Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 24e6f355

History | View | Annotate | Download (14.6 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27
#include "sysbus.h"
28

    
29
//#define DEBUG_TIMER
30

    
31
#ifdef DEBUG_TIMER
32
#define DPRINTF(fmt, ...)                                       \
33
    do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
34
#else
35
#define DPRINTF(fmt, ...) do {} while (0)
36
#endif
37

    
38
/*
39
 * Registers of hardware timer in sun4m.
40
 *
41
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46
 * are zero. Bit 31 is 1 when count has been reached.
47
 *
48
 * Per-CPU timers interrupt local CPU, system timer uses normal
49
 * interrupt routing.
50
 *
51
 */
52

    
53
#define MAX_CPUS 16
54

    
55
typedef struct CPUTimerState {
56
    qemu_irq irq;
57
    ptimer_state *timer;
58
    uint32_t count, counthigh, reached;
59
    uint64_t limit;
60
    // processor only
61
    uint32_t running;
62
} CPUTimerState;
63

    
64
typedef struct SLAVIO_TIMERState {
65
    SysBusDevice busdev;
66
    uint32_t num_cpus;
67
    CPUTimerState cputimer[MAX_CPUS + 1];
68
    uint32_t cputimer_mode;
69
} SLAVIO_TIMERState;
70

    
71
typedef struct TimerContext {
72
    SLAVIO_TIMERState *s;
73
    unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
74
} TimerContext;
75

    
76
#define SYS_TIMER_SIZE 0x14
77
#define CPU_TIMER_SIZE 0x10
78

    
79
#define TIMER_LIMIT         0
80
#define TIMER_COUNTER       1
81
#define TIMER_COUNTER_NORST 2
82
#define TIMER_STATUS        3
83
#define TIMER_MODE          4
84

    
85
#define TIMER_COUNT_MASK32 0xfffffe00
86
#define TIMER_LIMIT_MASK32 0x7fffffff
87
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
88
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
89
#define TIMER_REACHED      0x80000000
90
#define TIMER_PERIOD       500ULL // 500ns
91
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
92
#define PERIODS_TO_LIMIT(l) ((l) << 9)
93

    
94
static int slavio_timer_is_user(TimerContext *tc)
95
{
96
    SLAVIO_TIMERState *s = tc->s;
97
    unsigned int timer_index = tc->timer_index;
98

    
99
    return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
100
}
101

    
102
// Update count, set irq, update expire_time
103
// Convert from ptimer countdown units
104
static void slavio_timer_get_out(CPUTimerState *t)
105
{
106
    uint64_t count, limit;
107

    
108
    if (t->limit == 0) { /* free-run system or processor counter */
109
        limit = TIMER_MAX_COUNT32;
110
    } else {
111
        limit = t->limit;
112
    }
113
    if (t->timer) {
114
        count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
115
    } else {
116
        count = 0;
117
    }
118
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", t->limit, t->counthigh,
119
            t->count);
120
    t->count = count & TIMER_COUNT_MASK32;
121
    t->counthigh = count >> 32;
122
}
123

    
124
// timer callback
125
static void slavio_timer_irq(void *opaque)
126
{
127
    TimerContext *tc = opaque;
128
    SLAVIO_TIMERState *s = tc->s;
129
    CPUTimerState *t = &s->cputimer[tc->timer_index];
130

    
131
    slavio_timer_get_out(t);
132
    DPRINTF("callback: count %x%08x\n", t->counthigh, t->count);
133
    t->reached = TIMER_REACHED;
134
    if (!slavio_timer_is_user(tc)) {
135
        qemu_irq_raise(t->irq);
136
    }
137
}
138

    
139
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
140
{
141
    TimerContext *tc = opaque;
142
    SLAVIO_TIMERState *s = tc->s;
143
    uint32_t saddr, ret;
144
    unsigned int timer_index = tc->timer_index;
145
    CPUTimerState *t = &s->cputimer[timer_index];
146

    
147
    saddr = addr >> 2;
148
    switch (saddr) {
149
    case TIMER_LIMIT:
150
        // read limit (system counter mode) or read most signifying
151
        // part of counter (user mode)
152
        if (slavio_timer_is_user(tc)) {
153
            // read user timer MSW
154
            slavio_timer_get_out(t);
155
            ret = t->counthigh | t->reached;
156
        } else {
157
            // read limit
158
            // clear irq
159
            qemu_irq_lower(t->irq);
160
            t->reached = 0;
161
            ret = t->limit & TIMER_LIMIT_MASK32;
162
        }
163
        break;
164
    case TIMER_COUNTER:
165
        // read counter and reached bit (system mode) or read lsbits
166
        // of counter (user mode)
167
        slavio_timer_get_out(t);
168
        if (slavio_timer_is_user(tc)) { // read user timer LSW
169
            ret = t->count & TIMER_MAX_COUNT64;
170
        } else { // read limit
171
            ret = (t->count & TIMER_MAX_COUNT32) |
172
                t->reached;
173
        }
174
        break;
175
    case TIMER_STATUS:
176
        // only available in processor counter/timer
177
        // read start/stop status
178
        if (timer_index > 0) {
179
            ret = t->running;
180
        } else {
181
            ret = 0;
182
        }
183
        break;
184
    case TIMER_MODE:
185
        // only available in system counter
186
        // read user/system mode
187
        ret = s->cputimer_mode;
188
        break;
189
    default:
190
        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
191
        ret = 0;
192
        break;
193
    }
194
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
195

    
196
    return ret;
197
}
198

    
199
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
200
                                    uint32_t val)
201
{
202
    TimerContext *tc = opaque;
203
    SLAVIO_TIMERState *s = tc->s;
204
    uint32_t saddr;
205
    unsigned int timer_index = tc->timer_index;
206
    CPUTimerState *t = &s->cputimer[timer_index];
207

    
208
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
209
    saddr = addr >> 2;
210
    switch (saddr) {
211
    case TIMER_LIMIT:
212
        if (slavio_timer_is_user(tc)) {
213
            uint64_t count;
214

    
215
            // set user counter MSW, reset counter
216
            t->limit = TIMER_MAX_COUNT64;
217
            t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
218
            t->reached = 0;
219
            count = ((uint64_t)t->counthigh << 32) | t->count;
220
            DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
221
                    timer_index, count);
222
            if (t->timer) {
223
                ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
224
            }
225
        } else {
226
            // set limit, reset counter
227
            qemu_irq_lower(t->irq);
228
            t->limit = val & TIMER_MAX_COUNT32;
229
            if (t->timer) {
230
                if (t->limit == 0) { /* free-run */
231
                    ptimer_set_limit(t->timer,
232
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
233
                } else {
234
                    ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
235
                }
236
            }
237
        }
238
        break;
239
    case TIMER_COUNTER:
240
        if (slavio_timer_is_user(tc)) {
241
            uint64_t count;
242

    
243
            // set user counter LSW, reset counter
244
            t->limit = TIMER_MAX_COUNT64;
245
            t->count = val & TIMER_MAX_COUNT64;
246
            t->reached = 0;
247
            count = ((uint64_t)t->counthigh) << 32 | t->count;
248
            DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
249
                    timer_index, count);
250
            if (t->timer) {
251
                ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
252
            }
253
        } else
254
            DPRINTF("not user timer\n");
255
        break;
256
    case TIMER_COUNTER_NORST:
257
        // set limit without resetting counter
258
        t->limit = val & TIMER_MAX_COUNT32;
259
        if (t->timer) {
260
            if (t->limit == 0) { /* free-run */
261
                ptimer_set_limit(t->timer,
262
                                 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
263
            } else {
264
                ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
265
            }
266
        }
267
        break;
268
    case TIMER_STATUS:
269
        if (slavio_timer_is_user(tc)) {
270
            // start/stop user counter
271
            if ((val & 1) && !t->running) {
272
                DPRINTF("processor %d user timer started\n",
273
                        timer_index);
274
                if (t->timer) {
275
                    ptimer_run(t->timer, 0);
276
                }
277
                t->running = 1;
278
            } else if (!(val & 1) && t->running) {
279
                DPRINTF("processor %d user timer stopped\n",
280
                        timer_index);
281
                if (t->timer) {
282
                    ptimer_stop(t->timer);
283
                }
284
                t->running = 0;
285
            }
286
        }
287
        break;
288
    case TIMER_MODE:
289
        if (timer_index == 0) {
290
            unsigned int i;
291

    
292
            for (i = 0; i < s->num_cpus; i++) {
293
                unsigned int processor = 1 << i;
294
                CPUTimerState *curr_timer = &s->cputimer[i + 1];
295

    
296
                // check for a change in timer mode for this processor
297
                if ((val & processor) != (s->cputimer_mode & processor)) {
298
                    if (val & processor) { // counter -> user timer
299
                        qemu_irq_lower(curr_timer->irq);
300
                        // counters are always running
301
                        ptimer_stop(curr_timer->timer);
302
                        curr_timer->running = 0;
303
                        // user timer limit is always the same
304
                        curr_timer->limit = TIMER_MAX_COUNT64;
305
                        ptimer_set_limit(curr_timer->timer,
306
                                         LIMIT_TO_PERIODS(curr_timer->limit),
307
                                         1);
308
                        // set this processors user timer bit in config
309
                        // register
310
                        s->cputimer_mode |= processor;
311
                        DPRINTF("processor %d changed from counter to user "
312
                                "timer\n", timer_index);
313
                    } else { // user timer -> counter
314
                        // stop the user timer if it is running
315
                        if (curr_timer->running) {
316
                            ptimer_stop(curr_timer->timer);
317
                        }
318
                        // start the counter
319
                        ptimer_run(curr_timer->timer, 0);
320
                        curr_timer->running = 1;
321
                        // clear this processors user timer bit in config
322
                        // register
323
                        s->cputimer_mode &= ~processor;
324
                        DPRINTF("processor %d changed from user timer to "
325
                                "counter\n", timer_index);
326
                    }
327
                }
328
            }
329
        } else {
330
            DPRINTF("not system timer\n");
331
        }
332
        break;
333
    default:
334
        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
335
        break;
336
    }
337
}
338

    
339
static CPUReadMemoryFunc * const slavio_timer_mem_read[3] = {
340
    NULL,
341
    NULL,
342
    slavio_timer_mem_readl,
343
};
344

    
345
static CPUWriteMemoryFunc * const slavio_timer_mem_write[3] = {
346
    NULL,
347
    NULL,
348
    slavio_timer_mem_writel,
349
};
350

    
351
static void slavio_timer_save(QEMUFile *f, void *opaque)
352
{
353
    SLAVIO_TIMERState *s = opaque;
354
    unsigned int i;
355
    CPUTimerState *curr_timer;
356

    
357
    for (i = 0; i <= MAX_CPUS; i++) {
358
        curr_timer = &s->cputimer[i];
359
        qemu_put_be64s(f, &curr_timer->limit);
360
        qemu_put_be32s(f, &curr_timer->count);
361
        qemu_put_be32s(f, &curr_timer->counthigh);
362
        qemu_put_be32s(f, &curr_timer->reached);
363
        qemu_put_be32s(f, &curr_timer->running);
364
        if (curr_timer->timer) {
365
            qemu_put_ptimer(f, curr_timer->timer);
366
        }
367
    }
368
}
369

    
370
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
371
{
372
    SLAVIO_TIMERState *s = opaque;
373
    unsigned int i;
374
    CPUTimerState *curr_timer;
375

    
376
    if (version_id != 3)
377
        return -EINVAL;
378

    
379
    for (i = 0; i <= MAX_CPUS; i++) {
380
        curr_timer = &s->cputimer[i];
381
        qemu_get_be64s(f, &curr_timer->limit);
382
        qemu_get_be32s(f, &curr_timer->count);
383
        qemu_get_be32s(f, &curr_timer->counthigh);
384
        qemu_get_be32s(f, &curr_timer->reached);
385
        qemu_get_be32s(f, &curr_timer->running);
386
        if (curr_timer->timer) {
387
            qemu_get_ptimer(f, curr_timer->timer);
388
        }
389
    }
390

    
391
    return 0;
392
}
393

    
394
static void slavio_timer_reset(void *opaque)
395
{
396
    SLAVIO_TIMERState *s = opaque;
397
    unsigned int i;
398
    CPUTimerState *curr_timer;
399

    
400
    for (i = 0; i <= MAX_CPUS; i++) {
401
        curr_timer = &s->cputimer[i];
402
        curr_timer->limit = 0;
403
        curr_timer->count = 0;
404
        curr_timer->reached = 0;
405
        if (i < s->num_cpus) {
406
            ptimer_set_limit(curr_timer->timer,
407
                             LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
408
            ptimer_run(curr_timer->timer, 0);
409
        }
410
        curr_timer->running = 1;
411
    }
412
    s->cputimer_mode = 0;
413
}
414

    
415
static void slavio_timer_init1(SysBusDevice *dev)
416
{
417
    int io;
418
    SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
419
    QEMUBH *bh;
420
    unsigned int i;
421
    TimerContext *tc;
422

    
423
    for (i = 0; i <= MAX_CPUS; i++) {
424
        tc = qemu_mallocz(sizeof(TimerContext));
425
        tc->s = s;
426
        tc->timer_index = i;
427

    
428
        bh = qemu_bh_new(slavio_timer_irq, tc);
429
        s->cputimer[i].timer = ptimer_init(bh);
430
        ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
431

    
432
        io = cpu_register_io_memory(slavio_timer_mem_read,
433
                                    slavio_timer_mem_write, tc);
434
        if (i == 0) {
435
            sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
436
        } else {
437
            sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
438
        }
439

    
440
        sysbus_init_irq(dev, &s->cputimer[i].irq);
441
    }
442

    
443
    register_savevm("slavio_timer", -1, 3, slavio_timer_save,
444
                    slavio_timer_load, s);
445
    qemu_register_reset(slavio_timer_reset, s);
446
    slavio_timer_reset(s);
447
}
448

    
449
static SysBusDeviceInfo slavio_timer_info = {
450
    .init = slavio_timer_init1,
451
    .qdev.name  = "slavio_timer",
452
    .qdev.size  = sizeof(SLAVIO_TIMERState),
453
    .qdev.props = (Property[]) {
454
        DEFINE_PROP_UINT32("num_cpus",  SLAVIO_TIMERState, num_cpus,  0),
455
        DEFINE_PROP_END_OF_LIST(),
456
    }
457
};
458

    
459
static void slavio_timer_register_devices(void)
460
{
461
    sysbus_register_withprop(&slavio_timer_info);
462
}
463

    
464
device_init(slavio_timer_register_devices)