Statistics
| Branch: | Revision:

root / target-arm / helper.c @ 250b086e

History | View | Annotate | Download (96 kB)

1
#include "cpu.h"
2
#include "gdbstub.h"
3
#include "helper.h"
4
#include "host-utils.h"
5
#if !defined(CONFIG_USER_ONLY)
6
#include "hw/loader.h"
7
#endif
8
#include "sysemu.h"
9

    
10
static uint32_t cortexa15_cp15_c0_c1[8] = {
11
    0x00001131, 0x00011011, 0x02010555, 0x00000000,
12
    0x10201105, 0x20000000, 0x01240000, 0x02102211
13
};
14

    
15
static uint32_t cortexa15_cp15_c0_c2[8] = {
16
    0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
17
};
18

    
19
static uint32_t cortexa9_cp15_c0_c1[8] =
20
{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
21

    
22
static uint32_t cortexa9_cp15_c0_c2[8] =
23
{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
24

    
25
static uint32_t cortexa8_cp15_c0_c1[8] =
26
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
27

    
28
static uint32_t cortexa8_cp15_c0_c2[8] =
29
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
30

    
31
static uint32_t mpcore_cp15_c0_c1[8] =
32
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
33

    
34
static uint32_t mpcore_cp15_c0_c2[8] =
35
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
36

    
37
static uint32_t arm1136_cp15_c0_c1[8] =
38
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
39

    
40
static uint32_t arm1136_cp15_c0_c2[8] =
41
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
42

    
43
static uint32_t arm1176_cp15_c0_c1[8] =
44
{ 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
45

    
46
static uint32_t arm1176_cp15_c0_c2[8] =
47
{ 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
48

    
49
static uint32_t cpu_arm_find_by_name(const char *name);
50

    
51
static inline void set_feature(CPUARMState *env, int feature)
52
{
53
    env->features |= 1u << feature;
54
}
55

    
56
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
57
{
58
    env->cp15.c0_cpuid = id;
59
    switch (id) {
60
    case ARM_CPUID_ARM926:
61
        set_feature(env, ARM_FEATURE_V5);
62
        set_feature(env, ARM_FEATURE_VFP);
63
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
64
        env->cp15.c0_cachetype = 0x1dd20d2;
65
        env->cp15.c1_sys = 0x00090078;
66
        break;
67
    case ARM_CPUID_ARM946:
68
        set_feature(env, ARM_FEATURE_V5);
69
        set_feature(env, ARM_FEATURE_MPU);
70
        env->cp15.c0_cachetype = 0x0f004006;
71
        env->cp15.c1_sys = 0x00000078;
72
        break;
73
    case ARM_CPUID_ARM1026:
74
        set_feature(env, ARM_FEATURE_V5);
75
        set_feature(env, ARM_FEATURE_VFP);
76
        set_feature(env, ARM_FEATURE_AUXCR);
77
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
78
        env->cp15.c0_cachetype = 0x1dd20d2;
79
        env->cp15.c1_sys = 0x00090078;
80
        break;
81
    case ARM_CPUID_ARM1136:
82
        /* This is the 1136 r1, which is a v6K core */
83
        set_feature(env, ARM_FEATURE_V6K);
84
        /* Fall through */
85
    case ARM_CPUID_ARM1136_R2:
86
        /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
87
         * older core than plain "arm1136". In particular this does not
88
         * have the v6K features.
89
         */
90
        set_feature(env, ARM_FEATURE_V6);
91
        set_feature(env, ARM_FEATURE_VFP);
92
        /* These ID register values are correct for 1136 but may be wrong
93
         * for 1136_r2 (in particular r0p2 does not actually implement most
94
         * of the ID registers).
95
         */
96
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
97
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
98
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
99
        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
100
        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
101
        env->cp15.c0_cachetype = 0x1dd20d2;
102
        env->cp15.c1_sys = 0x00050078;
103
        break;
104
    case ARM_CPUID_ARM1176:
105
        set_feature(env, ARM_FEATURE_V6K);
106
        set_feature(env, ARM_FEATURE_VFP);
107
        set_feature(env, ARM_FEATURE_VAPA);
108
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
109
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
110
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
111
        memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
112
        memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
113
        env->cp15.c0_cachetype = 0x1dd20d2;
114
        env->cp15.c1_sys = 0x00050078;
115
        break;
116
    case ARM_CPUID_ARM11MPCORE:
117
        set_feature(env, ARM_FEATURE_V6K);
118
        set_feature(env, ARM_FEATURE_VFP);
119
        set_feature(env, ARM_FEATURE_VAPA);
120
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
121
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
122
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
123
        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
124
        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
125
        env->cp15.c0_cachetype = 0x1dd20d2;
126
        break;
127
    case ARM_CPUID_CORTEXA8:
128
        set_feature(env, ARM_FEATURE_V7);
129
        set_feature(env, ARM_FEATURE_VFP3);
130
        set_feature(env, ARM_FEATURE_NEON);
131
        set_feature(env, ARM_FEATURE_THUMB2EE);
132
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
133
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
134
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
135
        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
136
        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
137
        env->cp15.c0_cachetype = 0x82048004;
138
        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
139
        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
140
        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
141
        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
142
        env->cp15.c1_sys = 0x00c50078;
143
        break;
144
    case ARM_CPUID_CORTEXA9:
145
        set_feature(env, ARM_FEATURE_V7);
146
        set_feature(env, ARM_FEATURE_VFP3);
147
        set_feature(env, ARM_FEATURE_VFP_FP16);
148
        set_feature(env, ARM_FEATURE_NEON);
149
        set_feature(env, ARM_FEATURE_THUMB2EE);
150
        /* Note that A9 supports the MP extensions even for
151
         * A9UP and single-core A9MP (which are both different
152
         * and valid configurations; we don't model A9UP).
153
         */
154
        set_feature(env, ARM_FEATURE_V7MP);
155
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090;
156
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
157
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
158
        memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
159
        memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
160
        env->cp15.c0_cachetype = 0x80038003;
161
        env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
162
        env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
163
        env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
164
        env->cp15.c1_sys = 0x00c50078;
165
        break;
166
    case ARM_CPUID_CORTEXA15:
167
        set_feature(env, ARM_FEATURE_V7);
168
        set_feature(env, ARM_FEATURE_VFP4);
169
        set_feature(env, ARM_FEATURE_VFP_FP16);
170
        set_feature(env, ARM_FEATURE_NEON);
171
        set_feature(env, ARM_FEATURE_THUMB2EE);
172
        set_feature(env, ARM_FEATURE_ARM_DIV);
173
        set_feature(env, ARM_FEATURE_V7MP);
174
        set_feature(env, ARM_FEATURE_GENERIC_TIMER);
175
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0;
176
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222;
177
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111;
178
        memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t));
179
        memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t));
180
        env->cp15.c0_cachetype = 0x8444c004;
181
        env->cp15.c0_clid = 0x0a200023;
182
        env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */
183
        env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */
184
        env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */
185
        env->cp15.c1_sys = 0x00c50078;
186
        break;
187
    case ARM_CPUID_CORTEXM3:
188
        set_feature(env, ARM_FEATURE_V7);
189
        set_feature(env, ARM_FEATURE_M);
190
        break;
191
    case ARM_CPUID_ANY: /* For userspace emulation.  */
192
        set_feature(env, ARM_FEATURE_V7);
193
        set_feature(env, ARM_FEATURE_VFP4);
194
        set_feature(env, ARM_FEATURE_VFP_FP16);
195
        set_feature(env, ARM_FEATURE_NEON);
196
        set_feature(env, ARM_FEATURE_THUMB2EE);
197
        set_feature(env, ARM_FEATURE_ARM_DIV);
198
        set_feature(env, ARM_FEATURE_V7MP);
199
        break;
200
    case ARM_CPUID_TI915T:
201
    case ARM_CPUID_TI925T:
202
        set_feature(env, ARM_FEATURE_V4T);
203
        set_feature(env, ARM_FEATURE_OMAPCP);
204
        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
205
        env->cp15.c0_cachetype = 0x5109149;
206
        env->cp15.c1_sys = 0x00000070;
207
        env->cp15.c15_i_max = 0x000;
208
        env->cp15.c15_i_min = 0xff0;
209
        break;
210
    case ARM_CPUID_PXA250:
211
    case ARM_CPUID_PXA255:
212
    case ARM_CPUID_PXA260:
213
    case ARM_CPUID_PXA261:
214
    case ARM_CPUID_PXA262:
215
        set_feature(env, ARM_FEATURE_V5);
216
        set_feature(env, ARM_FEATURE_XSCALE);
217
        /* JTAG_ID is ((id << 28) | 0x09265013) */
218
        env->cp15.c0_cachetype = 0xd172172;
219
        env->cp15.c1_sys = 0x00000078;
220
        break;
221
    case ARM_CPUID_PXA270_A0:
222
    case ARM_CPUID_PXA270_A1:
223
    case ARM_CPUID_PXA270_B0:
224
    case ARM_CPUID_PXA270_B1:
225
    case ARM_CPUID_PXA270_C0:
226
    case ARM_CPUID_PXA270_C5:
227
        set_feature(env, ARM_FEATURE_V5);
228
        set_feature(env, ARM_FEATURE_XSCALE);
229
        /* JTAG_ID is ((id << 28) | 0x09265013) */
230
        set_feature(env, ARM_FEATURE_IWMMXT);
231
        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232
        env->cp15.c0_cachetype = 0xd172172;
233
        env->cp15.c1_sys = 0x00000078;
234
        break;
235
    case ARM_CPUID_SA1100:
236
    case ARM_CPUID_SA1110:
237
        set_feature(env, ARM_FEATURE_STRONGARM);
238
        env->cp15.c1_sys = 0x00000070;
239
        break;
240
    default:
241
        cpu_abort(env, "Bad CPU ID: %x\n", id);
242
        break;
243
    }
244

    
245
    /* Some features automatically imply others: */
246
    if (arm_feature(env, ARM_FEATURE_V7)) {
247
        set_feature(env, ARM_FEATURE_VAPA);
248
        set_feature(env, ARM_FEATURE_THUMB2);
249
        if (!arm_feature(env, ARM_FEATURE_M)) {
250
            set_feature(env, ARM_FEATURE_V6K);
251
        } else {
252
            set_feature(env, ARM_FEATURE_V6);
253
        }
254
    }
255
    if (arm_feature(env, ARM_FEATURE_V6K)) {
256
        set_feature(env, ARM_FEATURE_V6);
257
    }
258
    if (arm_feature(env, ARM_FEATURE_V6)) {
259
        set_feature(env, ARM_FEATURE_V5);
260
        if (!arm_feature(env, ARM_FEATURE_M)) {
261
            set_feature(env, ARM_FEATURE_AUXCR);
262
        }
263
    }
264
    if (arm_feature(env, ARM_FEATURE_V5)) {
265
        set_feature(env, ARM_FEATURE_V4T);
266
    }
267
    if (arm_feature(env, ARM_FEATURE_M)) {
268
        set_feature(env, ARM_FEATURE_THUMB_DIV);
269
    }
270
    if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
271
        set_feature(env, ARM_FEATURE_THUMB_DIV);
272
    }
273
    if (arm_feature(env, ARM_FEATURE_VFP4)) {
274
        set_feature(env, ARM_FEATURE_VFP3);
275
    }
276
    if (arm_feature(env, ARM_FEATURE_VFP3)) {
277
        set_feature(env, ARM_FEATURE_VFP);
278
    }
279
}
280

    
281
void cpu_reset(CPUARMState *env)
282
{
283
    uint32_t id;
284
    uint32_t tmp = 0;
285

    
286
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
287
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
288
        log_cpu_state(env, 0);
289
    }
290

    
291
    id = env->cp15.c0_cpuid;
292
    tmp = env->cp15.c15_config_base_address;
293
    memset(env, 0, offsetof(CPUARMState, breakpoints));
294
    if (id)
295
        cpu_reset_model_id(env, id);
296
    env->cp15.c15_config_base_address = tmp;
297
#if defined (CONFIG_USER_ONLY)
298
    env->uncached_cpsr = ARM_CPU_MODE_USR;
299
    /* For user mode we must enable access to coprocessors */
300
    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
301
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
302
        env->cp15.c15_cpar = 3;
303
    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
304
        env->cp15.c15_cpar = 1;
305
    }
306
#else
307
    /* SVC mode with interrupts disabled.  */
308
    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
309
    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
310
       clear at reset.  Initial SP and PC are loaded from ROM.  */
311
    if (IS_M(env)) {
312
        uint32_t pc;
313
        uint8_t *rom;
314
        env->uncached_cpsr &= ~CPSR_I;
315
        rom = rom_ptr(0);
316
        if (rom) {
317
            /* We should really use ldl_phys here, in case the guest
318
               modified flash and reset itself.  However images
319
               loaded via -kernel have not been copied yet, so load the
320
               values directly from there.  */
321
            env->regs[13] = ldl_p(rom);
322
            pc = ldl_p(rom + 4);
323
            env->thumb = pc & 1;
324
            env->regs[15] = pc & ~1;
325
        }
326
    }
327
    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
328
    env->cp15.c2_base_mask = 0xffffc000u;
329
    /* v7 performance monitor control register: same implementor
330
     * field as main ID register, and we implement no event counters.
331
     */
332
    env->cp15.c9_pmcr = (id & 0xff000000);
333
#endif
334
    set_flush_to_zero(1, &env->vfp.standard_fp_status);
335
    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
336
    set_default_nan_mode(1, &env->vfp.standard_fp_status);
337
    set_float_detect_tininess(float_tininess_before_rounding,
338
                              &env->vfp.fp_status);
339
    set_float_detect_tininess(float_tininess_before_rounding,
340
                              &env->vfp.standard_fp_status);
341
    tlb_flush(env, 1);
342
    /* Reset is a state change for some CPUState fields which we
343
     * bake assumptions about into translated code, so we need to
344
     * tb_flush().
345
     */
346
    tb_flush(env);
347
}
348

    
349
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
350
{
351
    int nregs;
352

    
353
    /* VFP data registers are always little-endian.  */
354
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
355
    if (reg < nregs) {
356
        stfq_le_p(buf, env->vfp.regs[reg]);
357
        return 8;
358
    }
359
    if (arm_feature(env, ARM_FEATURE_NEON)) {
360
        /* Aliases for Q regs.  */
361
        nregs += 16;
362
        if (reg < nregs) {
363
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
364
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
365
            return 16;
366
        }
367
    }
368
    switch (reg - nregs) {
369
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
370
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
371
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
372
    }
373
    return 0;
374
}
375

    
376
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
377
{
378
    int nregs;
379

    
380
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
381
    if (reg < nregs) {
382
        env->vfp.regs[reg] = ldfq_le_p(buf);
383
        return 8;
384
    }
385
    if (arm_feature(env, ARM_FEATURE_NEON)) {
386
        nregs += 16;
387
        if (reg < nregs) {
388
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
389
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
390
            return 16;
391
        }
392
    }
393
    switch (reg - nregs) {
394
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
395
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
396
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
397
    }
398
    return 0;
399
}
400

    
401
CPUARMState *cpu_arm_init(const char *cpu_model)
402
{
403
    CPUARMState *env;
404
    uint32_t id;
405
    static int inited = 0;
406

    
407
    id = cpu_arm_find_by_name(cpu_model);
408
    if (id == 0)
409
        return NULL;
410
    env = g_malloc0(sizeof(CPUARMState));
411
    cpu_exec_init(env);
412
    if (tcg_enabled() && !inited) {
413
        inited = 1;
414
        arm_translate_init();
415
    }
416

    
417
    env->cpu_model_str = cpu_model;
418
    env->cp15.c0_cpuid = id;
419
    cpu_reset(env);
420
    if (arm_feature(env, ARM_FEATURE_NEON)) {
421
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
422
                                 51, "arm-neon.xml", 0);
423
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
424
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
425
                                 35, "arm-vfp3.xml", 0);
426
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
427
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
428
                                 19, "arm-vfp.xml", 0);
429
    }
430
    qemu_init_vcpu(env);
431
    return env;
432
}
433

    
434
struct arm_cpu_t {
435
    uint32_t id;
436
    const char *name;
437
};
438

    
439
static const struct arm_cpu_t arm_cpu_names[] = {
440
    { ARM_CPUID_ARM926, "arm926"},
441
    { ARM_CPUID_ARM946, "arm946"},
442
    { ARM_CPUID_ARM1026, "arm1026"},
443
    { ARM_CPUID_ARM1136, "arm1136"},
444
    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
445
    { ARM_CPUID_ARM1176, "arm1176"},
446
    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
447
    { ARM_CPUID_CORTEXM3, "cortex-m3"},
448
    { ARM_CPUID_CORTEXA8, "cortex-a8"},
449
    { ARM_CPUID_CORTEXA9, "cortex-a9"},
450
    { ARM_CPUID_CORTEXA15, "cortex-a15" },
451
    { ARM_CPUID_TI925T, "ti925t" },
452
    { ARM_CPUID_PXA250, "pxa250" },
453
    { ARM_CPUID_SA1100,    "sa1100" },
454
    { ARM_CPUID_SA1110,    "sa1110" },
455
    { ARM_CPUID_PXA255, "pxa255" },
456
    { ARM_CPUID_PXA260, "pxa260" },
457
    { ARM_CPUID_PXA261, "pxa261" },
458
    { ARM_CPUID_PXA262, "pxa262" },
459
    { ARM_CPUID_PXA270, "pxa270" },
460
    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
461
    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
462
    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
463
    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
464
    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
465
    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
466
    { ARM_CPUID_ANY, "any"},
467
    { 0, NULL}
468
};
469

    
470
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
471
{
472
    int i;
473

    
474
    (*cpu_fprintf)(f, "Available CPUs:\n");
475
    for (i = 0; arm_cpu_names[i].name; i++) {
476
        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
477
    }
478
}
479

    
480
/* return 0 if not found */
481
static uint32_t cpu_arm_find_by_name(const char *name)
482
{
483
    int i;
484
    uint32_t id;
485

    
486
    id = 0;
487
    for (i = 0; arm_cpu_names[i].name; i++) {
488
        if (strcmp(name, arm_cpu_names[i].name) == 0) {
489
            id = arm_cpu_names[i].id;
490
            break;
491
        }
492
    }
493
    return id;
494
}
495

    
496
void cpu_arm_close(CPUARMState *env)
497
{
498
    g_free(env);
499
}
500

    
501
static int bad_mode_switch(CPUState *env, int mode)
502
{
503
    /* Return true if it is not valid for us to switch to
504
     * this CPU mode (ie all the UNPREDICTABLE cases in
505
     * the ARM ARM CPSRWriteByInstr pseudocode).
506
     */
507
    switch (mode) {
508
    case ARM_CPU_MODE_USR:
509
    case ARM_CPU_MODE_SYS:
510
    case ARM_CPU_MODE_SVC:
511
    case ARM_CPU_MODE_ABT:
512
    case ARM_CPU_MODE_UND:
513
    case ARM_CPU_MODE_IRQ:
514
    case ARM_CPU_MODE_FIQ:
515
        return 0;
516
    default:
517
        return 1;
518
    }
519
}
520

    
521
uint32_t cpsr_read(CPUARMState *env)
522
{
523
    int ZF;
524
    ZF = (env->ZF == 0);
525
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
526
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
527
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
528
        | ((env->condexec_bits & 0xfc) << 8)
529
        | (env->GE << 16);
530
}
531

    
532
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
533
{
534
    if (mask & CPSR_NZCV) {
535
        env->ZF = (~val) & CPSR_Z;
536
        env->NF = val;
537
        env->CF = (val >> 29) & 1;
538
        env->VF = (val << 3) & 0x80000000;
539
    }
540
    if (mask & CPSR_Q)
541
        env->QF = ((val & CPSR_Q) != 0);
542
    if (mask & CPSR_T)
543
        env->thumb = ((val & CPSR_T) != 0);
544
    if (mask & CPSR_IT_0_1) {
545
        env->condexec_bits &= ~3;
546
        env->condexec_bits |= (val >> 25) & 3;
547
    }
548
    if (mask & CPSR_IT_2_7) {
549
        env->condexec_bits &= 3;
550
        env->condexec_bits |= (val >> 8) & 0xfc;
551
    }
552
    if (mask & CPSR_GE) {
553
        env->GE = (val >> 16) & 0xf;
554
    }
555

    
556
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
557
        if (bad_mode_switch(env, val & CPSR_M)) {
558
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
559
             * We choose to ignore the attempt and leave the CPSR M field
560
             * untouched.
561
             */
562
            mask &= ~CPSR_M;
563
        } else {
564
            switch_mode(env, val & CPSR_M);
565
        }
566
    }
567
    mask &= ~CACHED_CPSR_BITS;
568
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
569
}
570

    
571
/* Sign/zero extend */
572
uint32_t HELPER(sxtb16)(uint32_t x)
573
{
574
    uint32_t res;
575
    res = (uint16_t)(int8_t)x;
576
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
577
    return res;
578
}
579

    
580
uint32_t HELPER(uxtb16)(uint32_t x)
581
{
582
    uint32_t res;
583
    res = (uint16_t)(uint8_t)x;
584
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
585
    return res;
586
}
587

    
588
uint32_t HELPER(clz)(uint32_t x)
589
{
590
    return clz32(x);
591
}
592

    
593
int32_t HELPER(sdiv)(int32_t num, int32_t den)
594
{
595
    if (den == 0)
596
      return 0;
597
    if (num == INT_MIN && den == -1)
598
      return INT_MIN;
599
    return num / den;
600
}
601

    
602
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
603
{
604
    if (den == 0)
605
      return 0;
606
    return num / den;
607
}
608

    
609
uint32_t HELPER(rbit)(uint32_t x)
610
{
611
    x =  ((x & 0xff000000) >> 24)
612
       | ((x & 0x00ff0000) >> 8)
613
       | ((x & 0x0000ff00) << 8)
614
       | ((x & 0x000000ff) << 24);
615
    x =  ((x & 0xf0f0f0f0) >> 4)
616
       | ((x & 0x0f0f0f0f) << 4);
617
    x =  ((x & 0x88888888) >> 3)
618
       | ((x & 0x44444444) >> 1)
619
       | ((x & 0x22222222) << 1)
620
       | ((x & 0x11111111) << 3);
621
    return x;
622
}
623

    
624
uint32_t HELPER(abs)(uint32_t x)
625
{
626
    return ((int32_t)x < 0) ? -x : x;
627
}
628

    
629
#if defined(CONFIG_USER_ONLY)
630

    
631
void do_interrupt (CPUState *env)
632
{
633
    env->exception_index = -1;
634
}
635

    
636
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
637
                              int mmu_idx)
638
{
639
    if (rw == 2) {
640
        env->exception_index = EXCP_PREFETCH_ABORT;
641
        env->cp15.c6_insn = address;
642
    } else {
643
        env->exception_index = EXCP_DATA_ABORT;
644
        env->cp15.c6_data = address;
645
    }
646
    return 1;
647
}
648

    
649
/* These should probably raise undefined insn exceptions.  */
650
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
651
{
652
    int op1 = (insn >> 8) & 0xf;
653
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
654
    return;
655
}
656

    
657
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
658
{
659
    int op1 = (insn >> 8) & 0xf;
660
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
661
    return 0;
662
}
663

    
664
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
665
{
666
    cpu_abort(env, "cp15 insn %08x\n", insn);
667
}
668

    
669
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
670
{
671
    cpu_abort(env, "cp15 insn %08x\n", insn);
672
}
673

    
674
/* These should probably raise undefined insn exceptions.  */
675
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
676
{
677
    cpu_abort(env, "v7m_mrs %d\n", reg);
678
}
679

    
680
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
681
{
682
    cpu_abort(env, "v7m_mrs %d\n", reg);
683
    return 0;
684
}
685

    
686
void switch_mode(CPUState *env, int mode)
687
{
688
    if (mode != ARM_CPU_MODE_USR)
689
        cpu_abort(env, "Tried to switch out of user mode\n");
690
}
691

    
692
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
693
{
694
    cpu_abort(env, "banked r13 write\n");
695
}
696

    
697
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
698
{
699
    cpu_abort(env, "banked r13 read\n");
700
    return 0;
701
}
702

    
703
#else
704

    
705
/* Map CPU modes onto saved register banks.  */
706
static inline int bank_number(CPUState *env, int mode)
707
{
708
    switch (mode) {
709
    case ARM_CPU_MODE_USR:
710
    case ARM_CPU_MODE_SYS:
711
        return 0;
712
    case ARM_CPU_MODE_SVC:
713
        return 1;
714
    case ARM_CPU_MODE_ABT:
715
        return 2;
716
    case ARM_CPU_MODE_UND:
717
        return 3;
718
    case ARM_CPU_MODE_IRQ:
719
        return 4;
720
    case ARM_CPU_MODE_FIQ:
721
        return 5;
722
    }
723
    cpu_abort(env, "Bad mode %x\n", mode);
724
    return -1;
725
}
726

    
727
void switch_mode(CPUState *env, int mode)
728
{
729
    int old_mode;
730
    int i;
731

    
732
    old_mode = env->uncached_cpsr & CPSR_M;
733
    if (mode == old_mode)
734
        return;
735

    
736
    if (old_mode == ARM_CPU_MODE_FIQ) {
737
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
738
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
739
    } else if (mode == ARM_CPU_MODE_FIQ) {
740
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
741
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
742
    }
743

    
744
    i = bank_number(env, old_mode);
745
    env->banked_r13[i] = env->regs[13];
746
    env->banked_r14[i] = env->regs[14];
747
    env->banked_spsr[i] = env->spsr;
748

    
749
    i = bank_number(env, mode);
750
    env->regs[13] = env->banked_r13[i];
751
    env->regs[14] = env->banked_r14[i];
752
    env->spsr = env->banked_spsr[i];
753
}
754

    
755
static void v7m_push(CPUARMState *env, uint32_t val)
756
{
757
    env->regs[13] -= 4;
758
    stl_phys(env->regs[13], val);
759
}
760

    
761
static uint32_t v7m_pop(CPUARMState *env)
762
{
763
    uint32_t val;
764
    val = ldl_phys(env->regs[13]);
765
    env->regs[13] += 4;
766
    return val;
767
}
768

    
769
/* Switch to V7M main or process stack pointer.  */
770
static void switch_v7m_sp(CPUARMState *env, int process)
771
{
772
    uint32_t tmp;
773
    if (env->v7m.current_sp != process) {
774
        tmp = env->v7m.other_sp;
775
        env->v7m.other_sp = env->regs[13];
776
        env->regs[13] = tmp;
777
        env->v7m.current_sp = process;
778
    }
779
}
780

    
781
static void do_v7m_exception_exit(CPUARMState *env)
782
{
783
    uint32_t type;
784
    uint32_t xpsr;
785

    
786
    type = env->regs[15];
787
    if (env->v7m.exception != 0)
788
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
789

    
790
    /* Switch to the target stack.  */
791
    switch_v7m_sp(env, (type & 4) != 0);
792
    /* Pop registers.  */
793
    env->regs[0] = v7m_pop(env);
794
    env->regs[1] = v7m_pop(env);
795
    env->regs[2] = v7m_pop(env);
796
    env->regs[3] = v7m_pop(env);
797
    env->regs[12] = v7m_pop(env);
798
    env->regs[14] = v7m_pop(env);
799
    env->regs[15] = v7m_pop(env);
800
    xpsr = v7m_pop(env);
801
    xpsr_write(env, xpsr, 0xfffffdff);
802
    /* Undo stack alignment.  */
803
    if (xpsr & 0x200)
804
        env->regs[13] |= 4;
805
    /* ??? The exception return type specifies Thread/Handler mode.  However
806
       this is also implied by the xPSR value. Not sure what to do
807
       if there is a mismatch.  */
808
    /* ??? Likewise for mismatches between the CONTROL register and the stack
809
       pointer.  */
810
}
811

    
812
static void do_interrupt_v7m(CPUARMState *env)
813
{
814
    uint32_t xpsr = xpsr_read(env);
815
    uint32_t lr;
816
    uint32_t addr;
817

    
818
    lr = 0xfffffff1;
819
    if (env->v7m.current_sp)
820
        lr |= 4;
821
    if (env->v7m.exception == 0)
822
        lr |= 8;
823

    
824
    /* For exceptions we just mark as pending on the NVIC, and let that
825
       handle it.  */
826
    /* TODO: Need to escalate if the current priority is higher than the
827
       one we're raising.  */
828
    switch (env->exception_index) {
829
    case EXCP_UDEF:
830
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
831
        return;
832
    case EXCP_SWI:
833
        env->regs[15] += 2;
834
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
835
        return;
836
    case EXCP_PREFETCH_ABORT:
837
    case EXCP_DATA_ABORT:
838
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
839
        return;
840
    case EXCP_BKPT:
841
        if (semihosting_enabled) {
842
            int nr;
843
            nr = lduw_code(env->regs[15]) & 0xff;
844
            if (nr == 0xab) {
845
                env->regs[15] += 2;
846
                env->regs[0] = do_arm_semihosting(env);
847
                return;
848
            }
849
        }
850
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
851
        return;
852
    case EXCP_IRQ:
853
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
854
        break;
855
    case EXCP_EXCEPTION_EXIT:
856
        do_v7m_exception_exit(env);
857
        return;
858
    default:
859
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
860
        return; /* Never happens.  Keep compiler happy.  */
861
    }
862

    
863
    /* Align stack pointer.  */
864
    /* ??? Should only do this if Configuration Control Register
865
       STACKALIGN bit is set.  */
866
    if (env->regs[13] & 4) {
867
        env->regs[13] -= 4;
868
        xpsr |= 0x200;
869
    }
870
    /* Switch to the handler mode.  */
871
    v7m_push(env, xpsr);
872
    v7m_push(env, env->regs[15]);
873
    v7m_push(env, env->regs[14]);
874
    v7m_push(env, env->regs[12]);
875
    v7m_push(env, env->regs[3]);
876
    v7m_push(env, env->regs[2]);
877
    v7m_push(env, env->regs[1]);
878
    v7m_push(env, env->regs[0]);
879
    switch_v7m_sp(env, 0);
880
    env->uncached_cpsr &= ~CPSR_IT;
881
    env->regs[14] = lr;
882
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
883
    env->regs[15] = addr & 0xfffffffe;
884
    env->thumb = addr & 1;
885
}
886

    
887
/* Handle a CPU exception.  */
888
void do_interrupt(CPUARMState *env)
889
{
890
    uint32_t addr;
891
    uint32_t mask;
892
    int new_mode;
893
    uint32_t offset;
894

    
895
    if (IS_M(env)) {
896
        do_interrupt_v7m(env);
897
        return;
898
    }
899
    /* TODO: Vectored interrupt controller.  */
900
    switch (env->exception_index) {
901
    case EXCP_UDEF:
902
        new_mode = ARM_CPU_MODE_UND;
903
        addr = 0x04;
904
        mask = CPSR_I;
905
        if (env->thumb)
906
            offset = 2;
907
        else
908
            offset = 4;
909
        break;
910
    case EXCP_SWI:
911
        if (semihosting_enabled) {
912
            /* Check for semihosting interrupt.  */
913
            if (env->thumb) {
914
                mask = lduw_code(env->regs[15] - 2) & 0xff;
915
            } else {
916
                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
917
            }
918
            /* Only intercept calls from privileged modes, to provide some
919
               semblance of security.  */
920
            if (((mask == 0x123456 && !env->thumb)
921
                    || (mask == 0xab && env->thumb))
922
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
923
                env->regs[0] = do_arm_semihosting(env);
924
                return;
925
            }
926
        }
927
        new_mode = ARM_CPU_MODE_SVC;
928
        addr = 0x08;
929
        mask = CPSR_I;
930
        /* The PC already points to the next instruction.  */
931
        offset = 0;
932
        break;
933
    case EXCP_BKPT:
934
        /* See if this is a semihosting syscall.  */
935
        if (env->thumb && semihosting_enabled) {
936
            mask = lduw_code(env->regs[15]) & 0xff;
937
            if (mask == 0xab
938
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
939
                env->regs[15] += 2;
940
                env->regs[0] = do_arm_semihosting(env);
941
                return;
942
            }
943
        }
944
        env->cp15.c5_insn = 2;
945
        /* Fall through to prefetch abort.  */
946
    case EXCP_PREFETCH_ABORT:
947
        new_mode = ARM_CPU_MODE_ABT;
948
        addr = 0x0c;
949
        mask = CPSR_A | CPSR_I;
950
        offset = 4;
951
        break;
952
    case EXCP_DATA_ABORT:
953
        new_mode = ARM_CPU_MODE_ABT;
954
        addr = 0x10;
955
        mask = CPSR_A | CPSR_I;
956
        offset = 8;
957
        break;
958
    case EXCP_IRQ:
959
        new_mode = ARM_CPU_MODE_IRQ;
960
        addr = 0x18;
961
        /* Disable IRQ and imprecise data aborts.  */
962
        mask = CPSR_A | CPSR_I;
963
        offset = 4;
964
        break;
965
    case EXCP_FIQ:
966
        new_mode = ARM_CPU_MODE_FIQ;
967
        addr = 0x1c;
968
        /* Disable FIQ, IRQ and imprecise data aborts.  */
969
        mask = CPSR_A | CPSR_I | CPSR_F;
970
        offset = 4;
971
        break;
972
    default:
973
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
974
        return; /* Never happens.  Keep compiler happy.  */
975
    }
976
    /* High vectors.  */
977
    if (env->cp15.c1_sys & (1 << 13)) {
978
        addr += 0xffff0000;
979
    }
980
    switch_mode (env, new_mode);
981
    env->spsr = cpsr_read(env);
982
    /* Clear IT bits.  */
983
    env->condexec_bits = 0;
984
    /* Switch to the new mode, and to the correct instruction set.  */
985
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
986
    env->uncached_cpsr |= mask;
987
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
988
     * and we should just guard the thumb mode on V4 */
989
    if (arm_feature(env, ARM_FEATURE_V4T)) {
990
        env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
991
    }
992
    env->regs[14] = env->regs[15] + offset;
993
    env->regs[15] = addr;
994
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
995
}
996

    
997
/* Check section/page access permissions.
998
   Returns the page protection flags, or zero if the access is not
999
   permitted.  */
1000
static inline int check_ap(CPUState *env, int ap, int domain_prot,
1001
                           int access_type, int is_user)
1002
{
1003
  int prot_ro;
1004

    
1005
  if (domain_prot == 3) {
1006
    return PAGE_READ | PAGE_WRITE;
1007
  }
1008

    
1009
  if (access_type == 1)
1010
      prot_ro = 0;
1011
  else
1012
      prot_ro = PAGE_READ;
1013

    
1014
  switch (ap) {
1015
  case 0:
1016
      if (access_type == 1)
1017
          return 0;
1018
      switch ((env->cp15.c1_sys >> 8) & 3) {
1019
      case 1:
1020
          return is_user ? 0 : PAGE_READ;
1021
      case 2:
1022
          return PAGE_READ;
1023
      default:
1024
          return 0;
1025
      }
1026
  case 1:
1027
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1028
  case 2:
1029
      if (is_user)
1030
          return prot_ro;
1031
      else
1032
          return PAGE_READ | PAGE_WRITE;
1033
  case 3:
1034
      return PAGE_READ | PAGE_WRITE;
1035
  case 4: /* Reserved.  */
1036
      return 0;
1037
  case 5:
1038
      return is_user ? 0 : prot_ro;
1039
  case 6:
1040
      return prot_ro;
1041
  case 7:
1042
      if (!arm_feature (env, ARM_FEATURE_V6K))
1043
          return 0;
1044
      return prot_ro;
1045
  default:
1046
      abort();
1047
  }
1048
}
1049

    
1050
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
1051
{
1052
    uint32_t table;
1053

    
1054
    if (address & env->cp15.c2_mask)
1055
        table = env->cp15.c2_base1 & 0xffffc000;
1056
    else
1057
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1058

    
1059
    table |= (address >> 18) & 0x3ffc;
1060
    return table;
1061
}
1062

    
1063
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
1064
                            int is_user, uint32_t *phys_ptr, int *prot,
1065
                            target_ulong *page_size)
1066
{
1067
    int code;
1068
    uint32_t table;
1069
    uint32_t desc;
1070
    int type;
1071
    int ap;
1072
    int domain;
1073
    int domain_prot;
1074
    uint32_t phys_addr;
1075

    
1076
    /* Pagetable walk.  */
1077
    /* Lookup l1 descriptor.  */
1078
    table = get_level1_table_address(env, address);
1079
    desc = ldl_phys(table);
1080
    type = (desc & 3);
1081
    domain = (desc >> 5) & 0x0f;
1082
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1083
    if (type == 0) {
1084
        /* Section translation fault.  */
1085
        code = 5;
1086
        goto do_fault;
1087
    }
1088
    if (domain_prot == 0 || domain_prot == 2) {
1089
        if (type == 2)
1090
            code = 9; /* Section domain fault.  */
1091
        else
1092
            code = 11; /* Page domain fault.  */
1093
        goto do_fault;
1094
    }
1095
    if (type == 2) {
1096
        /* 1Mb section.  */
1097
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1098
        ap = (desc >> 10) & 3;
1099
        code = 13;
1100
        *page_size = 1024 * 1024;
1101
    } else {
1102
        /* Lookup l2 entry.  */
1103
        if (type == 1) {
1104
            /* Coarse pagetable.  */
1105
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1106
        } else {
1107
            /* Fine pagetable.  */
1108
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1109
        }
1110
        desc = ldl_phys(table);
1111
        switch (desc & 3) {
1112
        case 0: /* Page translation fault.  */
1113
            code = 7;
1114
            goto do_fault;
1115
        case 1: /* 64k page.  */
1116
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1117
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1118
            *page_size = 0x10000;
1119
            break;
1120
        case 2: /* 4k page.  */
1121
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1122
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1123
            *page_size = 0x1000;
1124
            break;
1125
        case 3: /* 1k page.  */
1126
            if (type == 1) {
1127
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1128
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1129
                } else {
1130
                    /* Page translation fault.  */
1131
                    code = 7;
1132
                    goto do_fault;
1133
                }
1134
            } else {
1135
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1136
            }
1137
            ap = (desc >> 4) & 3;
1138
            *page_size = 0x400;
1139
            break;
1140
        default:
1141
            /* Never happens, but compiler isn't smart enough to tell.  */
1142
            abort();
1143
        }
1144
        code = 15;
1145
    }
1146
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1147
    if (!*prot) {
1148
        /* Access permission fault.  */
1149
        goto do_fault;
1150
    }
1151
    *prot |= PAGE_EXEC;
1152
    *phys_ptr = phys_addr;
1153
    return 0;
1154
do_fault:
1155
    return code | (domain << 4);
1156
}
1157

    
1158
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1159
                            int is_user, uint32_t *phys_ptr, int *prot,
1160
                            target_ulong *page_size)
1161
{
1162
    int code;
1163
    uint32_t table;
1164
    uint32_t desc;
1165
    uint32_t xn;
1166
    int type;
1167
    int ap;
1168
    int domain;
1169
    int domain_prot;
1170
    uint32_t phys_addr;
1171

    
1172
    /* Pagetable walk.  */
1173
    /* Lookup l1 descriptor.  */
1174
    table = get_level1_table_address(env, address);
1175
    desc = ldl_phys(table);
1176
    type = (desc & 3);
1177
    if (type == 0) {
1178
        /* Section translation fault.  */
1179
        code = 5;
1180
        domain = 0;
1181
        goto do_fault;
1182
    } else if (type == 2 && (desc & (1 << 18))) {
1183
        /* Supersection.  */
1184
        domain = 0;
1185
    } else {
1186
        /* Section or page.  */
1187
        domain = (desc >> 5) & 0x0f;
1188
    }
1189
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1190
    if (domain_prot == 0 || domain_prot == 2) {
1191
        if (type == 2)
1192
            code = 9; /* Section domain fault.  */
1193
        else
1194
            code = 11; /* Page domain fault.  */
1195
        goto do_fault;
1196
    }
1197
    if (type == 2) {
1198
        if (desc & (1 << 18)) {
1199
            /* Supersection.  */
1200
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1201
            *page_size = 0x1000000;
1202
        } else {
1203
            /* Section.  */
1204
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1205
            *page_size = 0x100000;
1206
        }
1207
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1208
        xn = desc & (1 << 4);
1209
        code = 13;
1210
    } else {
1211
        /* Lookup l2 entry.  */
1212
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1213
        desc = ldl_phys(table);
1214
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1215
        switch (desc & 3) {
1216
        case 0: /* Page translation fault.  */
1217
            code = 7;
1218
            goto do_fault;
1219
        case 1: /* 64k page.  */
1220
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1221
            xn = desc & (1 << 15);
1222
            *page_size = 0x10000;
1223
            break;
1224
        case 2: case 3: /* 4k page.  */
1225
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1226
            xn = desc & 1;
1227
            *page_size = 0x1000;
1228
            break;
1229
        default:
1230
            /* Never happens, but compiler isn't smart enough to tell.  */
1231
            abort();
1232
        }
1233
        code = 15;
1234
    }
1235
    if (domain_prot == 3) {
1236
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1237
    } else {
1238
        if (xn && access_type == 2)
1239
            goto do_fault;
1240

    
1241
        /* The simplified model uses AP[0] as an access control bit.  */
1242
        if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1243
            /* Access flag fault.  */
1244
            code = (code == 15) ? 6 : 3;
1245
            goto do_fault;
1246
        }
1247
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1248
        if (!*prot) {
1249
            /* Access permission fault.  */
1250
            goto do_fault;
1251
        }
1252
        if (!xn) {
1253
            *prot |= PAGE_EXEC;
1254
        }
1255
    }
1256
    *phys_ptr = phys_addr;
1257
    return 0;
1258
do_fault:
1259
    return code | (domain << 4);
1260
}
1261

    
1262
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1263
                             int is_user, uint32_t *phys_ptr, int *prot)
1264
{
1265
    int n;
1266
    uint32_t mask;
1267
    uint32_t base;
1268

    
1269
    *phys_ptr = address;
1270
    for (n = 7; n >= 0; n--) {
1271
        base = env->cp15.c6_region[n];
1272
        if ((base & 1) == 0)
1273
            continue;
1274
        mask = 1 << ((base >> 1) & 0x1f);
1275
        /* Keep this shift separate from the above to avoid an
1276
           (undefined) << 32.  */
1277
        mask = (mask << 1) - 1;
1278
        if (((base ^ address) & ~mask) == 0)
1279
            break;
1280
    }
1281
    if (n < 0)
1282
        return 2;
1283

    
1284
    if (access_type == 2) {
1285
        mask = env->cp15.c5_insn;
1286
    } else {
1287
        mask = env->cp15.c5_data;
1288
    }
1289
    mask = (mask >> (n * 4)) & 0xf;
1290
    switch (mask) {
1291
    case 0:
1292
        return 1;
1293
    case 1:
1294
        if (is_user)
1295
          return 1;
1296
        *prot = PAGE_READ | PAGE_WRITE;
1297
        break;
1298
    case 2:
1299
        *prot = PAGE_READ;
1300
        if (!is_user)
1301
            *prot |= PAGE_WRITE;
1302
        break;
1303
    case 3:
1304
        *prot = PAGE_READ | PAGE_WRITE;
1305
        break;
1306
    case 5:
1307
        if (is_user)
1308
            return 1;
1309
        *prot = PAGE_READ;
1310
        break;
1311
    case 6:
1312
        *prot = PAGE_READ;
1313
        break;
1314
    default:
1315
        /* Bad permission.  */
1316
        return 1;
1317
    }
1318
    *prot |= PAGE_EXEC;
1319
    return 0;
1320
}
1321

    
1322
static inline int get_phys_addr(CPUState *env, uint32_t address,
1323
                                int access_type, int is_user,
1324
                                uint32_t *phys_ptr, int *prot,
1325
                                target_ulong *page_size)
1326
{
1327
    /* Fast Context Switch Extension.  */
1328
    if (address < 0x02000000)
1329
        address += env->cp15.c13_fcse;
1330

    
1331
    if ((env->cp15.c1_sys & 1) == 0) {
1332
        /* MMU/MPU disabled.  */
1333
        *phys_ptr = address;
1334
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1335
        *page_size = TARGET_PAGE_SIZE;
1336
        return 0;
1337
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1338
        *page_size = TARGET_PAGE_SIZE;
1339
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1340
                                 prot);
1341
    } else if (env->cp15.c1_sys & (1 << 23)) {
1342
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1343
                                prot, page_size);
1344
    } else {
1345
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1346
                                prot, page_size);
1347
    }
1348
}
1349

    
1350
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1351
                              int access_type, int mmu_idx)
1352
{
1353
    uint32_t phys_addr;
1354
    target_ulong page_size;
1355
    int prot;
1356
    int ret, is_user;
1357

    
1358
    is_user = mmu_idx == MMU_USER_IDX;
1359
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1360
                        &page_size);
1361
    if (ret == 0) {
1362
        /* Map a single [sub]page.  */
1363
        phys_addr &= ~(uint32_t)0x3ff;
1364
        address &= ~(uint32_t)0x3ff;
1365
        tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1366
        return 0;
1367
    }
1368

    
1369
    if (access_type == 2) {
1370
        env->cp15.c5_insn = ret;
1371
        env->cp15.c6_insn = address;
1372
        env->exception_index = EXCP_PREFETCH_ABORT;
1373
    } else {
1374
        env->cp15.c5_data = ret;
1375
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1376
            env->cp15.c5_data |= (1 << 11);
1377
        env->cp15.c6_data = address;
1378
        env->exception_index = EXCP_DATA_ABORT;
1379
    }
1380
    return 1;
1381
}
1382

    
1383
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1384
{
1385
    uint32_t phys_addr;
1386
    target_ulong page_size;
1387
    int prot;
1388
    int ret;
1389

    
1390
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1391

    
1392
    if (ret != 0)
1393
        return -1;
1394

    
1395
    return phys_addr;
1396
}
1397

    
1398
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1399
{
1400
    int cp_num = (insn >> 8) & 0xf;
1401
    int cp_info = (insn >> 5) & 7;
1402
    int src = (insn >> 16) & 0xf;
1403
    int operand = insn & 0xf;
1404

    
1405
    if (env->cp[cp_num].cp_write)
1406
        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1407
                                 cp_info, src, operand, val);
1408
}
1409

    
1410
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1411
{
1412
    int cp_num = (insn >> 8) & 0xf;
1413
    int cp_info = (insn >> 5) & 7;
1414
    int dest = (insn >> 16) & 0xf;
1415
    int operand = insn & 0xf;
1416

    
1417
    if (env->cp[cp_num].cp_read)
1418
        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1419
                                       cp_info, dest, operand);
1420
    return 0;
1421
}
1422

    
1423
/* Return basic MPU access permission bits.  */
1424
static uint32_t simple_mpu_ap_bits(uint32_t val)
1425
{
1426
    uint32_t ret;
1427
    uint32_t mask;
1428
    int i;
1429
    ret = 0;
1430
    mask = 3;
1431
    for (i = 0; i < 16; i += 2) {
1432
        ret |= (val >> i) & mask;
1433
        mask <<= 2;
1434
    }
1435
    return ret;
1436
}
1437

    
1438
/* Pad basic MPU access permission bits to extended format.  */
1439
static uint32_t extended_mpu_ap_bits(uint32_t val)
1440
{
1441
    uint32_t ret;
1442
    uint32_t mask;
1443
    int i;
1444
    ret = 0;
1445
    mask = 3;
1446
    for (i = 0; i < 16; i += 2) {
1447
        ret |= (val & mask) << i;
1448
        mask <<= 2;
1449
    }
1450
    return ret;
1451
}
1452

    
1453
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1454
{
1455
    int op1;
1456
    int op2;
1457
    int crm;
1458

    
1459
    op1 = (insn >> 21) & 7;
1460
    op2 = (insn >> 5) & 7;
1461
    crm = insn & 0xf;
1462
    switch ((insn >> 16) & 0xf) {
1463
    case 0:
1464
        /* ID codes.  */
1465
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1466
            break;
1467
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1468
            break;
1469
        if (arm_feature(env, ARM_FEATURE_V7)
1470
                && op1 == 2 && crm == 0 && op2 == 0) {
1471
            env->cp15.c0_cssel = val & 0xf;
1472
            break;
1473
        }
1474
        goto bad_reg;
1475
    case 1: /* System configuration.  */
1476
        if (arm_feature(env, ARM_FEATURE_V7)
1477
                && op1 == 0 && crm == 1 && op2 == 0) {
1478
            env->cp15.c1_scr = val;
1479
            break;
1480
        }
1481
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1482
            op2 = 0;
1483
        switch (op2) {
1484
        case 0:
1485
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1486
                env->cp15.c1_sys = val;
1487
            /* ??? Lots of these bits are not implemented.  */
1488
            /* This may enable/disable the MMU, so do a TLB flush.  */
1489
            tlb_flush(env, 1);
1490
            break;
1491
        case 1: /* Auxiliary control register.  */
1492
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1493
                env->cp15.c1_xscaleauxcr = val;
1494
                break;
1495
            }
1496
            /* Not implemented.  */
1497
            break;
1498
        case 2:
1499
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1500
                goto bad_reg;
1501
            if (env->cp15.c1_coproc != val) {
1502
                env->cp15.c1_coproc = val;
1503
                /* ??? Is this safe when called from within a TB?  */
1504
                tb_flush(env);
1505
            }
1506
            break;
1507
        default:
1508
            goto bad_reg;
1509
        }
1510
        break;
1511
    case 2: /* MMU Page table control / MPU cache control.  */
1512
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1513
            switch (op2) {
1514
            case 0:
1515
                env->cp15.c2_data = val;
1516
                break;
1517
            case 1:
1518
                env->cp15.c2_insn = val;
1519
                break;
1520
            default:
1521
                goto bad_reg;
1522
            }
1523
        } else {
1524
            switch (op2) {
1525
            case 0:
1526
                env->cp15.c2_base0 = val;
1527
                break;
1528
            case 1:
1529
                env->cp15.c2_base1 = val;
1530
                break;
1531
            case 2:
1532
                val &= 7;
1533
                env->cp15.c2_control = val;
1534
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1535
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1536
                break;
1537
            default:
1538
                goto bad_reg;
1539
            }
1540
        }
1541
        break;
1542
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1543
        env->cp15.c3 = val;
1544
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1545
        break;
1546
    case 4: /* Reserved.  */
1547
        goto bad_reg;
1548
    case 5: /* MMU Fault status / MPU access permission.  */
1549
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1550
            op2 = 0;
1551
        switch (op2) {
1552
        case 0:
1553
            if (arm_feature(env, ARM_FEATURE_MPU))
1554
                val = extended_mpu_ap_bits(val);
1555
            env->cp15.c5_data = val;
1556
            break;
1557
        case 1:
1558
            if (arm_feature(env, ARM_FEATURE_MPU))
1559
                val = extended_mpu_ap_bits(val);
1560
            env->cp15.c5_insn = val;
1561
            break;
1562
        case 2:
1563
            if (!arm_feature(env, ARM_FEATURE_MPU))
1564
                goto bad_reg;
1565
            env->cp15.c5_data = val;
1566
            break;
1567
        case 3:
1568
            if (!arm_feature(env, ARM_FEATURE_MPU))
1569
                goto bad_reg;
1570
            env->cp15.c5_insn = val;
1571
            break;
1572
        default:
1573
            goto bad_reg;
1574
        }
1575
        break;
1576
    case 6: /* MMU Fault address / MPU base/size.  */
1577
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1578
            if (crm >= 8)
1579
                goto bad_reg;
1580
            env->cp15.c6_region[crm] = val;
1581
        } else {
1582
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1583
                op2 = 0;
1584
            switch (op2) {
1585
            case 0:
1586
                env->cp15.c6_data = val;
1587
                break;
1588
            case 1: /* ??? This is WFAR on armv6 */
1589
            case 2:
1590
                env->cp15.c6_insn = val;
1591
                break;
1592
            default:
1593
                goto bad_reg;
1594
            }
1595
        }
1596
        break;
1597
    case 7: /* Cache control.  */
1598
        env->cp15.c15_i_max = 0x000;
1599
        env->cp15.c15_i_min = 0xff0;
1600
        if (op1 != 0) {
1601
            goto bad_reg;
1602
        }
1603
        /* No cache, so nothing to do except VA->PA translations. */
1604
        if (arm_feature(env, ARM_FEATURE_VAPA)) {
1605
            switch (crm) {
1606
            case 4:
1607
                if (arm_feature(env, ARM_FEATURE_V7)) {
1608
                    env->cp15.c7_par = val & 0xfffff6ff;
1609
                } else {
1610
                    env->cp15.c7_par = val & 0xfffff1ff;
1611
                }
1612
                break;
1613
            case 8: {
1614
                uint32_t phys_addr;
1615
                target_ulong page_size;
1616
                int prot;
1617
                int ret, is_user = op2 & 2;
1618
                int access_type = op2 & 1;
1619

    
1620
                if (op2 & 4) {
1621
                    /* Other states are only available with TrustZone */
1622
                    goto bad_reg;
1623
                }
1624
                ret = get_phys_addr(env, val, access_type, is_user,
1625
                                    &phys_addr, &prot, &page_size);
1626
                if (ret == 0) {
1627
                    /* We do not set any attribute bits in the PAR */
1628
                    if (page_size == (1 << 24)
1629
                        && arm_feature(env, ARM_FEATURE_V7)) {
1630
                        env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1631
                    } else {
1632
                        env->cp15.c7_par = phys_addr & 0xfffff000;
1633
                    }
1634
                } else {
1635
                    env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1636
                                       ((ret & (12 << 1)) >> 6) |
1637
                                       ((ret & 0xf) << 1) | 1;
1638
                }
1639
                break;
1640
            }
1641
            }
1642
        }
1643
        break;
1644
    case 8: /* MMU TLB control.  */
1645
        switch (op2) {
1646
        case 0: /* Invalidate all (TLBIALL) */
1647
            tlb_flush(env, 1);
1648
            break;
1649
        case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1650
            tlb_flush_page(env, val & TARGET_PAGE_MASK);
1651
            break;
1652
        case 2: /* Invalidate by ASID (TLBIASID) */
1653
            tlb_flush(env, val == 0);
1654
            break;
1655
        case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1656
            tlb_flush_page(env, val & TARGET_PAGE_MASK);
1657
            break;
1658
        default:
1659
            goto bad_reg;
1660
        }
1661
        break;
1662
    case 9:
1663
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1664
            break;
1665
        if (arm_feature(env, ARM_FEATURE_STRONGARM))
1666
            break; /* Ignore ReadBuffer access */
1667
        switch (crm) {
1668
        case 0: /* Cache lockdown.  */
1669
            switch (op1) {
1670
            case 0: /* L1 cache.  */
1671
                switch (op2) {
1672
                case 0:
1673
                    env->cp15.c9_data = val;
1674
                    break;
1675
                case 1:
1676
                    env->cp15.c9_insn = val;
1677
                    break;
1678
                default:
1679
                    goto bad_reg;
1680
                }
1681
                break;
1682
            case 1: /* L2 cache.  */
1683
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1684
                break;
1685
            default:
1686
                goto bad_reg;
1687
            }
1688
            break;
1689
        case 1: /* TCM memory region registers.  */
1690
            /* Not implemented.  */
1691
            goto bad_reg;
1692
        case 12: /* Performance monitor control */
1693
            /* Performance monitors are implementation defined in v7,
1694
             * but with an ARM recommended set of registers, which we
1695
             * follow (although we don't actually implement any counters)
1696
             */
1697
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1698
                goto bad_reg;
1699
            }
1700
            switch (op2) {
1701
            case 0: /* performance monitor control register */
1702
                /* only the DP, X, D and E bits are writable */
1703
                env->cp15.c9_pmcr &= ~0x39;
1704
                env->cp15.c9_pmcr |= (val & 0x39);
1705
                break;
1706
            case 1: /* Count enable set register */
1707
                val &= (1 << 31);
1708
                env->cp15.c9_pmcnten |= val;
1709
                break;
1710
            case 2: /* Count enable clear */
1711
                val &= (1 << 31);
1712
                env->cp15.c9_pmcnten &= ~val;
1713
                break;
1714
            case 3: /* Overflow flag status */
1715
                env->cp15.c9_pmovsr &= ~val;
1716
                break;
1717
            case 4: /* Software increment */
1718
                /* RAZ/WI since we don't implement the software-count event */
1719
                break;
1720
            case 5: /* Event counter selection register */
1721
                /* Since we don't implement any events, writing to this register
1722
                 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1723
                 */
1724
                break;
1725
            default:
1726
                goto bad_reg;
1727
            }
1728
            break;
1729
        case 13: /* Performance counters */
1730
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1731
                goto bad_reg;
1732
            }
1733
            switch (op2) {
1734
            case 0: /* Cycle count register: not implemented, so RAZ/WI */
1735
                break;
1736
            case 1: /* Event type select */
1737
                env->cp15.c9_pmxevtyper = val & 0xff;
1738
                break;
1739
            case 2: /* Event count register */
1740
                /* Unimplemented (we have no events), RAZ/WI */
1741
                break;
1742
            default:
1743
                goto bad_reg;
1744
            }
1745
            break;
1746
        case 14: /* Performance monitor control */
1747
            if (!arm_feature(env, ARM_FEATURE_V7)) {
1748
                goto bad_reg;
1749
            }
1750
            switch (op2) {
1751
            case 0: /* user enable */
1752
                env->cp15.c9_pmuserenr = val & 1;
1753
                /* changes access rights for cp registers, so flush tbs */
1754
                tb_flush(env);
1755
                break;
1756
            case 1: /* interrupt enable set */
1757
                /* We have no event counters so only the C bit can be changed */
1758
                val &= (1 << 31);
1759
                env->cp15.c9_pminten |= val;
1760
                break;
1761
            case 2: /* interrupt enable clear */
1762
                val &= (1 << 31);
1763
                env->cp15.c9_pminten &= ~val;
1764
                break;
1765
            }
1766
            break;
1767
        default:
1768
            goto bad_reg;
1769
        }
1770
        break;
1771
    case 10: /* MMU TLB lockdown.  */
1772
        /* ??? TLB lockdown not implemented.  */
1773
        break;
1774
    case 12: /* Reserved.  */
1775
        goto bad_reg;
1776
    case 13: /* Process ID.  */
1777
        switch (op2) {
1778
        case 0:
1779
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1780
               not modified virtual addresses, so this causes a TLB flush.
1781
             */
1782
            if (env->cp15.c13_fcse != val)
1783
              tlb_flush(env, 1);
1784
            env->cp15.c13_fcse = val;
1785
            break;
1786
        case 1:
1787
            /* This changes the ASID, so do a TLB flush.  */
1788
            if (env->cp15.c13_context != val
1789
                && !arm_feature(env, ARM_FEATURE_MPU))
1790
              tlb_flush(env, 0);
1791
            env->cp15.c13_context = val;
1792
            break;
1793
        default:
1794
            goto bad_reg;
1795
        }
1796
        break;
1797
    case 14: /* Generic timer */
1798
        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1799
            /* Dummy implementation: RAZ/WI for all */
1800
            break;
1801
        }
1802
        goto bad_reg;
1803
    case 15: /* Implementation specific.  */
1804
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1805
            if (op2 == 0 && crm == 1) {
1806
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1807
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1808
                    tb_flush(env);
1809
                    env->cp15.c15_cpar = val & 0x3fff;
1810
                }
1811
                break;
1812
            }
1813
            goto bad_reg;
1814
        }
1815
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1816
            switch (crm) {
1817
            case 0:
1818
                break;
1819
            case 1: /* Set TI925T configuration.  */
1820
                env->cp15.c15_ticonfig = val & 0xe7;
1821
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1822
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1823
                break;
1824
            case 2: /* Set I_max.  */
1825
                env->cp15.c15_i_max = val;
1826
                break;
1827
            case 3: /* Set I_min.  */
1828
                env->cp15.c15_i_min = val;
1829
                break;
1830
            case 4: /* Set thread-ID.  */
1831
                env->cp15.c15_threadid = val & 0xffff;
1832
                break;
1833
            case 8: /* Wait-for-interrupt (deprecated).  */
1834
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1835
                break;
1836
            default:
1837
                goto bad_reg;
1838
            }
1839
        }
1840
        if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1841
            switch (crm) {
1842
            case 0:
1843
                if ((op1 == 0) && (op2 == 0)) {
1844
                    env->cp15.c15_power_control = val;
1845
                } else if ((op1 == 0) && (op2 == 1)) {
1846
                    env->cp15.c15_diagnostic = val;
1847
                } else if ((op1 == 0) && (op2 == 2)) {
1848
                    env->cp15.c15_power_diagnostic = val;
1849
                }
1850
            default:
1851
                break;
1852
            }
1853
        }
1854
        break;
1855
    }
1856
    return;
1857
bad_reg:
1858
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1859
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1860
              (insn >> 16) & 0xf, crm, op1, op2);
1861
}
1862

    
1863
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1864
{
1865
    int op1;
1866
    int op2;
1867
    int crm;
1868

    
1869
    op1 = (insn >> 21) & 7;
1870
    op2 = (insn >> 5) & 7;
1871
    crm = insn & 0xf;
1872
    switch ((insn >> 16) & 0xf) {
1873
    case 0: /* ID codes.  */
1874
        switch (op1) {
1875
        case 0:
1876
            switch (crm) {
1877
            case 0:
1878
                switch (op2) {
1879
                case 0: /* Device ID.  */
1880
                    return env->cp15.c0_cpuid;
1881
                case 1: /* Cache Type.  */
1882
                    return env->cp15.c0_cachetype;
1883
                case 2: /* TCM status.  */
1884
                    return 0;
1885
                case 3: /* TLB type register.  */
1886
                    return 0; /* No lockable TLB entries.  */
1887
                case 5: /* MPIDR */
1888
                    /* The MPIDR was standardised in v7; prior to
1889
                     * this it was implemented only in the 11MPCore.
1890
                     * For all other pre-v7 cores it does not exist.
1891
                     */
1892
                    if (arm_feature(env, ARM_FEATURE_V7) ||
1893
                        ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1894
                        int mpidr = env->cpu_index;
1895
                        /* We don't support setting cluster ID ([8..11])
1896
                         * so these bits always RAZ.
1897
                         */
1898
                        if (arm_feature(env, ARM_FEATURE_V7MP)) {
1899
                            mpidr |= (1 << 31);
1900
                            /* Cores which are uniprocessor (non-coherent)
1901
                             * but still implement the MP extensions set
1902
                             * bit 30. (For instance, A9UP.) However we do
1903
                             * not currently model any of those cores.
1904
                             */
1905
                        }
1906
                        return mpidr;
1907
                    }
1908
                    /* otherwise fall through to the unimplemented-reg case */
1909
                default:
1910
                    goto bad_reg;
1911
                }
1912
            case 1:
1913
                if (!arm_feature(env, ARM_FEATURE_V6))
1914
                    goto bad_reg;
1915
                return env->cp15.c0_c1[op2];
1916
            case 2:
1917
                if (!arm_feature(env, ARM_FEATURE_V6))
1918
                    goto bad_reg;
1919
                return env->cp15.c0_c2[op2];
1920
            case 3: case 4: case 5: case 6: case 7:
1921
                return 0;
1922
            default:
1923
                goto bad_reg;
1924
            }
1925
        case 1:
1926
            /* These registers aren't documented on arm11 cores.  However
1927
               Linux looks at them anyway.  */
1928
            if (!arm_feature(env, ARM_FEATURE_V6))
1929
                goto bad_reg;
1930
            if (crm != 0)
1931
                goto bad_reg;
1932
            if (!arm_feature(env, ARM_FEATURE_V7))
1933
                return 0;
1934

    
1935
            switch (op2) {
1936
            case 0:
1937
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1938
            case 1:
1939
                return env->cp15.c0_clid;
1940
            case 7:
1941
                return 0;
1942
            }
1943
            goto bad_reg;
1944
        case 2:
1945
            if (op2 != 0 || crm != 0)
1946
                goto bad_reg;
1947
            return env->cp15.c0_cssel;
1948
        default:
1949
            goto bad_reg;
1950
        }
1951
    case 1: /* System configuration.  */
1952
        if (arm_feature(env, ARM_FEATURE_V7)
1953
            && op1 == 0 && crm == 1 && op2 == 0) {
1954
            return env->cp15.c1_scr;
1955
        }
1956
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1957
            op2 = 0;
1958
        switch (op2) {
1959
        case 0: /* Control register.  */
1960
            return env->cp15.c1_sys;
1961
        case 1: /* Auxiliary control register.  */
1962
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1963
                return env->cp15.c1_xscaleauxcr;
1964
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1965
                goto bad_reg;
1966
            switch (ARM_CPUID(env)) {
1967
            case ARM_CPUID_ARM1026:
1968
                return 1;
1969
            case ARM_CPUID_ARM1136:
1970
            case ARM_CPUID_ARM1136_R2:
1971
            case ARM_CPUID_ARM1176:
1972
                return 7;
1973
            case ARM_CPUID_ARM11MPCORE:
1974
                return 1;
1975
            case ARM_CPUID_CORTEXA8:
1976
                return 2;
1977
            case ARM_CPUID_CORTEXA9:
1978
            case ARM_CPUID_CORTEXA15:
1979
                return 0;
1980
            default:
1981
                goto bad_reg;
1982
            }
1983
        case 2: /* Coprocessor access register.  */
1984
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1985
                goto bad_reg;
1986
            return env->cp15.c1_coproc;
1987
        default:
1988
            goto bad_reg;
1989
        }
1990
    case 2: /* MMU Page table control / MPU cache control.  */
1991
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1992
            switch (op2) {
1993
            case 0:
1994
                return env->cp15.c2_data;
1995
                break;
1996
            case 1:
1997
                return env->cp15.c2_insn;
1998
                break;
1999
            default:
2000
                goto bad_reg;
2001
            }
2002
        } else {
2003
            switch (op2) {
2004
            case 0:
2005
                return env->cp15.c2_base0;
2006
            case 1:
2007
                return env->cp15.c2_base1;
2008
            case 2:
2009
                return env->cp15.c2_control;
2010
            default:
2011
                goto bad_reg;
2012
            }
2013
        }
2014
    case 3: /* MMU Domain access control / MPU write buffer control.  */
2015
        return env->cp15.c3;
2016
    case 4: /* Reserved.  */
2017
        goto bad_reg;
2018
    case 5: /* MMU Fault status / MPU access permission.  */
2019
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
2020
            op2 = 0;
2021
        switch (op2) {
2022
        case 0:
2023
            if (arm_feature(env, ARM_FEATURE_MPU))
2024
                return simple_mpu_ap_bits(env->cp15.c5_data);
2025
            return env->cp15.c5_data;
2026
        case 1:
2027
            if (arm_feature(env, ARM_FEATURE_MPU))
2028
                return simple_mpu_ap_bits(env->cp15.c5_data);
2029
            return env->cp15.c5_insn;
2030
        case 2:
2031
            if (!arm_feature(env, ARM_FEATURE_MPU))
2032
                goto bad_reg;
2033
            return env->cp15.c5_data;
2034
        case 3:
2035
            if (!arm_feature(env, ARM_FEATURE_MPU))
2036
                goto bad_reg;
2037
            return env->cp15.c5_insn;
2038
        default:
2039
            goto bad_reg;
2040
        }
2041
    case 6: /* MMU Fault address.  */
2042
        if (arm_feature(env, ARM_FEATURE_MPU)) {
2043
            if (crm >= 8)
2044
                goto bad_reg;
2045
            return env->cp15.c6_region[crm];
2046
        } else {
2047
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
2048
                op2 = 0;
2049
            switch (op2) {
2050
            case 0:
2051
                return env->cp15.c6_data;
2052
            case 1:
2053
                if (arm_feature(env, ARM_FEATURE_V6)) {
2054
                    /* Watchpoint Fault Adrress.  */
2055
                    return 0; /* Not implemented.  */
2056
                } else {
2057
                    /* Instruction Fault Adrress.  */
2058
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
2059
                       shouldn't do any harm.  */
2060
                    return env->cp15.c6_insn;
2061
                }
2062
            case 2:
2063
                if (arm_feature(env, ARM_FEATURE_V6)) {
2064
                    /* Instruction Fault Adrress.  */
2065
                    return env->cp15.c6_insn;
2066
                } else {
2067
                    goto bad_reg;
2068
                }
2069
            default:
2070
                goto bad_reg;
2071
            }
2072
        }
2073
    case 7: /* Cache control.  */
2074
        if (crm == 4 && op1 == 0 && op2 == 0) {
2075
            return env->cp15.c7_par;
2076
        }
2077
        /* FIXME: Should only clear Z flag if destination is r15.  */
2078
        env->ZF = 0;
2079
        return 0;
2080
    case 8: /* MMU TLB control.  */
2081
        goto bad_reg;
2082
    case 9:
2083
        switch (crm) {
2084
        case 0: /* Cache lockdown */
2085
            switch (op1) {
2086
            case 0: /* L1 cache.  */
2087
                if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2088
                    return 0;
2089
                }
2090
                switch (op2) {
2091
                case 0:
2092
                    return env->cp15.c9_data;
2093
                case 1:
2094
                    return env->cp15.c9_insn;
2095
                default:
2096
                    goto bad_reg;
2097
                }
2098
            case 1: /* L2 cache */
2099
                /* L2 Lockdown and Auxiliary control.  */
2100
                switch (op2) {
2101
                case 0:
2102
                    /* L2 cache lockdown (A8 only) */
2103
                    return 0;
2104
                case 2:
2105
                    /* L2 cache auxiliary control (A8) or control (A15) */
2106
                    if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
2107
                        /* Linux wants the number of processors from here.
2108
                         * Might as well set the interrupt-controller bit too.
2109
                         */
2110
                        return ((smp_cpus - 1) << 24) | (1 << 23);
2111
                    }
2112
                    return 0;
2113
                case 3:
2114
                    /* L2 cache extended control (A15) */
2115
                    return 0;
2116
                default:
2117
                    goto bad_reg;
2118
                }
2119
            default:
2120
                goto bad_reg;
2121
            }
2122
            break;
2123
        case 12: /* Performance monitor control */
2124
            if (!arm_feature(env, ARM_FEATURE_V7)) {
2125
                goto bad_reg;
2126
            }
2127
            switch (op2) {
2128
            case 0: /* performance monitor control register */
2129
                return env->cp15.c9_pmcr;
2130
            case 1: /* count enable set */
2131
            case 2: /* count enable clear */
2132
                return env->cp15.c9_pmcnten;
2133
            case 3: /* overflow flag status */
2134
                return env->cp15.c9_pmovsr;
2135
            case 4: /* software increment */
2136
            case 5: /* event counter selection register */
2137
                return 0; /* Unimplemented, RAZ/WI */
2138
            default:
2139
                goto bad_reg;
2140
            }
2141
        case 13: /* Performance counters */
2142
            if (!arm_feature(env, ARM_FEATURE_V7)) {
2143
                goto bad_reg;
2144
            }
2145
            switch (op2) {
2146
            case 1: /* Event type select */
2147
                return env->cp15.c9_pmxevtyper;
2148
            case 0: /* Cycle count register */
2149
            case 2: /* Event count register */
2150
                /* Unimplemented, so RAZ/WI */
2151
                return 0;
2152
            default:
2153
                goto bad_reg;
2154
            }
2155
        case 14: /* Performance monitor control */
2156
            if (!arm_feature(env, ARM_FEATURE_V7)) {
2157
                goto bad_reg;
2158
            }
2159
            switch (op2) {
2160
            case 0: /* user enable */
2161
                return env->cp15.c9_pmuserenr;
2162
            case 1: /* interrupt enable set */
2163
            case 2: /* interrupt enable clear */
2164
                return env->cp15.c9_pminten;
2165
            default:
2166
                goto bad_reg;
2167
            }
2168
        default:
2169
            goto bad_reg;
2170
        }
2171
        break;
2172
    case 10: /* MMU TLB lockdown.  */
2173
        /* ??? TLB lockdown not implemented.  */
2174
        return 0;
2175
    case 11: /* TCM DMA control.  */
2176
    case 12: /* Reserved.  */
2177
        goto bad_reg;
2178
    case 13: /* Process ID.  */
2179
        switch (op2) {
2180
        case 0:
2181
            return env->cp15.c13_fcse;
2182
        case 1:
2183
            return env->cp15.c13_context;
2184
        default:
2185
            goto bad_reg;
2186
        }
2187
    case 14: /* Generic timer */
2188
        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2189
            /* Dummy implementation: RAZ/WI for all */
2190
            return 0;
2191
        }
2192
        goto bad_reg;
2193
    case 15: /* Implementation specific.  */
2194
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2195
            if (op2 == 0 && crm == 1)
2196
                return env->cp15.c15_cpar;
2197

    
2198
            goto bad_reg;
2199
        }
2200
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2201
            switch (crm) {
2202
            case 0:
2203
                return 0;
2204
            case 1: /* Read TI925T configuration.  */
2205
                return env->cp15.c15_ticonfig;
2206
            case 2: /* Read I_max.  */
2207
                return env->cp15.c15_i_max;
2208
            case 3: /* Read I_min.  */
2209
                return env->cp15.c15_i_min;
2210
            case 4: /* Read thread-ID.  */
2211
                return env->cp15.c15_threadid;
2212
            case 8: /* TI925T_status */
2213
                return 0;
2214
            }
2215
            /* TODO: Peripheral port remap register:
2216
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2217
             * controller base address at $rn & ~0xfff and map size of
2218
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
2219
            goto bad_reg;
2220
        }
2221
        if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
2222
            switch (crm) {
2223
            case 0:
2224
                if ((op1 == 4) && (op2 == 0)) {
2225
                    /* The config_base_address should hold the value of
2226
                     * the peripheral base. ARM should get this from a CPU
2227
                     * object property, but that support isn't available in
2228
                     * December 2011. Default to 0 for now and board models
2229
                     * that care can set it by a private hook */
2230
                    return env->cp15.c15_config_base_address;
2231
                } else if ((op1 == 0) && (op2 == 0)) {
2232
                    /* power_control should be set to maximum latency. Again,
2233
                       default to 0 and set by private hook */
2234
                    return env->cp15.c15_power_control;
2235
                } else if ((op1 == 0) && (op2 == 1)) {
2236
                    return env->cp15.c15_diagnostic;
2237
                } else if ((op1 == 0) && (op2 == 2)) {
2238
                    return env->cp15.c15_power_diagnostic;
2239
                }
2240
                break;
2241
            case 1: /* NEON Busy */
2242
                return 0;
2243
            case 5: /* tlb lockdown */
2244
            case 6:
2245
            case 7:
2246
                if ((op1 == 5) && (op2 == 2)) {
2247
                    return 0;
2248
                }
2249
                break;
2250
            default:
2251
                break;
2252
            }
2253
            goto bad_reg;
2254
        }
2255
        return 0;
2256
    }
2257
bad_reg:
2258
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
2259
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2260
              (insn >> 16) & 0xf, crm, op1, op2);
2261
    return 0;
2262
}
2263

    
2264
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
2265
{
2266
    if ((env->uncached_cpsr & CPSR_M) == mode) {
2267
        env->regs[13] = val;
2268
    } else {
2269
        env->banked_r13[bank_number(env, mode)] = val;
2270
    }
2271
}
2272

    
2273
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
2274
{
2275
    if ((env->uncached_cpsr & CPSR_M) == mode) {
2276
        return env->regs[13];
2277
    } else {
2278
        return env->banked_r13[bank_number(env, mode)];
2279
    }
2280
}
2281

    
2282
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
2283
{
2284
    switch (reg) {
2285
    case 0: /* APSR */
2286
        return xpsr_read(env) & 0xf8000000;
2287
    case 1: /* IAPSR */
2288
        return xpsr_read(env) & 0xf80001ff;
2289
    case 2: /* EAPSR */
2290
        return xpsr_read(env) & 0xff00fc00;
2291
    case 3: /* xPSR */
2292
        return xpsr_read(env) & 0xff00fdff;
2293
    case 5: /* IPSR */
2294
        return xpsr_read(env) & 0x000001ff;
2295
    case 6: /* EPSR */
2296
        return xpsr_read(env) & 0x0700fc00;
2297
    case 7: /* IEPSR */
2298
        return xpsr_read(env) & 0x0700edff;
2299
    case 8: /* MSP */
2300
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2301
    case 9: /* PSP */
2302
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2303
    case 16: /* PRIMASK */
2304
        return (env->uncached_cpsr & CPSR_I) != 0;
2305
    case 17: /* BASEPRI */
2306
    case 18: /* BASEPRI_MAX */
2307
        return env->v7m.basepri;
2308
    case 19: /* FAULTMASK */
2309
        return (env->uncached_cpsr & CPSR_F) != 0;
2310
    case 20: /* CONTROL */
2311
        return env->v7m.control;
2312
    default:
2313
        /* ??? For debugging only.  */
2314
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2315
        return 0;
2316
    }
2317
}
2318

    
2319
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
2320
{
2321
    switch (reg) {
2322
    case 0: /* APSR */
2323
        xpsr_write(env, val, 0xf8000000);
2324
        break;
2325
    case 1: /* IAPSR */
2326
        xpsr_write(env, val, 0xf8000000);
2327
        break;
2328
    case 2: /* EAPSR */
2329
        xpsr_write(env, val, 0xfe00fc00);
2330
        break;
2331
    case 3: /* xPSR */
2332
        xpsr_write(env, val, 0xfe00fc00);
2333
        break;
2334
    case 5: /* IPSR */
2335
        /* IPSR bits are readonly.  */
2336
        break;
2337
    case 6: /* EPSR */
2338
        xpsr_write(env, val, 0x0600fc00);
2339
        break;
2340
    case 7: /* IEPSR */
2341
        xpsr_write(env, val, 0x0600fc00);
2342
        break;
2343
    case 8: /* MSP */
2344
        if (env->v7m.current_sp)
2345
            env->v7m.other_sp = val;
2346
        else
2347
            env->regs[13] = val;
2348
        break;
2349
    case 9: /* PSP */
2350
        if (env->v7m.current_sp)
2351
            env->regs[13] = val;
2352
        else
2353
            env->v7m.other_sp = val;
2354
        break;
2355
    case 16: /* PRIMASK */
2356
        if (val & 1)
2357
            env->uncached_cpsr |= CPSR_I;
2358
        else
2359
            env->uncached_cpsr &= ~CPSR_I;
2360
        break;
2361
    case 17: /* BASEPRI */
2362
        env->v7m.basepri = val & 0xff;
2363
        break;
2364
    case 18: /* BASEPRI_MAX */
2365
        val &= 0xff;
2366
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2367
            env->v7m.basepri = val;
2368
        break;
2369
    case 19: /* FAULTMASK */
2370
        if (val & 1)
2371
            env->uncached_cpsr |= CPSR_F;
2372
        else
2373
            env->uncached_cpsr &= ~CPSR_F;
2374
        break;
2375
    case 20: /* CONTROL */
2376
        env->v7m.control = val & 3;
2377
        switch_v7m_sp(env, (val & 2) != 0);
2378
        break;
2379
    default:
2380
        /* ??? For debugging only.  */
2381
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2382
        return;
2383
    }
2384
}
2385

    
2386
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2387
                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2388
                void *opaque)
2389
{
2390
    if (cpnum < 0 || cpnum > 14) {
2391
        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2392
        return;
2393
    }
2394

    
2395
    env->cp[cpnum].cp_read = cp_read;
2396
    env->cp[cpnum].cp_write = cp_write;
2397
    env->cp[cpnum].opaque = opaque;
2398
}
2399

    
2400
#endif
2401

    
2402
/* Note that signed overflow is undefined in C.  The following routines are
2403
   careful to use unsigned types where modulo arithmetic is required.
2404
   Failure to do so _will_ break on newer gcc.  */
2405

    
2406
/* Signed saturating arithmetic.  */
2407

    
2408
/* Perform 16-bit signed saturating addition.  */
2409
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2410
{
2411
    uint16_t res;
2412

    
2413
    res = a + b;
2414
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2415
        if (a & 0x8000)
2416
            res = 0x8000;
2417
        else
2418
            res = 0x7fff;
2419
    }
2420
    return res;
2421
}
2422

    
2423
/* Perform 8-bit signed saturating addition.  */
2424
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2425
{
2426
    uint8_t res;
2427

    
2428
    res = a + b;
2429
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2430
        if (a & 0x80)
2431
            res = 0x80;
2432
        else
2433
            res = 0x7f;
2434
    }
2435
    return res;
2436
}
2437

    
2438
/* Perform 16-bit signed saturating subtraction.  */
2439
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2440
{
2441
    uint16_t res;
2442

    
2443
    res = a - b;
2444
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2445
        if (a & 0x8000)
2446
            res = 0x8000;
2447
        else
2448
            res = 0x7fff;
2449
    }
2450
    return res;
2451
}
2452

    
2453
/* Perform 8-bit signed saturating subtraction.  */
2454
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2455
{
2456
    uint8_t res;
2457

    
2458
    res = a - b;
2459
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2460
        if (a & 0x80)
2461
            res = 0x80;
2462
        else
2463
            res = 0x7f;
2464
    }
2465
    return res;
2466
}
2467

    
2468
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2469
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2470
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2471
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2472
#define PFX q
2473

    
2474
#include "op_addsub.h"
2475

    
2476
/* Unsigned saturating arithmetic.  */
2477
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2478
{
2479
    uint16_t res;
2480
    res = a + b;
2481
    if (res < a)
2482
        res = 0xffff;
2483
    return res;
2484
}
2485

    
2486
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2487
{
2488
    if (a > b)
2489
        return a - b;
2490
    else
2491
        return 0;
2492
}
2493

    
2494
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2495
{
2496
    uint8_t res;
2497
    res = a + b;
2498
    if (res < a)
2499
        res = 0xff;
2500
    return res;
2501
}
2502

    
2503
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2504
{
2505
    if (a > b)
2506
        return a - b;
2507
    else
2508
        return 0;
2509
}
2510

    
2511
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2512
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2513
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2514
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2515
#define PFX uq
2516

    
2517
#include "op_addsub.h"
2518

    
2519
/* Signed modulo arithmetic.  */
2520
#define SARITH16(a, b, n, op) do { \
2521
    int32_t sum; \
2522
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2523
    RESULT(sum, n, 16); \
2524
    if (sum >= 0) \
2525
        ge |= 3 << (n * 2); \
2526
    } while(0)
2527

    
2528
#define SARITH8(a, b, n, op) do { \
2529
    int32_t sum; \
2530
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2531
    RESULT(sum, n, 8); \
2532
    if (sum >= 0) \
2533
        ge |= 1 << n; \
2534
    } while(0)
2535

    
2536

    
2537
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2538
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2539
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2540
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2541
#define PFX s
2542
#define ARITH_GE
2543

    
2544
#include "op_addsub.h"
2545

    
2546
/* Unsigned modulo arithmetic.  */
2547
#define ADD16(a, b, n) do { \
2548
    uint32_t sum; \
2549
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2550
    RESULT(sum, n, 16); \
2551
    if ((sum >> 16) == 1) \
2552
        ge |= 3 << (n * 2); \
2553
    } while(0)
2554

    
2555
#define ADD8(a, b, n) do { \
2556
    uint32_t sum; \
2557
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2558
    RESULT(sum, n, 8); \
2559
    if ((sum >> 8) == 1) \
2560
        ge |= 1 << n; \
2561
    } while(0)
2562

    
2563
#define SUB16(a, b, n) do { \
2564
    uint32_t sum; \
2565
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2566
    RESULT(sum, n, 16); \
2567
    if ((sum >> 16) == 0) \
2568
        ge |= 3 << (n * 2); \
2569
    } while(0)
2570

    
2571
#define SUB8(a, b, n) do { \
2572
    uint32_t sum; \
2573
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2574
    RESULT(sum, n, 8); \
2575
    if ((sum >> 8) == 0) \
2576
        ge |= 1 << n; \
2577
    } while(0)
2578

    
2579
#define PFX u
2580
#define ARITH_GE
2581

    
2582
#include "op_addsub.h"
2583

    
2584
/* Halved signed arithmetic.  */
2585
#define ADD16(a, b, n) \
2586
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2587
#define SUB16(a, b, n) \
2588
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2589
#define ADD8(a, b, n) \
2590
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2591
#define SUB8(a, b, n) \
2592
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2593
#define PFX sh
2594

    
2595
#include "op_addsub.h"
2596

    
2597
/* Halved unsigned arithmetic.  */
2598
#define ADD16(a, b, n) \
2599
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2600
#define SUB16(a, b, n) \
2601
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2602
#define ADD8(a, b, n) \
2603
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2604
#define SUB8(a, b, n) \
2605
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2606
#define PFX uh
2607

    
2608
#include "op_addsub.h"
2609

    
2610
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2611
{
2612
    if (a > b)
2613
        return a - b;
2614
    else
2615
        return b - a;
2616
}
2617

    
2618
/* Unsigned sum of absolute byte differences.  */
2619
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2620
{
2621
    uint32_t sum;
2622
    sum = do_usad(a, b);
2623
    sum += do_usad(a >> 8, b >> 8);
2624
    sum += do_usad(a >> 16, b >>16);
2625
    sum += do_usad(a >> 24, b >> 24);
2626
    return sum;
2627
}
2628

    
2629
/* For ARMv6 SEL instruction.  */
2630
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2631
{
2632
    uint32_t mask;
2633

    
2634
    mask = 0;
2635
    if (flags & 1)
2636
        mask |= 0xff;
2637
    if (flags & 2)
2638
        mask |= 0xff00;
2639
    if (flags & 4)
2640
        mask |= 0xff0000;
2641
    if (flags & 8)
2642
        mask |= 0xff000000;
2643
    return (a & mask) | (b & ~mask);
2644
}
2645

    
2646
uint32_t HELPER(logicq_cc)(uint64_t val)
2647
{
2648
    return (val >> 32) | (val != 0);
2649
}
2650

    
2651
/* VFP support.  We follow the convention used for VFP instrunctions:
2652
   Single precition routines have a "s" suffix, double precision a
2653
   "d" suffix.  */
2654

    
2655
/* Convert host exception flags to vfp form.  */
2656
static inline int vfp_exceptbits_from_host(int host_bits)
2657
{
2658
    int target_bits = 0;
2659

    
2660
    if (host_bits & float_flag_invalid)
2661
        target_bits |= 1;
2662
    if (host_bits & float_flag_divbyzero)
2663
        target_bits |= 2;
2664
    if (host_bits & float_flag_overflow)
2665
        target_bits |= 4;
2666
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2667
        target_bits |= 8;
2668
    if (host_bits & float_flag_inexact)
2669
        target_bits |= 0x10;
2670
    if (host_bits & float_flag_input_denormal)
2671
        target_bits |= 0x80;
2672
    return target_bits;
2673
}
2674

    
2675
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2676
{
2677
    int i;
2678
    uint32_t fpscr;
2679

    
2680
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2681
            | (env->vfp.vec_len << 16)
2682
            | (env->vfp.vec_stride << 20);
2683
    i = get_float_exception_flags(&env->vfp.fp_status);
2684
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2685
    fpscr |= vfp_exceptbits_from_host(i);
2686
    return fpscr;
2687
}
2688

    
2689
uint32_t vfp_get_fpscr(CPUState *env)
2690
{
2691
    return HELPER(vfp_get_fpscr)(env);
2692
}
2693

    
2694
/* Convert vfp exception flags to target form.  */
2695
static inline int vfp_exceptbits_to_host(int target_bits)
2696
{
2697
    int host_bits = 0;
2698

    
2699
    if (target_bits & 1)
2700
        host_bits |= float_flag_invalid;
2701
    if (target_bits & 2)
2702
        host_bits |= float_flag_divbyzero;
2703
    if (target_bits & 4)
2704
        host_bits |= float_flag_overflow;
2705
    if (target_bits & 8)
2706
        host_bits |= float_flag_underflow;
2707
    if (target_bits & 0x10)
2708
        host_bits |= float_flag_inexact;
2709
    if (target_bits & 0x80)
2710
        host_bits |= float_flag_input_denormal;
2711
    return host_bits;
2712
}
2713

    
2714
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2715
{
2716
    int i;
2717
    uint32_t changed;
2718

    
2719
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2720
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2721
    env->vfp.vec_len = (val >> 16) & 7;
2722
    env->vfp.vec_stride = (val >> 20) & 3;
2723

    
2724
    changed ^= val;
2725
    if (changed & (3 << 22)) {
2726
        i = (val >> 22) & 3;
2727
        switch (i) {
2728
        case 0:
2729
            i = float_round_nearest_even;
2730
            break;
2731
        case 1:
2732
            i = float_round_up;
2733
            break;
2734
        case 2:
2735
            i = float_round_down;
2736
            break;
2737
        case 3:
2738
            i = float_round_to_zero;
2739
            break;
2740
        }
2741
        set_float_rounding_mode(i, &env->vfp.fp_status);
2742
    }
2743
    if (changed & (1 << 24)) {
2744
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2745
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2746
    }
2747
    if (changed & (1 << 25))
2748
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2749

    
2750
    i = vfp_exceptbits_to_host(val);
2751
    set_float_exception_flags(i, &env->vfp.fp_status);
2752
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
2753
}
2754

    
2755
void vfp_set_fpscr(CPUState *env, uint32_t val)
2756
{
2757
    HELPER(vfp_set_fpscr)(env, val);
2758
}
2759

    
2760
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2761

    
2762
#define VFP_BINOP(name) \
2763
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2764
{ \
2765
    float_status *fpst = fpstp; \
2766
    return float32_ ## name(a, b, fpst); \
2767
} \
2768
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2769
{ \
2770
    float_status *fpst = fpstp; \
2771
    return float64_ ## name(a, b, fpst); \
2772
}
2773
VFP_BINOP(add)
2774
VFP_BINOP(sub)
2775
VFP_BINOP(mul)
2776
VFP_BINOP(div)
2777
#undef VFP_BINOP
2778

    
2779
float32 VFP_HELPER(neg, s)(float32 a)
2780
{
2781
    return float32_chs(a);
2782
}
2783

    
2784
float64 VFP_HELPER(neg, d)(float64 a)
2785
{
2786
    return float64_chs(a);
2787
}
2788

    
2789
float32 VFP_HELPER(abs, s)(float32 a)
2790
{
2791
    return float32_abs(a);
2792
}
2793

    
2794
float64 VFP_HELPER(abs, d)(float64 a)
2795
{
2796
    return float64_abs(a);
2797
}
2798

    
2799
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2800
{
2801
    return float32_sqrt(a, &env->vfp.fp_status);
2802
}
2803

    
2804
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2805
{
2806
    return float64_sqrt(a, &env->vfp.fp_status);
2807
}
2808

    
2809
/* XXX: check quiet/signaling case */
2810
#define DO_VFP_cmp(p, type) \
2811
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2812
{ \
2813
    uint32_t flags; \
2814
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2815
    case 0: flags = 0x6; break; \
2816
    case -1: flags = 0x8; break; \
2817
    case 1: flags = 0x2; break; \
2818
    default: case 2: flags = 0x3; break; \
2819
    } \
2820
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2821
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2822
} \
2823
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2824
{ \
2825
    uint32_t flags; \
2826
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2827
    case 0: flags = 0x6; break; \
2828
    case -1: flags = 0x8; break; \
2829
    case 1: flags = 0x2; break; \
2830
    default: case 2: flags = 0x3; break; \
2831
    } \
2832
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2833
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2834
}
2835
DO_VFP_cmp(s, float32)
2836
DO_VFP_cmp(d, float64)
2837
#undef DO_VFP_cmp
2838

    
2839
/* Integer to float and float to integer conversions */
2840

    
2841
#define CONV_ITOF(name, fsz, sign) \
2842
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2843
{ \
2844
    float_status *fpst = fpstp; \
2845
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2846
}
2847

    
2848
#define CONV_FTOI(name, fsz, sign, round) \
2849
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2850
{ \
2851
    float_status *fpst = fpstp; \
2852
    if (float##fsz##_is_any_nan(x)) { \
2853
        float_raise(float_flag_invalid, fpst); \
2854
        return 0; \
2855
    } \
2856
    return float##fsz##_to_##sign##int32##round(x, fpst); \
2857
}
2858

    
2859
#define FLOAT_CONVS(name, p, fsz, sign) \
2860
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2861
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2862
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2863

    
2864
FLOAT_CONVS(si, s, 32, )
2865
FLOAT_CONVS(si, d, 64, )
2866
FLOAT_CONVS(ui, s, 32, u)
2867
FLOAT_CONVS(ui, d, 64, u)
2868

    
2869
#undef CONV_ITOF
2870
#undef CONV_FTOI
2871
#undef FLOAT_CONVS
2872

    
2873
/* floating point conversion */
2874
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2875
{
2876
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
2877
    /* ARM requires that S<->D conversion of any kind of NaN generates
2878
     * a quiet NaN by forcing the most significant frac bit to 1.
2879
     */
2880
    return float64_maybe_silence_nan(r);
2881
}
2882

    
2883
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2884
{
2885
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
2886
    /* ARM requires that S<->D conversion of any kind of NaN generates
2887
     * a quiet NaN by forcing the most significant frac bit to 1.
2888
     */
2889
    return float32_maybe_silence_nan(r);
2890
}
2891

    
2892
/* VFP3 fixed point conversion.  */
2893
#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2894
float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
2895
                                    void *fpstp) \
2896
{ \
2897
    float_status *fpst = fpstp; \
2898
    float##fsz tmp; \
2899
    tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2900
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2901
} \
2902
uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2903
                                       void *fpstp) \
2904
{ \
2905
    float_status *fpst = fpstp; \
2906
    float##fsz tmp; \
2907
    if (float##fsz##_is_any_nan(x)) { \
2908
        float_raise(float_flag_invalid, fpst); \
2909
        return 0; \
2910
    } \
2911
    tmp = float##fsz##_scalbn(x, shift, fpst); \
2912
    return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2913
}
2914

    
2915
VFP_CONV_FIX(sh, d, 64, int16, )
2916
VFP_CONV_FIX(sl, d, 64, int32, )
2917
VFP_CONV_FIX(uh, d, 64, uint16, u)
2918
VFP_CONV_FIX(ul, d, 64, uint32, u)
2919
VFP_CONV_FIX(sh, s, 32, int16, )
2920
VFP_CONV_FIX(sl, s, 32, int32, )
2921
VFP_CONV_FIX(uh, s, 32, uint16, u)
2922
VFP_CONV_FIX(ul, s, 32, uint32, u)
2923
#undef VFP_CONV_FIX
2924

    
2925
/* Half precision conversions.  */
2926
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
2927
{
2928
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2929
    float32 r = float16_to_float32(make_float16(a), ieee, s);
2930
    if (ieee) {
2931
        return float32_maybe_silence_nan(r);
2932
    }
2933
    return r;
2934
}
2935

    
2936
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
2937
{
2938
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2939
    float16 r = float32_to_float16(a, ieee, s);
2940
    if (ieee) {
2941
        r = float16_maybe_silence_nan(r);
2942
    }
2943
    return float16_val(r);
2944
}
2945

    
2946
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2947
{
2948
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2949
}
2950

    
2951
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
2952
{
2953
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2954
}
2955

    
2956
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2957
{
2958
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2959
}
2960

    
2961
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2962
{
2963
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2964
}
2965

    
2966
#define float32_two make_float32(0x40000000)
2967
#define float32_three make_float32(0x40400000)
2968
#define float32_one_point_five make_float32(0x3fc00000)
2969

    
2970
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2971
{
2972
    float_status *s = &env->vfp.standard_fp_status;
2973
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2974
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2975
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
2976
            float_raise(float_flag_input_denormal, s);
2977
        }
2978
        return float32_two;
2979
    }
2980
    return float32_sub(float32_two, float32_mul(a, b, s), s);
2981
}
2982

    
2983
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2984
{
2985
    float_status *s = &env->vfp.standard_fp_status;
2986
    float32 product;
2987
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2988
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2989
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
2990
            float_raise(float_flag_input_denormal, s);
2991
        }
2992
        return float32_one_point_five;
2993
    }
2994
    product = float32_mul(a, b, s);
2995
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2996
}
2997

    
2998
/* NEON helpers.  */
2999

    
3000
/* Constants 256 and 512 are used in some helpers; we avoid relying on
3001
 * int->float conversions at run-time.  */
3002
#define float64_256 make_float64(0x4070000000000000LL)
3003
#define float64_512 make_float64(0x4080000000000000LL)
3004

    
3005
/* The algorithm that must be used to calculate the estimate
3006
 * is specified by the ARM ARM.
3007
 */
3008
static float64 recip_estimate(float64 a, CPUState *env)
3009
{
3010
    /* These calculations mustn't set any fp exception flags,
3011
     * so we use a local copy of the fp_status.
3012
     */
3013
    float_status dummy_status = env->vfp.standard_fp_status;
3014
    float_status *s = &dummy_status;
3015
    /* q = (int)(a * 512.0) */
3016
    float64 q = float64_mul(float64_512, a, s);
3017
    int64_t q_int = float64_to_int64_round_to_zero(q, s);
3018

    
3019
    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3020
    q = int64_to_float64(q_int, s);
3021
    q = float64_add(q, float64_half, s);
3022
    q = float64_div(q, float64_512, s);
3023
    q = float64_div(float64_one, q, s);
3024

    
3025
    /* s = (int)(256.0 * r + 0.5) */
3026
    q = float64_mul(q, float64_256, s);
3027
    q = float64_add(q, float64_half, s);
3028
    q_int = float64_to_int64_round_to_zero(q, s);
3029

    
3030
    /* return (double)s / 256.0 */
3031
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
3032
}
3033

    
3034
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
3035
{
3036
    float_status *s = &env->vfp.standard_fp_status;
3037
    float64 f64;
3038
    uint32_t val32 = float32_val(a);
3039

    
3040
    int result_exp;
3041
    int a_exp = (val32  & 0x7f800000) >> 23;
3042
    int sign = val32 & 0x80000000;
3043

    
3044
    if (float32_is_any_nan(a)) {
3045
        if (float32_is_signaling_nan(a)) {
3046
            float_raise(float_flag_invalid, s);
3047
        }
3048
        return float32_default_nan;
3049
    } else if (float32_is_infinity(a)) {
3050
        return float32_set_sign(float32_zero, float32_is_neg(a));
3051
    } else if (float32_is_zero_or_denormal(a)) {
3052
        if (!float32_is_zero(a)) {
3053
            float_raise(float_flag_input_denormal, s);
3054
        }
3055
        float_raise(float_flag_divbyzero, s);
3056
        return float32_set_sign(float32_infinity, float32_is_neg(a));
3057
    } else if (a_exp >= 253) {
3058
        float_raise(float_flag_underflow, s);
3059
        return float32_set_sign(float32_zero, float32_is_neg(a));
3060
    }
3061

    
3062
    f64 = make_float64((0x3feULL << 52)
3063
                       | ((int64_t)(val32 & 0x7fffff) << 29));
3064

    
3065
    result_exp = 253 - a_exp;
3066

    
3067
    f64 = recip_estimate(f64, env);
3068

    
3069
    val32 = sign
3070
        | ((result_exp & 0xff) << 23)
3071
        | ((float64_val(f64) >> 29) & 0x7fffff);
3072
    return make_float32(val32);
3073
}
3074

    
3075
/* The algorithm that must be used to calculate the estimate
3076
 * is specified by the ARM ARM.
3077
 */
3078
static float64 recip_sqrt_estimate(float64 a, CPUState *env)
3079
{
3080
    /* These calculations mustn't set any fp exception flags,
3081
     * so we use a local copy of the fp_status.
3082
     */
3083
    float_status dummy_status = env->vfp.standard_fp_status;
3084
    float_status *s = &dummy_status;
3085
    float64 q;
3086
    int64_t q_int;
3087

    
3088
    if (float64_lt(a, float64_half, s)) {
3089
        /* range 0.25 <= a < 0.5 */
3090

    
3091
        /* a in units of 1/512 rounded down */
3092
        /* q0 = (int)(a * 512.0);  */
3093
        q = float64_mul(float64_512, a, s);
3094
        q_int = float64_to_int64_round_to_zero(q, s);
3095

    
3096
        /* reciprocal root r */
3097
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
3098
        q = int64_to_float64(q_int, s);
3099
        q = float64_add(q, float64_half, s);
3100
        q = float64_div(q, float64_512, s);
3101
        q = float64_sqrt(q, s);
3102
        q = float64_div(float64_one, q, s);
3103
    } else {
3104
        /* range 0.5 <= a < 1.0 */
3105

    
3106
        /* a in units of 1/256 rounded down */
3107
        /* q1 = (int)(a * 256.0); */
3108
        q = float64_mul(float64_256, a, s);
3109
        int64_t q_int = float64_to_int64_round_to_zero(q, s);
3110

    
3111
        /* reciprocal root r */
3112
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3113
        q = int64_to_float64(q_int, s);
3114
        q = float64_add(q, float64_half, s);
3115
        q = float64_div(q, float64_256, s);
3116
        q = float64_sqrt(q, s);
3117
        q = float64_div(float64_one, q, s);
3118
    }
3119
    /* r in units of 1/256 rounded to nearest */
3120
    /* s = (int)(256.0 * r + 0.5); */
3121

    
3122
    q = float64_mul(q, float64_256,s );
3123
    q = float64_add(q, float64_half, s);
3124
    q_int = float64_to_int64_round_to_zero(q, s);
3125

    
3126
    /* return (double)s / 256.0;*/
3127
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
3128
}
3129

    
3130
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
3131
{
3132
    float_status *s = &env->vfp.standard_fp_status;
3133
    int result_exp;
3134
    float64 f64;
3135
    uint32_t val;
3136
    uint64_t val64;
3137

    
3138
    val = float32_val(a);
3139

    
3140
    if (float32_is_any_nan(a)) {
3141
        if (float32_is_signaling_nan(a)) {
3142
            float_raise(float_flag_invalid, s);
3143
        }
3144
        return float32_default_nan;
3145
    } else if (float32_is_zero_or_denormal(a)) {
3146
        if (!float32_is_zero(a)) {
3147
            float_raise(float_flag_input_denormal, s);
3148
        }
3149
        float_raise(float_flag_divbyzero, s);
3150
        return float32_set_sign(float32_infinity, float32_is_neg(a));
3151
    } else if (float32_is_neg(a)) {
3152
        float_raise(float_flag_invalid, s);
3153
        return float32_default_nan;
3154
    } else if (float32_is_infinity(a)) {
3155
        return float32_zero;
3156
    }
3157

    
3158
    /* Normalize to a double-precision value between 0.25 and 1.0,
3159
     * preserving the parity of the exponent.  */
3160
    if ((val & 0x800000) == 0) {
3161
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3162
                           | (0x3feULL << 52)
3163
                           | ((uint64_t)(val & 0x7fffff) << 29));
3164
    } else {
3165
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3166
                           | (0x3fdULL << 52)
3167
                           | ((uint64_t)(val & 0x7fffff) << 29));
3168
    }
3169

    
3170
    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3171

    
3172
    f64 = recip_sqrt_estimate(f64, env);
3173

    
3174
    val64 = float64_val(f64);
3175

    
3176
    val = ((result_exp & 0xff) << 23)
3177
        | ((val64 >> 29)  & 0x7fffff);
3178
    return make_float32(val);
3179
}
3180

    
3181
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
3182
{
3183
    float64 f64;
3184

    
3185
    if ((a & 0x80000000) == 0) {
3186
        return 0xffffffff;
3187
    }
3188

    
3189
    f64 = make_float64((0x3feULL << 52)
3190
                       | ((int64_t)(a & 0x7fffffff) << 21));
3191

    
3192
    f64 = recip_estimate (f64, env);
3193

    
3194
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3195
}
3196

    
3197
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
3198
{
3199
    float64 f64;
3200

    
3201
    if ((a & 0xc0000000) == 0) {
3202
        return 0xffffffff;
3203
    }
3204

    
3205
    if (a & 0x80000000) {
3206
        f64 = make_float64((0x3feULL << 52)
3207
                           | ((uint64_t)(a & 0x7fffffff) << 21));
3208
    } else { /* bits 31-30 == '01' */
3209
        f64 = make_float64((0x3fdULL << 52)
3210
                           | ((uint64_t)(a & 0x3fffffff) << 22));
3211
    }
3212

    
3213
    f64 = recip_sqrt_estimate(f64, env);
3214

    
3215
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3216
}
3217

    
3218
/* VFPv4 fused multiply-accumulate */
3219
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3220
{
3221
    float_status *fpst = fpstp;
3222
    return float32_muladd(a, b, c, 0, fpst);
3223
}
3224

    
3225
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3226
{
3227
    float_status *fpst = fpstp;
3228
    return float64_muladd(a, b, c, 0, fpst);
3229
}
3230

    
3231
void HELPER(set_teecr)(CPUState *env, uint32_t val)
3232
{
3233
    val &= 1;
3234
    if (env->teecr != val) {
3235
        env->teecr = val;
3236
        tb_flush(env);
3237
    }
3238
}