The default device is @code{vc} in graphical mode and @code{stdio} in
872
non graphical mode.
873

    
874
@item -echr numeric_ascii_value
875
Change the escape character used for switching to the monitor when using
876
monitor and serial sharing.  The default is @code{0x01} when using the
877
@code{-nographic} option.  @code{0x01} is equal to pressing
878
@code{Control-a}.  You can select a different character from the ascii
879
control keys where 1 through 26 map to Control-a through Control-z.  For
880
instance you could use the either of the following to change the escape
881
character to Control-t.
882
@table @code
883
@item -echr 0x14
884
@item -echr 20
885
@end table
886

    
887
@item -s
888
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
889
@item -p @var{port}
890
Change gdb connection port.  @var{port} can be either a decimal number
891
to specify a TCP port, or a host device (same devices as the serial port).
892
@item -S
893
Do not start CPU at startup (you must type 'c' in the monitor).
894
@item -d
895
Output log in /tmp/qemu.log
896
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
897
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
898
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
899
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
900
all those parameters. This option is useful for old MS-DOS disk
901
images.
902

    
903
@item -L path
904
Set the directory for the BIOS, VGA BIOS and keymaps.
905

    
906
@item -std-vga
907
Simulate a standard VGA card with Bochs VBE extensions (default is
908
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
909
VBE extensions (e.g. Windows XP) and if you want to use high
910
resolution modes (>= 1280x1024x16) then you should use this option.
911

    
912
@item -no-acpi
913
Disable ACPI (Advanced Configuration and Power Interface) support. Use
914
it if your guest OS complains about ACPI problems (PC target machine
915
only).
916

    
917
@item -no-reboot
918
Exit instead of rebooting.
919

    
920
@item -loadvm file
921
Start right away with a saved state (@code{loadvm} in monitor)
922

    
923
@item -semihosting
924
Enable semihosting syscall emulation (ARM and M68K target machines only).
925

    
926
On ARM this implements the "Angel" interface.
927
On M68K this implements the "ColdFire GDB" interface used by libgloss.
928

    
929
Note that this allows guest direct access to the host filesystem,
930
so should only be used with trusted guest OS.
931
@end table
932

    
933
@c man end
934

    
935
@node pcsys_keys
936
@section Keys
937

    
938
@c man begin OPTIONS
939

    
940
During the graphical emulation, you can use the following keys:
941
@table @key
942
@item Ctrl-Alt-f
943
Toggle full screen
944

    
945
@item Ctrl-Alt-n
946
Switch to virtual console 'n'. Standard console mappings are:
947
@table @emph
948
@item 1
949
Target system display
950
@item 2
951
Monitor
952
@item 3
953
Serial port
954
@end table
955

    
956
@item Ctrl-Alt
957
Toggle mouse and keyboard grab.
958
@end table
959

    
960
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
961
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
962

    
963
During emulation, if you are using the @option{-nographic} option, use
964
@key{Ctrl-a h} to get terminal commands:
965

    
966
@table @key
967
@item Ctrl-a h
968
Print this help
969
@item Ctrl-a x
970
Exit emulator
971
@item Ctrl-a s
972
Save disk data back to file (if -snapshot)
973
@item Ctrl-a t
974
toggle console timestamps
975
@item Ctrl-a b
976
Send break (magic sysrq in Linux)
977
@item Ctrl-a c
978
Switch between console and monitor
979
@item Ctrl-a Ctrl-a
980
Send Ctrl-a
981
@end table
982
@c man end
983

    
984
@ignore
985

    
986
@c man begin SEEALSO
987
The HTML documentation of QEMU for more precise information and Linux
988
user mode emulator invocation.
989
@c man end
990

    
991
@c man begin AUTHOR
992
Fabrice Bellard
993
@c man end
994

    
995
@end ignore
996

    
997
@node pcsys_monitor
998
@section QEMU Monitor
999

    
1000
The QEMU monitor is used to give complex commands to the QEMU
1001
emulator. You can use it to:
1002

    
1003
@itemize @minus
1004

    
1005
@item
1006
Remove or insert removable media images
1007
(such as CD-ROM or floppies).
1008

    
1009
@item
1010
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1011
from a disk file.
1012

    
1013
@item Inspect the VM state without an external debugger.
1014

    
1015
@end itemize
1016

    
1017
@subsection Commands
1018

    
1019
The following commands are available:
1020

    
1021
@table @option
1022

    
1023
@item help or ? [@var{cmd}]
1024
Show the help for all commands or just for command @var{cmd}.
1025

    
1026
@item commit
1027
Commit changes to the disk images (if -snapshot is used).
1028

    
1029
@item info @var{subcommand}
1030
Show various information about the system state.
1031

    
1032
@table @option
1033
@item info network
1034
show the various VLANs and the associated devices
1035
@item info block
1036
show the block devices
1037
@item info registers
1038
show the cpu registers
1039
@item info history
1040
show the command line history
1041
@item info pci
1042
show emulated PCI device
1043
@item info usb
1044
show USB devices plugged on the virtual USB hub
1045
@item info usbhost
1046
show all USB host devices
1047
@item info capture
1048
show information about active capturing
1049
@item info snapshots
1050
show list of VM snapshots
1051
@item info mice
1052
show which guest mouse is receiving events
1053
@end table
1054

    
1055
@item q or quit
1056
Quit the emulator.
1057

    
1058
@item eject [-f] @var{device}
1059
Eject a removable medium (use -f to force it).
1060

    
1061
@item change @var{device} @var{setting}
1062

    
1063
Change the configuration of a device.
1064

    
1065
@table @option
1066
@item change @var{diskdevice} @var{filename}
1067
Change the medium for a removable disk device to point to @var{filename}. eg
1068

    
1069
@example
1070
(qemu) change cdrom /path/to/some.iso
1071
@end example
1072

    
1073
@item change vnc @var{display},@var{options}
1074
Change the configuration of the VNC server. The valid syntax for @var{display}
1075
and @var{options} are described at @ref{sec_invocation}. eg
1076

    
1077
@example
1078
(qemu) change vnc localhost:1
1079
@end example
1080

    
1081
@item change vnc password
1082

    
1083
Change the password associated with the VNC server. The monitor will prompt for
1084
the new password to be entered. VNC passwords are only significant upto 8 letters.
1085
eg.
1086

    
1087
@example
1088
(qemu) change vnc password
1089
Password: ********
1090
@end example
1091

    
1092
@end table
1093

    
1094
@item screendump @var{filename}
1095
Save screen into PPM image @var{filename}.
1096

    
1097
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1098
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1099
with optional scroll axis @var{dz}.
1100

    
1101
@item mouse_button @var{val}
1102
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1103

    
1104
@item mouse_set @var{index}
1105
Set which mouse device receives events at given @var{index}, index
1106
can be obtained with
1107
@example
1108
info mice
1109
@end example
1110

    
1111
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1112
Capture audio into @var{filename}. Using sample rate @var{frequency}
1113
bits per sample @var{bits} and number of channels @var{channels}.
1114

    
1115
Defaults:
1116
@itemize @minus
1117
@item Sample rate = 44100 Hz - CD quality
1118
@item Bits = 16
1119
@item Number of channels = 2 - Stereo
1120
@end itemize
1121

    
1122
@item stopcapture @var{index}
1123
Stop capture with a given @var{index}, index can be obtained with
1124
@example
1125
info capture
1126
@end example
1127

    
1128
@item log @var{item1}[,...]
1129
Activate logging of the specified items to @file{/tmp/qemu.log}.
1130

    
1131
@item savevm [@var{tag}|@var{id}]
1132
Create a snapshot of the whole virtual machine. If @var{tag} is
1133
provided, it is used as human readable identifier. If there is already
1134
a snapshot with the same tag or ID, it is replaced. More info at
1135
@ref{vm_snapshots}.
1136

    
1137
@item loadvm @var{tag}|@var{id}
1138
Set the whole virtual machine to the snapshot identified by the tag
1139
@var{tag} or the unique snapshot ID @var{id}.
1140

    
1141
@item delvm @var{tag}|@var{id}
1142
Delete the snapshot identified by @var{tag} or @var{id}.
1143

    
1144
@item stop
1145
Stop emulation.
1146

    
1147
@item c or cont
1148
Resume emulation.
1149

    
1150
@item gdbserver [@var{port}]
1151
Start gdbserver session (default @var{port}=1234)
1152

    
1153
@item x/fmt @var{addr}
1154
Virtual memory dump starting at @var{addr}.
1155

    
1156
@item xp /@var{fmt} @var{addr}
1157
Physical memory dump starting at @var{addr}.
1158

    
1159
@var{fmt} is a format which tells the command how to format the
1160
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1161

    
1162
@table @var
1163
@item count
1164
is the number of items to be dumped.
1165

    
1166
@item format
1167
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1168
c (char) or i (asm instruction).
1169

    
1170
@item size
1171
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1172
@code{h} or @code{w} can be specified with the @code{i} format to
1173
respectively select 16 or 32 bit code instruction size.
1174

    
1175
@end table
1176

    
1177
Examples:
1178
@itemize
1179
@item
1180
Dump 10 instructions at the current instruction pointer:
1181
@example
1182
(qemu) x/10i $eip
1183
0x90107063:  ret
1184
0x90107064:  sti
1185
0x90107065:  lea    0x0(%esi,1),%esi
1186
0x90107069:  lea    0x0(%edi,1),%edi
1187
0x90107070:  ret
1188
0x90107071:  jmp    0x90107080
1189
0x90107073:  nop
1190
0x90107074:  nop
1191
0x90107075:  nop
1192
0x90107076:  nop
1193
@end example
1194

    
1195
@item
1196
Dump 80 16 bit values at the start of the video memory.
1197
@smallexample
1198
(qemu) xp/80hx 0xb8000
1199
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1200
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1201
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1202
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1203
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1204
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1205
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1206
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1207
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1208
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1209
@end smallexample
1210
@end itemize
1211

    
1212
@item p or print/@var{fmt} @var{expr}
1213

    
1214
Print expression value. Only the @var{format} part of @var{fmt} is
1215
used.
1216

    
1217
@item sendkey @var{keys}
1218

    
1219
Send @var{keys} to the emulator. Use @code{-} to press several keys
1220
simultaneously. Example:
1221
@example
1222
sendkey ctrl-alt-f1
1223
@end example
1224

    
1225
This command is useful to send keys that your graphical user interface
1226
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1227

    
1228
@item system_reset
1229

    
1230
Reset the system.
1231

    
1232
@item usb_add @var{devname}
1233

    
1234
Add the USB device @var{devname}.  For details of available devices see
1235
@ref{usb_devices}
1236

    
1237
@item usb_del @var{devname}
1238

    
1239
Remove the USB device @var{devname} from the QEMU virtual USB
1240
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1241
command @code{info usb} to see the devices you can remove.
1242

    
1243
@end table
1244

    
1245
@subsection Integer expressions
1246

    
1247
The monitor understands integers expressions for every integer
1248
argument. You can use register names to get the value of specifics
1249
CPU registers by prefixing them with @emph{$}.
1250

    
1251
@node disk_images
1252
@section Disk Images
1253

    
1254
Since version 0.6.1, QEMU supports many disk image formats, including
1255
growable disk images (their size increase as non empty sectors are
1256
written), compressed and encrypted disk images. Version 0.8.3 added
1257
the new qcow2 disk image format which is essential to support VM
1258
snapshots.
1259

    
1260
@menu
1261
* disk_images_quickstart::    Quick start for disk image creation
1262
* disk_images_snapshot_mode:: Snapshot mode
1263
* vm_snapshots::              VM snapshots
1264
* qemu_img_invocation::       qemu-img Invocation
1265
* host_drives::               Using host drives
1266
* disk_images_fat_images::    Virtual FAT disk images
1267
@end menu
1268

    
1269
@node disk_images_quickstart
1270
@subsection Quick start for disk image creation
1271

    
1272
You can create a disk image with the command:
1273
@example
1274
qemu-img create myimage.img mysize
1275
@end example
1276
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1277
size in kilobytes. You can add an @code{M} suffix to give the size in
1278
megabytes and a @code{G} suffix for gigabytes.
1279

    
1280
See @ref{qemu_img_invocation} for more information.
1281

    
1282
@node disk_images_snapshot_mode
1283
@subsection Snapshot mode
1284

    
1285
If you use the option @option{-snapshot}, all disk images are
1286
considered as read only. When sectors in written, they are written in
1287
a temporary file created in @file{/tmp}. You can however force the
1288
write back to the raw disk images by using the @code{commit} monitor
1289
command (or @key{C-a s} in the serial console).
1290

    
1291
@node vm_snapshots
1292
@subsection VM snapshots
1293

    
1294
VM snapshots are snapshots of the complete virtual machine including
1295
CPU state, RAM, device state and the content of all the writable
1296
disks. In order to use VM snapshots, you must have at least one non
1297
removable and writable block device using the @code{qcow2} disk image
1298
format. Normally this device is the first virtual hard drive.
1299

    
1300
Use the monitor command @code{savevm} to create a new VM snapshot or
1301
replace an existing one. A human readable name can be assigned to each
1302
snapshot in addition to its numerical ID.
1303

    
1304
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1305
a VM snapshot. @code{info snapshots} lists the available snapshots
1306
with their associated information:
1307

    
1308
@example
1309
(qemu) info snapshots
1310
Snapshot devices: hda
1311
Snapshot list (from hda):
1312
ID        TAG                 VM SIZE                DATE       VM CLOCK
1313
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1314
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1315
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1316
@end example
1317

    
1318
A VM snapshot is made of a VM state info (its size is shown in
1319
@code{info snapshots}) and a snapshot of every writable disk image.
1320
The VM state info is stored in the first @code{qcow2} non removable
1321
and writable block device. The disk image snapshots are stored in
1322
every disk image. The size of a snapshot in a disk image is difficult
1323
to evaluate and is not shown by @code{info snapshots} because the
1324
associated disk sectors are shared among all the snapshots to save
1325
disk space (otherwise each snapshot would need a full copy of all the
1326
disk images).
1327

    
1328
When using the (unrelated) @code{-snapshot} option
1329
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1330
but they are deleted as soon as you exit QEMU.
1331

    
1332
VM snapshots currently have the following known limitations:
1333
@itemize
1334
@item
1335
They cannot cope with removable devices if they are removed or
1336
inserted after a snapshot is done.
1337
@item
1338
A few device drivers still have incomplete snapshot support so their
1339
state is not saved or restored properly (in particular USB).
1340
@end itemize
1341

    
1342
@node qemu_img_invocation
1343
@subsection @code{qemu-img} Invocation
1344

    
1345
@include qemu-img.texi
1346

    
1347
@node host_drives
1348
@subsection Using host drives
1349

    
1350
In addition to disk image files, QEMU can directly access host
1351
devices. We describe here the usage for QEMU version >= 0.8.3.
1352

    
1353
@subsubsection Linux
1354

    
1355
On Linux, you can directly use the host device filename instead of a
1356
disk image filename provided you have enough privileges to access
1357
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1358
@file{/dev/fd0} for the floppy.
1359

    
1360
@table @code
1361
@item CD
1362
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1363
specific code to detect CDROM insertion or removal. CDROM ejection by
1364
the guest OS is supported. Currently only data CDs are supported.
1365
@item Floppy
1366
You can specify a floppy device even if no floppy is loaded. Floppy
1367
removal is currently not detected accurately (if you change floppy
1368
without doing floppy access while the floppy is not loaded, the guest
1369
OS will think that the same floppy is loaded).
1370
@item Hard disks
1371
Hard disks can be used. Normally you must specify the whole disk
1372
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1373
see it as a partitioned disk. WARNING: unless you know what you do, it
1374
is better to only make READ-ONLY accesses to the hard disk otherwise
1375
you may corrupt your host data (use the @option{-snapshot} command
1376
line option or modify the device permissions accordingly).
1377
@end table
1378

    
1379
@subsubsection Windows
1380

    
1381
@table @code
1382
@item CD
1383
The preferred syntax is the drive letter (e.g. @file{d:}). The
1384
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1385
supported as an alias to the first CDROM drive.
1386

    
1387
Currently there is no specific code to handle removable media, so it
1388
is better to use the @code{change} or @code{eject} monitor commands to
1389
change or eject media.
1390
@item Hard disks
1391
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1392
where @var{N} is the drive number (0 is the first hard disk).
1393

    
1394
WARNING: unless you know what you do, it is better to only make
1395
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1396
host data (use the @option{-snapshot} command line so that the
1397
modifications are written in a temporary file).
1398
@end table
1399

    
1400

    
1401
@subsubsection Mac OS X
1402

    
1403
@file{/dev/cdrom} is an alias to the first CDROM.
1404

    
1405
Currently there is no specific code to handle removable media, so it
1406
is better to use the @code{change} or @code{eject} monitor commands to
1407
change or eject media.
1408

    
1409
@node disk_images_fat_images
1410
@subsection Virtual FAT disk images
1411

    
1412
QEMU can automatically create a virtual FAT disk image from a
1413
directory tree. In order to use it, just type:
1414

    
1415
@example
1416
qemu linux.img -hdb fat:/my_directory
1417
@end example
1418

    
1419
Then you access access to all the files in the @file{/my_directory}
1420
directory without having to copy them in a disk image or to export
1421
them via SAMBA or NFS. The default access is @emph{read-only}.
1422

    
1423
Floppies can be emulated with the @code{:floppy:} option:
1424

    
1425
@example
1426
qemu linux.img -fda fat:floppy:/my_directory
1427
@end example
1428

    
1429
A read/write support is available for testing (beta stage) with the
1430
@code{:rw:} option:
1431

    
1432
@example
1433
qemu linux.img -fda fat:floppy:rw:/my_directory
1434
@end example
1435

    
1436
What you should @emph{never} do:
1437
@itemize
1438
@item use non-ASCII filenames ;
1439
@item use "-snapshot" together with ":rw:" ;
1440
@item expect it to work when loadvm'ing ;
1441
@item write to the FAT directory on the host system while accessing it with the guest system.
1442
@end itemize
1443

    
1444
@node pcsys_network
1445
@section Network emulation
1446

    
1447
QEMU can simulate several network cards (PCI or ISA cards on the PC
1448
target) and can connect them to an arbitrary number of Virtual Local
1449
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1450
VLAN. VLAN can be connected between separate instances of QEMU to
1451
simulate large networks. For simpler usage, a non privileged user mode
1452
network stack can replace the TAP device to have a basic network
1453
connection.
1454

    
1455
@subsection VLANs
1456

    
1457
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1458
connection between several network devices. These devices can be for
1459
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1460
(TAP devices).
1461

    
1462
@subsection Using TAP network interfaces
1463

    
1464
This is the standard way to connect QEMU to a real network. QEMU adds
1465
a virtual network device on your host (called @code{tapN}), and you
1466
can then configure it as if it was a real ethernet card.
1467

    
1468
@subsubsection Linux host
1469

    
1470
As an example, you can download the @file{linux-test-xxx.tar.gz}
1471
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1472
configure properly @code{sudo} so that the command @code{ifconfig}
1473
contained in @file{qemu-ifup} can be executed as root. You must verify
1474
that your host kernel supports the TAP network interfaces: the
1475
device @file{/dev/net/tun} must be present.
1476

    
1477
See @ref{sec_invocation} to have examples of command lines using the
1478
TAP network interfaces.
1479

    
1480
@subsubsection Windows host
1481

    
1482
There is a virtual ethernet driver for Windows 2000/XP systems, called
1483
TAP-Win32. But it is not included in standard QEMU for Windows,
1484
so you will need to get it separately. It is part of OpenVPN package,
1485
so download OpenVPN from : @url{http://openvpn.net/}.
1486

    
1487
@subsection Using the user mode network stack
1488

    
1489
By using the option @option{-net user} (default configuration if no
1490
@option{-net} option is specified), QEMU uses a completely user mode
1491
network stack (you don't need root privilege to use the virtual
1492
network). The virtual network configuration is the following:
1493

    
1494
@example
1495

    
1496
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1497
                           |          (10.0.2.2)
1498
                           |
1499
                           ---->  DNS server (10.0.2.3)
1500
                           |
1501
                           ---->  SMB server (10.0.2.4)
1502
@end example
1503

    
1504
The QEMU VM behaves as if it was behind a firewall which blocks all
1505
incoming connections. You can use a DHCP client to automatically
1506
configure the network in the QEMU VM. The DHCP server assign addresses
1507
to the hosts starting from 10.0.2.15.
1508

    
1509
In order to check that the user mode network is working, you can ping
1510
the address 10.0.2.2 and verify that you got an address in the range
1511
10.0.2.x from the QEMU virtual DHCP server.
1512

    
1513
Note that @code{ping} is not supported reliably to the internet as it
1514
would require root privileges. It means you can only ping the local
1515
router (10.0.2.2).
1516

    
1517
When using the built-in TFTP server, the router is also the TFTP
1518
server.
1519

    
1520
When using the @option{-redir} option, TCP or UDP connections can be
1521
redirected from the host to the guest. It allows for example to
1522
redirect X11, telnet or SSH connections.
1523

    
1524
@subsection Connecting VLANs between QEMU instances
1525

    
1526
Using the @option{-net socket} option, it is possible to make VLANs
1527
that span several QEMU instances. See @ref{sec_invocation} to have a
1528
basic example.
1529

    
1530
@node direct_linux_boot
1531
@section Direct Linux Boot
1532

    
1533
This section explains how to launch a Linux kernel inside QEMU without
1534
having to make a full bootable image. It is very useful for fast Linux
1535
kernel testing.
1536

    
1537
The syntax is:
1538
@example
1539
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1540
@end example
1541

    
1542
Use @option{-kernel} to provide the Linux kernel image and
1543
@option{-append} to give the kernel command line arguments. The
1544
@option{-initrd} option can be used to provide an INITRD image.
1545

    
1546
When using the direct Linux boot, a disk image for the first hard disk
1547
@file{hda} is required because its boot sector is used to launch the
1548
Linux kernel.
1549

    
1550
If you do not need graphical output, you can disable it and redirect
1551
the virtual serial port and the QEMU monitor to the console with the
1552
@option{-nographic} option. The typical command line is:
1553
@example
1554
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1555
     -append "root=/dev/hda console=ttyS0" -nographic
1556
@end example
1557

    
1558
Use @key{Ctrl-a c} to switch between the serial console and the
1559
monitor (@pxref{pcsys_keys}).
1560

    
1561
@node pcsys_usb
1562
@section USB emulation
1563

    
1564
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1565
virtual USB devices or real host USB devices (experimental, works only
1566
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1567
as necessary to connect multiple USB devices.
1568

    
1569
@menu
1570
* usb_devices::
1571
* host_usb_devices::
1572
@end menu
1573
@node usb_devices
1574
@subsection Connecting USB devices
1575

    
1576
USB devices can be connected with the @option{-usbdevice} commandline option
1577
or the @code{usb_add} monitor command.  Available devices are:
1578

    
1579
@table @code
1580
@item mouse
1581
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1582
@item tablet
1583
Pointer device that uses absolute coordinates (like a touchscreen).
1584
This means qemu is able to report the mouse position without having
1585
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1586
@item disk:@var{file}
1587
Mass storage device based on @var{file} (@pxref{disk_images})
1588
@item host:@var{bus.addr}
1589
Pass through the host device identified by @var{bus.addr}
1590
(Linux only)
1591
@item host:@var{vendor_id:product_id}
1592
Pass through the host device identified by @var{vendor_id:product_id}
1593
(Linux only)
1594
@item wacom-tablet
1595
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1596
above but it can be used with the tslib library because in addition to touch
1597
coordinates it reports touch pressure.
1598
@item keyboard
1599
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1600
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1601
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1602
device @var{dev}. The available character devices are the same as for the
1603
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1604
used to override the default 0403:6001. For instance, 
1605
@example
1606
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1607
@end example
1608
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1609
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1610
@end table
1611

    
1612
@node host_usb_devices
1613
@subsection Using host USB devices on a Linux host
1614

    
1615
WARNING: this is an experimental feature. QEMU will slow down when
1616
using it. USB devices requiring real time streaming (i.e. USB Video
1617
Cameras) are not supported yet.
1618

    
1619
@enumerate
1620
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1621
is actually using the USB device. A simple way to do that is simply to
1622
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1623
to @file{mydriver.o.disabled}.
1624

    
1625
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1626
@example
1627
ls /proc/bus/usb
1628
001  devices  drivers
1629
@end example
1630

    
1631
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1632
@example
1633
chown -R myuid /proc/bus/usb
1634
@end example
1635

    
1636
@item Launch QEMU and do in the monitor:
1637
@example
1638
info usbhost
1639
  Device 1.2, speed 480 Mb/s
1640
    Class 00: USB device 1234:5678, USB DISK
1641
@end example
1642
You should see the list of the devices you can use (Never try to use
1643
hubs, it won't work).
1644

    
1645
@item Add the device in QEMU by using:
1646
@example
1647
usb_add host:1234:5678
1648
@end example
1649

    
1650
Normally the guest OS should report that a new USB device is
1651
plugged. You can use the option @option{-usbdevice} to do the same.
1652

    
1653
@item Now you can try to use the host USB device in QEMU.
1654

    
1655
@end enumerate
1656

    
1657
When relaunching QEMU, you may have to unplug and plug again the USB
1658
device to make it work again (this is a bug).
1659

    
1660
@node vnc_security
1661
@section VNC security
1662

    
1663
The VNC server capability provides access to the graphical console
1664
of the guest VM across the network. This has a number of security
1665
considerations depending on the deployment scenarios.
1666

    
1667
@menu
1668
* vnc_sec_none::
1669
* vnc_sec_password::
1670
* vnc_sec_certificate::
1671
* vnc_sec_certificate_verify::
1672
* vnc_sec_certificate_pw::
1673
* vnc_generate_cert::
1674
@end menu
1675
@node vnc_sec_none
1676
@subsection Without passwords
1677

    
1678
The simplest VNC server setup does not include any form of authentication.
1679
For this setup it is recommended to restrict it to listen on a UNIX domain
1680
socket only. For example
1681

    
1682
@example
1683
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1684
@end example
1685

    
1686
This ensures that only users on local box with read/write access to that
1687
path can access the VNC server. To securely access the VNC server from a
1688
remote machine, a combination of netcat+ssh can be used to provide a secure
1689
tunnel.
1690

    
1691
@node vnc_sec_password
1692
@subsection With passwords
1693

    
1694
The VNC protocol has limited support for password based authentication. Since
1695
the protocol limits passwords to 8 characters it should not be considered
1696
to provide high security. The password can be fairly easily brute-forced by
1697
a client making repeat connections. For this reason, a VNC server using password
1698
authentication should be restricted to only listen on the loopback interface
1699
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1700
option, and then once QEMU is running the password is set with the monitor. Until
1701
the monitor is used to set the password all clients will be rejected.
1702

    
1703
@example
1704
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1705
(qemu) change vnc password
1706
Password: ********
1707
(qemu)
1708
@end example
1709

    
1710
@node vnc_sec_certificate
1711
@subsection With x509 certificates
1712

    
1713
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1714
TLS for encryption of the session, and x509 certificates for authentication.
1715
The use of x509 certificates is strongly recommended, because TLS on its
1716
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1717
support provides a secure session, but no authentication. This allows any
1718
client to connect, and provides an encrypted session.
1719

    
1720
@example
1721
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1722
@end example
1723

    
1724
In the above example @code{/etc/pki/qemu} should contain at least three files,
1725
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1726
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1727
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1728
only be readable by the user owning it.
1729

    
1730
@node vnc_sec_certificate_verify
1731
@subsection With x509 certificates and client verification
1732

    
1733
Certificates can also provide a means to authenticate the client connecting.
1734
The server will request that the client provide a certificate, which it will
1735
then validate against the CA certificate. This is a good choice if deploying
1736
in an environment with a private internal certificate authority.
1737

    
1738
@example
1739
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1740
@end example
1741

    
1742

    
1743
@node vnc_sec_certificate_pw
1744
@subsection With x509 certificates, client verification and passwords
1745

    
1746
Finally, the previous method can be combined with VNC password authentication
1747
to provide two layers of authentication for clients.
1748

    
1749
@example
1750
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1751
(qemu) change vnc password
1752
Password: ********
1753
(qemu)
1754
@end example
1755

    
1756
@node vnc_generate_cert
1757
@subsection Generating certificates for VNC
1758

    
1759
The GNU TLS packages provides a command called @code{certtool} which can
1760
be used to generate certificates and keys in PEM format. At a minimum it
1761
is neccessary to setup a certificate authority, and issue certificates to
1762
each server. If using certificates for authentication, then each client
1763
will also need to be issued a certificate. The recommendation is for the
1764
server to keep its certificates in either @code{/etc/pki/qemu} or for
1765
unprivileged users in @code{$HOME/.pki/qemu}.
1766

    
1767
@menu
1768
* vnc_generate_ca::
1769
* vnc_generate_server::
1770
* vnc_generate_client::
1771
@end menu
1772
@node vnc_generate_ca
1773
@subsubsection Setup the Certificate Authority
1774

    
1775
This step only needs to be performed once per organization / organizational
1776
unit. First the CA needs a private key. This key must be kept VERY secret
1777
and secure. If this key is compromised the entire trust chain of the certificates
1778
issued with it is lost.
1779

    
1780
@example
1781
# certtool --generate-privkey > ca-key.pem
1782
@end example
1783

    
1784
A CA needs to have a public certificate. For simplicity it can be a self-signed
1785
certificate, or one issue by a commercial certificate issuing authority. To
1786
generate a self-signed certificate requires one core piece of information, the
1787
name of the organization.
1788

    
1789
@example
1790
# cat > ca.info <<EOF
1791
cn = Name of your organization
1792
ca
1793
cert_signing_key
1794
EOF
1795
# certtool --generate-self-signed \
1796
           --load-privkey ca-key.pem
1797
           --template ca.info \
1798
           --outfile ca-cert.pem
1799
@end example
1800

    
1801
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1802
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1803

    
1804
@node vnc_generate_server
1805
@subsubsection Issuing server certificates
1806

    
1807
Each server (or host) needs to be issued with a key and certificate. When connecting
1808
the certificate is sent to the client which validates it against the CA certificate.
1809
The core piece of information for a server certificate is the hostname. This should
1810
be the fully qualified hostname that the client will connect with, since the client
1811
will typically also verify the hostname in the certificate. On the host holding the
1812
secure CA private key:
1813

    
1814
@example
1815
# cat > server.info <<EOF
1816
organization = Name  of your organization
1817
cn = server.foo.example.com
1818
tls_www_server
1819
encryption_key
1820
signing_key
1821
EOF
1822
# certtool --generate-privkey > server-key.pem
1823
# certtool --generate-certificate \
1824
           --load-ca-certificate ca-cert.pem \
1825
           --load-ca-privkey ca-key.pem \
1826
           --load-privkey server server-key.pem \
1827
           --template server.info \
1828
           --outfile server-cert.pem
1829
@end example
1830

    
1831
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1832
to the server for which they were generated. The @code{server-key.pem} is security
1833
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1834

    
1835
@node vnc_generate_client
1836
@subsubsection Issuing client certificates
1837

    
1838
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1839
certificates as its authentication mechanism, each client also needs to be issued
1840
a certificate. The client certificate contains enough metadata to uniquely identify
1841
the client, typically organization, state, city, building, etc. On the host holding
1842
the secure CA private key:
1843

    
1844
@example
1845
# cat > client.info <<EOF
1846
country = GB
1847
state = London
1848
locality = London
1849
organiazation = Name of your organization
1850
cn = client.foo.example.com
1851
tls_www_client
1852
encryption_key
1853
signing_key
1854
EOF
1855
# certtool --generate-privkey > client-key.pem
1856
# certtool --generate-certificate \
1857
           --load-ca-certificate ca-cert.pem \
1858
           --load-ca-privkey ca-key.pem \
1859
           --load-privkey client-key.pem \
1860
           --template client.info \
1861
           --outfile client-cert.pem
1862
@end example
1863

    
1864
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1865
copied to the client for which they were generated.
1866

    
1867
@node gdb_usage
1868
@section GDB usage
1869

    
1870
QEMU has a primitive support to work with gdb, so that you can do
1871
'Ctrl-C' while the virtual machine is running and inspect its state.
1872

    
1873
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1874
gdb connection:
1875
@example
1876
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1877
       -append "root=/dev/hda"
1878
Connected to host network interface: tun0
1879
Waiting gdb connection on port 1234
1880
@end example
1881

    
1882
Then launch gdb on the 'vmlinux' executable:
1883
@example
1884
> gdb vmlinux
1885
@end example
1886

    
1887
In gdb, connect to QEMU:
1888
@example
1889
(gdb) target remote localhost:1234
1890
@end example
1891

    
1892
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1893
@example
1894
(gdb) c
1895
@end example
1896

    
1897
Here are some useful tips in order to use gdb on system code:
1898

    
1899
@enumerate
1900
@item
1901
Use @code{info reg} to display all the CPU registers.
1902
@item
1903
Use @code{x/10i $eip} to display the code at the PC position.
1904
@item
1905
Use @code{set architecture i8086} to dump 16 bit code. Then use
1906
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1907
@end enumerate
1908

    
1909
@node pcsys_os_specific
1910
@section Target OS specific information
1911

    
1912
@subsection Linux
1913

    
1914
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1915
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1916
color depth in the guest and the host OS.
1917

    
1918
When using a 2.6 guest Linux kernel, you should add the option
1919
@code{clock=pit} on the kernel command line because the 2.6 Linux
1920
kernels make very strict real time clock checks by default that QEMU
1921
cannot simulate exactly.
1922

    
1923
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1924
not activated because QEMU is slower with this patch. The QEMU
1925
Accelerator Module is also much slower in this case. Earlier Fedora
1926
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1927
patch by default. Newer kernels don't have it.
1928

    
1929
@subsection Windows
1930

    
1931
If you have a slow host, using Windows 95 is better as it gives the
1932
best speed. Windows 2000 is also a good choice.
1933

    
1934
@subsubsection SVGA graphic modes support
1935

    
1936
QEMU emulates a Cirrus Logic GD5446 Video
1937
card. All Windows versions starting from Windows 95 should recognize
1938
and use this graphic card. For optimal performances, use 16 bit color
1939
depth in the guest and the host OS.
1940

    
1941
If you are using Windows XP as guest OS and if you want to use high
1942
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1943
1280x1024x16), then you should use the VESA VBE virtual graphic card
1944
(option @option{-std-vga}).
1945

    
1946
@subsubsection CPU usage reduction
1947

    
1948
Windows 9x does not correctly use the CPU HLT
1949
instruction. The result is that it takes host CPU cycles even when
1950
idle. You can install the utility from
1951
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1952
problem. Note that no such tool is needed for NT, 2000 or XP.
1953

    
1954
@subsubsection Windows 2000 disk full problem
1955

    
1956
Windows 2000 has a bug which gives a disk full problem during its
1957
installation. When installing it, use the @option{-win2k-hack} QEMU
1958
option to enable a specific workaround. After Windows 2000 is
1959
installed, you no longer need this option (this option slows down the
1960
IDE transfers).
1961

    
1962
@subsubsection Windows 2000 shutdown
1963

    
1964
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1965
can. It comes from the fact that Windows 2000 does not automatically
1966
use the APM driver provided by the BIOS.
1967

    
1968
In order to correct that, do the following (thanks to Struan
1969
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1970
Add/Troubleshoot a device => Add a new device & Next => No, select the
1971
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1972
(again) a few times. Now the driver is installed and Windows 2000 now
1973
correctly instructs QEMU to shutdown at the appropriate moment.
1974

    
1975
@subsubsection Share a directory between Unix and Windows
1976

    
1977
See @ref{sec_invocation} about the help of the option @option{-smb}.
1978

    
1979
@subsubsection Windows XP security problem
1980

    
1981
Some releases of Windows XP install correctly but give a security
1982
error when booting:
1983
@example
1984
A problem is preventing Windows from accurately checking the
1985
license for this computer. Error code: 0x800703e6.
1986
@end example
1987

    
1988
The workaround is to install a service pack for XP after a boot in safe
1989
mode. Then reboot, and the problem should go away. Since there is no
1990
network while in safe mode, its recommended to download the full
1991
installation of SP1 or SP2 and transfer that via an ISO or using the
1992
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1993

    
1994
@subsection MS-DOS and FreeDOS
1995

    
1996
@subsubsection CPU usage reduction
1997

    
1998
DOS does not correctly use the CPU HLT instruction. The result is that
1999
it takes host CPU cycles even when idle. You can install the utility
2000
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2001
problem.
2002

    
2003
@node QEMU System emulator for non PC targets
2004
@chapter QEMU System emulator for non PC targets
2005

    
2006
QEMU is a generic emulator and it emulates many non PC
2007
machines. Most of the options are similar to the PC emulator. The
2008
differences are mentioned in the following sections.
2009

    
2010
@menu
2011
* QEMU PowerPC System emulator::
2012
* Sparc32 System emulator::
2013
* Sparc64 System emulator::
2014
* MIPS System emulator::
2015
* ARM System emulator::
2016
* ColdFire System emulator::
2017
@end menu
2018

    
2019
@node QEMU PowerPC System emulator
2020
@section QEMU PowerPC System emulator
2021

    
2022
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2023
or PowerMac PowerPC system.
2024

    
2025
QEMU emulates the following PowerMac peripherals:
2026

    
2027
@itemize @minus
2028
@item
2029
UniNorth PCI Bridge
2030
@item
2031
PCI VGA compatible card with VESA Bochs Extensions
2032
@item
2033
2 PMAC IDE interfaces with hard disk and CD-ROM support
2034
@item
2035
NE2000 PCI adapters
2036
@item
2037
Non Volatile RAM
2038
@item
2039
VIA-CUDA with ADB keyboard and mouse.
2040
@end itemize
2041

    
2042
QEMU emulates the following PREP peripherals:
2043

    
2044
@itemize @minus
2045
@item
2046
PCI Bridge
2047
@item
2048
PCI VGA compatible card with VESA Bochs Extensions
2049
@item
2050
2 IDE interfaces with hard disk and CD-ROM support
2051
@item
2052
Floppy disk
2053
@item
2054
NE2000 network adapters
2055
@item
2056
Serial port
2057
@item
2058
PREP Non Volatile RAM
2059
@item
2060
PC compatible keyboard and mouse.
2061
@end itemize
2062

    
2063
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2064
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2065

    
2066
@c man begin OPTIONS
2067

    
2068
The following options are specific to the PowerPC emulation:
2069

    
2070
@table @option
2071

    
2072
@item -g WxH[xDEPTH]
2073

    
2074
Set the initial VGA graphic mode. The default is 800x600x15.
2075

    
2076
@end table
2077

    
2078
@c man end
2079

    
2080

    
2081
More information is available at
2082
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2083

    
2084
@node Sparc32 System emulator
2085
@section Sparc32 System emulator
2086

    
2087
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2088
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2089
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2090
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2091
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2092
of usable CPUs to 4.
2093

    
2094
QEMU emulates the following sun4m/sun4d peripherals:
2095

    
2096
@itemize @minus
2097
@item
2098
IOMMU or IO-UNITs
2099
@item
2100
TCX Frame buffer
2101
@item
2102
Lance (Am7990) Ethernet
2103
@item
2104
Non Volatile RAM M48T08
2105
@item
2106
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2107
and power/reset logic
2108
@item
2109
ESP SCSI controller with hard disk and CD-ROM support
2110
@item
2111
Floppy drive (not on SS-600MP)
2112
@item
2113
CS4231 sound device (only on SS-5, not working yet)
2114
@end itemize
2115

    
2116
The number of peripherals is fixed in the architecture.  Maximum
2117
memory size depends on the machine type, for SS-5 it is 256MB and for
2118
others 2047MB.
2119

    
2120
Since version 0.8.2, QEMU uses OpenBIOS
2121
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2122
firmware implementation. The goal is to implement a 100% IEEE
2123
1275-1994 (referred to as Open Firmware) compliant firmware.
2124

    
2125
A sample Linux 2.6 series kernel and ram disk image are available on
2126
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2127
Solaris kernels don't work.
2128

    
2129
@c man begin OPTIONS
2130

    
2131
The following options are specific to the Sparc32 emulation:
2132

    
2133
@table @option
2134

    
2135
@item -g WxHx[xDEPTH]
2136

    
2137
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2138
the only other possible mode is 1024x768x24.
2139

    
2140
@item -prom-env string
2141

    
2142
Set OpenBIOS variables in NVRAM, for example:
2143

    
2144
@example
2145
qemu-system-sparc -prom-env 'auto-boot?=false' \
2146
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2147
@end example
2148

    
2149
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2150

    
2151
Set the emulated machine type. Default is SS-5.
2152

    
2153
@end table
2154

    
2155
@c man end
2156

    
2157
@node Sparc64 System emulator
2158
@section Sparc64 System emulator
2159

    
2160
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2161
The emulator is not usable for anything yet.
2162

    
2163
QEMU emulates the following sun4u peripherals:
2164

    
2165
@itemize @minus
2166
@item
2167
UltraSparc IIi APB PCI Bridge
2168
@item
2169
PCI VGA compatible card with VESA Bochs Extensions
2170
@item
2171
Non Volatile RAM M48T59
2172
@item
2173
PC-compatible serial ports
2174
@end itemize
2175

    
2176
@node MIPS System emulator
2177
@section MIPS System emulator
2178

    
2179
Four executables cover simulation of 32 and 64-bit MIPS systems in
2180
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2181
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2182
Four different machine types are emulated:
2183

    
2184
@itemize @minus
2185
@item
2186
A generic ISA PC-like machine "mips"
2187
@item
2188
The MIPS Malta prototype board "malta"
2189
@item
2190
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2191
@item
2192
MIPS emulator pseudo board "mipssim"
2193
@end itemize
2194

    
2195
The generic emulation is supported by Debian 'Etch' and is able to
2196
install Debian into a virtual disk image. The following devices are
2197
emulated:
2198

    
2199
@itemize @minus
2200
@item
2201
A range of MIPS CPUs, default is the 24Kf
2202
@item
2203
PC style serial port
2204
@item
2205
PC style IDE disk
2206
@item
2207
NE2000 network card
2208
@end itemize
2209

    
2210
The Malta emulation supports the following devices:
2211

    
2212
@itemize @minus
2213
@item
2214
Core board with MIPS 24Kf CPU and Galileo system controller
2215
@item
2216
PIIX4 PCI/USB/SMbus controller
2217
@item
2218
The Multi-I/O chip's serial device
2219
@item
2220
PCnet32 PCI network card
2221
@item
2222
Malta FPGA serial device
2223
@item
2224
Cirrus VGA graphics card
2225
@end itemize
2226

    
2227
The ACER Pica emulation supports:
2228

    
2229
@itemize @minus
2230
@item
2231
MIPS R4000 CPU
2232
@item
2233
PC-style IRQ and DMA controllers
2234
@item
2235
PC Keyboard
2236
@item
2237
IDE controller
2238
@end itemize
2239

    
2240
The mipssim pseudo board emulation provides an environment similiar
2241
to what the proprietary MIPS emulator uses for running Linux.
2242
It supports:
2243

    
2244
@itemize @minus
2245
@item
2246
A range of MIPS CPUs, default is the 24Kf
2247
@item
2248
PC style serial port
2249
@item
2250
MIPSnet network emulation
2251
@end itemize
2252

    
2253
@node ARM System emulator
2254
@section ARM System emulator
2255

    
2256
Use the executable @file{qemu-system-arm} to simulate a ARM
2257
machine. The ARM Integrator/CP board is emulated with the following
2258
devices:
2259

    
2260
@itemize @minus
2261
@item
2262
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2263
@item
2264
Two PL011 UARTs
2265
@item
2266
SMC 91c111 Ethernet adapter
2267
@item
2268
PL110 LCD controller
2269
@item
2270
PL050 KMI with PS/2 keyboard and mouse.
2271
@item
2272
PL181 MultiMedia Card Interface with SD card.
2273
@end itemize
2274

    
2275
The ARM Versatile baseboard is emulated with the following devices:
2276

    
2277
@itemize @minus
2278
@item
2279
ARM926E, ARM1136 or Cortex-A8 CPU
2280
@item
2281
PL190 Vectored Interrupt Controller
2282
@item
2283
Four PL011 UARTs
2284
@item
2285
SMC 91c111 Ethernet adapter
2286
@item
2287
PL110 LCD controller
2288
@item
2289
PL050 KMI with PS/2 keyboard and mouse.
2290
@item
2291
PCI host bridge.  Note the emulated PCI bridge only provides access to
2292
PCI memory space.  It does not provide access to PCI IO space.
2293
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2294
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2295
mapped control registers.
2296
@item
2297
PCI OHCI USB controller.
2298
@item
2299
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2300
@item
2301
PL181 MultiMedia Card Interface with SD card.
2302
@end itemize
2303

    
2304
The ARM RealView Emulation baseboard is emulated with the following devices:
2305

    
2306
@itemize @minus
2307
@item
2308
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2309
@item
2310
ARM AMBA Generic/Distributed Interrupt Controller
2311
@item
2312
Four PL011 UARTs
2313
@item
2314
SMC 91c111 Ethernet adapter
2315
@item
2316
PL110 LCD controller
2317
@item
2318
PL050 KMI with PS/2 keyboard and mouse
2319
@item
2320
PCI host bridge
2321
@item
2322
PCI OHCI USB controller
2323
@item
2324
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2325
@item
2326
PL181 MultiMedia Card Interface with SD card.
2327
@end itemize
2328

    
2329
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2330
and "Terrier") emulation includes the following peripherals:
2331

    
2332
@itemize @minus
2333
@item
2334
Intel PXA270 System-on-chip (ARM V5TE core)
2335
@item
2336
NAND Flash memory
2337
@item
2338
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2339
@item
2340
On-chip OHCI USB controller
2341
@item
2342
On-chip LCD controller
2343
@item
2344
On-chip Real Time Clock
2345
@item
2346
TI ADS7846 touchscreen controller on SSP bus
2347
@item
2348
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2349
@item
2350
GPIO-connected keyboard controller and LEDs
2351
@item
2352
Secure Digital card connected to PXA MMC/SD host
2353
@item
2354
Three on-chip UARTs
2355
@item
2356
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2357
@end itemize
2358

    
2359
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2360
following elements:
2361

    
2362
@itemize @minus
2363
@item
2364
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2365
@item
2366
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2367
@item
2368
On-chip LCD controller
2369
@item
2370
On-chip Real Time Clock
2371
@item
2372
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2373
CODEC, connected through MicroWire and I@math{^2}S busses
2374
@item
2375
GPIO-connected matrix keypad
2376
@item
2377
Secure Digital card connected to OMAP MMC/SD host
2378
@item
2379
Three on-chip UARTs
2380
@end itemize
2381

    
2382
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2383
devices:
2384

    
2385
@itemize @minus
2386
@item
2387
Cortex-M3 CPU core.
2388
@item
2389
64k Flash and 8k SRAM.
2390
@item
2391
Timers, UARTs, ADC and I@math{^2}C interface.
2392
@item
2393
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2394
@end itemize
2395

    
2396
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2397
devices:
2398

    
2399
@itemize @minus
2400
@item
2401
Cortex-M3 CPU core.
2402
@item
2403
256k Flash and 64k SRAM.
2404
@item
2405
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2406
@item
2407
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2408
@end itemize
2409

    
2410
A Linux 2.6 test image is available on the QEMU web site. More
2411
information is available in the QEMU mailing-list archive.
2412

    
2413
@node ColdFire System emulator
2414
@section ColdFire System emulator
2415

    
2416
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2417
The emulator is able to boot a uClinux kernel.
2418

    
2419
The M5208EVB emulation includes the following devices:
2420

    
2421
@itemize @minus
2422
@item
2423
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2424
@item
2425
Three Two on-chip UARTs.
2426
@item
2427
Fast Ethernet Controller (FEC)
2428
@end itemize
2429

    
2430
The AN5206 emulation includes the following devices:
2431

    
2432
@itemize @minus
2433
@item
2434
MCF5206 ColdFire V2 Microprocessor.
2435
@item
2436
Two on-chip UARTs.
2437
@end itemize
2438

    
2439
@node QEMU User space emulator
2440
@chapter QEMU User space emulator
2441

    
2442
@menu
2443
* Supported Operating Systems ::
2444
* Linux User space emulator::
2445
* Mac OS X/Darwin User space emulator ::
2446
@end menu
2447

    
2448
@node Supported Operating Systems
2449
@section Supported Operating Systems
2450

    
2451
The following OS are supported in user space emulation:
2452

    
2453
@itemize @minus
2454
@item
2455
Linux (referred as qemu-linux-user)
2456
@item
2457
Mac OS X/Darwin (referred as qemu-darwin-user)
2458
@end itemize
2459

    
2460
@node Linux User space emulator
2461
@section Linux User space emulator
2462

    
2463
@menu
2464
* Quick Start::
2465
* Wine launch::
2466
* Command line options::
2467
* Other binaries::
2468
@end menu
2469

    
2470
@node Quick Start
2471
@subsection Quick Start
2472

    
2473
In order to launch a Linux process, QEMU needs the process executable
2474
itself and all the target (x86) dynamic libraries used by it.
2475

    
2476
@itemize
2477

    
2478
@item On x86, you can just try to launch any process by using the native
2479
libraries:
2480

    
2481
@example
2482
qemu-i386 -L / /bin/ls
2483
@end example
2484

    
2485
@code{-L /} tells that the x86 dynamic linker must be searched with a
2486
@file{/} prefix.
2487

    
2488
@item Since QEMU is also a linux process, you can launch qemu with
2489
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2490

    
2491
@example
2492
qemu-i386 -L / qemu-i386 -L / /bin/ls
2493
@end example
2494

    
2495
@item On non x86 CPUs, you need first to download at least an x86 glibc
2496
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2497
@code{LD_LIBRARY_PATH} is not set:
2498

    
2499
@example
2500
unset LD_LIBRARY_PATH
2501
@end example
2502

    
2503
Then you can launch the precompiled @file{ls} x86 executable:
2504

    
2505
@example
2506
qemu-i386 tests/i386/ls
2507
@end example
2508
You can look at @file{qemu-binfmt-conf.sh} so that
2509
QEMU is automatically launched by the Linux kernel when you try to
2510
launch x86 executables. It requires the @code{binfmt_misc} module in the
2511
Linux kernel.
2512

    
2513
@item The x86 version of QEMU is also included. You can try weird things such as:
2514
@example
2515
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2516
          /usr/local/qemu-i386/bin/ls-i386
2517
@end example
2518

    
2519
@end itemize
2520

    
2521
@node Wine launch
2522
@subsection Wine launch
2523

    
2524
@itemize
2525

    
2526
@item Ensure that you have a working QEMU with the x86 glibc
2527
distribution (see previous section). In order to verify it, you must be
2528
able to do:
2529

    
2530
@example
2531
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2532
@end example
2533

    
2534
@item Download the binary x86 Wine install
2535
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2536

    
2537
@item Configure Wine on your account. Look at the provided script
2538
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2539
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2540

    
2541
@item Then you can try the example @file{putty.exe}:
2542

    
2543
@example
2544
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2545
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2546
@end example
2547

    
2548
@end itemize
2549

    
2550
@node Command line options
2551
@subsection Command line options
2552

    
2553
@example
2554
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2555
@end example
2556

    
2557
@table @option
2558
@item -h
2559
Print the help
2560
@item -L path
2561
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2562
@item -s size
2563
Set the x86 stack size in bytes (default=524288)
2564
@end table
2565

    
2566
Debug options:
2567

    
2568
@table @option
2569
@item -d
2570
Activate log (logfile=/tmp/qemu.log)
2571
@item -p pagesize
2572
Act as if the host page size was 'pagesize' bytes
2573
@end table
2574

    
2575
Environment variables:
2576

    
2577
@table @env
2578
@item QEMU_STRACE
2579
Print system calls and arguments similar to the 'strace' program
2580
(NOTE: the actual 'strace' program will not work because the user
2581
space emulator hasn't implemented ptrace).  At the moment this is
2582
incomplete.  All system calls that don't have a specific argument
2583
format are printed with information for six arguments.  Many
2584
flag-style arguments don't have decoders and will show up as numbers.
2585
@end table
2586

    
2587
@node Other binaries
2588
@subsection Other binaries
2589

    
2590
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2591
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2592
configurations), and arm-uclinux bFLT format binaries.
2593

    
2594
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2595
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2596
coldfire uClinux bFLT format binaries.
2597

    
2598
The binary format is detected automatically.
2599

    
2600
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2601
(Sparc64 CPU, 32 bit ABI).
2602

    
2603
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2604
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2605

    
2606
@node Mac OS X/Darwin User space emulator
2607
@section Mac OS X/Darwin User space emulator
2608

    
2609
@menu
2610
* Mac OS X/Darwin Status::
2611
* Mac OS X/Darwin Quick Start::
2612
* Mac OS X/Darwin Command line options::
2613
@end menu
2614

    
2615
@node Mac OS X/Darwin Status
2616
@subsection Mac OS X/Darwin Status
2617

    
2618
@itemize @minus
2619
@item
2620
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2621
@item
2622
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2623
@item
2624
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2625
@item
2626
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2627
@end itemize
2628

    
2629
[1] If you're host commpage can be executed by qemu.
2630

    
2631
@node Mac OS X/Darwin Quick Start
2632
@subsection Quick Start
2633

    
2634
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2635
itself and all the target dynamic libraries used by it. If you don't have the FAT
2636
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2637
CD or compile them by hand.
2638

    
2639
@itemize
2640

    
2641
@item On x86, you can just try to launch any process by using the native
2642
libraries:
2643

    
2644
@example
2645
qemu-i386 /bin/ls
2646
@end example
2647

    
2648
or to run the ppc version of the executable:
2649

    
2650
@example
2651
qemu-ppc /bin/ls
2652
@end example
2653

    
2654
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2655
are installed:
2656

    
2657
@example
2658
qemu-i386 -L /opt/x86_root/ /bin/ls
2659
@end example
2660

    
2661
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2662
@file{/opt/x86_root/usr/bin/dyld}.
2663

    
2664
@end itemize
2665

    
2666
@node Mac OS X/Darwin Command line options
2667
@subsection Command line options
2668

    
2669
@example
2670
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2671
@end example
2672

    
2673
@table @option
2674
@item -h
2675
Print the help
2676
@item -L path
2677
Set the library root path (default=/)
2678
@item -s size
2679
Set the stack size in bytes (default=524288)
2680
@end table
2681

    
2682
Debug options:
2683

    
2684
@table @option
2685
@item -d
2686
Activate log (logfile=/tmp/qemu.log)
2687
@item -p pagesize
2688
Act as if the host page size was 'pagesize' bytes
2689
@end table
2690

    
2691
@node compilation
2692
@chapter Compilation from the sources
2693

    
2694
@menu
2695
* Linux/Unix::
2696
* Windows::
2697
* Cross compilation for Windows with Linux::
2698
* Mac OS X::
2699
@end menu
2700

    
2701
@node Linux/Unix
2702
@section Linux/Unix
2703

    
2704
@subsection Compilation
2705

    
2706
First you must decompress the sources:
2707
@example
2708
cd /tmp
2709
tar zxvf qemu-x.y.z.tar.gz
2710
cd qemu-x.y.z
2711
@end example
2712

    
2713
Then you configure QEMU and build it (usually no options are needed):
2714
@example
2715
./configure
2716
make
2717
@end example
2718

    
2719
Then type as root user:
2720
@example
2721
make install
2722
@end example
2723
to install QEMU in @file{/usr/local}.
2724

    
2725
@subsection GCC version
2726

    
2727
In order to compile QEMU successfully, it is very important that you
2728
have the right tools. The most important one is gcc. On most hosts and
2729
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2730
Linux distribution includes a gcc 4.x compiler, you can usually
2731
install an older version (it is invoked by @code{gcc32} or
2732
@code{gcc34}). The QEMU configure script automatically probes for
2733
these older versions so that usually you don't have to do anything.
2734

    
2735
@node Windows
2736
@section Windows
2737

    
2738
@itemize
2739
@item Install the current versions of MSYS and MinGW from
2740
@url{http://www.mingw.org/}. You can find detailed installation
2741
instructions in the download section and the FAQ.
2742

    
2743
@item Download
2744
the MinGW development library of SDL 1.2.x
2745
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2746
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2747
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2748
directory. Edit the @file{sdl-config} script so that it gives the
2749
correct SDL directory when invoked.
2750

    
2751
@item Extract the current version of QEMU.
2752

    
2753
@item Start the MSYS shell (file @file{msys.bat}).
2754

    
2755
@item Change to the QEMU directory. Launch @file{./configure} and
2756
@file{make}.  If you have problems using SDL, verify that
2757
@file{sdl-config} can be launched from the MSYS command line.
2758

    
2759
@item You can install QEMU in @file{Program Files/Qemu} by typing
2760
@file{make install}. Don't forget to copy @file{SDL.dll} in
2761
@file{Program Files/Qemu}.
2762

    
2763
@end itemize
2764

    
2765
@node Cross compilation for Windows with Linux
2766
@section Cross compilation for Windows with Linux
2767

    
2768
@itemize
2769
@item
2770
Install the MinGW cross compilation tools available at
2771
@url{http://www.mingw.org/}.
2772

    
2773
@item
2774
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2775
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2776
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2777
the QEMU configuration script.
2778

    
2779
@item
2780
Configure QEMU for Windows cross compilation:
2781
@example
2782
./configure --enable-mingw32
2783
@end example
2784
If necessary, you can change the cross-prefix according to the prefix
2785
chosen for the MinGW tools with --cross-prefix. You can also use
2786
--prefix to set the Win32 install path.
2787

    
2788
@item You can install QEMU in the installation directory by typing
2789
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2790
installation directory.
2791

    
2792
@end itemize
2793

    
2794
Note: Currently, Wine does not seem able to launch
2795
QEMU for Win32.
2796

    
2797
@node Mac OS X
2798
@section Mac OS X
2799

    
2800
The Mac OS X patches are not fully merged in QEMU, so you should look
2801
at the QEMU mailing list archive to have all the necessary
2802
information.
2803

    
2804
@node Index
2805
@chapter Index
2806
@printindex cp
2807

    
2808
@bye