Statistics
| Branch: | Revision:

root / op-i386.c @ 2792c4f2

History | View | Annotate | Download (51.3 kB)

1
/*
2
 *  i386 micro operations
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec-i386.h"
21

    
22
/* NOTE: data are not static to force relocation generation by GCC */
23

    
24
uint8_t parity_table[256] = {
25
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
26
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
27
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
28
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
29
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
30
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
31
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
32
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
33
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
34
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
35
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
36
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
37
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
38
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
39
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
40
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
41
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
42
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
43
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
44
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
45
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
46
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
47
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
48
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
49
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
50
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
51
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
54
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
55
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
56
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
57
};
58

    
59
/* modulo 17 table */
60
const uint8_t rclw_table[32] = {
61
    0, 1, 2, 3, 4, 5, 6, 7, 
62
    8, 9,10,11,12,13,14,15,
63
   16, 0, 1, 2, 3, 4, 5, 6,
64
    7, 8, 9,10,11,12,13,14,
65
};
66

    
67
/* modulo 9 table */
68
const uint8_t rclb_table[32] = {
69
    0, 1, 2, 3, 4, 5, 6, 7, 
70
    8, 0, 1, 2, 3, 4, 5, 6,
71
    7, 8, 0, 1, 2, 3, 4, 5, 
72
    6, 7, 8, 0, 1, 2, 3, 4,
73
};
74

    
75
#ifdef USE_X86LDOUBLE
76
/* an array of Intel 80-bit FP constants, to be loaded via integer ops */
77
typedef unsigned short f15ld[5];
78
const f15ld f15rk[] =
79
{
80
/*0*/        {0x0000,0x0000,0x0000,0x0000,0x0000},
81
/*1*/        {0x0000,0x0000,0x0000,0x8000,0x3fff},
82
/*pi*/        {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
83
/*lg2*/        {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
84
/*ln2*/        {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
85
/*l2e*/        {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
86
/*l2t*/        {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
87
};
88
#else
89
/* the same, 64-bit version */
90
typedef unsigned short f15ld[4];
91
const f15ld f15rk[] =
92
{
93
#ifndef WORDS_BIGENDIAN
94
/*0*/        {0x0000,0x0000,0x0000,0x0000},
95
/*1*/        {0x0000,0x0000,0x0000,0x3ff0},
96
/*pi*/        {0x2d18,0x5444,0x21fb,0x4009},
97
/*lg2*/        {0x79ff,0x509f,0x4413,0x3fd3},
98
/*ln2*/        {0x39ef,0xfefa,0x2e42,0x3fe6},
99
/*l2e*/        {0x82fe,0x652b,0x1547,0x3ff7},
100
/*l2t*/        {0xa371,0x0979,0x934f,0x400a}
101
#else
102
/*0*/   {0x0000,0x0000,0x0000,0x0000},
103
/*1*/   {0x3ff0,0x0000,0x0000,0x0000},
104
/*pi*/  {0x4009,0x21fb,0x5444,0x2d18},
105
/*lg2*/        {0x3fd3,0x4413,0x509f,0x79ff},
106
/*ln2*/        {0x3fe6,0x2e42,0xfefa,0x39ef},
107
/*l2e*/        {0x3ff7,0x1547,0x652b,0x82fe},
108
/*l2t*/        {0x400a,0x934f,0x0979,0xa371}
109
#endif
110
};
111
#endif
112
    
113
/* n must be a constant to be efficient */
114
static inline int lshift(int x, int n)
115
{
116
    if (n >= 0)
117
        return x << n;
118
    else
119
        return x >> (-n);
120
}
121

    
122
/* we define the various pieces of code used by the JIT */
123

    
124
#define REG EAX
125
#define REGNAME _EAX
126
#include "opreg_template.h"
127
#undef REG
128
#undef REGNAME
129

    
130
#define REG ECX
131
#define REGNAME _ECX
132
#include "opreg_template.h"
133
#undef REG
134
#undef REGNAME
135

    
136
#define REG EDX
137
#define REGNAME _EDX
138
#include "opreg_template.h"
139
#undef REG
140
#undef REGNAME
141

    
142
#define REG EBX
143
#define REGNAME _EBX
144
#include "opreg_template.h"
145
#undef REG
146
#undef REGNAME
147

    
148
#define REG ESP
149
#define REGNAME _ESP
150
#include "opreg_template.h"
151
#undef REG
152
#undef REGNAME
153

    
154
#define REG EBP
155
#define REGNAME _EBP
156
#include "opreg_template.h"
157
#undef REG
158
#undef REGNAME
159

    
160
#define REG ESI
161
#define REGNAME _ESI
162
#include "opreg_template.h"
163
#undef REG
164
#undef REGNAME
165

    
166
#define REG EDI
167
#define REGNAME _EDI
168
#include "opreg_template.h"
169
#undef REG
170
#undef REGNAME
171

    
172
/* operations with flags */
173

    
174
void OPPROTO op_addl_T0_T1_cc(void)
175
{
176
    CC_SRC = T0;
177
    T0 += T1;
178
    CC_DST = T0;
179
}
180

    
181
void OPPROTO op_orl_T0_T1_cc(void)
182
{
183
    T0 |= T1;
184
    CC_DST = T0;
185
}
186

    
187
void OPPROTO op_andl_T0_T1_cc(void)
188
{
189
    T0 &= T1;
190
    CC_DST = T0;
191
}
192

    
193
void OPPROTO op_subl_T0_T1_cc(void)
194
{
195
    CC_SRC = T0;
196
    T0 -= T1;
197
    CC_DST = T0;
198
}
199

    
200
void OPPROTO op_xorl_T0_T1_cc(void)
201
{
202
    T0 ^= T1;
203
    CC_DST = T0;
204
}
205

    
206
void OPPROTO op_cmpl_T0_T1_cc(void)
207
{
208
    CC_SRC = T0;
209
    CC_DST = T0 - T1;
210
}
211

    
212
void OPPROTO op_negl_T0_cc(void)
213
{
214
    CC_SRC = 0;
215
    T0 = -T0;
216
    CC_DST = T0;
217
}
218

    
219
void OPPROTO op_incl_T0_cc(void)
220
{
221
    CC_SRC = cc_table[CC_OP].compute_c();
222
    T0++;
223
    CC_DST = T0;
224
}
225

    
226
void OPPROTO op_decl_T0_cc(void)
227
{
228
    CC_SRC = cc_table[CC_OP].compute_c();
229
    T0--;
230
    CC_DST = T0;
231
}
232

    
233
void OPPROTO op_testl_T0_T1_cc(void)
234
{
235
    CC_DST = T0 & T1;
236
}
237

    
238
/* operations without flags */
239

    
240
void OPPROTO op_addl_T0_T1(void)
241
{
242
    T0 += T1;
243
}
244

    
245
void OPPROTO op_orl_T0_T1(void)
246
{
247
    T0 |= T1;
248
}
249

    
250
void OPPROTO op_andl_T0_T1(void)
251
{
252
    T0 &= T1;
253
}
254

    
255
void OPPROTO op_subl_T0_T1(void)
256
{
257
    T0 -= T1;
258
}
259

    
260
void OPPROTO op_xorl_T0_T1(void)
261
{
262
    T0 ^= T1;
263
}
264

    
265
void OPPROTO op_negl_T0(void)
266
{
267
    T0 = -T0;
268
}
269

    
270
void OPPROTO op_incl_T0(void)
271
{
272
    T0++;
273
}
274

    
275
void OPPROTO op_decl_T0(void)
276
{
277
    T0--;
278
}
279

    
280
void OPPROTO op_notl_T0(void)
281
{
282
    T0 = ~T0;
283
}
284

    
285
void OPPROTO op_bswapl_T0(void)
286
{
287
    T0 = bswap32(T0);
288
}
289

    
290
/* multiply/divide */
291
void OPPROTO op_mulb_AL_T0(void)
292
{
293
    unsigned int res;
294
    res = (uint8_t)EAX * (uint8_t)T0;
295
    EAX = (EAX & 0xffff0000) | res;
296
    CC_SRC = (res & 0xff00);
297
}
298

    
299
void OPPROTO op_imulb_AL_T0(void)
300
{
301
    int res;
302
    res = (int8_t)EAX * (int8_t)T0;
303
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
304
    CC_SRC = (res != (int8_t)res);
305
}
306

    
307
void OPPROTO op_mulw_AX_T0(void)
308
{
309
    unsigned int res;
310
    res = (uint16_t)EAX * (uint16_t)T0;
311
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
312
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
313
    CC_SRC = res >> 16;
314
}
315

    
316
void OPPROTO op_imulw_AX_T0(void)
317
{
318
    int res;
319
    res = (int16_t)EAX * (int16_t)T0;
320
    EAX = (EAX & 0xffff0000) | (res & 0xffff);
321
    EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
322
    CC_SRC = (res != (int16_t)res);
323
}
324

    
325
void OPPROTO op_mull_EAX_T0(void)
326
{
327
    uint64_t res;
328
    res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
329
    EAX = res;
330
    EDX = res >> 32;
331
    CC_SRC = res >> 32;
332
}
333

    
334
void OPPROTO op_imull_EAX_T0(void)
335
{
336
    int64_t res;
337
    res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
338
    EAX = res;
339
    EDX = res >> 32;
340
    CC_SRC = (res != (int32_t)res);
341
}
342

    
343
void OPPROTO op_imulw_T0_T1(void)
344
{
345
    int res;
346
    res = (int16_t)T0 * (int16_t)T1;
347
    T0 = res;
348
    CC_SRC = (res != (int16_t)res);
349
}
350

    
351
void OPPROTO op_imull_T0_T1(void)
352
{
353
    int64_t res;
354
    res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
355
    T0 = res;
356
    CC_SRC = (res != (int32_t)res);
357
}
358

    
359
/* division, flags are undefined */
360
/* XXX: add exceptions for overflow */
361
void OPPROTO op_divb_AL_T0(void)
362
{
363
    unsigned int num, den, q, r;
364

    
365
    num = (EAX & 0xffff);
366
    den = (T0 & 0xff);
367
    if (den == 0)
368
        raise_exception(EXCP00_DIVZ);
369
    q = (num / den) & 0xff;
370
    r = (num % den) & 0xff;
371
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
372
}
373

    
374
void OPPROTO op_idivb_AL_T0(void)
375
{
376
    int num, den, q, r;
377

    
378
    num = (int16_t)EAX;
379
    den = (int8_t)T0;
380
    if (den == 0)
381
        raise_exception(EXCP00_DIVZ);
382
    q = (num / den) & 0xff;
383
    r = (num % den) & 0xff;
384
    EAX = (EAX & 0xffff0000) | (r << 8) | q;
385
}
386

    
387
void OPPROTO op_divw_AX_T0(void)
388
{
389
    unsigned int num, den, q, r;
390

    
391
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
392
    den = (T0 & 0xffff);
393
    if (den == 0)
394
        raise_exception(EXCP00_DIVZ);
395
    q = (num / den) & 0xffff;
396
    r = (num % den) & 0xffff;
397
    EAX = (EAX & 0xffff0000) | q;
398
    EDX = (EDX & 0xffff0000) | r;
399
}
400

    
401
void OPPROTO op_idivw_AX_T0(void)
402
{
403
    int num, den, q, r;
404

    
405
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
406
    den = (int16_t)T0;
407
    if (den == 0)
408
        raise_exception(EXCP00_DIVZ);
409
    q = (num / den) & 0xffff;
410
    r = (num % den) & 0xffff;
411
    EAX = (EAX & 0xffff0000) | q;
412
    EDX = (EDX & 0xffff0000) | r;
413
}
414

    
415
#ifdef BUGGY_GCC_DIV64
416
/* gcc 2.95.4 on PowerPC does not seem to like using __udivdi3, so we
417
   call it from another function */
418
uint32_t div64(uint32_t *q_ptr, uint64_t num, uint32_t den)
419
{
420
    *q_ptr = num / den;
421
    return num % den;
422
}
423

    
424
int32_t idiv64(int32_t *q_ptr, int64_t num, int32_t den)
425
{
426
    *q_ptr = num / den;
427
    return num % den;
428
}
429
#endif
430

    
431
void OPPROTO op_divl_EAX_T0(void)
432
{
433
    unsigned int den, q, r;
434
    uint64_t num;
435
    
436
    num = EAX | ((uint64_t)EDX << 32);
437
    den = T0;
438
    if (den == 0)
439
        raise_exception(EXCP00_DIVZ);
440
#ifdef BUGGY_GCC_DIV64
441
    r = div64(&q, num, den);
442
#else
443
    q = (num / den);
444
    r = (num % den);
445
#endif
446
    EAX = q;
447
    EDX = r;
448
}
449

    
450
void OPPROTO op_idivl_EAX_T0(void)
451
{
452
    int den, q, r;
453
    int64_t num;
454
    
455
    num = EAX | ((uint64_t)EDX << 32);
456
    den = T0;
457
    if (den == 0)
458
        raise_exception(EXCP00_DIVZ);
459
#ifdef BUGGY_GCC_DIV64
460
    r = idiv64(&q, num, den);
461
#else
462
    q = (num / den);
463
    r = (num % den);
464
#endif
465
    EAX = q;
466
    EDX = r;
467
}
468

    
469
/* constant load & misc op */
470

    
471
void OPPROTO op_movl_T0_im(void)
472
{
473
    T0 = PARAM1;
474
}
475

    
476
void OPPROTO op_addl_T0_im(void)
477
{
478
    T0 += PARAM1;
479
}
480

    
481
void OPPROTO op_andl_T0_ffff(void)
482
{
483
    T0 = T0 & 0xffff;
484
}
485

    
486
void OPPROTO op_movl_T0_T1(void)
487
{
488
    T0 = T1;
489
}
490

    
491
void OPPROTO op_movl_T1_im(void)
492
{
493
    T1 = PARAM1;
494
}
495

    
496
void OPPROTO op_addl_T1_im(void)
497
{
498
    T1 += PARAM1;
499
}
500

    
501
void OPPROTO op_movl_T1_A0(void)
502
{
503
    T1 = A0;
504
}
505

    
506
void OPPROTO op_movl_A0_im(void)
507
{
508
    A0 = PARAM1;
509
}
510

    
511
void OPPROTO op_addl_A0_im(void)
512
{
513
    A0 += PARAM1;
514
}
515

    
516
void OPPROTO op_addl_A0_AL(void)
517
{
518
    A0 += (EAX & 0xff);
519
}
520

    
521
void OPPROTO op_andl_A0_ffff(void)
522
{
523
    A0 = A0 & 0xffff;
524
}
525

    
526
/* memory access */
527

    
528
void OPPROTO op_ldub_T0_A0(void)
529
{
530
    T0 = ldub((uint8_t *)A0);
531
}
532

    
533
void OPPROTO op_ldsb_T0_A0(void)
534
{
535
    T0 = ldsb((int8_t *)A0);
536
}
537

    
538
void OPPROTO op_lduw_T0_A0(void)
539
{
540
    T0 = lduw((uint8_t *)A0);
541
}
542

    
543
void OPPROTO op_ldsw_T0_A0(void)
544
{
545
    T0 = ldsw((int8_t *)A0);
546
}
547

    
548
void OPPROTO op_ldl_T0_A0(void)
549
{
550
    T0 = ldl((uint8_t *)A0);
551
}
552

    
553
void OPPROTO op_ldub_T1_A0(void)
554
{
555
    T1 = ldub((uint8_t *)A0);
556
}
557

    
558
void OPPROTO op_ldsb_T1_A0(void)
559
{
560
    T1 = ldsb((int8_t *)A0);
561
}
562

    
563
void OPPROTO op_lduw_T1_A0(void)
564
{
565
    T1 = lduw((uint8_t *)A0);
566
}
567

    
568
void OPPROTO op_ldsw_T1_A0(void)
569
{
570
    T1 = ldsw((int8_t *)A0);
571
}
572

    
573
void OPPROTO op_ldl_T1_A0(void)
574
{
575
    T1 = ldl((uint8_t *)A0);
576
}
577

    
578
void OPPROTO op_stb_T0_A0(void)
579
{
580
    stb((uint8_t *)A0, T0);
581
}
582

    
583
void OPPROTO op_stw_T0_A0(void)
584
{
585
    stw((uint8_t *)A0, T0);
586
}
587

    
588
void OPPROTO op_stl_T0_A0(void)
589
{
590
    stl((uint8_t *)A0, T0);
591
}
592

    
593
/* used for bit operations */
594

    
595
void OPPROTO op_add_bitw_A0_T1(void)
596
{
597
    A0 += ((int32_t)T1 >> 4) << 1;
598
}
599

    
600
void OPPROTO op_add_bitl_A0_T1(void)
601
{
602
    A0 += ((int32_t)T1 >> 5) << 2;
603
}
604

    
605
/* indirect jump */
606

    
607
void OPPROTO op_jmp_T0(void)
608
{
609
    EIP = T0;
610
}
611

    
612
void OPPROTO op_jmp_im(void)
613
{
614
    EIP = PARAM1;
615
}
616

    
617
void OPPROTO op_int_im(void)
618
{
619
    int intno;
620
    intno = PARAM1;
621
    EIP = PARAM2;
622
    raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
623
}
624

    
625
void OPPROTO op_raise_exception(void)
626
{
627
    int exception_index;
628
    exception_index = PARAM1;
629
    raise_exception(exception_index);
630
}
631

    
632
void OPPROTO op_into(void)
633
{
634
    int eflags;
635
    eflags = cc_table[CC_OP].compute_all();
636
    if (eflags & CC_O) {
637
        EIP = PARAM1;
638
        raise_exception(EXCP04_INTO);
639
    }
640
    FORCE_RET();
641
}
642

    
643
void OPPROTO op_cli(void)
644
{
645
    env->eflags &= ~IF_MASK;
646
}
647

    
648
void OPPROTO op_sti(void)
649
{
650
    env->eflags |= IF_MASK;
651
}
652

    
653
#if 0
654
/* vm86plus instructions */
655
void OPPROTO op_cli_vm(void)
656
{
657
    env->eflags &= ~VIF_MASK;
658
}
659

660
void OPPROTO op_sti_vm(void)
661
{
662
    env->eflags |= VIF_MASK;
663
    if (env->eflags & VIP_MASK) {
664
        EIP = PARAM1;
665
        raise_exception(EXCP0D_GPF);
666
    }
667
    FORCE_RET();
668
}
669
#endif
670

    
671
void OPPROTO op_boundw(void)
672
{
673
    int low, high, v;
674
    low = ldsw((uint8_t *)A0);
675
    high = ldsw((uint8_t *)A0 + 2);
676
    v = (int16_t)T0;
677
    if (v < low || v > high)
678
        raise_exception(EXCP05_BOUND);
679
    FORCE_RET();
680
}
681

    
682
void OPPROTO op_boundl(void)
683
{
684
    int low, high, v;
685
    low = ldl((uint8_t *)A0);
686
    high = ldl((uint8_t *)A0 + 4);
687
    v = T0;
688
    if (v < low || v > high)
689
        raise_exception(EXCP05_BOUND);
690
    FORCE_RET();
691
}
692

    
693
void OPPROTO op_cmpxchg8b(void)
694
{
695
    uint64_t d;
696
    int eflags;
697

    
698
    eflags = cc_table[CC_OP].compute_all();
699
    d = ldq((uint8_t *)A0);
700
    if (d == (((uint64_t)EDX << 32) | EAX)) {
701
        stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
702
        eflags |= CC_Z;
703
    } else {
704
        EDX = d >> 32;
705
        EAX = d;
706
        eflags &= ~CC_Z;
707
    }
708
    CC_SRC = eflags;
709
    FORCE_RET();
710
}
711

    
712
/* string ops */
713

    
714
#define ldul ldl
715

    
716
#define SHIFT 0
717
#include "ops_template.h"
718
#undef SHIFT
719

    
720
#define SHIFT 1
721
#include "ops_template.h"
722
#undef SHIFT
723

    
724
#define SHIFT 2
725
#include "ops_template.h"
726
#undef SHIFT
727

    
728
/* sign extend */
729

    
730
void OPPROTO op_movsbl_T0_T0(void)
731
{
732
    T0 = (int8_t)T0;
733
}
734

    
735
void OPPROTO op_movzbl_T0_T0(void)
736
{
737
    T0 = (uint8_t)T0;
738
}
739

    
740
void OPPROTO op_movswl_T0_T0(void)
741
{
742
    T0 = (int16_t)T0;
743
}
744

    
745
void OPPROTO op_movzwl_T0_T0(void)
746
{
747
    T0 = (uint16_t)T0;
748
}
749

    
750
void OPPROTO op_movswl_EAX_AX(void)
751
{
752
    EAX = (int16_t)EAX;
753
}
754

    
755
void OPPROTO op_movsbw_AX_AL(void)
756
{
757
    EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
758
}
759

    
760
void OPPROTO op_movslq_EDX_EAX(void)
761
{
762
    EDX = (int32_t)EAX >> 31;
763
}
764

    
765
void OPPROTO op_movswl_DX_AX(void)
766
{
767
    EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
768
}
769

    
770
/* push/pop */
771

    
772
void op_pushl_T0(void)
773
{
774
    uint32_t offset;
775
    offset = ESP - 4;
776
    stl((void *)offset, T0);
777
    /* modify ESP after to handle exceptions correctly */
778
    ESP = offset;
779
}
780

    
781
void op_pushw_T0(void)
782
{
783
    uint32_t offset;
784
    offset = ESP - 2;
785
    stw((void *)offset, T0);
786
    /* modify ESP after to handle exceptions correctly */
787
    ESP = offset;
788
}
789

    
790
void op_pushl_ss32_T0(void)
791
{
792
    uint32_t offset;
793
    offset = ESP - 4;
794
    stl(env->seg_cache[R_SS].base + offset, T0);
795
    /* modify ESP after to handle exceptions correctly */
796
    ESP = offset;
797
}
798

    
799
void op_pushw_ss32_T0(void)
800
{
801
    uint32_t offset;
802
    offset = ESP - 2;
803
    stw(env->seg_cache[R_SS].base + offset, T0);
804
    /* modify ESP after to handle exceptions correctly */
805
    ESP = offset;
806
}
807

    
808
void op_pushl_ss16_T0(void)
809
{
810
    uint32_t offset;
811
    offset = (ESP - 4) & 0xffff;
812
    stl(env->seg_cache[R_SS].base + offset, T0);
813
    /* modify ESP after to handle exceptions correctly */
814
    ESP = (ESP & ~0xffff) | offset;
815
}
816

    
817
void op_pushw_ss16_T0(void)
818
{
819
    uint32_t offset;
820
    offset = (ESP - 2) & 0xffff;
821
    stw(env->seg_cache[R_SS].base + offset, T0);
822
    /* modify ESP after to handle exceptions correctly */
823
    ESP = (ESP & ~0xffff) | offset;
824
}
825

    
826
/* NOTE: ESP update is done after */
827
void op_popl_T0(void)
828
{
829
    T0 = ldl((void *)ESP);
830
}
831

    
832
void op_popw_T0(void)
833
{
834
    T0 = lduw((void *)ESP);
835
}
836

    
837
void op_popl_ss32_T0(void)
838
{
839
    T0 = ldl(env->seg_cache[R_SS].base + ESP);
840
}
841

    
842
void op_popw_ss32_T0(void)
843
{
844
    T0 = lduw(env->seg_cache[R_SS].base + ESP);
845
}
846

    
847
void op_popl_ss16_T0(void)
848
{
849
    T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
850
}
851

    
852
void op_popw_ss16_T0(void)
853
{
854
    T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
855
}
856

    
857
void op_addl_ESP_4(void)
858
{
859
    ESP += 4;
860
}
861

    
862
void op_addl_ESP_2(void)
863
{
864
    ESP += 2;
865
}
866

    
867
void op_addw_ESP_4(void)
868
{
869
    ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
870
}
871

    
872
void op_addw_ESP_2(void)
873
{
874
    ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
875
}
876

    
877
void op_addl_ESP_im(void)
878
{
879
    ESP += PARAM1;
880
}
881

    
882
void op_addw_ESP_im(void)
883
{
884
    ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
885
}
886

    
887
/* rdtsc */
888
#ifndef __i386__
889
uint64_t emu_time;
890
#endif
891

    
892
void OPPROTO op_rdtsc(void)
893
{
894
    uint64_t val;
895
#ifdef __i386__
896
    asm("rdtsc" : "=A" (val));
897
#else
898
    /* better than nothing: the time increases */
899
    val = emu_time++;
900
#endif
901
    EAX = val;
902
    EDX = val >> 32;
903
}
904

    
905
/* We simulate a pre-MMX pentium as in valgrind */
906
#define CPUID_FP87 (1 << 0)
907
#define CPUID_VME  (1 << 1)
908
#define CPUID_DE   (1 << 2)
909
#define CPUID_PSE  (1 << 3)
910
#define CPUID_TSC  (1 << 4)
911
#define CPUID_MSR  (1 << 5)
912
#define CPUID_PAE  (1 << 6)
913
#define CPUID_MCE  (1 << 7)
914
#define CPUID_CX8  (1 << 8)
915
#define CPUID_APIC (1 << 9)
916
#define CPUID_SEP  (1 << 11) /* sysenter/sysexit */
917
#define CPUID_MTRR (1 << 12)
918
#define CPUID_PGE  (1 << 13)
919
#define CPUID_MCA  (1 << 14)
920
#define CPUID_CMOV (1 << 15)
921
/* ... */
922
#define CPUID_MMX  (1 << 23)
923
#define CPUID_FXSR (1 << 24)
924
#define CPUID_SSE  (1 << 25)
925
#define CPUID_SSE2 (1 << 26)
926

    
927
void helper_cpuid(void)
928
{
929
    if (EAX == 0) {
930
        EAX = 1; /* max EAX index supported */
931
        EBX = 0x756e6547;
932
        ECX = 0x6c65746e;
933
        EDX = 0x49656e69;
934
    } else {
935
        /* EAX = 1 info */
936
        EAX = 0x52b;
937
        EBX = 0;
938
        ECX = 0;
939
        EDX = CPUID_FP87 | CPUID_DE | CPUID_PSE |
940
            CPUID_TSC | CPUID_MSR | CPUID_MCE |
941
            CPUID_CX8;
942
    }
943
}
944

    
945
void OPPROTO op_cpuid(void)
946
{
947
    helper_cpuid();
948
}
949

    
950
/* bcd */
951

    
952
/* XXX: exception */
953
void OPPROTO op_aam(void)
954
{
955
    int base = PARAM1;
956
    int al, ah;
957
    al = EAX & 0xff;
958
    ah = al / base;
959
    al = al % base;
960
    EAX = (EAX & ~0xffff) | al | (ah << 8);
961
    CC_DST = al;
962
}
963

    
964
void OPPROTO op_aad(void)
965
{
966
    int base = PARAM1;
967
    int al, ah;
968
    al = EAX & 0xff;
969
    ah = (EAX >> 8) & 0xff;
970
    al = ((ah * base) + al) & 0xff;
971
    EAX = (EAX & ~0xffff) | al;
972
    CC_DST = al;
973
}
974

    
975
void OPPROTO op_aaa(void)
976
{
977
    int icarry;
978
    int al, ah, af;
979
    int eflags;
980

    
981
    eflags = cc_table[CC_OP].compute_all();
982
    af = eflags & CC_A;
983
    al = EAX & 0xff;
984
    ah = (EAX >> 8) & 0xff;
985

    
986
    icarry = (al > 0xf9);
987
    if (((al & 0x0f) > 9 ) || af) {
988
        al = (al + 6) & 0x0f;
989
        ah = (ah + 1 + icarry) & 0xff;
990
        eflags |= CC_C | CC_A;
991
    } else {
992
        eflags &= ~(CC_C | CC_A);
993
        al &= 0x0f;
994
    }
995
    EAX = (EAX & ~0xffff) | al | (ah << 8);
996
    CC_SRC = eflags;
997
}
998

    
999
void OPPROTO op_aas(void)
1000
{
1001
    int icarry;
1002
    int al, ah, af;
1003
    int eflags;
1004

    
1005
    eflags = cc_table[CC_OP].compute_all();
1006
    af = eflags & CC_A;
1007
    al = EAX & 0xff;
1008
    ah = (EAX >> 8) & 0xff;
1009

    
1010
    icarry = (al < 6);
1011
    if (((al & 0x0f) > 9 ) || af) {
1012
        al = (al - 6) & 0x0f;
1013
        ah = (ah - 1 - icarry) & 0xff;
1014
        eflags |= CC_C | CC_A;
1015
    } else {
1016
        eflags &= ~(CC_C | CC_A);
1017
        al &= 0x0f;
1018
    }
1019
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1020
    CC_SRC = eflags;
1021
}
1022

    
1023
void OPPROTO op_daa(void)
1024
{
1025
    int al, af, cf;
1026
    int eflags;
1027

    
1028
    eflags = cc_table[CC_OP].compute_all();
1029
    cf = eflags & CC_C;
1030
    af = eflags & CC_A;
1031
    al = EAX & 0xff;
1032

    
1033
    eflags = 0;
1034
    if (((al & 0x0f) > 9 ) || af) {
1035
        al = (al + 6) & 0xff;
1036
        eflags |= CC_A;
1037
    }
1038
    if ((al > 0x9f) || cf) {
1039
        al = (al + 0x60) & 0xff;
1040
        eflags |= CC_C;
1041
    }
1042
    EAX = (EAX & ~0xff) | al;
1043
    /* well, speed is not an issue here, so we compute the flags by hand */
1044
    eflags |= (al == 0) << 6; /* zf */
1045
    eflags |= parity_table[al]; /* pf */
1046
    eflags |= (al & 0x80); /* sf */
1047
    CC_SRC = eflags;
1048
}
1049

    
1050
void OPPROTO op_das(void)
1051
{
1052
    int al, al1, af, cf;
1053
    int eflags;
1054

    
1055
    eflags = cc_table[CC_OP].compute_all();
1056
    cf = eflags & CC_C;
1057
    af = eflags & CC_A;
1058
    al = EAX & 0xff;
1059

    
1060
    eflags = 0;
1061
    al1 = al;
1062
    if (((al & 0x0f) > 9 ) || af) {
1063
        eflags |= CC_A;
1064
        if (al < 6 || cf)
1065
            eflags |= CC_C;
1066
        al = (al - 6) & 0xff;
1067
    }
1068
    if ((al1 > 0x99) || cf) {
1069
        al = (al - 0x60) & 0xff;
1070
        eflags |= CC_C;
1071
    }
1072
    EAX = (EAX & ~0xff) | al;
1073
    /* well, speed is not an issue here, so we compute the flags by hand */
1074
    eflags |= (al == 0) << 6; /* zf */
1075
    eflags |= parity_table[al]; /* pf */
1076
    eflags |= (al & 0x80); /* sf */
1077
    CC_SRC = eflags;
1078
}
1079

    
1080
/* segment handling */
1081

    
1082
/* XXX: use static VM86 information */
1083
void load_seg(int seg_reg, int selector)
1084
{
1085
    SegmentCache *sc;
1086
    SegmentDescriptorTable *dt;
1087
    int index;
1088
    uint32_t e1, e2;
1089
    uint8_t *ptr;
1090

    
1091
    sc = &env->seg_cache[seg_reg];
1092
    if (env->eflags & VM_MASK) {
1093
        sc->base = (void *)(selector << 4);
1094
        sc->limit = 0xffff;
1095
        sc->seg_32bit = 0;
1096
    } else {
1097
        if (selector & 0x4)
1098
            dt = &env->ldt;
1099
        else
1100
            dt = &env->gdt;
1101
        index = selector & ~7;
1102
        if ((index + 7) > dt->limit)
1103
            raise_exception_err(EXCP0D_GPF, selector);
1104
        ptr = dt->base + index;
1105
        e1 = ldl(ptr);
1106
        e2 = ldl(ptr + 4);
1107
        sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1108
        sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1109
        if (e2 & (1 << 23))
1110
            sc->limit = (sc->limit << 12) | 0xfff;
1111
        sc->seg_32bit = (e2 >> 22) & 1;
1112
#if 0
1113
        fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n", 
1114
                selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
1115
#endif
1116
    }
1117
    env->segs[seg_reg] = selector;
1118
}
1119

    
1120
void OPPROTO op_movl_seg_T0(void)
1121
{
1122
    load_seg(PARAM1, T0 & 0xffff);
1123
}
1124

    
1125
void OPPROTO op_movl_T0_seg(void)
1126
{
1127
    T0 = env->segs[PARAM1];
1128
}
1129

    
1130
void OPPROTO op_movl_A0_seg(void)
1131
{
1132
    A0 = *(unsigned long *)((char *)env + PARAM1);
1133
}
1134

    
1135
void OPPROTO op_addl_A0_seg(void)
1136
{
1137
    A0 += *(unsigned long *)((char *)env + PARAM1);
1138
}
1139

    
1140
void helper_lsl(void)
1141
{
1142
    unsigned int selector, limit;
1143
    SegmentDescriptorTable *dt;
1144
    int index;
1145
    uint32_t e1, e2;
1146
    uint8_t *ptr;
1147

    
1148
    CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1149
    selector = T0 & 0xffff;
1150
    if (selector & 0x4)
1151
        dt = &env->ldt;
1152
    else
1153
        dt = &env->gdt;
1154
    index = selector & ~7;
1155
    if ((index + 7) > dt->limit)
1156
        return;
1157
    ptr = dt->base + index;
1158
    e1 = ldl(ptr);
1159
    e2 = ldl(ptr + 4);
1160
    limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1161
    if (e2 & (1 << 23))
1162
        limit = (limit << 12) | 0xfff;
1163
    T1 = limit;
1164
    CC_SRC |= CC_Z;
1165
}
1166

    
1167
void OPPROTO op_lsl(void)
1168
{
1169
    helper_lsl();
1170
}
1171

    
1172
void helper_lar(void)
1173
{
1174
    unsigned int selector;
1175
    SegmentDescriptorTable *dt;
1176
    int index;
1177
    uint32_t e2;
1178
    uint8_t *ptr;
1179

    
1180
    CC_SRC = cc_table[CC_OP].compute_all() & ~CC_Z;
1181
    selector = T0 & 0xffff;
1182
    if (selector & 0x4)
1183
        dt = &env->ldt;
1184
    else
1185
        dt = &env->gdt;
1186
    index = selector & ~7;
1187
    if ((index + 7) > dt->limit)
1188
        return;
1189
    ptr = dt->base + index;
1190
    e2 = ldl(ptr + 4);
1191
    T1 = e2 & 0x00f0ff00;
1192
    CC_SRC |= CC_Z;
1193
}
1194

    
1195
void OPPROTO op_lar(void)
1196
{
1197
    helper_lar();
1198
}
1199

    
1200
/* flags handling */
1201

    
1202
/* slow jumps cases (compute x86 flags) */
1203
void OPPROTO op_jo_cc(void)
1204
{
1205
    int eflags;
1206
    eflags = cc_table[CC_OP].compute_all();
1207
    if (eflags & CC_O)
1208
        EIP = PARAM1;
1209
    else
1210
        EIP = PARAM2;
1211
    FORCE_RET();
1212
}
1213

    
1214
void OPPROTO op_jb_cc(void)
1215
{
1216
    if (cc_table[CC_OP].compute_c())
1217
        EIP = PARAM1;
1218
    else
1219
        EIP = PARAM2;
1220
    FORCE_RET();
1221
}
1222

    
1223
void OPPROTO op_jz_cc(void)
1224
{
1225
    int eflags;
1226
    eflags = cc_table[CC_OP].compute_all();
1227
    if (eflags & CC_Z)
1228
        EIP = PARAM1;
1229
    else
1230
        EIP = PARAM2;
1231
    FORCE_RET();
1232
}
1233

    
1234
void OPPROTO op_jbe_cc(void)
1235
{
1236
    int eflags;
1237
    eflags = cc_table[CC_OP].compute_all();
1238
    if (eflags & (CC_Z | CC_C))
1239
        EIP = PARAM1;
1240
    else
1241
        EIP = PARAM2;
1242
    FORCE_RET();
1243
}
1244

    
1245
void OPPROTO op_js_cc(void)
1246
{
1247
    int eflags;
1248
    eflags = cc_table[CC_OP].compute_all();
1249
    if (eflags & CC_S)
1250
        EIP = PARAM1;
1251
    else
1252
        EIP = PARAM2;
1253
    FORCE_RET();
1254
}
1255

    
1256
void OPPROTO op_jp_cc(void)
1257
{
1258
    int eflags;
1259
    eflags = cc_table[CC_OP].compute_all();
1260
    if (eflags & CC_P)
1261
        EIP = PARAM1;
1262
    else
1263
        EIP = PARAM2;
1264
    FORCE_RET();
1265
}
1266

    
1267
void OPPROTO op_jl_cc(void)
1268
{
1269
    int eflags;
1270
    eflags = cc_table[CC_OP].compute_all();
1271
    if ((eflags ^ (eflags >> 4)) & 0x80)
1272
        EIP = PARAM1;
1273
    else
1274
        EIP = PARAM2;
1275
    FORCE_RET();
1276
}
1277

    
1278
void OPPROTO op_jle_cc(void)
1279
{
1280
    int eflags;
1281
    eflags = cc_table[CC_OP].compute_all();
1282
    if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
1283
        EIP = PARAM1;
1284
    else
1285
        EIP = PARAM2;
1286
    FORCE_RET();
1287
}
1288

    
1289
/* slow set cases (compute x86 flags) */
1290
void OPPROTO op_seto_T0_cc(void)
1291
{
1292
    int eflags;
1293
    eflags = cc_table[CC_OP].compute_all();
1294
    T0 = (eflags >> 11) & 1;
1295
}
1296

    
1297
void OPPROTO op_setb_T0_cc(void)
1298
{
1299
    T0 = cc_table[CC_OP].compute_c();
1300
}
1301

    
1302
void OPPROTO op_setz_T0_cc(void)
1303
{
1304
    int eflags;
1305
    eflags = cc_table[CC_OP].compute_all();
1306
    T0 = (eflags >> 6) & 1;
1307
}
1308

    
1309
void OPPROTO op_setbe_T0_cc(void)
1310
{
1311
    int eflags;
1312
    eflags = cc_table[CC_OP].compute_all();
1313
    T0 = (eflags & (CC_Z | CC_C)) != 0;
1314
}
1315

    
1316
void OPPROTO op_sets_T0_cc(void)
1317
{
1318
    int eflags;
1319
    eflags = cc_table[CC_OP].compute_all();
1320
    T0 = (eflags >> 7) & 1;
1321
}
1322

    
1323
void OPPROTO op_setp_T0_cc(void)
1324
{
1325
    int eflags;
1326
    eflags = cc_table[CC_OP].compute_all();
1327
    T0 = (eflags >> 2) & 1;
1328
}
1329

    
1330
void OPPROTO op_setl_T0_cc(void)
1331
{
1332
    int eflags;
1333
    eflags = cc_table[CC_OP].compute_all();
1334
    T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
1335
}
1336

    
1337
void OPPROTO op_setle_T0_cc(void)
1338
{
1339
    int eflags;
1340
    eflags = cc_table[CC_OP].compute_all();
1341
    T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
1342
}
1343

    
1344
void OPPROTO op_xor_T0_1(void)
1345
{
1346
    T0 ^= 1;
1347
}
1348

    
1349
void OPPROTO op_set_cc_op(void)
1350
{
1351
    CC_OP = PARAM1;
1352
}
1353

    
1354
#define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
1355
#define FL_UPDATE_MASK16 (TF_MASK)
1356

    
1357
void OPPROTO op_movl_eflags_T0(void)
1358
{
1359
    int eflags;
1360
    eflags = T0;
1361
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1362
    DF = 1 - (2 * ((eflags >> 10) & 1));
1363
    /* we also update some system flags as in user mode */
1364
    env->eflags = (env->eflags & ~FL_UPDATE_MASK32) | (eflags & FL_UPDATE_MASK32);
1365
}
1366

    
1367
void OPPROTO op_movw_eflags_T0(void)
1368
{
1369
    int eflags;
1370
    eflags = T0;
1371
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1372
    DF = 1 - (2 * ((eflags >> 10) & 1));
1373
    /* we also update some system flags as in user mode */
1374
    env->eflags = (env->eflags & ~FL_UPDATE_MASK16) | (eflags & FL_UPDATE_MASK16);
1375
}
1376

    
1377
#if 0
1378
/* vm86plus version */
1379
void OPPROTO op_movw_eflags_T0_vm(void)
1380
{
1381
    int eflags;
1382
    eflags = T0;
1383
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1384
    DF = 1 - (2 * ((eflags >> 10) & 1));
1385
    /* we also update some system flags as in user mode */
1386
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
1387
        (eflags & FL_UPDATE_MASK16);
1388
    if (eflags & IF_MASK) {
1389
        env->eflags |= VIF_MASK;
1390
        if (env->eflags & VIP_MASK) {
1391
            EIP = PARAM1;
1392
            raise_exception(EXCP0D_GPF);
1393
        }
1394
    }
1395
    FORCE_RET();
1396
}
1397

1398
void OPPROTO op_movl_eflags_T0_vm(void)
1399
{
1400
    int eflags;
1401
    eflags = T0;
1402
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1403
    DF = 1 - (2 * ((eflags >> 10) & 1));
1404
    /* we also update some system flags as in user mode */
1405
    env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
1406
        (eflags & FL_UPDATE_MASK32);
1407
    if (eflags & IF_MASK) {
1408
        env->eflags |= VIF_MASK;
1409
        if (env->eflags & VIP_MASK) {
1410
            EIP = PARAM1;
1411
            raise_exception(EXCP0D_GPF);
1412
        }
1413
    }
1414
    FORCE_RET();
1415
}
1416
#endif
1417

    
1418
/* XXX: compute only O flag */
1419
void OPPROTO op_movb_eflags_T0(void)
1420
{
1421
    int of;
1422
    of = cc_table[CC_OP].compute_all() & CC_O;
1423
    CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
1424
}
1425

    
1426
void OPPROTO op_movl_T0_eflags(void)
1427
{
1428
    int eflags;
1429
    eflags = cc_table[CC_OP].compute_all();
1430
    eflags |= (DF & DF_MASK);
1431
    eflags |= env->eflags & ~(VM_MASK | RF_MASK);
1432
    T0 = eflags;
1433
}
1434

    
1435
/* vm86plus version */
1436
#if 0
1437
void OPPROTO op_movl_T0_eflags_vm(void)
1438
{
1439
    int eflags;
1440
    eflags = cc_table[CC_OP].compute_all();
1441
    eflags |= (DF & DF_MASK);
1442
    eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
1443
    if (env->eflags & VIF_MASK)
1444
        eflags |= IF_MASK;
1445
    T0 = eflags;
1446
}
1447
#endif
1448

    
1449
void OPPROTO op_cld(void)
1450
{
1451
    DF = 1;
1452
}
1453

    
1454
void OPPROTO op_std(void)
1455
{
1456
    DF = -1;
1457
}
1458

    
1459
void OPPROTO op_clc(void)
1460
{
1461
    int eflags;
1462
    eflags = cc_table[CC_OP].compute_all();
1463
    eflags &= ~CC_C;
1464
    CC_SRC = eflags;
1465
}
1466

    
1467
void OPPROTO op_stc(void)
1468
{
1469
    int eflags;
1470
    eflags = cc_table[CC_OP].compute_all();
1471
    eflags |= CC_C;
1472
    CC_SRC = eflags;
1473
}
1474

    
1475
void OPPROTO op_cmc(void)
1476
{
1477
    int eflags;
1478
    eflags = cc_table[CC_OP].compute_all();
1479
    eflags ^= CC_C;
1480
    CC_SRC = eflags;
1481
}
1482

    
1483
void OPPROTO op_salc(void)
1484
{
1485
    int cf;
1486
    cf = cc_table[CC_OP].compute_c();
1487
    EAX = (EAX & ~0xff) | ((-cf) & 0xff);
1488
}
1489

    
1490
static int compute_all_eflags(void)
1491
{
1492
    return CC_SRC;
1493
}
1494

    
1495
static int compute_c_eflags(void)
1496
{
1497
    return CC_SRC & CC_C;
1498
}
1499

    
1500
static int compute_c_mul(void)
1501
{
1502
    int cf;
1503
    cf = (CC_SRC != 0);
1504
    return cf;
1505
}
1506

    
1507
static int compute_all_mul(void)
1508
{
1509
    int cf, pf, af, zf, sf, of;
1510
    cf = (CC_SRC != 0);
1511
    pf = 0; /* undefined */
1512
    af = 0; /* undefined */
1513
    zf = 0; /* undefined */
1514
    sf = 0; /* undefined */
1515
    of = cf << 11;
1516
    return cf | pf | af | zf | sf | of;
1517
}
1518
    
1519
CCTable cc_table[CC_OP_NB] = {
1520
    [CC_OP_DYNAMIC] = { /* should never happen */ },
1521

    
1522
    [CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
1523

    
1524
    [CC_OP_MUL] = { compute_all_mul, compute_c_mul },
1525

    
1526
    [CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
1527
    [CC_OP_ADDW] = { compute_all_addw, compute_c_addw  },
1528
    [CC_OP_ADDL] = { compute_all_addl, compute_c_addl  },
1529

    
1530
    [CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
1531
    [CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw  },
1532
    [CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl  },
1533

    
1534
    [CC_OP_SUBB] = { compute_all_subb, compute_c_subb  },
1535
    [CC_OP_SUBW] = { compute_all_subw, compute_c_subw  },
1536
    [CC_OP_SUBL] = { compute_all_subl, compute_c_subl  },
1537
    
1538
    [CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb  },
1539
    [CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw  },
1540
    [CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl  },
1541
    
1542
    [CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
1543
    [CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
1544
    [CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
1545
    
1546
    [CC_OP_INCB] = { compute_all_incb, compute_c_incl },
1547
    [CC_OP_INCW] = { compute_all_incw, compute_c_incl },
1548
    [CC_OP_INCL] = { compute_all_incl, compute_c_incl },
1549
    
1550
    [CC_OP_DECB] = { compute_all_decb, compute_c_incl },
1551
    [CC_OP_DECW] = { compute_all_decw, compute_c_incl },
1552
    [CC_OP_DECL] = { compute_all_decl, compute_c_incl },
1553
    
1554
    [CC_OP_SHLB] = { compute_all_shlb, compute_c_shlb },
1555
    [CC_OP_SHLW] = { compute_all_shlw, compute_c_shlw },
1556
    [CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
1557

    
1558
    [CC_OP_SARB] = { compute_all_sarb, compute_c_sarl },
1559
    [CC_OP_SARW] = { compute_all_sarw, compute_c_sarl },
1560
    [CC_OP_SARL] = { compute_all_sarl, compute_c_sarl },
1561
};
1562

    
1563
/* floating point support. Some of the code for complicated x87
1564
   functions comes from the LGPL'ed x86 emulator found in the Willows
1565
   TWIN windows emulator. */
1566

    
1567
#ifdef USE_X86LDOUBLE
1568
/* use long double functions */
1569
#define lrint lrintl
1570
#define llrint llrintl
1571
#define fabs fabsl
1572
#define sin sinl
1573
#define cos cosl
1574
#define sqrt sqrtl
1575
#define pow powl
1576
#define log logl
1577
#define tan tanl
1578
#define atan2 atan2l
1579
#define floor floorl
1580
#define ceil ceill
1581
#define rint rintl
1582
#endif
1583

    
1584
extern int lrint(CPU86_LDouble x);
1585
extern int64_t llrint(CPU86_LDouble x);
1586
extern CPU86_LDouble fabs(CPU86_LDouble x);
1587
extern CPU86_LDouble sin(CPU86_LDouble x);
1588
extern CPU86_LDouble cos(CPU86_LDouble x);
1589
extern CPU86_LDouble sqrt(CPU86_LDouble x);
1590
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
1591
extern CPU86_LDouble log(CPU86_LDouble x);
1592
extern CPU86_LDouble tan(CPU86_LDouble x);
1593
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
1594
extern CPU86_LDouble floor(CPU86_LDouble x);
1595
extern CPU86_LDouble ceil(CPU86_LDouble x);
1596
extern CPU86_LDouble rint(CPU86_LDouble x);
1597

    
1598
#if defined(__powerpc__)
1599
extern CPU86_LDouble copysign(CPU86_LDouble, CPU86_LDouble);
1600

    
1601
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
1602
double qemu_rint(double x)
1603
{
1604
    double y = 4503599627370496.0;
1605
    if (fabs(x) >= y)
1606
        return x;
1607
    if (x < 0) 
1608
        y = -y;
1609
    y = (x + y) - y;
1610
    if (y == 0.0)
1611
        y = copysign(y, x);
1612
    return y;
1613
}
1614

    
1615
#define rint qemu_rint
1616
#endif
1617

    
1618
#define RC_MASK         0xc00
1619
#define RC_NEAR                0x000
1620
#define RC_DOWN                0x400
1621
#define RC_UP                0x800
1622
#define RC_CHOP                0xc00
1623

    
1624
#define MAXTAN 9223372036854775808.0
1625

    
1626
#ifdef USE_X86LDOUBLE
1627

    
1628
/* only for x86 */
1629
typedef union {
1630
    long double d;
1631
    struct {
1632
        unsigned long long lower;
1633
        unsigned short upper;
1634
    } l;
1635
} CPU86_LDoubleU;
1636

    
1637
/* the following deal with x86 long double-precision numbers */
1638
#define MAXEXPD 0x7fff
1639
#define EXPBIAS 16383
1640
#define EXPD(fp)        (fp.l.upper & 0x7fff)
1641
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
1642
#define MANTD(fp)       (fp.l.lower)
1643
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
1644

    
1645
#else
1646

    
1647
typedef union {
1648
    double d;
1649
#ifndef WORDS_BIGENDIAN
1650
    struct {
1651
        unsigned long lower;
1652
        long upper;
1653
    } l;
1654
#else
1655
    struct {
1656
        long upper;
1657
        unsigned long lower;
1658
    } l;
1659
#endif
1660
    long long ll;
1661
} CPU86_LDoubleU;
1662

    
1663
/* the following deal with IEEE double-precision numbers */
1664
#define MAXEXPD 0x7ff
1665
#define EXPBIAS 1023
1666
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
1667
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
1668
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
1669
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
1670
#endif
1671

    
1672
/* fp load FT0 */
1673

    
1674
void OPPROTO op_flds_FT0_A0(void)
1675
{
1676
#ifdef USE_FP_CONVERT
1677
    FP_CONVERT.i32 = ldl((void *)A0);
1678
    FT0 = FP_CONVERT.f;
1679
#else
1680
    FT0 = ldfl((void *)A0);
1681
#endif
1682
}
1683

    
1684
void OPPROTO op_fldl_FT0_A0(void)
1685
{
1686
#ifdef USE_FP_CONVERT
1687
    FP_CONVERT.i64 = ldq((void *)A0);
1688
    FT0 = FP_CONVERT.d;
1689
#else
1690
    FT0 = ldfq((void *)A0);
1691
#endif
1692
}
1693

    
1694
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1695
#ifdef USE_INT_TO_FLOAT_HELPERS
1696

    
1697
void helper_fild_FT0_A0(void)
1698
{
1699
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1700
}
1701

    
1702
void helper_fildl_FT0_A0(void)
1703
{
1704
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1705
}
1706

    
1707
void helper_fildll_FT0_A0(void)
1708
{
1709
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1710
}
1711

    
1712
void OPPROTO op_fild_FT0_A0(void)
1713
{
1714
    helper_fild_FT0_A0();
1715
}
1716

    
1717
void OPPROTO op_fildl_FT0_A0(void)
1718
{
1719
    helper_fildl_FT0_A0();
1720
}
1721

    
1722
void OPPROTO op_fildll_FT0_A0(void)
1723
{
1724
    helper_fildll_FT0_A0();
1725
}
1726

    
1727
#else
1728

    
1729
void OPPROTO op_fild_FT0_A0(void)
1730
{
1731
#ifdef USE_FP_CONVERT
1732
    FP_CONVERT.i32 = ldsw((void *)A0);
1733
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1734
#else
1735
    FT0 = (CPU86_LDouble)ldsw((void *)A0);
1736
#endif
1737
}
1738

    
1739
void OPPROTO op_fildl_FT0_A0(void)
1740
{
1741
#ifdef USE_FP_CONVERT
1742
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1743
    FT0 = (CPU86_LDouble)FP_CONVERT.i32;
1744
#else
1745
    FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1746
#endif
1747
}
1748

    
1749
void OPPROTO op_fildll_FT0_A0(void)
1750
{
1751
#ifdef USE_FP_CONVERT
1752
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1753
    FT0 = (CPU86_LDouble)FP_CONVERT.i64;
1754
#else
1755
    FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1756
#endif
1757
}
1758
#endif
1759

    
1760
/* fp load ST0 */
1761

    
1762
void OPPROTO op_flds_ST0_A0(void)
1763
{
1764
#ifdef USE_FP_CONVERT
1765
    FP_CONVERT.i32 = ldl((void *)A0);
1766
    ST0 = FP_CONVERT.f;
1767
#else
1768
    ST0 = ldfl((void *)A0);
1769
#endif
1770
}
1771

    
1772
void OPPROTO op_fldl_ST0_A0(void)
1773
{
1774
#ifdef USE_FP_CONVERT
1775
    FP_CONVERT.i64 = ldq((void *)A0);
1776
    ST0 = FP_CONVERT.d;
1777
#else
1778
    ST0 = ldfq((void *)A0);
1779
#endif
1780
}
1781

    
1782
#ifdef USE_X86LDOUBLE
1783
void OPPROTO op_fldt_ST0_A0(void)
1784
{
1785
    ST0 = *(long double *)A0;
1786
}
1787
#else
1788
void helper_fldt_ST0_A0(void)
1789
{
1790
    CPU86_LDoubleU temp;
1791
    int upper, e;
1792
    /* mantissa */
1793
    upper = lduw((uint8_t *)A0 + 8);
1794
    /* XXX: handle overflow ? */
1795
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
1796
    e |= (upper >> 4) & 0x800; /* sign */
1797
    temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
1798
    ST0 = temp.d;
1799
}
1800

    
1801
void OPPROTO op_fldt_ST0_A0(void)
1802
{
1803
    helper_fldt_ST0_A0();
1804
}
1805
#endif
1806

    
1807
/* helpers are needed to avoid static constant reference. XXX: find a better way */
1808
#ifdef USE_INT_TO_FLOAT_HELPERS
1809

    
1810
void helper_fild_ST0_A0(void)
1811
{
1812
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1813
}
1814

    
1815
void helper_fildl_ST0_A0(void)
1816
{
1817
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1818
}
1819

    
1820
void helper_fildll_ST0_A0(void)
1821
{
1822
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1823
}
1824

    
1825
void OPPROTO op_fild_ST0_A0(void)
1826
{
1827
    helper_fild_ST0_A0();
1828
}
1829

    
1830
void OPPROTO op_fildl_ST0_A0(void)
1831
{
1832
    helper_fildl_ST0_A0();
1833
}
1834

    
1835
void OPPROTO op_fildll_ST0_A0(void)
1836
{
1837
    helper_fildll_ST0_A0();
1838
}
1839

    
1840
#else
1841

    
1842
void OPPROTO op_fild_ST0_A0(void)
1843
{
1844
#ifdef USE_FP_CONVERT
1845
    FP_CONVERT.i32 = ldsw((void *)A0);
1846
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1847
#else
1848
    ST0 = (CPU86_LDouble)ldsw((void *)A0);
1849
#endif
1850
}
1851

    
1852
void OPPROTO op_fildl_ST0_A0(void)
1853
{
1854
#ifdef USE_FP_CONVERT
1855
    FP_CONVERT.i32 = (int32_t) ldl((void *)A0);
1856
    ST0 = (CPU86_LDouble)FP_CONVERT.i32;
1857
#else
1858
    ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
1859
#endif
1860
}
1861

    
1862
void OPPROTO op_fildll_ST0_A0(void)
1863
{
1864
#ifdef USE_FP_CONVERT
1865
    FP_CONVERT.i64 = (int64_t) ldq((void *)A0);
1866
    ST0 = (CPU86_LDouble)FP_CONVERT.i64;
1867
#else
1868
    ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
1869
#endif
1870
}
1871

    
1872
#endif
1873

    
1874
/* fp store */
1875

    
1876
void OPPROTO op_fsts_ST0_A0(void)
1877
{
1878
#ifdef USE_FP_CONVERT
1879
    FP_CONVERT.d = ST0;
1880
    stfl((void *)A0, FP_CONVERT.f);
1881
#else
1882
    stfl((void *)A0, (float)ST0);
1883
#endif
1884
}
1885

    
1886
void OPPROTO op_fstl_ST0_A0(void)
1887
{
1888
    stfq((void *)A0, (double)ST0);
1889
}
1890

    
1891
#ifdef USE_X86LDOUBLE
1892
void OPPROTO op_fstt_ST0_A0(void)
1893
{
1894
    *(long double *)A0 = ST0;
1895
}
1896
#else
1897
void helper_fstt_ST0_A0(void)
1898
{
1899
    CPU86_LDoubleU temp;
1900
    int e;
1901
    temp.d = ST0;
1902
    /* mantissa */
1903
    stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
1904
    /* exponent + sign */
1905
    e = EXPD(temp) - EXPBIAS + 16383;
1906
    e |= SIGND(temp) >> 16;
1907
    stw((uint8_t *)A0 + 8, e);
1908
}
1909

    
1910
void OPPROTO op_fstt_ST0_A0(void)
1911
{
1912
    helper_fstt_ST0_A0();
1913
}
1914
#endif
1915

    
1916
void OPPROTO op_fist_ST0_A0(void)
1917
{
1918
#if defined(__sparc__) && !defined(__sparc_v9__)
1919
    register CPU86_LDouble d asm("o0");
1920
#else
1921
    CPU86_LDouble d;
1922
#endif
1923
    int val;
1924

    
1925
    d = ST0;
1926
    val = lrint(d);
1927
    stw((void *)A0, val);
1928
}
1929

    
1930
void OPPROTO op_fistl_ST0_A0(void)
1931
{
1932
#if defined(__sparc__) && !defined(__sparc_v9__)
1933
    register CPU86_LDouble d asm("o0");
1934
#else
1935
    CPU86_LDouble d;
1936
#endif
1937
    int val;
1938

    
1939
    d = ST0;
1940
    val = lrint(d);
1941
    stl((void *)A0, val);
1942
}
1943

    
1944
void OPPROTO op_fistll_ST0_A0(void)
1945
{
1946
#if defined(__sparc__) && !defined(__sparc_v9__)
1947
    register CPU86_LDouble d asm("o0");
1948
#else
1949
    CPU86_LDouble d;
1950
#endif
1951
    int64_t val;
1952

    
1953
    d = ST0;
1954
    val = llrint(d);
1955
    stq((void *)A0, val);
1956
}
1957

    
1958
/* BCD ops */
1959

    
1960
#define MUL10(iv) ( iv + iv + (iv << 3) )
1961

    
1962
void helper_fbld_ST0_A0(void)
1963
{
1964
    uint8_t *seg;
1965
    CPU86_LDouble fpsrcop;
1966
    int m32i;
1967
    unsigned int v;
1968

    
1969
    /* in this code, seg/m32i will be used as temporary ptr/int */
1970
    seg = (uint8_t *)A0 + 8;
1971
    v = ldub(seg--);
1972
    /* XXX: raise exception */
1973
    if (v != 0)
1974
        return;
1975
    v = ldub(seg--);
1976
    /* XXX: raise exception */
1977
    if ((v & 0xf0) != 0)
1978
        return;
1979
    m32i = v;  /* <-- d14 */
1980
    v = ldub(seg--);
1981
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d13 */
1982
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
1983
    v = ldub(seg--);
1984
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d11 */
1985
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
1986
    v = ldub(seg--);
1987
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d9 */
1988
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
1989
    fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
1990

    
1991
    v = ldub(seg--);
1992
    m32i = (v >> 4);  /* <-- d7 */
1993
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
1994
    v = ldub(seg--);
1995
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d5 */
1996
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
1997
    v = ldub(seg--);
1998
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d3 */
1999
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
2000
    v = ldub(seg);
2001
    m32i = MUL10(m32i) + (v >> 4);  /* <-- val * 10 + d1 */
2002
    m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
2003
    fpsrcop += ((CPU86_LDouble)m32i);
2004
    if ( ldub(seg+9) & 0x80 )
2005
        fpsrcop = -fpsrcop;
2006
    ST0 = fpsrcop;
2007
}
2008

    
2009
void OPPROTO op_fbld_ST0_A0(void)
2010
{
2011
    helper_fbld_ST0_A0();
2012
}
2013

    
2014
void helper_fbst_ST0_A0(void)
2015
{
2016
    CPU86_LDouble fptemp;
2017
    CPU86_LDouble fpsrcop;
2018
    int v;
2019
    uint8_t *mem_ref, *mem_end;
2020

    
2021
    fpsrcop = rint(ST0);
2022
    mem_ref = (uint8_t *)A0;
2023
    mem_end = mem_ref + 8;
2024
    if ( fpsrcop < 0.0 ) {
2025
        stw(mem_end, 0x8000);
2026
        fpsrcop = -fpsrcop;
2027
    } else {
2028
        stw(mem_end, 0x0000);
2029
    }
2030
    while (mem_ref < mem_end) {
2031
        if (fpsrcop == 0.0)
2032
            break;
2033
        fptemp = floor(fpsrcop/10.0);
2034
        v = ((int)(fpsrcop - fptemp*10.0));
2035
        if  (fptemp == 0.0)  { 
2036
            stb(mem_ref++, v); 
2037
            break; 
2038
        }
2039
        fpsrcop = fptemp;
2040
        fptemp = floor(fpsrcop/10.0);
2041
        v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
2042
        stb(mem_ref++, v);
2043
        fpsrcop = fptemp;
2044
    }
2045
    while (mem_ref < mem_end) {
2046
        stb(mem_ref++, 0);
2047
    }
2048
}
2049

    
2050
void OPPROTO op_fbst_ST0_A0(void)
2051
{
2052
    helper_fbst_ST0_A0();
2053
}
2054

    
2055
/* FPU move */
2056

    
2057
static inline void fpush(void)
2058
{
2059
    env->fpstt = (env->fpstt - 1) & 7;
2060
    env->fptags[env->fpstt] = 0; /* validate stack entry */
2061
}
2062

    
2063
static inline void fpop(void)
2064
{
2065
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
2066
    env->fpstt = (env->fpstt + 1) & 7;
2067
}
2068

    
2069
void OPPROTO op_fpush(void)
2070
{
2071
    fpush();
2072
}
2073

    
2074
void OPPROTO op_fpop(void)
2075
{
2076
    fpop();
2077
}
2078

    
2079
void OPPROTO op_fdecstp(void)
2080
{
2081
    env->fpstt = (env->fpstt - 1) & 7;
2082
    env->fpus &= (~0x4700);
2083
}
2084

    
2085
void OPPROTO op_fincstp(void)
2086
{
2087
    env->fpstt = (env->fpstt + 1) & 7;
2088
    env->fpus &= (~0x4700);
2089
}
2090

    
2091
void OPPROTO op_fmov_ST0_FT0(void)
2092
{
2093
    ST0 = FT0;
2094
}
2095

    
2096
void OPPROTO op_fmov_FT0_STN(void)
2097
{
2098
    FT0 = ST(PARAM1);
2099
}
2100

    
2101
void OPPROTO op_fmov_ST0_STN(void)
2102
{
2103
    ST0 = ST(PARAM1);
2104
}
2105

    
2106
void OPPROTO op_fmov_STN_ST0(void)
2107
{
2108
    ST(PARAM1) = ST0;
2109
}
2110

    
2111
void OPPROTO op_fxchg_ST0_STN(void)
2112
{
2113
    CPU86_LDouble tmp;
2114
    tmp = ST(PARAM1);
2115
    ST(PARAM1) = ST0;
2116
    ST0 = tmp;
2117
}
2118

    
2119
/* FPU operations */
2120

    
2121
/* XXX: handle nans */
2122
void OPPROTO op_fcom_ST0_FT0(void)
2123
{
2124
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2125
    if (ST0 < FT0)
2126
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2127
    else if (ST0 == FT0)
2128
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2129
    FORCE_RET();
2130
}
2131

    
2132
/* XXX: handle nans */
2133
void OPPROTO op_fucom_ST0_FT0(void)
2134
{
2135
    env->fpus &= (~0x4500);        /* (C3,C2,C0) <-- 000 */
2136
    if (ST0 < FT0)
2137
        env->fpus |= 0x100;        /* (C3,C2,C0) <-- 001 */
2138
    else if (ST0 == FT0)
2139
        env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
2140
    FORCE_RET();
2141
}
2142

    
2143
void OPPROTO op_fadd_ST0_FT0(void)
2144
{
2145
    ST0 += FT0;
2146
}
2147

    
2148
void OPPROTO op_fmul_ST0_FT0(void)
2149
{
2150
    ST0 *= FT0;
2151
}
2152

    
2153
void OPPROTO op_fsub_ST0_FT0(void)
2154
{
2155
    ST0 -= FT0;
2156
}
2157

    
2158
void OPPROTO op_fsubr_ST0_FT0(void)
2159
{
2160
    ST0 = FT0 - ST0;
2161
}
2162

    
2163
void OPPROTO op_fdiv_ST0_FT0(void)
2164
{
2165
    ST0 /= FT0;
2166
}
2167

    
2168
void OPPROTO op_fdivr_ST0_FT0(void)
2169
{
2170
    ST0 = FT0 / ST0;
2171
}
2172

    
2173
/* fp operations between STN and ST0 */
2174

    
2175
void OPPROTO op_fadd_STN_ST0(void)
2176
{
2177
    ST(PARAM1) += ST0;
2178
}
2179

    
2180
void OPPROTO op_fmul_STN_ST0(void)
2181
{
2182
    ST(PARAM1) *= ST0;
2183
}
2184

    
2185
void OPPROTO op_fsub_STN_ST0(void)
2186
{
2187
    ST(PARAM1) -= ST0;
2188
}
2189

    
2190
void OPPROTO op_fsubr_STN_ST0(void)
2191
{
2192
    CPU86_LDouble *p;
2193
    p = &ST(PARAM1);
2194
    *p = ST0 - *p;
2195
}
2196

    
2197
void OPPROTO op_fdiv_STN_ST0(void)
2198
{
2199
    ST(PARAM1) /= ST0;
2200
}
2201

    
2202
void OPPROTO op_fdivr_STN_ST0(void)
2203
{
2204
    CPU86_LDouble *p;
2205
    p = &ST(PARAM1);
2206
    *p = ST0 / *p;
2207
}
2208

    
2209
/* misc FPU operations */
2210
void OPPROTO op_fchs_ST0(void)
2211
{
2212
    ST0 = -ST0;
2213
}
2214

    
2215
void OPPROTO op_fabs_ST0(void)
2216
{
2217
    ST0 = fabs(ST0);
2218
}
2219

    
2220
void helper_fxam_ST0(void)
2221
{
2222
    CPU86_LDoubleU temp;
2223
    int expdif;
2224

    
2225
    temp.d = ST0;
2226

    
2227
    env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2228
    if (SIGND(temp))
2229
        env->fpus |= 0x200; /* C1 <-- 1 */
2230

    
2231
    expdif = EXPD(temp);
2232
    if (expdif == MAXEXPD) {
2233
        if (MANTD(temp) == 0)
2234
            env->fpus |=  0x500 /*Infinity*/;
2235
        else
2236
            env->fpus |=  0x100 /*NaN*/;
2237
    } else if (expdif == 0) {
2238
        if (MANTD(temp) == 0)
2239
            env->fpus |=  0x4000 /*Zero*/;
2240
        else
2241
            env->fpus |= 0x4400 /*Denormal*/;
2242
    } else {
2243
        env->fpus |= 0x400;
2244
    }
2245
}
2246

    
2247
void OPPROTO op_fxam_ST0(void)
2248
{
2249
    helper_fxam_ST0();
2250
}
2251

    
2252
void OPPROTO op_fld1_ST0(void)
2253
{
2254
    ST0 = *(CPU86_LDouble *)&f15rk[1];
2255
}
2256

    
2257
void OPPROTO op_fldl2t_ST0(void)
2258
{
2259
    ST0 = *(CPU86_LDouble *)&f15rk[6];
2260
}
2261

    
2262
void OPPROTO op_fldl2e_ST0(void)
2263
{
2264
    ST0 = *(CPU86_LDouble *)&f15rk[5];
2265
}
2266

    
2267
void OPPROTO op_fldpi_ST0(void)
2268
{
2269
    ST0 = *(CPU86_LDouble *)&f15rk[2];
2270
}
2271

    
2272
void OPPROTO op_fldlg2_ST0(void)
2273
{
2274
    ST0 = *(CPU86_LDouble *)&f15rk[3];
2275
}
2276

    
2277
void OPPROTO op_fldln2_ST0(void)
2278
{
2279
    ST0 = *(CPU86_LDouble *)&f15rk[4];
2280
}
2281

    
2282
void OPPROTO op_fldz_ST0(void)
2283
{
2284
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2285
}
2286

    
2287
void OPPROTO op_fldz_FT0(void)
2288
{
2289
    ST0 = *(CPU86_LDouble *)&f15rk[0];
2290
}
2291

    
2292
void helper_f2xm1(void)
2293
{
2294
    ST0 = pow(2.0,ST0) - 1.0;
2295
}
2296

    
2297
void helper_fyl2x(void)
2298
{
2299
    CPU86_LDouble fptemp;
2300
    
2301
    fptemp = ST0;
2302
    if (fptemp>0.0){
2303
        fptemp = log(fptemp)/log(2.0);         /* log2(ST) */
2304
        ST1 *= fptemp;
2305
        fpop();
2306
    } else { 
2307
        env->fpus &= (~0x4700);
2308
        env->fpus |= 0x400;
2309
    }
2310
}
2311

    
2312
void helper_fptan(void)
2313
{
2314
    CPU86_LDouble fptemp;
2315

    
2316
    fptemp = ST0;
2317
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2318
        env->fpus |= 0x400;
2319
    } else {
2320
        ST0 = tan(fptemp);
2321
        fpush();
2322
        ST0 = 1.0;
2323
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2324
        /* the above code is for  |arg| < 2**52 only */
2325
    }
2326
}
2327

    
2328
void helper_fpatan(void)
2329
{
2330
    CPU86_LDouble fptemp, fpsrcop;
2331

    
2332
    fpsrcop = ST1;
2333
    fptemp = ST0;
2334
    ST1 = atan2(fpsrcop,fptemp);
2335
    fpop();
2336
}
2337

    
2338
void helper_fxtract(void)
2339
{
2340
    CPU86_LDoubleU temp;
2341
    unsigned int expdif;
2342

    
2343
    temp.d = ST0;
2344
    expdif = EXPD(temp) - EXPBIAS;
2345
    /*DP exponent bias*/
2346
    ST0 = expdif;
2347
    fpush();
2348
    BIASEXPONENT(temp);
2349
    ST0 = temp.d;
2350
}
2351

    
2352
void helper_fprem1(void)
2353
{
2354
    CPU86_LDouble dblq, fpsrcop, fptemp;
2355
    CPU86_LDoubleU fpsrcop1, fptemp1;
2356
    int expdif;
2357
    int q;
2358

    
2359
    fpsrcop = ST0;
2360
    fptemp = ST1;
2361
    fpsrcop1.d = fpsrcop;
2362
    fptemp1.d = fptemp;
2363
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2364
    if (expdif < 53) {
2365
        dblq = fpsrcop / fptemp;
2366
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2367
        ST0 = fpsrcop - fptemp*dblq;
2368
        q = (int)dblq; /* cutting off top bits is assumed here */
2369
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2370
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2371
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2372
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2373
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2374
    } else {
2375
        env->fpus |= 0x400;  /* C2 <-- 1 */
2376
        fptemp = pow(2.0, expdif-50);
2377
        fpsrcop = (ST0 / ST1) / fptemp;
2378
        /* fpsrcop = integer obtained by rounding to the nearest */
2379
        fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
2380
            floor(fpsrcop): ceil(fpsrcop);
2381
        ST0 -= (ST1 * fpsrcop * fptemp);
2382
    }
2383
}
2384

    
2385
void helper_fprem(void)
2386
{
2387
    CPU86_LDouble dblq, fpsrcop, fptemp;
2388
    CPU86_LDoubleU fpsrcop1, fptemp1;
2389
    int expdif;
2390
    int q;
2391
    
2392
    fpsrcop = ST0;
2393
    fptemp = ST1;
2394
    fpsrcop1.d = fpsrcop;
2395
    fptemp1.d = fptemp;
2396
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
2397
    if ( expdif < 53 ) {
2398
        dblq = fpsrcop / fptemp;
2399
        dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
2400
        ST0 = fpsrcop - fptemp*dblq;
2401
        q = (int)dblq; /* cutting off top bits is assumed here */
2402
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
2403
                                /* (C0,C1,C3) <-- (q2,q1,q0) */
2404
        env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
2405
        env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
2406
        env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
2407
    } else {
2408
        env->fpus |= 0x400;  /* C2 <-- 1 */
2409
        fptemp = pow(2.0, expdif-50);
2410
        fpsrcop = (ST0 / ST1) / fptemp;
2411
        /* fpsrcop = integer obtained by chopping */
2412
        fpsrcop = (fpsrcop < 0.0)?
2413
            -(floor(fabs(fpsrcop))): floor(fpsrcop);
2414
        ST0 -= (ST1 * fpsrcop * fptemp);
2415
    }
2416
}
2417

    
2418
void helper_fyl2xp1(void)
2419
{
2420
    CPU86_LDouble fptemp;
2421

    
2422
    fptemp = ST0;
2423
    if ((fptemp+1.0)>0.0) {
2424
        fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
2425
        ST1 *= fptemp;
2426
        fpop();
2427
    } else { 
2428
        env->fpus &= (~0x4700);
2429
        env->fpus |= 0x400;
2430
    }
2431
}
2432

    
2433
void helper_fsqrt(void)
2434
{
2435
    CPU86_LDouble fptemp;
2436

    
2437
    fptemp = ST0;
2438
    if (fptemp<0.0) { 
2439
        env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
2440
        env->fpus |= 0x400;
2441
    }
2442
    ST0 = sqrt(fptemp);
2443
}
2444

    
2445
void helper_fsincos(void)
2446
{
2447
    CPU86_LDouble fptemp;
2448

    
2449
    fptemp = ST0;
2450
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2451
        env->fpus |= 0x400;
2452
    } else {
2453
        ST0 = sin(fptemp);
2454
        fpush();
2455
        ST0 = cos(fptemp);
2456
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2457
        /* the above code is for  |arg| < 2**63 only */
2458
    }
2459
}
2460

    
2461
void helper_frndint(void)
2462
{
2463
    ST0 = rint(ST0);
2464
}
2465

    
2466
void helper_fscale(void)
2467
{
2468
    CPU86_LDouble fpsrcop, fptemp;
2469

    
2470
    fpsrcop = 2.0;
2471
    fptemp = pow(fpsrcop,ST1);
2472
    ST0 *= fptemp;
2473
}
2474

    
2475
void helper_fsin(void)
2476
{
2477
    CPU86_LDouble fptemp;
2478

    
2479
    fptemp = ST0;
2480
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2481
        env->fpus |= 0x400;
2482
    } else {
2483
        ST0 = sin(fptemp);
2484
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2485
        /* the above code is for  |arg| < 2**53 only */
2486
    }
2487
}
2488

    
2489
void helper_fcos(void)
2490
{
2491
    CPU86_LDouble fptemp;
2492

    
2493
    fptemp = ST0;
2494
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
2495
        env->fpus |= 0x400;
2496
    } else {
2497
        ST0 = cos(fptemp);
2498
        env->fpus &= (~0x400);  /* C2 <-- 0 */
2499
        /* the above code is for  |arg5 < 2**63 only */
2500
    }
2501
}
2502

    
2503
/* associated heplers to reduce generated code length and to simplify
2504
   relocation (FP constants are usually stored in .rodata section) */
2505

    
2506
void OPPROTO op_f2xm1(void)
2507
{
2508
    helper_f2xm1();
2509
}
2510

    
2511
void OPPROTO op_fyl2x(void)
2512
{
2513
    helper_fyl2x();
2514
}
2515

    
2516
void OPPROTO op_fptan(void)
2517
{
2518
    helper_fptan();
2519
}
2520

    
2521
void OPPROTO op_fpatan(void)
2522
{
2523
    helper_fpatan();
2524
}
2525

    
2526
void OPPROTO op_fxtract(void)
2527
{
2528
    helper_fxtract();
2529
}
2530

    
2531
void OPPROTO op_fprem1(void)
2532
{
2533
    helper_fprem1();
2534
}
2535

    
2536

    
2537
void OPPROTO op_fprem(void)
2538
{
2539
    helper_fprem();
2540
}
2541

    
2542
void OPPROTO op_fyl2xp1(void)
2543
{
2544
    helper_fyl2xp1();
2545
}
2546

    
2547
void OPPROTO op_fsqrt(void)
2548
{
2549
    helper_fsqrt();
2550
}
2551

    
2552
void OPPROTO op_fsincos(void)
2553
{
2554
    helper_fsincos();
2555
}
2556

    
2557
void OPPROTO op_frndint(void)
2558
{
2559
    helper_frndint();
2560
}
2561

    
2562
void OPPROTO op_fscale(void)
2563
{
2564
    helper_fscale();
2565
}
2566

    
2567
void OPPROTO op_fsin(void)
2568
{
2569
    helper_fsin();
2570
}
2571

    
2572
void OPPROTO op_fcos(void)
2573
{
2574
    helper_fcos();
2575
}
2576

    
2577
void OPPROTO op_fnstsw_A0(void)
2578
{
2579
    int fpus;
2580
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2581
    stw((void *)A0, fpus);
2582
}
2583

    
2584
void OPPROTO op_fnstsw_EAX(void)
2585
{
2586
    int fpus;
2587
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
2588
    EAX = (EAX & 0xffff0000) | fpus;
2589
}
2590

    
2591
void OPPROTO op_fnstcw_A0(void)
2592
{
2593
    stw((void *)A0, env->fpuc);
2594
}
2595

    
2596
void OPPROTO op_fldcw_A0(void)
2597
{
2598
    int rnd_type;
2599
    env->fpuc = lduw((void *)A0);
2600
    /* set rounding mode */
2601
    switch(env->fpuc & RC_MASK) {
2602
    default:
2603
    case RC_NEAR:
2604
        rnd_type = FE_TONEAREST;
2605
        break;
2606
    case RC_DOWN:
2607
        rnd_type = FE_DOWNWARD;
2608
        break;
2609
    case RC_UP:
2610
        rnd_type = FE_UPWARD;
2611
        break;
2612
    case RC_CHOP:
2613
        rnd_type = FE_TOWARDZERO;
2614
        break;
2615
    }
2616
    fesetround(rnd_type);
2617
}
2618

    
2619
void OPPROTO op_fclex(void)
2620
{
2621
    env->fpus &= 0x7f00;
2622
}
2623

    
2624
void OPPROTO op_fninit(void)
2625
{
2626
    env->fpus = 0;
2627
    env->fpstt = 0;
2628
    env->fpuc = 0x37f;
2629
    env->fptags[0] = 1;
2630
    env->fptags[1] = 1;
2631
    env->fptags[2] = 1;
2632
    env->fptags[3] = 1;
2633
    env->fptags[4] = 1;
2634
    env->fptags[5] = 1;
2635
    env->fptags[6] = 1;
2636
    env->fptags[7] = 1;
2637
}
2638

    
2639
/* threading support */
2640
void OPPROTO op_lock(void)
2641
{
2642
    cpu_lock();
2643
}
2644

    
2645
void OPPROTO op_unlock(void)
2646
{
2647
    cpu_unlock();
2648
}