Statistics
| Branch: | Revision:

root / vl.c @ 2970a6c9

History | View | Annotate | Download (156.2 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "cache-utils.h"
40
#include "block.h"
41
#include "audio/audio.h"
42
#include "migration.h"
43
#include "kvm.h"
44
#include "balloon.h"
45

    
46
#include <unistd.h>
47
#include <fcntl.h>
48
#include <signal.h>
49
#include <time.h>
50
#include <errno.h>
51
#include <sys/time.h>
52
#include <zlib.h>
53

    
54
#ifndef _WIN32
55
#include <pwd.h>
56
#include <sys/times.h>
57
#include <sys/wait.h>
58
#include <termios.h>
59
#include <sys/mman.h>
60
#include <sys/ioctl.h>
61
#include <sys/resource.h>
62
#include <sys/socket.h>
63
#include <netinet/in.h>
64
#include <net/if.h>
65
#if defined(__NetBSD__)
66
#include <net/if_tap.h>
67
#endif
68
#ifdef __linux__
69
#include <linux/if_tun.h>
70
#endif
71
#include <arpa/inet.h>
72
#include <dirent.h>
73
#include <netdb.h>
74
#include <sys/select.h>
75
#ifdef _BSD
76
#include <sys/stat.h>
77
#ifdef __FreeBSD__
78
#include <libutil.h>
79
#else
80
#include <util.h>
81
#endif
82
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
83
#include <freebsd/stdlib.h>
84
#else
85
#ifdef __linux__
86
#include <pty.h>
87
#include <malloc.h>
88
#include <linux/rtc.h>
89

    
90
/* For the benefit of older linux systems which don't supply it,
91
   we use a local copy of hpet.h. */
92
/* #include <linux/hpet.h> */
93
#include "hpet.h"
94

    
95
#include <linux/ppdev.h>
96
#include <linux/parport.h>
97
#endif
98
#ifdef __sun__
99
#include <sys/stat.h>
100
#include <sys/ethernet.h>
101
#include <sys/sockio.h>
102
#include <netinet/arp.h>
103
#include <netinet/in.h>
104
#include <netinet/in_systm.h>
105
#include <netinet/ip.h>
106
#include <netinet/ip_icmp.h> // must come after ip.h
107
#include <netinet/udp.h>
108
#include <netinet/tcp.h>
109
#include <net/if.h>
110
#include <syslog.h>
111
#include <stropts.h>
112
#endif
113
#endif
114
#endif
115

    
116
#include "qemu_socket.h"
117

    
118
#if defined(CONFIG_SLIRP)
119
#include "libslirp.h"
120
#endif
121

    
122
#if defined(__OpenBSD__)
123
#include <util.h>
124
#endif
125

    
126
#if defined(CONFIG_VDE)
127
#include <libvdeplug.h>
128
#endif
129

    
130
#ifdef _WIN32
131
#include <malloc.h>
132
#include <sys/timeb.h>
133
#include <mmsystem.h>
134
#define getopt_long_only getopt_long
135
#define memalign(align, size) malloc(size)
136
#endif
137

    
138
#ifdef CONFIG_SDL
139
#ifdef __APPLE__
140
#include <SDL/SDL.h>
141
int qemu_main(int argc, char **argv, char **envp);
142
int main(int argc, char **argv)
143
{
144
    qemu_main(argc, argv, NULL);
145
}
146
#undef main
147
#define main qemu_main
148
#endif
149
#endif /* CONFIG_SDL */
150

    
151
#ifdef CONFIG_COCOA
152
#undef main
153
#define main qemu_main
154
#endif /* CONFIG_COCOA */
155

    
156
#include "disas.h"
157

    
158
#include "exec-all.h"
159

    
160
//#define DEBUG_UNUSED_IOPORT
161
//#define DEBUG_IOPORT
162
//#define DEBUG_NET
163
//#define DEBUG_SLIRP
164

    
165

    
166
#ifdef DEBUG_IOPORT
167
#  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
168
#else
169
#  define LOG_IOPORT(...) do { } while (0)
170
#endif
171

    
172
#define DEFAULT_RAM_SIZE 128
173

    
174
/* Max number of USB devices that can be specified on the commandline.  */
175
#define MAX_USB_CMDLINE 8
176

    
177
/* Max number of bluetooth switches on the commandline.  */
178
#define MAX_BT_CMDLINE 10
179

    
180
/* XXX: use a two level table to limit memory usage */
181
#define MAX_IOPORTS 65536
182

    
183
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
184
const char *bios_name = NULL;
185
static void *ioport_opaque[MAX_IOPORTS];
186
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
187
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
188
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
189
   to store the VM snapshots */
190
DriveInfo drives_table[MAX_DRIVES+1];
191
int nb_drives;
192
static int vga_ram_size;
193
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
194
static DisplayState *display_state;
195
int nographic;
196
static int curses;
197
static int sdl;
198
const char* keyboard_layout = NULL;
199
int64_t ticks_per_sec;
200
ram_addr_t ram_size;
201
int nb_nics;
202
NICInfo nd_table[MAX_NICS];
203
int vm_running;
204
static int rtc_utc = 1;
205
static int rtc_date_offset = -1; /* -1 means no change */
206
int cirrus_vga_enabled = 1;
207
int std_vga_enabled = 0;
208
int vmsvga_enabled = 0;
209
#ifdef TARGET_SPARC
210
int graphic_width = 1024;
211
int graphic_height = 768;
212
int graphic_depth = 8;
213
#else
214
int graphic_width = 800;
215
int graphic_height = 600;
216
int graphic_depth = 15;
217
#endif
218
static int full_screen = 0;
219
#ifdef CONFIG_SDL
220
static int no_frame = 0;
221
#endif
222
int no_quit = 0;
223
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
224
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
225
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
226
#ifdef TARGET_I386
227
int win2k_install_hack = 0;
228
int rtc_td_hack = 0;
229
#endif
230
int usb_enabled = 0;
231
int smp_cpus = 1;
232
const char *vnc_display;
233
int acpi_enabled = 1;
234
int no_hpet = 0;
235
int fd_bootchk = 1;
236
int no_reboot = 0;
237
int no_shutdown = 0;
238
int cursor_hide = 1;
239
int graphic_rotate = 0;
240
int daemonize = 0;
241
const char *option_rom[MAX_OPTION_ROMS];
242
int nb_option_roms;
243
int semihosting_enabled = 0;
244
#ifdef TARGET_ARM
245
int old_param = 0;
246
#endif
247
const char *qemu_name;
248
int alt_grab = 0;
249
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
250
unsigned int nb_prom_envs = 0;
251
const char *prom_envs[MAX_PROM_ENVS];
252
#endif
253
int nb_drives_opt;
254
struct drive_opt drives_opt[MAX_DRIVES];
255

    
256
static CPUState *cur_cpu;
257
static CPUState *next_cpu;
258
static int event_pending = 1;
259
/* Conversion factor from emulated instructions to virtual clock ticks.  */
260
static int icount_time_shift;
261
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
262
#define MAX_ICOUNT_SHIFT 10
263
/* Compensate for varying guest execution speed.  */
264
static int64_t qemu_icount_bias;
265
static QEMUTimer *icount_rt_timer;
266
static QEMUTimer *icount_vm_timer;
267
static QEMUTimer *nographic_timer;
268

    
269
uint8_t qemu_uuid[16];
270

    
271
/***********************************************************/
272
/* x86 ISA bus support */
273

    
274
target_phys_addr_t isa_mem_base = 0;
275
PicState2 *isa_pic;
276

    
277
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
278
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
279

    
280
static uint32_t ioport_read(int index, uint32_t address)
281
{
282
    static IOPortReadFunc *default_func[3] = {
283
        default_ioport_readb,
284
        default_ioport_readw,
285
        default_ioport_readl
286
    };
287
    IOPortReadFunc *func = ioport_read_table[index][address];
288
    if (!func)
289
        func = default_func[index];
290
    return func(ioport_opaque[address], address);
291
}
292

    
293
static void ioport_write(int index, uint32_t address, uint32_t data)
294
{
295
    static IOPortWriteFunc *default_func[3] = {
296
        default_ioport_writeb,
297
        default_ioport_writew,
298
        default_ioport_writel
299
    };
300
    IOPortWriteFunc *func = ioport_write_table[index][address];
301
    if (!func)
302
        func = default_func[index];
303
    func(ioport_opaque[address], address, data);
304
}
305

    
306
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
307
{
308
#ifdef DEBUG_UNUSED_IOPORT
309
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
310
#endif
311
    return 0xff;
312
}
313

    
314
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
315
{
316
#ifdef DEBUG_UNUSED_IOPORT
317
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
318
#endif
319
}
320

    
321
/* default is to make two byte accesses */
322
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
323
{
324
    uint32_t data;
325
    data = ioport_read(0, address);
326
    address = (address + 1) & (MAX_IOPORTS - 1);
327
    data |= ioport_read(0, address) << 8;
328
    return data;
329
}
330

    
331
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
332
{
333
    ioport_write(0, address, data & 0xff);
334
    address = (address + 1) & (MAX_IOPORTS - 1);
335
    ioport_write(0, address, (data >> 8) & 0xff);
336
}
337

    
338
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
339
{
340
#ifdef DEBUG_UNUSED_IOPORT
341
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
342
#endif
343
    return 0xffffffff;
344
}
345

    
346
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
347
{
348
#ifdef DEBUG_UNUSED_IOPORT
349
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
350
#endif
351
}
352

    
353
/* size is the word size in byte */
354
int register_ioport_read(int start, int length, int size,
355
                         IOPortReadFunc *func, void *opaque)
356
{
357
    int i, bsize;
358

    
359
    if (size == 1) {
360
        bsize = 0;
361
    } else if (size == 2) {
362
        bsize = 1;
363
    } else if (size == 4) {
364
        bsize = 2;
365
    } else {
366
        hw_error("register_ioport_read: invalid size");
367
        return -1;
368
    }
369
    for(i = start; i < start + length; i += size) {
370
        ioport_read_table[bsize][i] = func;
371
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
372
            hw_error("register_ioport_read: invalid opaque");
373
        ioport_opaque[i] = opaque;
374
    }
375
    return 0;
376
}
377

    
378
/* size is the word size in byte */
379
int register_ioport_write(int start, int length, int size,
380
                          IOPortWriteFunc *func, void *opaque)
381
{
382
    int i, bsize;
383

    
384
    if (size == 1) {
385
        bsize = 0;
386
    } else if (size == 2) {
387
        bsize = 1;
388
    } else if (size == 4) {
389
        bsize = 2;
390
    } else {
391
        hw_error("register_ioport_write: invalid size");
392
        return -1;
393
    }
394
    for(i = start; i < start + length; i += size) {
395
        ioport_write_table[bsize][i] = func;
396
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
397
            hw_error("register_ioport_write: invalid opaque");
398
        ioport_opaque[i] = opaque;
399
    }
400
    return 0;
401
}
402

    
403
void isa_unassign_ioport(int start, int length)
404
{
405
    int i;
406

    
407
    for(i = start; i < start + length; i++) {
408
        ioport_read_table[0][i] = default_ioport_readb;
409
        ioport_read_table[1][i] = default_ioport_readw;
410
        ioport_read_table[2][i] = default_ioport_readl;
411

    
412
        ioport_write_table[0][i] = default_ioport_writeb;
413
        ioport_write_table[1][i] = default_ioport_writew;
414
        ioport_write_table[2][i] = default_ioport_writel;
415

    
416
        ioport_opaque[i] = NULL;
417
    }
418
}
419

    
420
/***********************************************************/
421

    
422
void cpu_outb(CPUState *env, int addr, int val)
423
{
424
    LOG_IOPORT("outb: %04x %02x\n", addr, val);
425
    ioport_write(0, addr, val);
426
#ifdef USE_KQEMU
427
    if (env)
428
        env->last_io_time = cpu_get_time_fast();
429
#endif
430
}
431

    
432
void cpu_outw(CPUState *env, int addr, int val)
433
{
434
    LOG_IOPORT("outw: %04x %04x\n", addr, val);
435
    ioport_write(1, addr, val);
436
#ifdef USE_KQEMU
437
    if (env)
438
        env->last_io_time = cpu_get_time_fast();
439
#endif
440
}
441

    
442
void cpu_outl(CPUState *env, int addr, int val)
443
{
444
    LOG_IOPORT("outl: %04x %08x\n", addr, val);
445
    ioport_write(2, addr, val);
446
#ifdef USE_KQEMU
447
    if (env)
448
        env->last_io_time = cpu_get_time_fast();
449
#endif
450
}
451

    
452
int cpu_inb(CPUState *env, int addr)
453
{
454
    int val;
455
    val = ioport_read(0, addr);
456
    LOG_IOPORT("inb : %04x %02x\n", addr, val);
457
#ifdef USE_KQEMU
458
    if (env)
459
        env->last_io_time = cpu_get_time_fast();
460
#endif
461
    return val;
462
}
463

    
464
int cpu_inw(CPUState *env, int addr)
465
{
466
    int val;
467
    val = ioport_read(1, addr);
468
    LOG_IOPORT("inw : %04x %04x\n", addr, val);
469
#ifdef USE_KQEMU
470
    if (env)
471
        env->last_io_time = cpu_get_time_fast();
472
#endif
473
    return val;
474
}
475

    
476
int cpu_inl(CPUState *env, int addr)
477
{
478
    int val;
479
    val = ioport_read(2, addr);
480
    LOG_IOPORT("inl : %04x %08x\n", addr, val);
481
#ifdef USE_KQEMU
482
    if (env)
483
        env->last_io_time = cpu_get_time_fast();
484
#endif
485
    return val;
486
}
487

    
488
/***********************************************************/
489
void hw_error(const char *fmt, ...)
490
{
491
    va_list ap;
492
    CPUState *env;
493

    
494
    va_start(ap, fmt);
495
    fprintf(stderr, "qemu: hardware error: ");
496
    vfprintf(stderr, fmt, ap);
497
    fprintf(stderr, "\n");
498
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
499
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
500
#ifdef TARGET_I386
501
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
502
#else
503
        cpu_dump_state(env, stderr, fprintf, 0);
504
#endif
505
    }
506
    va_end(ap);
507
    abort();
508
}
509
 
510
/***************/
511
/* ballooning */
512

    
513
static QEMUBalloonEvent *qemu_balloon_event;
514
void *qemu_balloon_event_opaque;
515

    
516
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
517
{
518
    qemu_balloon_event = func;
519
    qemu_balloon_event_opaque = opaque;
520
}
521

    
522
void qemu_balloon(ram_addr_t target)
523
{
524
    if (qemu_balloon_event)
525
        qemu_balloon_event(qemu_balloon_event_opaque, target);
526
}
527

    
528
ram_addr_t qemu_balloon_status(void)
529
{
530
    if (qemu_balloon_event)
531
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
532
    return 0;
533
}
534

    
535
/***********************************************************/
536
/* keyboard/mouse */
537

    
538
static QEMUPutKBDEvent *qemu_put_kbd_event;
539
static void *qemu_put_kbd_event_opaque;
540
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
541
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
542

    
543
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
544
{
545
    qemu_put_kbd_event_opaque = opaque;
546
    qemu_put_kbd_event = func;
547
}
548

    
549
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
550
                                                void *opaque, int absolute,
551
                                                const char *name)
552
{
553
    QEMUPutMouseEntry *s, *cursor;
554

    
555
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
556

    
557
    s->qemu_put_mouse_event = func;
558
    s->qemu_put_mouse_event_opaque = opaque;
559
    s->qemu_put_mouse_event_absolute = absolute;
560
    s->qemu_put_mouse_event_name = qemu_strdup(name);
561
    s->next = NULL;
562

    
563
    if (!qemu_put_mouse_event_head) {
564
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
565
        return s;
566
    }
567

    
568
    cursor = qemu_put_mouse_event_head;
569
    while (cursor->next != NULL)
570
        cursor = cursor->next;
571

    
572
    cursor->next = s;
573
    qemu_put_mouse_event_current = s;
574

    
575
    return s;
576
}
577

    
578
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
579
{
580
    QEMUPutMouseEntry *prev = NULL, *cursor;
581

    
582
    if (!qemu_put_mouse_event_head || entry == NULL)
583
        return;
584

    
585
    cursor = qemu_put_mouse_event_head;
586
    while (cursor != NULL && cursor != entry) {
587
        prev = cursor;
588
        cursor = cursor->next;
589
    }
590

    
591
    if (cursor == NULL) // does not exist or list empty
592
        return;
593
    else if (prev == NULL) { // entry is head
594
        qemu_put_mouse_event_head = cursor->next;
595
        if (qemu_put_mouse_event_current == entry)
596
            qemu_put_mouse_event_current = cursor->next;
597
        qemu_free(entry->qemu_put_mouse_event_name);
598
        qemu_free(entry);
599
        return;
600
    }
601

    
602
    prev->next = entry->next;
603

    
604
    if (qemu_put_mouse_event_current == entry)
605
        qemu_put_mouse_event_current = prev;
606

    
607
    qemu_free(entry->qemu_put_mouse_event_name);
608
    qemu_free(entry);
609
}
610

    
611
void kbd_put_keycode(int keycode)
612
{
613
    if (qemu_put_kbd_event) {
614
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
615
    }
616
}
617

    
618
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
619
{
620
    QEMUPutMouseEvent *mouse_event;
621
    void *mouse_event_opaque;
622
    int width;
623

    
624
    if (!qemu_put_mouse_event_current) {
625
        return;
626
    }
627

    
628
    mouse_event =
629
        qemu_put_mouse_event_current->qemu_put_mouse_event;
630
    mouse_event_opaque =
631
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
632

    
633
    if (mouse_event) {
634
        if (graphic_rotate) {
635
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
636
                width = 0x7fff;
637
            else
638
                width = graphic_width - 1;
639
            mouse_event(mouse_event_opaque,
640
                                 width - dy, dx, dz, buttons_state);
641
        } else
642
            mouse_event(mouse_event_opaque,
643
                                 dx, dy, dz, buttons_state);
644
    }
645
}
646

    
647
int kbd_mouse_is_absolute(void)
648
{
649
    if (!qemu_put_mouse_event_current)
650
        return 0;
651

    
652
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
653
}
654

    
655
void do_info_mice(void)
656
{
657
    QEMUPutMouseEntry *cursor;
658
    int index = 0;
659

    
660
    if (!qemu_put_mouse_event_head) {
661
        term_printf("No mouse devices connected\n");
662
        return;
663
    }
664

    
665
    term_printf("Mouse devices available:\n");
666
    cursor = qemu_put_mouse_event_head;
667
    while (cursor != NULL) {
668
        term_printf("%c Mouse #%d: %s\n",
669
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
670
                    index, cursor->qemu_put_mouse_event_name);
671
        index++;
672
        cursor = cursor->next;
673
    }
674
}
675

    
676
void do_mouse_set(int index)
677
{
678
    QEMUPutMouseEntry *cursor;
679
    int i = 0;
680

    
681
    if (!qemu_put_mouse_event_head) {
682
        term_printf("No mouse devices connected\n");
683
        return;
684
    }
685

    
686
    cursor = qemu_put_mouse_event_head;
687
    while (cursor != NULL && index != i) {
688
        i++;
689
        cursor = cursor->next;
690
    }
691

    
692
    if (cursor != NULL)
693
        qemu_put_mouse_event_current = cursor;
694
    else
695
        term_printf("Mouse at given index not found\n");
696
}
697

    
698
/* compute with 96 bit intermediate result: (a*b)/c */
699
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
700
{
701
    union {
702
        uint64_t ll;
703
        struct {
704
#ifdef WORDS_BIGENDIAN
705
            uint32_t high, low;
706
#else
707
            uint32_t low, high;
708
#endif
709
        } l;
710
    } u, res;
711
    uint64_t rl, rh;
712

    
713
    u.ll = a;
714
    rl = (uint64_t)u.l.low * (uint64_t)b;
715
    rh = (uint64_t)u.l.high * (uint64_t)b;
716
    rh += (rl >> 32);
717
    res.l.high = rh / c;
718
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
719
    return res.ll;
720
}
721

    
722
/***********************************************************/
723
/* real time host monotonic timer */
724

    
725
#define QEMU_TIMER_BASE 1000000000LL
726

    
727
#ifdef WIN32
728

    
729
static int64_t clock_freq;
730

    
731
static void init_get_clock(void)
732
{
733
    LARGE_INTEGER freq;
734
    int ret;
735
    ret = QueryPerformanceFrequency(&freq);
736
    if (ret == 0) {
737
        fprintf(stderr, "Could not calibrate ticks\n");
738
        exit(1);
739
    }
740
    clock_freq = freq.QuadPart;
741
}
742

    
743
static int64_t get_clock(void)
744
{
745
    LARGE_INTEGER ti;
746
    QueryPerformanceCounter(&ti);
747
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
748
}
749

    
750
#else
751

    
752
static int use_rt_clock;
753

    
754
static void init_get_clock(void)
755
{
756
    use_rt_clock = 0;
757
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
758
    {
759
        struct timespec ts;
760
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
761
            use_rt_clock = 1;
762
        }
763
    }
764
#endif
765
}
766

    
767
static int64_t get_clock(void)
768
{
769
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
770
    if (use_rt_clock) {
771
        struct timespec ts;
772
        clock_gettime(CLOCK_MONOTONIC, &ts);
773
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
774
    } else
775
#endif
776
    {
777
        /* XXX: using gettimeofday leads to problems if the date
778
           changes, so it should be avoided. */
779
        struct timeval tv;
780
        gettimeofday(&tv, NULL);
781
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
782
    }
783
}
784
#endif
785

    
786
/* Return the virtual CPU time, based on the instruction counter.  */
787
static int64_t cpu_get_icount(void)
788
{
789
    int64_t icount;
790
    CPUState *env = cpu_single_env;;
791
    icount = qemu_icount;
792
    if (env) {
793
        if (!can_do_io(env))
794
            fprintf(stderr, "Bad clock read\n");
795
        icount -= (env->icount_decr.u16.low + env->icount_extra);
796
    }
797
    return qemu_icount_bias + (icount << icount_time_shift);
798
}
799

    
800
/***********************************************************/
801
/* guest cycle counter */
802

    
803
static int64_t cpu_ticks_prev;
804
static int64_t cpu_ticks_offset;
805
static int64_t cpu_clock_offset;
806
static int cpu_ticks_enabled;
807

    
808
/* return the host CPU cycle counter and handle stop/restart */
809
int64_t cpu_get_ticks(void)
810
{
811
    if (use_icount) {
812
        return cpu_get_icount();
813
    }
814
    if (!cpu_ticks_enabled) {
815
        return cpu_ticks_offset;
816
    } else {
817
        int64_t ticks;
818
        ticks = cpu_get_real_ticks();
819
        if (cpu_ticks_prev > ticks) {
820
            /* Note: non increasing ticks may happen if the host uses
821
               software suspend */
822
            cpu_ticks_offset += cpu_ticks_prev - ticks;
823
        }
824
        cpu_ticks_prev = ticks;
825
        return ticks + cpu_ticks_offset;
826
    }
827
}
828

    
829
/* return the host CPU monotonic timer and handle stop/restart */
830
static int64_t cpu_get_clock(void)
831
{
832
    int64_t ti;
833
    if (!cpu_ticks_enabled) {
834
        return cpu_clock_offset;
835
    } else {
836
        ti = get_clock();
837
        return ti + cpu_clock_offset;
838
    }
839
}
840

    
841
/* enable cpu_get_ticks() */
842
void cpu_enable_ticks(void)
843
{
844
    if (!cpu_ticks_enabled) {
845
        cpu_ticks_offset -= cpu_get_real_ticks();
846
        cpu_clock_offset -= get_clock();
847
        cpu_ticks_enabled = 1;
848
    }
849
}
850

    
851
/* disable cpu_get_ticks() : the clock is stopped. You must not call
852
   cpu_get_ticks() after that.  */
853
void cpu_disable_ticks(void)
854
{
855
    if (cpu_ticks_enabled) {
856
        cpu_ticks_offset = cpu_get_ticks();
857
        cpu_clock_offset = cpu_get_clock();
858
        cpu_ticks_enabled = 0;
859
    }
860
}
861

    
862
/***********************************************************/
863
/* timers */
864

    
865
#define QEMU_TIMER_REALTIME 0
866
#define QEMU_TIMER_VIRTUAL  1
867

    
868
struct QEMUClock {
869
    int type;
870
    /* XXX: add frequency */
871
};
872

    
873
struct QEMUTimer {
874
    QEMUClock *clock;
875
    int64_t expire_time;
876
    QEMUTimerCB *cb;
877
    void *opaque;
878
    struct QEMUTimer *next;
879
};
880

    
881
struct qemu_alarm_timer {
882
    char const *name;
883
    unsigned int flags;
884

    
885
    int (*start)(struct qemu_alarm_timer *t);
886
    void (*stop)(struct qemu_alarm_timer *t);
887
    void (*rearm)(struct qemu_alarm_timer *t);
888
    void *priv;
889
};
890

    
891
#define ALARM_FLAG_DYNTICKS  0x1
892
#define ALARM_FLAG_EXPIRED   0x2
893

    
894
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
895
{
896
    return t->flags & ALARM_FLAG_DYNTICKS;
897
}
898

    
899
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
900
{
901
    if (!alarm_has_dynticks(t))
902
        return;
903

    
904
    t->rearm(t);
905
}
906

    
907
/* TODO: MIN_TIMER_REARM_US should be optimized */
908
#define MIN_TIMER_REARM_US 250
909

    
910
static struct qemu_alarm_timer *alarm_timer;
911
#ifndef _WIN32
912
static int alarm_timer_rfd, alarm_timer_wfd;
913
#endif
914

    
915
#ifdef _WIN32
916

    
917
struct qemu_alarm_win32 {
918
    MMRESULT timerId;
919
    HANDLE host_alarm;
920
    unsigned int period;
921
} alarm_win32_data = {0, NULL, -1};
922

    
923
static int win32_start_timer(struct qemu_alarm_timer *t);
924
static void win32_stop_timer(struct qemu_alarm_timer *t);
925
static void win32_rearm_timer(struct qemu_alarm_timer *t);
926

    
927
#else
928

    
929
static int unix_start_timer(struct qemu_alarm_timer *t);
930
static void unix_stop_timer(struct qemu_alarm_timer *t);
931

    
932
#ifdef __linux__
933

    
934
static int dynticks_start_timer(struct qemu_alarm_timer *t);
935
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
936
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
937

    
938
static int hpet_start_timer(struct qemu_alarm_timer *t);
939
static void hpet_stop_timer(struct qemu_alarm_timer *t);
940

    
941
static int rtc_start_timer(struct qemu_alarm_timer *t);
942
static void rtc_stop_timer(struct qemu_alarm_timer *t);
943

    
944
#endif /* __linux__ */
945

    
946
#endif /* _WIN32 */
947

    
948
/* Correlation between real and virtual time is always going to be
949
   fairly approximate, so ignore small variation.
950
   When the guest is idle real and virtual time will be aligned in
951
   the IO wait loop.  */
952
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
953

    
954
static void icount_adjust(void)
955
{
956
    int64_t cur_time;
957
    int64_t cur_icount;
958
    int64_t delta;
959
    static int64_t last_delta;
960
    /* If the VM is not running, then do nothing.  */
961
    if (!vm_running)
962
        return;
963

    
964
    cur_time = cpu_get_clock();
965
    cur_icount = qemu_get_clock(vm_clock);
966
    delta = cur_icount - cur_time;
967
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
968
    if (delta > 0
969
        && last_delta + ICOUNT_WOBBLE < delta * 2
970
        && icount_time_shift > 0) {
971
        /* The guest is getting too far ahead.  Slow time down.  */
972
        icount_time_shift--;
973
    }
974
    if (delta < 0
975
        && last_delta - ICOUNT_WOBBLE > delta * 2
976
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
977
        /* The guest is getting too far behind.  Speed time up.  */
978
        icount_time_shift++;
979
    }
980
    last_delta = delta;
981
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
982
}
983

    
984
static void icount_adjust_rt(void * opaque)
985
{
986
    qemu_mod_timer(icount_rt_timer,
987
                   qemu_get_clock(rt_clock) + 1000);
988
    icount_adjust();
989
}
990

    
991
static void icount_adjust_vm(void * opaque)
992
{
993
    qemu_mod_timer(icount_vm_timer,
994
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
995
    icount_adjust();
996
}
997

    
998
static void init_icount_adjust(void)
999
{
1000
    /* Have both realtime and virtual time triggers for speed adjustment.
1001
       The realtime trigger catches emulated time passing too slowly,
1002
       the virtual time trigger catches emulated time passing too fast.
1003
       Realtime triggers occur even when idle, so use them less frequently
1004
       than VM triggers.  */
1005
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1006
    qemu_mod_timer(icount_rt_timer,
1007
                   qemu_get_clock(rt_clock) + 1000);
1008
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1009
    qemu_mod_timer(icount_vm_timer,
1010
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011
}
1012

    
1013
static struct qemu_alarm_timer alarm_timers[] = {
1014
#ifndef _WIN32
1015
#ifdef __linux__
1016
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1017
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1018
    /* HPET - if available - is preferred */
1019
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1020
    /* ...otherwise try RTC */
1021
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1022
#endif
1023
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1024
#else
1025
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1026
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1027
    {"win32", 0, win32_start_timer,
1028
     win32_stop_timer, NULL, &alarm_win32_data},
1029
#endif
1030
    {NULL, }
1031
};
1032

    
1033
static void show_available_alarms(void)
1034
{
1035
    int i;
1036

    
1037
    printf("Available alarm timers, in order of precedence:\n");
1038
    for (i = 0; alarm_timers[i].name; i++)
1039
        printf("%s\n", alarm_timers[i].name);
1040
}
1041

    
1042
static void configure_alarms(char const *opt)
1043
{
1044
    int i;
1045
    int cur = 0;
1046
    int count = ARRAY_SIZE(alarm_timers) - 1;
1047
    char *arg;
1048
    char *name;
1049
    struct qemu_alarm_timer tmp;
1050

    
1051
    if (!strcmp(opt, "?")) {
1052
        show_available_alarms();
1053
        exit(0);
1054
    }
1055

    
1056
    arg = strdup(opt);
1057

    
1058
    /* Reorder the array */
1059
    name = strtok(arg, ",");
1060
    while (name) {
1061
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1062
            if (!strcmp(alarm_timers[i].name, name))
1063
                break;
1064
        }
1065

    
1066
        if (i == count) {
1067
            fprintf(stderr, "Unknown clock %s\n", name);
1068
            goto next;
1069
        }
1070

    
1071
        if (i < cur)
1072
            /* Ignore */
1073
            goto next;
1074

    
1075
        /* Swap */
1076
        tmp = alarm_timers[i];
1077
        alarm_timers[i] = alarm_timers[cur];
1078
        alarm_timers[cur] = tmp;
1079

    
1080
        cur++;
1081
next:
1082
        name = strtok(NULL, ",");
1083
    }
1084

    
1085
    free(arg);
1086

    
1087
    if (cur) {
1088
        /* Disable remaining timers */
1089
        for (i = cur; i < count; i++)
1090
            alarm_timers[i].name = NULL;
1091
    } else {
1092
        show_available_alarms();
1093
        exit(1);
1094
    }
1095
}
1096

    
1097
QEMUClock *rt_clock;
1098
QEMUClock *vm_clock;
1099

    
1100
static QEMUTimer *active_timers[2];
1101

    
1102
static QEMUClock *qemu_new_clock(int type)
1103
{
1104
    QEMUClock *clock;
1105
    clock = qemu_mallocz(sizeof(QEMUClock));
1106
    clock->type = type;
1107
    return clock;
1108
}
1109

    
1110
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1111
{
1112
    QEMUTimer *ts;
1113

    
1114
    ts = qemu_mallocz(sizeof(QEMUTimer));
1115
    ts->clock = clock;
1116
    ts->cb = cb;
1117
    ts->opaque = opaque;
1118
    return ts;
1119
}
1120

    
1121
void qemu_free_timer(QEMUTimer *ts)
1122
{
1123
    qemu_free(ts);
1124
}
1125

    
1126
/* stop a timer, but do not dealloc it */
1127
void qemu_del_timer(QEMUTimer *ts)
1128
{
1129
    QEMUTimer **pt, *t;
1130

    
1131
    /* NOTE: this code must be signal safe because
1132
       qemu_timer_expired() can be called from a signal. */
1133
    pt = &active_timers[ts->clock->type];
1134
    for(;;) {
1135
        t = *pt;
1136
        if (!t)
1137
            break;
1138
        if (t == ts) {
1139
            *pt = t->next;
1140
            break;
1141
        }
1142
        pt = &t->next;
1143
    }
1144
}
1145

    
1146
/* modify the current timer so that it will be fired when current_time
1147
   >= expire_time. The corresponding callback will be called. */
1148
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1149
{
1150
    QEMUTimer **pt, *t;
1151

    
1152
    qemu_del_timer(ts);
1153

    
1154
    /* add the timer in the sorted list */
1155
    /* NOTE: this code must be signal safe because
1156
       qemu_timer_expired() can be called from a signal. */
1157
    pt = &active_timers[ts->clock->type];
1158
    for(;;) {
1159
        t = *pt;
1160
        if (!t)
1161
            break;
1162
        if (t->expire_time > expire_time)
1163
            break;
1164
        pt = &t->next;
1165
    }
1166
    ts->expire_time = expire_time;
1167
    ts->next = *pt;
1168
    *pt = ts;
1169

    
1170
    /* Rearm if necessary  */
1171
    if (pt == &active_timers[ts->clock->type]) {
1172
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1173
            qemu_rearm_alarm_timer(alarm_timer);
1174
        }
1175
        /* Interrupt execution to force deadline recalculation.  */
1176
        if (use_icount && cpu_single_env) {
1177
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1178
        }
1179
    }
1180
}
1181

    
1182
int qemu_timer_pending(QEMUTimer *ts)
1183
{
1184
    QEMUTimer *t;
1185
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1186
        if (t == ts)
1187
            return 1;
1188
    }
1189
    return 0;
1190
}
1191

    
1192
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1193
{
1194
    if (!timer_head)
1195
        return 0;
1196
    return (timer_head->expire_time <= current_time);
1197
}
1198

    
1199
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1200
{
1201
    QEMUTimer *ts;
1202

    
1203
    for(;;) {
1204
        ts = *ptimer_head;
1205
        if (!ts || ts->expire_time > current_time)
1206
            break;
1207
        /* remove timer from the list before calling the callback */
1208
        *ptimer_head = ts->next;
1209
        ts->next = NULL;
1210

    
1211
        /* run the callback (the timer list can be modified) */
1212
        ts->cb(ts->opaque);
1213
    }
1214
}
1215

    
1216
int64_t qemu_get_clock(QEMUClock *clock)
1217
{
1218
    switch(clock->type) {
1219
    case QEMU_TIMER_REALTIME:
1220
        return get_clock() / 1000000;
1221
    default:
1222
    case QEMU_TIMER_VIRTUAL:
1223
        if (use_icount) {
1224
            return cpu_get_icount();
1225
        } else {
1226
            return cpu_get_clock();
1227
        }
1228
    }
1229
}
1230

    
1231
static void init_timers(void)
1232
{
1233
    init_get_clock();
1234
    ticks_per_sec = QEMU_TIMER_BASE;
1235
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1236
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1237
}
1238

    
1239
/* save a timer */
1240
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1241
{
1242
    uint64_t expire_time;
1243

    
1244
    if (qemu_timer_pending(ts)) {
1245
        expire_time = ts->expire_time;
1246
    } else {
1247
        expire_time = -1;
1248
    }
1249
    qemu_put_be64(f, expire_time);
1250
}
1251

    
1252
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1253
{
1254
    uint64_t expire_time;
1255

    
1256
    expire_time = qemu_get_be64(f);
1257
    if (expire_time != -1) {
1258
        qemu_mod_timer(ts, expire_time);
1259
    } else {
1260
        qemu_del_timer(ts);
1261
    }
1262
}
1263

    
1264
static void timer_save(QEMUFile *f, void *opaque)
1265
{
1266
    if (cpu_ticks_enabled) {
1267
        hw_error("cannot save state if virtual timers are running");
1268
    }
1269
    qemu_put_be64(f, cpu_ticks_offset);
1270
    qemu_put_be64(f, ticks_per_sec);
1271
    qemu_put_be64(f, cpu_clock_offset);
1272
}
1273

    
1274
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1275
{
1276
    if (version_id != 1 && version_id != 2)
1277
        return -EINVAL;
1278
    if (cpu_ticks_enabled) {
1279
        return -EINVAL;
1280
    }
1281
    cpu_ticks_offset=qemu_get_be64(f);
1282
    ticks_per_sec=qemu_get_be64(f);
1283
    if (version_id == 2) {
1284
        cpu_clock_offset=qemu_get_be64(f);
1285
    }
1286
    return 0;
1287
}
1288

    
1289
#ifdef _WIN32
1290
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1291
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1292
#else
1293
static void host_alarm_handler(int host_signum)
1294
#endif
1295
{
1296
#if 0
1297
#define DISP_FREQ 1000
1298
    {
1299
        static int64_t delta_min = INT64_MAX;
1300
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1301
        static int count;
1302
        ti = qemu_get_clock(vm_clock);
1303
        if (last_clock != 0) {
1304
            delta = ti - last_clock;
1305
            if (delta < delta_min)
1306
                delta_min = delta;
1307
            if (delta > delta_max)
1308
                delta_max = delta;
1309
            delta_cum += delta;
1310
            if (++count == DISP_FREQ) {
1311
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1312
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1313
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1314
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1315
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1316
                count = 0;
1317
                delta_min = INT64_MAX;
1318
                delta_max = 0;
1319
                delta_cum = 0;
1320
            }
1321
        }
1322
        last_clock = ti;
1323
    }
1324
#endif
1325
    if (alarm_has_dynticks(alarm_timer) ||
1326
        (!use_icount &&
1327
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1328
                               qemu_get_clock(vm_clock))) ||
1329
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1330
                           qemu_get_clock(rt_clock))) {
1331
        CPUState *env = next_cpu;
1332

    
1333
#ifdef _WIN32
1334
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1335
        SetEvent(data->host_alarm);
1336
#else
1337
        static const char byte = 0;
1338
        write(alarm_timer_wfd, &byte, sizeof(byte));
1339
#endif
1340
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1341

    
1342
        if (env) {
1343
            /* stop the currently executing cpu because a timer occured */
1344
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1345
#ifdef USE_KQEMU
1346
            if (env->kqemu_enabled) {
1347
                kqemu_cpu_interrupt(env);
1348
            }
1349
#endif
1350
        }
1351
        event_pending = 1;
1352
    }
1353
}
1354

    
1355
static int64_t qemu_next_deadline(void)
1356
{
1357
    int64_t delta;
1358

    
1359
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1360
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1361
                     qemu_get_clock(vm_clock);
1362
    } else {
1363
        /* To avoid problems with overflow limit this to 2^32.  */
1364
        delta = INT32_MAX;
1365
    }
1366

    
1367
    if (delta < 0)
1368
        delta = 0;
1369

    
1370
    return delta;
1371
}
1372

    
1373
#if defined(__linux__) || defined(_WIN32)
1374
static uint64_t qemu_next_deadline_dyntick(void)
1375
{
1376
    int64_t delta;
1377
    int64_t rtdelta;
1378

    
1379
    if (use_icount)
1380
        delta = INT32_MAX;
1381
    else
1382
        delta = (qemu_next_deadline() + 999) / 1000;
1383

    
1384
    if (active_timers[QEMU_TIMER_REALTIME]) {
1385
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1386
                 qemu_get_clock(rt_clock))*1000;
1387
        if (rtdelta < delta)
1388
            delta = rtdelta;
1389
    }
1390

    
1391
    if (delta < MIN_TIMER_REARM_US)
1392
        delta = MIN_TIMER_REARM_US;
1393

    
1394
    return delta;
1395
}
1396
#endif
1397

    
1398
#ifndef _WIN32
1399

    
1400
/* Sets a specific flag */
1401
static int fcntl_setfl(int fd, int flag)
1402
{
1403
    int flags;
1404

    
1405
    flags = fcntl(fd, F_GETFL);
1406
    if (flags == -1)
1407
        return -errno;
1408

    
1409
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1410
        return -errno;
1411

    
1412
    return 0;
1413
}
1414

    
1415
#if defined(__linux__)
1416

    
1417
#define RTC_FREQ 1024
1418

    
1419
static void enable_sigio_timer(int fd)
1420
{
1421
    struct sigaction act;
1422

    
1423
    /* timer signal */
1424
    sigfillset(&act.sa_mask);
1425
    act.sa_flags = 0;
1426
    act.sa_handler = host_alarm_handler;
1427

    
1428
    sigaction(SIGIO, &act, NULL);
1429
    fcntl_setfl(fd, O_ASYNC);
1430
    fcntl(fd, F_SETOWN, getpid());
1431
}
1432

    
1433
static int hpet_start_timer(struct qemu_alarm_timer *t)
1434
{
1435
    struct hpet_info info;
1436
    int r, fd;
1437

    
1438
    fd = open("/dev/hpet", O_RDONLY);
1439
    if (fd < 0)
1440
        return -1;
1441

    
1442
    /* Set frequency */
1443
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1444
    if (r < 0) {
1445
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1446
                "error, but for better emulation accuracy type:\n"
1447
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1448
        goto fail;
1449
    }
1450

    
1451
    /* Check capabilities */
1452
    r = ioctl(fd, HPET_INFO, &info);
1453
    if (r < 0)
1454
        goto fail;
1455

    
1456
    /* Enable periodic mode */
1457
    r = ioctl(fd, HPET_EPI, 0);
1458
    if (info.hi_flags && (r < 0))
1459
        goto fail;
1460

    
1461
    /* Enable interrupt */
1462
    r = ioctl(fd, HPET_IE_ON, 0);
1463
    if (r < 0)
1464
        goto fail;
1465

    
1466
    enable_sigio_timer(fd);
1467
    t->priv = (void *)(long)fd;
1468

    
1469
    return 0;
1470
fail:
1471
    close(fd);
1472
    return -1;
1473
}
1474

    
1475
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1476
{
1477
    int fd = (long)t->priv;
1478

    
1479
    close(fd);
1480
}
1481

    
1482
static int rtc_start_timer(struct qemu_alarm_timer *t)
1483
{
1484
    int rtc_fd;
1485
    unsigned long current_rtc_freq = 0;
1486

    
1487
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1488
    if (rtc_fd < 0)
1489
        return -1;
1490
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1491
    if (current_rtc_freq != RTC_FREQ &&
1492
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1493
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1494
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1495
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1496
        goto fail;
1497
    }
1498
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1499
    fail:
1500
        close(rtc_fd);
1501
        return -1;
1502
    }
1503

    
1504
    enable_sigio_timer(rtc_fd);
1505

    
1506
    t->priv = (void *)(long)rtc_fd;
1507

    
1508
    return 0;
1509
}
1510

    
1511
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1512
{
1513
    int rtc_fd = (long)t->priv;
1514

    
1515
    close(rtc_fd);
1516
}
1517

    
1518
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1519
{
1520
    struct sigevent ev;
1521
    timer_t host_timer;
1522
    struct sigaction act;
1523

    
1524
    sigfillset(&act.sa_mask);
1525
    act.sa_flags = 0;
1526
    act.sa_handler = host_alarm_handler;
1527

    
1528
    sigaction(SIGALRM, &act, NULL);
1529

    
1530
    ev.sigev_value.sival_int = 0;
1531
    ev.sigev_notify = SIGEV_SIGNAL;
1532
    ev.sigev_signo = SIGALRM;
1533

    
1534
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1535
        perror("timer_create");
1536

    
1537
        /* disable dynticks */
1538
        fprintf(stderr, "Dynamic Ticks disabled\n");
1539

    
1540
        return -1;
1541
    }
1542

    
1543
    t->priv = (void *)(long)host_timer;
1544

    
1545
    return 0;
1546
}
1547

    
1548
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1549
{
1550
    timer_t host_timer = (timer_t)(long)t->priv;
1551

    
1552
    timer_delete(host_timer);
1553
}
1554

    
1555
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1556
{
1557
    timer_t host_timer = (timer_t)(long)t->priv;
1558
    struct itimerspec timeout;
1559
    int64_t nearest_delta_us = INT64_MAX;
1560
    int64_t current_us;
1561

    
1562
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1563
                !active_timers[QEMU_TIMER_VIRTUAL])
1564
        return;
1565

    
1566
    nearest_delta_us = qemu_next_deadline_dyntick();
1567

    
1568
    /* check whether a timer is already running */
1569
    if (timer_gettime(host_timer, &timeout)) {
1570
        perror("gettime");
1571
        fprintf(stderr, "Internal timer error: aborting\n");
1572
        exit(1);
1573
    }
1574
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1575
    if (current_us && current_us <= nearest_delta_us)
1576
        return;
1577

    
1578
    timeout.it_interval.tv_sec = 0;
1579
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1580
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1581
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1582
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1583
        perror("settime");
1584
        fprintf(stderr, "Internal timer error: aborting\n");
1585
        exit(1);
1586
    }
1587
}
1588

    
1589
#endif /* defined(__linux__) */
1590

    
1591
static int unix_start_timer(struct qemu_alarm_timer *t)
1592
{
1593
    struct sigaction act;
1594
    struct itimerval itv;
1595
    int err;
1596

    
1597
    /* timer signal */
1598
    sigfillset(&act.sa_mask);
1599
    act.sa_flags = 0;
1600
    act.sa_handler = host_alarm_handler;
1601

    
1602
    sigaction(SIGALRM, &act, NULL);
1603

    
1604
    itv.it_interval.tv_sec = 0;
1605
    /* for i386 kernel 2.6 to get 1 ms */
1606
    itv.it_interval.tv_usec = 999;
1607
    itv.it_value.tv_sec = 0;
1608
    itv.it_value.tv_usec = 10 * 1000;
1609

    
1610
    err = setitimer(ITIMER_REAL, &itv, NULL);
1611
    if (err)
1612
        return -1;
1613

    
1614
    return 0;
1615
}
1616

    
1617
static void unix_stop_timer(struct qemu_alarm_timer *t)
1618
{
1619
    struct itimerval itv;
1620

    
1621
    memset(&itv, 0, sizeof(itv));
1622
    setitimer(ITIMER_REAL, &itv, NULL);
1623
}
1624

    
1625
#endif /* !defined(_WIN32) */
1626

    
1627
static void try_to_rearm_timer(void *opaque)
1628
{
1629
    struct qemu_alarm_timer *t = opaque;
1630
#ifndef _WIN32
1631
    ssize_t len;
1632

    
1633
    /* Drain the notify pipe */
1634
    do {
1635
        char buffer[512];
1636
        len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1637
    } while ((len == -1 && errno == EINTR) || len > 0);
1638
#endif
1639

    
1640
    if (t->flags & ALARM_FLAG_EXPIRED) {
1641
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1642
        qemu_rearm_alarm_timer(alarm_timer);
1643
    }
1644
}
1645

    
1646
#ifdef _WIN32
1647

    
1648
static int win32_start_timer(struct qemu_alarm_timer *t)
1649
{
1650
    TIMECAPS tc;
1651
    struct qemu_alarm_win32 *data = t->priv;
1652
    UINT flags;
1653

    
1654
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1655
    if (!data->host_alarm) {
1656
        perror("Failed CreateEvent");
1657
        return -1;
1658
    }
1659

    
1660
    memset(&tc, 0, sizeof(tc));
1661
    timeGetDevCaps(&tc, sizeof(tc));
1662

    
1663
    if (data->period < tc.wPeriodMin)
1664
        data->period = tc.wPeriodMin;
1665

    
1666
    timeBeginPeriod(data->period);
1667

    
1668
    flags = TIME_CALLBACK_FUNCTION;
1669
    if (alarm_has_dynticks(t))
1670
        flags |= TIME_ONESHOT;
1671
    else
1672
        flags |= TIME_PERIODIC;
1673

    
1674
    data->timerId = timeSetEvent(1,         // interval (ms)
1675
                        data->period,       // resolution
1676
                        host_alarm_handler, // function
1677
                        (DWORD)t,           // parameter
1678
                        flags);
1679

    
1680
    if (!data->timerId) {
1681
        perror("Failed to initialize win32 alarm timer");
1682

    
1683
        timeEndPeriod(data->period);
1684
        CloseHandle(data->host_alarm);
1685
        return -1;
1686
    }
1687

    
1688
    qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1689

    
1690
    return 0;
1691
}
1692

    
1693
static void win32_stop_timer(struct qemu_alarm_timer *t)
1694
{
1695
    struct qemu_alarm_win32 *data = t->priv;
1696

    
1697
    timeKillEvent(data->timerId);
1698
    timeEndPeriod(data->period);
1699

    
1700
    CloseHandle(data->host_alarm);
1701
}
1702

    
1703
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1704
{
1705
    struct qemu_alarm_win32 *data = t->priv;
1706
    uint64_t nearest_delta_us;
1707

    
1708
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1709
                !active_timers[QEMU_TIMER_VIRTUAL])
1710
        return;
1711

    
1712
    nearest_delta_us = qemu_next_deadline_dyntick();
1713
    nearest_delta_us /= 1000;
1714

    
1715
    timeKillEvent(data->timerId);
1716

    
1717
    data->timerId = timeSetEvent(1,
1718
                        data->period,
1719
                        host_alarm_handler,
1720
                        (DWORD)t,
1721
                        TIME_ONESHOT | TIME_PERIODIC);
1722

    
1723
    if (!data->timerId) {
1724
        perror("Failed to re-arm win32 alarm timer");
1725

    
1726
        timeEndPeriod(data->period);
1727
        CloseHandle(data->host_alarm);
1728
        exit(1);
1729
    }
1730
}
1731

    
1732
#endif /* _WIN32 */
1733

    
1734
static int init_timer_alarm(void)
1735
{
1736
    struct qemu_alarm_timer *t = NULL;
1737
    int i, err = -1;
1738

    
1739
#ifndef _WIN32
1740
    int fds[2];
1741

    
1742
    err = pipe(fds);
1743
    if (err == -1)
1744
        return -errno;
1745

    
1746
    err = fcntl_setfl(fds[0], O_NONBLOCK);
1747
    if (err < 0)
1748
        goto fail;
1749

    
1750
    err = fcntl_setfl(fds[1], O_NONBLOCK);
1751
    if (err < 0)
1752
        goto fail;
1753

    
1754
    alarm_timer_rfd = fds[0];
1755
    alarm_timer_wfd = fds[1];
1756
#endif
1757

    
1758
    for (i = 0; alarm_timers[i].name; i++) {
1759
        t = &alarm_timers[i];
1760

    
1761
        err = t->start(t);
1762
        if (!err)
1763
            break;
1764
    }
1765

    
1766
    if (err) {
1767
        err = -ENOENT;
1768
        goto fail;
1769
    }
1770

    
1771
#ifndef _WIN32
1772
    qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1773
                         try_to_rearm_timer, NULL, t);
1774
#endif
1775

    
1776
    alarm_timer = t;
1777

    
1778
    return 0;
1779

    
1780
fail:
1781
#ifndef _WIN32
1782
    close(fds[0]);
1783
    close(fds[1]);
1784
#endif
1785
    return err;
1786
}
1787

    
1788
static void quit_timers(void)
1789
{
1790
    alarm_timer->stop(alarm_timer);
1791
    alarm_timer = NULL;
1792
}
1793

    
1794
/***********************************************************/
1795
/* host time/date access */
1796
void qemu_get_timedate(struct tm *tm, int offset)
1797
{
1798
    time_t ti;
1799
    struct tm *ret;
1800

    
1801
    time(&ti);
1802
    ti += offset;
1803
    if (rtc_date_offset == -1) {
1804
        if (rtc_utc)
1805
            ret = gmtime(&ti);
1806
        else
1807
            ret = localtime(&ti);
1808
    } else {
1809
        ti -= rtc_date_offset;
1810
        ret = gmtime(&ti);
1811
    }
1812

    
1813
    memcpy(tm, ret, sizeof(struct tm));
1814
}
1815

    
1816
int qemu_timedate_diff(struct tm *tm)
1817
{
1818
    time_t seconds;
1819

    
1820
    if (rtc_date_offset == -1)
1821
        if (rtc_utc)
1822
            seconds = mktimegm(tm);
1823
        else
1824
            seconds = mktime(tm);
1825
    else
1826
        seconds = mktimegm(tm) + rtc_date_offset;
1827

    
1828
    return seconds - time(NULL);
1829
}
1830

    
1831
#ifdef _WIN32
1832
static void socket_cleanup(void)
1833
{
1834
    WSACleanup();
1835
}
1836

    
1837
static int socket_init(void)
1838
{
1839
    WSADATA Data;
1840
    int ret, err;
1841

    
1842
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1843
    if (ret != 0) {
1844
        err = WSAGetLastError();
1845
        fprintf(stderr, "WSAStartup: %d\n", err);
1846
        return -1;
1847
    }
1848
    atexit(socket_cleanup);
1849
    return 0;
1850
}
1851
#endif
1852

    
1853
const char *get_opt_name(char *buf, int buf_size, const char *p)
1854
{
1855
    char *q;
1856

    
1857
    q = buf;
1858
    while (*p != '\0' && *p != '=') {
1859
        if (q && (q - buf) < buf_size - 1)
1860
            *q++ = *p;
1861
        p++;
1862
    }
1863
    if (q)
1864
        *q = '\0';
1865

    
1866
    return p;
1867
}
1868

    
1869
const char *get_opt_value(char *buf, int buf_size, const char *p)
1870
{
1871
    char *q;
1872

    
1873
    q = buf;
1874
    while (*p != '\0') {
1875
        if (*p == ',') {
1876
            if (*(p + 1) != ',')
1877
                break;
1878
            p++;
1879
        }
1880
        if (q && (q - buf) < buf_size - 1)
1881
            *q++ = *p;
1882
        p++;
1883
    }
1884
    if (q)
1885
        *q = '\0';
1886

    
1887
    return p;
1888
}
1889

    
1890
int get_param_value(char *buf, int buf_size,
1891
                    const char *tag, const char *str)
1892
{
1893
    const char *p;
1894
    char option[128];
1895

    
1896
    p = str;
1897
    for(;;) {
1898
        p = get_opt_name(option, sizeof(option), p);
1899
        if (*p != '=')
1900
            break;
1901
        p++;
1902
        if (!strcmp(tag, option)) {
1903
            (void)get_opt_value(buf, buf_size, p);
1904
            return strlen(buf);
1905
        } else {
1906
            p = get_opt_value(NULL, 0, p);
1907
        }
1908
        if (*p != ',')
1909
            break;
1910
        p++;
1911
    }
1912
    return 0;
1913
}
1914

    
1915
int check_params(char *buf, int buf_size,
1916
                 const char * const *params, const char *str)
1917
{
1918
    const char *p;
1919
    int i;
1920

    
1921
    p = str;
1922
    for(;;) {
1923
        p = get_opt_name(buf, buf_size, p);
1924
        if (*p != '=')
1925
            return -1;
1926
        p++;
1927
        for(i = 0; params[i] != NULL; i++)
1928
            if (!strcmp(params[i], buf))
1929
                break;
1930
        if (params[i] == NULL)
1931
            return -1;
1932
        p = get_opt_value(NULL, 0, p);
1933
        if (*p != ',')
1934
            break;
1935
        p++;
1936
    }
1937
    return 0;
1938
}
1939

    
1940
/***********************************************************/
1941
/* Bluetooth support */
1942
static int nb_hcis;
1943
static int cur_hci;
1944
static struct HCIInfo *hci_table[MAX_NICS];
1945

    
1946
static struct bt_vlan_s {
1947
    struct bt_scatternet_s net;
1948
    int id;
1949
    struct bt_vlan_s *next;
1950
} *first_bt_vlan;
1951

    
1952
/* find or alloc a new bluetooth "VLAN" */
1953
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1954
{
1955
    struct bt_vlan_s **pvlan, *vlan;
1956
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1957
        if (vlan->id == id)
1958
            return &vlan->net;
1959
    }
1960
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1961
    vlan->id = id;
1962
    pvlan = &first_bt_vlan;
1963
    while (*pvlan != NULL)
1964
        pvlan = &(*pvlan)->next;
1965
    *pvlan = vlan;
1966
    return &vlan->net;
1967
}
1968

    
1969
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1970
{
1971
}
1972

    
1973
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1974
{
1975
    return -ENOTSUP;
1976
}
1977

    
1978
static struct HCIInfo null_hci = {
1979
    .cmd_send = null_hci_send,
1980
    .sco_send = null_hci_send,
1981
    .acl_send = null_hci_send,
1982
    .bdaddr_set = null_hci_addr_set,
1983
};
1984

    
1985
struct HCIInfo *qemu_next_hci(void)
1986
{
1987
    if (cur_hci == nb_hcis)
1988
        return &null_hci;
1989

    
1990
    return hci_table[cur_hci++];
1991
}
1992

    
1993
static struct HCIInfo *hci_init(const char *str)
1994
{
1995
    char *endp;
1996
    struct bt_scatternet_s *vlan = 0;
1997

    
1998
    if (!strcmp(str, "null"))
1999
        /* null */
2000
        return &null_hci;
2001
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2002
        /* host[:hciN] */
2003
        return bt_host_hci(str[4] ? str + 5 : "hci0");
2004
    else if (!strncmp(str, "hci", 3)) {
2005
        /* hci[,vlan=n] */
2006
        if (str[3]) {
2007
            if (!strncmp(str + 3, ",vlan=", 6)) {
2008
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2009
                if (*endp)
2010
                    vlan = 0;
2011
            }
2012
        } else
2013
            vlan = qemu_find_bt_vlan(0);
2014
        if (vlan)
2015
           return bt_new_hci(vlan);
2016
    }
2017

    
2018
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2019

    
2020
    return 0;
2021
}
2022

    
2023
static int bt_hci_parse(const char *str)
2024
{
2025
    struct HCIInfo *hci;
2026
    bdaddr_t bdaddr;
2027

    
2028
    if (nb_hcis >= MAX_NICS) {
2029
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2030
        return -1;
2031
    }
2032

    
2033
    hci = hci_init(str);
2034
    if (!hci)
2035
        return -1;
2036

    
2037
    bdaddr.b[0] = 0x52;
2038
    bdaddr.b[1] = 0x54;
2039
    bdaddr.b[2] = 0x00;
2040
    bdaddr.b[3] = 0x12;
2041
    bdaddr.b[4] = 0x34;
2042
    bdaddr.b[5] = 0x56 + nb_hcis;
2043
    hci->bdaddr_set(hci, bdaddr.b);
2044

    
2045
    hci_table[nb_hcis++] = hci;
2046

    
2047
    return 0;
2048
}
2049

    
2050
static void bt_vhci_add(int vlan_id)
2051
{
2052
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2053

    
2054
    if (!vlan->slave)
2055
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2056
                        "an empty scatternet %i\n", vlan_id);
2057

    
2058
    bt_vhci_init(bt_new_hci(vlan));
2059
}
2060

    
2061
static struct bt_device_s *bt_device_add(const char *opt)
2062
{
2063
    struct bt_scatternet_s *vlan;
2064
    int vlan_id = 0;
2065
    char *endp = strstr(opt, ",vlan=");
2066
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2067
    char devname[10];
2068

    
2069
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2070

    
2071
    if (endp) {
2072
        vlan_id = strtol(endp + 6, &endp, 0);
2073
        if (*endp) {
2074
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2075
            return 0;
2076
        }
2077
    }
2078

    
2079
    vlan = qemu_find_bt_vlan(vlan_id);
2080

    
2081
    if (!vlan->slave)
2082
        fprintf(stderr, "qemu: warning: adding a slave device to "
2083
                        "an empty scatternet %i\n", vlan_id);
2084

    
2085
    if (!strcmp(devname, "keyboard"))
2086
        return bt_keyboard_init(vlan);
2087

    
2088
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2089
    return 0;
2090
}
2091

    
2092
static int bt_parse(const char *opt)
2093
{
2094
    const char *endp, *p;
2095
    int vlan;
2096

    
2097
    if (strstart(opt, "hci", &endp)) {
2098
        if (!*endp || *endp == ',') {
2099
            if (*endp)
2100
                if (!strstart(endp, ",vlan=", 0))
2101
                    opt = endp + 1;
2102

    
2103
            return bt_hci_parse(opt);
2104
       }
2105
    } else if (strstart(opt, "vhci", &endp)) {
2106
        if (!*endp || *endp == ',') {
2107
            if (*endp) {
2108
                if (strstart(endp, ",vlan=", &p)) {
2109
                    vlan = strtol(p, (char **) &endp, 0);
2110
                    if (*endp) {
2111
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2112
                        return 1;
2113
                    }
2114
                } else {
2115
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2116
                    return 1;
2117
                }
2118
            } else
2119
                vlan = 0;
2120

    
2121
            bt_vhci_add(vlan);
2122
            return 0;
2123
        }
2124
    } else if (strstart(opt, "device:", &endp))
2125
        return !bt_device_add(endp);
2126

    
2127
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2128
    return 1;
2129
}
2130

    
2131
/***********************************************************/
2132
/* QEMU Block devices */
2133

    
2134
#define HD_ALIAS "index=%d,media=disk"
2135
#ifdef TARGET_PPC
2136
#define CDROM_ALIAS "index=1,media=cdrom"
2137
#else
2138
#define CDROM_ALIAS "index=2,media=cdrom"
2139
#endif
2140
#define FD_ALIAS "index=%d,if=floppy"
2141
#define PFLASH_ALIAS "if=pflash"
2142
#define MTD_ALIAS "if=mtd"
2143
#define SD_ALIAS "index=0,if=sd"
2144

    
2145
static int drive_opt_get_free_idx(void)
2146
{
2147
    int index;
2148

    
2149
    for (index = 0; index < MAX_DRIVES; index++)
2150
        if (!drives_opt[index].used) {
2151
            drives_opt[index].used = 1;
2152
            return index;
2153
        }
2154

    
2155
    return -1;
2156
}
2157

    
2158
static int drive_get_free_idx(void)
2159
{
2160
    int index;
2161

    
2162
    for (index = 0; index < MAX_DRIVES; index++)
2163
        if (!drives_table[index].used) {
2164
            drives_table[index].used = 1;
2165
            return index;
2166
        }
2167

    
2168
    return -1;
2169
}
2170

    
2171
int drive_add(const char *file, const char *fmt, ...)
2172
{
2173
    va_list ap;
2174
    int index = drive_opt_get_free_idx();
2175

    
2176
    if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2177
        fprintf(stderr, "qemu: too many drives\n");
2178
        return -1;
2179
    }
2180

    
2181
    drives_opt[index].file = file;
2182
    va_start(ap, fmt);
2183
    vsnprintf(drives_opt[index].opt,
2184
              sizeof(drives_opt[0].opt), fmt, ap);
2185
    va_end(ap);
2186

    
2187
    nb_drives_opt++;
2188
    return index;
2189
}
2190

    
2191
void drive_remove(int index)
2192
{
2193
    drives_opt[index].used = 0;
2194
    nb_drives_opt--;
2195
}
2196

    
2197
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2198
{
2199
    int index;
2200

    
2201
    /* seek interface, bus and unit */
2202

    
2203
    for (index = 0; index < MAX_DRIVES; index++)
2204
        if (drives_table[index].type == type &&
2205
            drives_table[index].bus == bus &&
2206
            drives_table[index].unit == unit &&
2207
            drives_table[index].used)
2208
        return index;
2209

    
2210
    return -1;
2211
}
2212

    
2213
int drive_get_max_bus(BlockInterfaceType type)
2214
{
2215
    int max_bus;
2216
    int index;
2217

    
2218
    max_bus = -1;
2219
    for (index = 0; index < nb_drives; index++) {
2220
        if(drives_table[index].type == type &&
2221
           drives_table[index].bus > max_bus)
2222
            max_bus = drives_table[index].bus;
2223
    }
2224
    return max_bus;
2225
}
2226

    
2227
const char *drive_get_serial(BlockDriverState *bdrv)
2228
{
2229
    int index;
2230

    
2231
    for (index = 0; index < nb_drives; index++)
2232
        if (drives_table[index].bdrv == bdrv)
2233
            return drives_table[index].serial;
2234

    
2235
    return "\0";
2236
}
2237

    
2238
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2239
{
2240
    int index;
2241

    
2242
    for (index = 0; index < nb_drives; index++)
2243
        if (drives_table[index].bdrv == bdrv)
2244
            return drives_table[index].onerror;
2245

    
2246
    return BLOCK_ERR_STOP_ENOSPC;
2247
}
2248

    
2249
static void bdrv_format_print(void *opaque, const char *name)
2250
{
2251
    fprintf(stderr, " %s", name);
2252
}
2253

    
2254
void drive_uninit(BlockDriverState *bdrv)
2255
{
2256
    int i;
2257

    
2258
    for (i = 0; i < MAX_DRIVES; i++)
2259
        if (drives_table[i].bdrv == bdrv) {
2260
            drives_table[i].bdrv = NULL;
2261
            drives_table[i].used = 0;
2262
            drive_remove(drives_table[i].drive_opt_idx);
2263
            nb_drives--;
2264
            break;
2265
        }
2266
}
2267

    
2268
int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2269
{
2270
    char buf[128];
2271
    char file[1024];
2272
    char devname[128];
2273
    char serial[21];
2274
    const char *mediastr = "";
2275
    BlockInterfaceType type;
2276
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2277
    int bus_id, unit_id;
2278
    int cyls, heads, secs, translation;
2279
    BlockDriverState *bdrv;
2280
    BlockDriver *drv = NULL;
2281
    QEMUMachine *machine = opaque;
2282
    int max_devs;
2283
    int index;
2284
    int cache;
2285
    int bdrv_flags, onerror;
2286
    int drives_table_idx;
2287
    char *str = arg->opt;
2288
    static const char * const params[] = { "bus", "unit", "if", "index",
2289
                                           "cyls", "heads", "secs", "trans",
2290
                                           "media", "snapshot", "file",
2291
                                           "cache", "format", "serial", "werror",
2292
                                           NULL };
2293

    
2294
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2295
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2296
                         buf, str);
2297
         return -1;
2298
    }
2299

    
2300
    file[0] = 0;
2301
    cyls = heads = secs = 0;
2302
    bus_id = 0;
2303
    unit_id = -1;
2304
    translation = BIOS_ATA_TRANSLATION_AUTO;
2305
    index = -1;
2306
    cache = 3;
2307

    
2308
    if (machine->use_scsi) {
2309
        type = IF_SCSI;
2310
        max_devs = MAX_SCSI_DEVS;
2311
        pstrcpy(devname, sizeof(devname), "scsi");
2312
    } else {
2313
        type = IF_IDE;
2314
        max_devs = MAX_IDE_DEVS;
2315
        pstrcpy(devname, sizeof(devname), "ide");
2316
    }
2317
    media = MEDIA_DISK;
2318

    
2319
    /* extract parameters */
2320

    
2321
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2322
        bus_id = strtol(buf, NULL, 0);
2323
        if (bus_id < 0) {
2324
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2325
            return -1;
2326
        }
2327
    }
2328

    
2329
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2330
        unit_id = strtol(buf, NULL, 0);
2331
        if (unit_id < 0) {
2332
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2333
            return -1;
2334
        }
2335
    }
2336

    
2337
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2338
        pstrcpy(devname, sizeof(devname), buf);
2339
        if (!strcmp(buf, "ide")) {
2340
            type = IF_IDE;
2341
            max_devs = MAX_IDE_DEVS;
2342
        } else if (!strcmp(buf, "scsi")) {
2343
            type = IF_SCSI;
2344
            max_devs = MAX_SCSI_DEVS;
2345
        } else if (!strcmp(buf, "floppy")) {
2346
            type = IF_FLOPPY;
2347
            max_devs = 0;
2348
        } else if (!strcmp(buf, "pflash")) {
2349
            type = IF_PFLASH;
2350
            max_devs = 0;
2351
        } else if (!strcmp(buf, "mtd")) {
2352
            type = IF_MTD;
2353
            max_devs = 0;
2354
        } else if (!strcmp(buf, "sd")) {
2355
            type = IF_SD;
2356
            max_devs = 0;
2357
        } else if (!strcmp(buf, "virtio")) {
2358
            type = IF_VIRTIO;
2359
            max_devs = 0;
2360
        } else {
2361
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2362
            return -1;
2363
        }
2364
    }
2365

    
2366
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2367
        index = strtol(buf, NULL, 0);
2368
        if (index < 0) {
2369
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2370
            return -1;
2371
        }
2372
    }
2373

    
2374
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2375
        cyls = strtol(buf, NULL, 0);
2376
    }
2377

    
2378
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2379
        heads = strtol(buf, NULL, 0);
2380
    }
2381

    
2382
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2383
        secs = strtol(buf, NULL, 0);
2384
    }
2385

    
2386
    if (cyls || heads || secs) {
2387
        if (cyls < 1 || cyls > 16383) {
2388
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2389
            return -1;
2390
        }
2391
        if (heads < 1 || heads > 16) {
2392
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2393
            return -1;
2394
        }
2395
        if (secs < 1 || secs > 63) {
2396
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2397
            return -1;
2398
        }
2399
    }
2400

    
2401
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2402
        if (!cyls) {
2403
            fprintf(stderr,
2404
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2405
                    str);
2406
            return -1;
2407
        }
2408
        if (!strcmp(buf, "none"))
2409
            translation = BIOS_ATA_TRANSLATION_NONE;
2410
        else if (!strcmp(buf, "lba"))
2411
            translation = BIOS_ATA_TRANSLATION_LBA;
2412
        else if (!strcmp(buf, "auto"))
2413
            translation = BIOS_ATA_TRANSLATION_AUTO;
2414
        else {
2415
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2416
            return -1;
2417
        }
2418
    }
2419

    
2420
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2421
        if (!strcmp(buf, "disk")) {
2422
            media = MEDIA_DISK;
2423
        } else if (!strcmp(buf, "cdrom")) {
2424
            if (cyls || secs || heads) {
2425
                fprintf(stderr,
2426
                        "qemu: '%s' invalid physical CHS format\n", str);
2427
                return -1;
2428
            }
2429
            media = MEDIA_CDROM;
2430
        } else {
2431
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2432
            return -1;
2433
        }
2434
    }
2435

    
2436
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2437
        if (!strcmp(buf, "on"))
2438
            snapshot = 1;
2439
        else if (!strcmp(buf, "off"))
2440
            snapshot = 0;
2441
        else {
2442
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2443
            return -1;
2444
        }
2445
    }
2446

    
2447
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2448
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2449
            cache = 0;
2450
        else if (!strcmp(buf, "writethrough"))
2451
            cache = 1;
2452
        else if (!strcmp(buf, "writeback"))
2453
            cache = 2;
2454
        else {
2455
           fprintf(stderr, "qemu: invalid cache option\n");
2456
           return -1;
2457
        }
2458
    }
2459

    
2460
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2461
       if (strcmp(buf, "?") == 0) {
2462
            fprintf(stderr, "qemu: Supported formats:");
2463
            bdrv_iterate_format(bdrv_format_print, NULL);
2464
            fprintf(stderr, "\n");
2465
            return -1;
2466
        }
2467
        drv = bdrv_find_format(buf);
2468
        if (!drv) {
2469
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2470
            return -1;
2471
        }
2472
    }
2473

    
2474
    if (arg->file == NULL)
2475
        get_param_value(file, sizeof(file), "file", str);
2476
    else
2477
        pstrcpy(file, sizeof(file), arg->file);
2478

    
2479
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2480
            memset(serial, 0,  sizeof(serial));
2481

    
2482
    onerror = BLOCK_ERR_STOP_ENOSPC;
2483
    if (get_param_value(buf, sizeof(serial), "werror", str)) {
2484
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2485
            fprintf(stderr, "werror is no supported by this format\n");
2486
            return -1;
2487
        }
2488
        if (!strcmp(buf, "ignore"))
2489
            onerror = BLOCK_ERR_IGNORE;
2490
        else if (!strcmp(buf, "enospc"))
2491
            onerror = BLOCK_ERR_STOP_ENOSPC;
2492
        else if (!strcmp(buf, "stop"))
2493
            onerror = BLOCK_ERR_STOP_ANY;
2494
        else if (!strcmp(buf, "report"))
2495
            onerror = BLOCK_ERR_REPORT;
2496
        else {
2497
            fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2498
            return -1;
2499
        }
2500
    }
2501

    
2502
    /* compute bus and unit according index */
2503

    
2504
    if (index != -1) {
2505
        if (bus_id != 0 || unit_id != -1) {
2506
            fprintf(stderr,
2507
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2508
            return -1;
2509
        }
2510
        if (max_devs == 0)
2511
        {
2512
            unit_id = index;
2513
            bus_id = 0;
2514
        } else {
2515
            unit_id = index % max_devs;
2516
            bus_id = index / max_devs;
2517
        }
2518
    }
2519

    
2520
    /* if user doesn't specify a unit_id,
2521
     * try to find the first free
2522
     */
2523

    
2524
    if (unit_id == -1) {
2525
       unit_id = 0;
2526
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2527
           unit_id++;
2528
           if (max_devs && unit_id >= max_devs) {
2529
               unit_id -= max_devs;
2530
               bus_id++;
2531
           }
2532
       }
2533
    }
2534

    
2535
    /* check unit id */
2536

    
2537
    if (max_devs && unit_id >= max_devs) {
2538
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2539
                        str, unit_id, max_devs - 1);
2540
        return -1;
2541
    }
2542

    
2543
    /*
2544
     * ignore multiple definitions
2545
     */
2546

    
2547
    if (drive_get_index(type, bus_id, unit_id) != -1)
2548
        return -2;
2549

    
2550
    /* init */
2551

    
2552
    if (type == IF_IDE || type == IF_SCSI)
2553
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2554
    if (max_devs)
2555
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2556
                 devname, bus_id, mediastr, unit_id);
2557
    else
2558
        snprintf(buf, sizeof(buf), "%s%s%i",
2559
                 devname, mediastr, unit_id);
2560
    bdrv = bdrv_new(buf);
2561
    drives_table_idx = drive_get_free_idx();
2562
    drives_table[drives_table_idx].bdrv = bdrv;
2563
    drives_table[drives_table_idx].type = type;
2564
    drives_table[drives_table_idx].bus = bus_id;
2565
    drives_table[drives_table_idx].unit = unit_id;
2566
    drives_table[drives_table_idx].onerror = onerror;
2567
    drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2568
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2569
    nb_drives++;
2570

    
2571
    switch(type) {
2572
    case IF_IDE:
2573
    case IF_SCSI:
2574
        switch(media) {
2575
        case MEDIA_DISK:
2576
            if (cyls != 0) {
2577
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2578
                bdrv_set_translation_hint(bdrv, translation);
2579
            }
2580
            break;
2581
        case MEDIA_CDROM:
2582
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2583
            break;
2584
        }
2585
        break;
2586
    case IF_SD:
2587
        /* FIXME: This isn't really a floppy, but it's a reasonable
2588
           approximation.  */
2589
    case IF_FLOPPY:
2590
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2591
        break;
2592
    case IF_PFLASH:
2593
    case IF_MTD:
2594
    case IF_VIRTIO:
2595
        break;
2596
    }
2597
    if (!file[0])
2598
        return -2;
2599
    bdrv_flags = 0;
2600
    if (snapshot) {
2601
        bdrv_flags |= BDRV_O_SNAPSHOT;
2602
        cache = 2; /* always use write-back with snapshot */
2603
    }
2604
    if (cache == 0) /* no caching */
2605
        bdrv_flags |= BDRV_O_NOCACHE;
2606
    else if (cache == 2) /* write-back */
2607
        bdrv_flags |= BDRV_O_CACHE_WB;
2608
    else if (cache == 3) /* not specified */
2609
        bdrv_flags |= BDRV_O_CACHE_DEF;
2610
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2611
        fprintf(stderr, "qemu: could not open disk image %s\n",
2612
                        file);
2613
        return -1;
2614
    }
2615
    return drives_table_idx;
2616
}
2617

    
2618
/***********************************************************/
2619
/* USB devices */
2620

    
2621
static USBPort *used_usb_ports;
2622
static USBPort *free_usb_ports;
2623

    
2624
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2625
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2626
                            usb_attachfn attach)
2627
{
2628
    port->opaque = opaque;
2629
    port->index = index;
2630
    port->attach = attach;
2631
    port->next = free_usb_ports;
2632
    free_usb_ports = port;
2633
}
2634

    
2635
int usb_device_add_dev(USBDevice *dev)
2636
{
2637
    USBPort *port;
2638

    
2639
    /* Find a USB port to add the device to.  */
2640
    port = free_usb_ports;
2641
    if (!port->next) {
2642
        USBDevice *hub;
2643

    
2644
        /* Create a new hub and chain it on.  */
2645
        free_usb_ports = NULL;
2646
        port->next = used_usb_ports;
2647
        used_usb_ports = port;
2648

    
2649
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2650
        usb_attach(port, hub);
2651
        port = free_usb_ports;
2652
    }
2653

    
2654
    free_usb_ports = port->next;
2655
    port->next = used_usb_ports;
2656
    used_usb_ports = port;
2657
    usb_attach(port, dev);
2658
    return 0;
2659
}
2660

    
2661
static int usb_device_add(const char *devname)
2662
{
2663
    const char *p;
2664
    USBDevice *dev;
2665

    
2666
    if (!free_usb_ports)
2667
        return -1;
2668

    
2669
    if (strstart(devname, "host:", &p)) {
2670
        dev = usb_host_device_open(p);
2671
    } else if (!strcmp(devname, "mouse")) {
2672
        dev = usb_mouse_init();
2673
    } else if (!strcmp(devname, "tablet")) {
2674
        dev = usb_tablet_init();
2675
    } else if (!strcmp(devname, "keyboard")) {
2676
        dev = usb_keyboard_init();
2677
    } else if (strstart(devname, "disk:", &p)) {
2678
        dev = usb_msd_init(p);
2679
    } else if (!strcmp(devname, "wacom-tablet")) {
2680
        dev = usb_wacom_init();
2681
    } else if (strstart(devname, "serial:", &p)) {
2682
        dev = usb_serial_init(p);
2683
#ifdef CONFIG_BRLAPI
2684
    } else if (!strcmp(devname, "braille")) {
2685
        dev = usb_baum_init();
2686
#endif
2687
    } else if (strstart(devname, "net:", &p)) {
2688
        int nic = nb_nics;
2689

    
2690
        if (net_client_init("nic", p) < 0)
2691
            return -1;
2692
        nd_table[nic].model = "usb";
2693
        dev = usb_net_init(&nd_table[nic]);
2694
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2695
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2696
                        bt_new_hci(qemu_find_bt_vlan(0)));
2697
    } else {
2698
        return -1;
2699
    }
2700
    if (!dev)
2701
        return -1;
2702

    
2703
    return usb_device_add_dev(dev);
2704
}
2705

    
2706
int usb_device_del_addr(int bus_num, int addr)
2707
{
2708
    USBPort *port;
2709
    USBPort **lastp;
2710
    USBDevice *dev;
2711

    
2712
    if (!used_usb_ports)
2713
        return -1;
2714

    
2715
    if (bus_num != 0)
2716
        return -1;
2717

    
2718
    lastp = &used_usb_ports;
2719
    port = used_usb_ports;
2720
    while (port && port->dev->addr != addr) {
2721
        lastp = &port->next;
2722
        port = port->next;
2723
    }
2724

    
2725
    if (!port)
2726
        return -1;
2727

    
2728
    dev = port->dev;
2729
    *lastp = port->next;
2730
    usb_attach(port, NULL);
2731
    dev->handle_destroy(dev);
2732
    port->next = free_usb_ports;
2733
    free_usb_ports = port;
2734
    return 0;
2735
}
2736

    
2737
static int usb_device_del(const char *devname)
2738
{
2739
    int bus_num, addr;
2740
    const char *p;
2741

    
2742
    if (strstart(devname, "host:", &p))
2743
        return usb_host_device_close(p);
2744

    
2745
    if (!used_usb_ports)
2746
        return -1;
2747

    
2748
    p = strchr(devname, '.');
2749
    if (!p)
2750
        return -1;
2751
    bus_num = strtoul(devname, NULL, 0);
2752
    addr = strtoul(p + 1, NULL, 0);
2753

    
2754
    return usb_device_del_addr(bus_num, addr);
2755
}
2756

    
2757
void do_usb_add(const char *devname)
2758
{
2759
    usb_device_add(devname);
2760
}
2761

    
2762
void do_usb_del(const char *devname)
2763
{
2764
    usb_device_del(devname);
2765
}
2766

    
2767
void usb_info(void)
2768
{
2769
    USBDevice *dev;
2770
    USBPort *port;
2771
    const char *speed_str;
2772

    
2773
    if (!usb_enabled) {
2774
        term_printf("USB support not enabled\n");
2775
        return;
2776
    }
2777

    
2778
    for (port = used_usb_ports; port; port = port->next) {
2779
        dev = port->dev;
2780
        if (!dev)
2781
            continue;
2782
        switch(dev->speed) {
2783
        case USB_SPEED_LOW:
2784
            speed_str = "1.5";
2785
            break;
2786
        case USB_SPEED_FULL:
2787
            speed_str = "12";
2788
            break;
2789
        case USB_SPEED_HIGH:
2790
            speed_str = "480";
2791
            break;
2792
        default:
2793
            speed_str = "?";
2794
            break;
2795
        }
2796
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
2797
                    0, dev->addr, speed_str, dev->devname);
2798
    }
2799
}
2800

    
2801
/***********************************************************/
2802
/* PCMCIA/Cardbus */
2803

    
2804
static struct pcmcia_socket_entry_s {
2805
    struct pcmcia_socket_s *socket;
2806
    struct pcmcia_socket_entry_s *next;
2807
} *pcmcia_sockets = 0;
2808

    
2809
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2810
{
2811
    struct pcmcia_socket_entry_s *entry;
2812

    
2813
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2814
    entry->socket = socket;
2815
    entry->next = pcmcia_sockets;
2816
    pcmcia_sockets = entry;
2817
}
2818

    
2819
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2820
{
2821
    struct pcmcia_socket_entry_s *entry, **ptr;
2822

    
2823
    ptr = &pcmcia_sockets;
2824
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2825
        if (entry->socket == socket) {
2826
            *ptr = entry->next;
2827
            qemu_free(entry);
2828
        }
2829
}
2830

    
2831
void pcmcia_info(void)
2832
{
2833
    struct pcmcia_socket_entry_s *iter;
2834
    if (!pcmcia_sockets)
2835
        term_printf("No PCMCIA sockets\n");
2836

    
2837
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2838
        term_printf("%s: %s\n", iter->socket->slot_string,
2839
                    iter->socket->attached ? iter->socket->card_string :
2840
                    "Empty");
2841
}
2842

    
2843
/***********************************************************/
2844
/* register display */
2845

    
2846
void register_displaystate(DisplayState *ds)
2847
{
2848
    DisplayState **s;
2849
    s = &display_state;
2850
    while (*s != NULL)
2851
        s = &(*s)->next;
2852
    ds->next = NULL;
2853
    *s = ds;
2854
}
2855

    
2856
DisplayState *get_displaystate(void)
2857
{
2858
    return display_state;
2859
}
2860

    
2861
/* dumb display */
2862

    
2863
static void dumb_display_init(void)
2864
{
2865
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2866
    ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2867
    register_displaystate(ds);
2868
}
2869

    
2870
/***********************************************************/
2871
/* I/O handling */
2872

    
2873
#define MAX_IO_HANDLERS 64
2874

    
2875
typedef struct IOHandlerRecord {
2876
    int fd;
2877
    IOCanRWHandler *fd_read_poll;
2878
    IOHandler *fd_read;
2879
    IOHandler *fd_write;
2880
    int deleted;
2881
    void *opaque;
2882
    /* temporary data */
2883
    struct pollfd *ufd;
2884
    struct IOHandlerRecord *next;
2885
} IOHandlerRecord;
2886

    
2887
static IOHandlerRecord *first_io_handler;
2888

    
2889
/* XXX: fd_read_poll should be suppressed, but an API change is
2890
   necessary in the character devices to suppress fd_can_read(). */
2891
int qemu_set_fd_handler2(int fd,
2892
                         IOCanRWHandler *fd_read_poll,
2893
                         IOHandler *fd_read,
2894
                         IOHandler *fd_write,
2895
                         void *opaque)
2896
{
2897
    IOHandlerRecord **pioh, *ioh;
2898

    
2899
    if (!fd_read && !fd_write) {
2900
        pioh = &first_io_handler;
2901
        for(;;) {
2902
            ioh = *pioh;
2903
            if (ioh == NULL)
2904
                break;
2905
            if (ioh->fd == fd) {
2906
                ioh->deleted = 1;
2907
                break;
2908
            }
2909
            pioh = &ioh->next;
2910
        }
2911
    } else {
2912
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2913
            if (ioh->fd == fd)
2914
                goto found;
2915
        }
2916
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2917
        ioh->next = first_io_handler;
2918
        first_io_handler = ioh;
2919
    found:
2920
        ioh->fd = fd;
2921
        ioh->fd_read_poll = fd_read_poll;
2922
        ioh->fd_read = fd_read;
2923
        ioh->fd_write = fd_write;
2924
        ioh->opaque = opaque;
2925
        ioh->deleted = 0;
2926
    }
2927
    return 0;
2928
}
2929

    
2930
int qemu_set_fd_handler(int fd,
2931
                        IOHandler *fd_read,
2932
                        IOHandler *fd_write,
2933
                        void *opaque)
2934
{
2935
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2936
}
2937

    
2938
#ifdef _WIN32
2939
/***********************************************************/
2940
/* Polling handling */
2941

    
2942
typedef struct PollingEntry {
2943
    PollingFunc *func;
2944
    void *opaque;
2945
    struct PollingEntry *next;
2946
} PollingEntry;
2947

    
2948
static PollingEntry *first_polling_entry;
2949

    
2950
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2951
{
2952
    PollingEntry **ppe, *pe;
2953
    pe = qemu_mallocz(sizeof(PollingEntry));
2954
    pe->func = func;
2955
    pe->opaque = opaque;
2956
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2957
    *ppe = pe;
2958
    return 0;
2959
}
2960

    
2961
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2962
{
2963
    PollingEntry **ppe, *pe;
2964
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2965
        pe = *ppe;
2966
        if (pe->func == func && pe->opaque == opaque) {
2967
            *ppe = pe->next;
2968
            qemu_free(pe);
2969
            break;
2970
        }
2971
    }
2972
}
2973

    
2974
/***********************************************************/
2975
/* Wait objects support */
2976
typedef struct WaitObjects {
2977
    int num;
2978
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2979
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2980
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2981
} WaitObjects;
2982

    
2983
static WaitObjects wait_objects = {0};
2984

    
2985
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2986
{
2987
    WaitObjects *w = &wait_objects;
2988

    
2989
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2990
        return -1;
2991
    w->events[w->num] = handle;
2992
    w->func[w->num] = func;
2993
    w->opaque[w->num] = opaque;
2994
    w->num++;
2995
    return 0;
2996
}
2997

    
2998
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2999
{
3000
    int i, found;
3001
    WaitObjects *w = &wait_objects;
3002

    
3003
    found = 0;
3004
    for (i = 0; i < w->num; i++) {
3005
        if (w->events[i] == handle)
3006
            found = 1;
3007
        if (found) {
3008
            w->events[i] = w->events[i + 1];
3009
            w->func[i] = w->func[i + 1];
3010
            w->opaque[i] = w->opaque[i + 1];
3011
        }
3012
    }
3013
    if (found)
3014
        w->num--;
3015
}
3016
#endif
3017

    
3018
/***********************************************************/
3019
/* ram save/restore */
3020

    
3021
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3022
{
3023
    int v;
3024

    
3025
    v = qemu_get_byte(f);
3026
    switch(v) {
3027
    case 0:
3028
        if (qemu_get_buffer(f, buf, len) != len)
3029
            return -EIO;
3030
        break;
3031
    case 1:
3032
        v = qemu_get_byte(f);
3033
        memset(buf, v, len);
3034
        break;
3035
    default:
3036
        return -EINVAL;
3037
    }
3038

    
3039
    if (qemu_file_has_error(f))
3040
        return -EIO;
3041

    
3042
    return 0;
3043
}
3044

    
3045
static int ram_load_v1(QEMUFile *f, void *opaque)
3046
{
3047
    int ret;
3048
    ram_addr_t i;
3049

    
3050
    if (qemu_get_be32(f) != phys_ram_size)
3051
        return -EINVAL;
3052
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3053
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3054
        if (ret)
3055
            return ret;
3056
    }
3057
    return 0;
3058
}
3059

    
3060
#define BDRV_HASH_BLOCK_SIZE 1024
3061
#define IOBUF_SIZE 4096
3062
#define RAM_CBLOCK_MAGIC 0xfabe
3063

    
3064
typedef struct RamDecompressState {
3065
    z_stream zstream;
3066
    QEMUFile *f;
3067
    uint8_t buf[IOBUF_SIZE];
3068
} RamDecompressState;
3069

    
3070
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3071
{
3072
    int ret;
3073
    memset(s, 0, sizeof(*s));
3074
    s->f = f;
3075
    ret = inflateInit(&s->zstream);
3076
    if (ret != Z_OK)
3077
        return -1;
3078
    return 0;
3079
}
3080

    
3081
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3082
{
3083
    int ret, clen;
3084

    
3085
    s->zstream.avail_out = len;
3086
    s->zstream.next_out = buf;
3087
    while (s->zstream.avail_out > 0) {
3088
        if (s->zstream.avail_in == 0) {
3089
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3090
                return -1;
3091
            clen = qemu_get_be16(s->f);
3092
            if (clen > IOBUF_SIZE)
3093
                return -1;
3094
            qemu_get_buffer(s->f, s->buf, clen);
3095
            s->zstream.avail_in = clen;
3096
            s->zstream.next_in = s->buf;
3097
        }
3098
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3099
        if (ret != Z_OK && ret != Z_STREAM_END) {
3100
            return -1;
3101
        }
3102
    }
3103
    return 0;
3104
}
3105

    
3106
static void ram_decompress_close(RamDecompressState *s)
3107
{
3108
    inflateEnd(&s->zstream);
3109
}
3110

    
3111
#define RAM_SAVE_FLAG_FULL        0x01
3112
#define RAM_SAVE_FLAG_COMPRESS        0x02
3113
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3114
#define RAM_SAVE_FLAG_PAGE        0x08
3115
#define RAM_SAVE_FLAG_EOS        0x10
3116

    
3117
static int is_dup_page(uint8_t *page, uint8_t ch)
3118
{
3119
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3120
    uint32_t *array = (uint32_t *)page;
3121
    int i;
3122

    
3123
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3124
        if (array[i] != val)
3125
            return 0;
3126
    }
3127

    
3128
    return 1;
3129
}
3130

    
3131
static int ram_save_block(QEMUFile *f)
3132
{
3133
    static ram_addr_t current_addr = 0;
3134
    ram_addr_t saved_addr = current_addr;
3135
    ram_addr_t addr = 0;
3136
    int found = 0;
3137

    
3138
    while (addr < phys_ram_size) {
3139
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3140
            uint8_t ch;
3141

    
3142
            cpu_physical_memory_reset_dirty(current_addr,
3143
                                            current_addr + TARGET_PAGE_SIZE,
3144
                                            MIGRATION_DIRTY_FLAG);
3145

    
3146
            ch = *(phys_ram_base + current_addr);
3147

    
3148
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
3149
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3150
                qemu_put_byte(f, ch);
3151
            } else {
3152
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3153
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3154
            }
3155

    
3156
            found = 1;
3157
            break;
3158
        }
3159
        addr += TARGET_PAGE_SIZE;
3160
        current_addr = (saved_addr + addr) % phys_ram_size;
3161
    }
3162

    
3163
    return found;
3164
}
3165

    
3166
static ram_addr_t ram_save_threshold = 10;
3167

    
3168
static ram_addr_t ram_save_remaining(void)
3169
{
3170
    ram_addr_t addr;
3171
    ram_addr_t count = 0;
3172

    
3173
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3174
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3175
            count++;
3176
    }
3177

    
3178
    return count;
3179
}
3180

    
3181
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3182
{
3183
    ram_addr_t addr;
3184

    
3185
    if (stage == 1) {
3186
        /* Make sure all dirty bits are set */
3187
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3188
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3189
                cpu_physical_memory_set_dirty(addr);
3190
        }
3191
        
3192
        /* Enable dirty memory tracking */
3193
        cpu_physical_memory_set_dirty_tracking(1);
3194

    
3195
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3196
    }
3197

    
3198
    while (!qemu_file_rate_limit(f)) {
3199
        int ret;
3200

    
3201
        ret = ram_save_block(f);
3202
        if (ret == 0) /* no more blocks */
3203
            break;
3204
    }
3205

    
3206
    /* try transferring iterative blocks of memory */
3207

    
3208
    if (stage == 3) {
3209
        cpu_physical_memory_set_dirty_tracking(0);
3210

    
3211
        /* flush all remaining blocks regardless of rate limiting */
3212
        while (ram_save_block(f) != 0);
3213
    }
3214

    
3215
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3216

    
3217
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3218
}
3219

    
3220
static int ram_load_dead(QEMUFile *f, void *opaque)
3221
{
3222
    RamDecompressState s1, *s = &s1;
3223
    uint8_t buf[10];
3224
    ram_addr_t i;
3225

    
3226
    if (ram_decompress_open(s, f) < 0)
3227
        return -EINVAL;
3228
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3229
        if (ram_decompress_buf(s, buf, 1) < 0) {
3230
            fprintf(stderr, "Error while reading ram block header\n");
3231
            goto error;
3232
        }
3233
        if (buf[0] == 0) {
3234
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3235
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3236
                goto error;
3237
            }
3238
        } else {
3239
        error:
3240
            printf("Error block header\n");
3241
            return -EINVAL;
3242
        }
3243
    }
3244
    ram_decompress_close(s);
3245

    
3246
    return 0;
3247
}
3248

    
3249
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3250
{
3251
    ram_addr_t addr;
3252
    int flags;
3253

    
3254
    if (version_id == 1)
3255
        return ram_load_v1(f, opaque);
3256

    
3257
    if (version_id == 2) {
3258
        if (qemu_get_be32(f) != phys_ram_size)
3259
            return -EINVAL;
3260
        return ram_load_dead(f, opaque);
3261
    }
3262

    
3263
    if (version_id != 3)
3264
        return -EINVAL;
3265

    
3266
    do {
3267
        addr = qemu_get_be64(f);
3268

    
3269
        flags = addr & ~TARGET_PAGE_MASK;
3270
        addr &= TARGET_PAGE_MASK;
3271

    
3272
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3273
            if (addr != phys_ram_size)
3274
                return -EINVAL;
3275
        }
3276

    
3277
        if (flags & RAM_SAVE_FLAG_FULL) {
3278
            if (ram_load_dead(f, opaque) < 0)
3279
                return -EINVAL;
3280
        }
3281
        
3282
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3283
            uint8_t ch = qemu_get_byte(f);
3284
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3285
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3286
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3287
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3288

    
3289
    return 0;
3290
}
3291

    
3292
void qemu_service_io(void)
3293
{
3294
    CPUState *env = cpu_single_env;
3295
    if (env) {
3296
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3297
#ifdef USE_KQEMU
3298
        if (env->kqemu_enabled) {
3299
            kqemu_cpu_interrupt(env);
3300
        }
3301
#endif
3302
    }
3303
}
3304

    
3305
/***********************************************************/
3306
/* bottom halves (can be seen as timers which expire ASAP) */
3307

    
3308
struct QEMUBH {
3309
    QEMUBHFunc *cb;
3310
    void *opaque;
3311
    int scheduled;
3312
    int idle;
3313
    int deleted;
3314
    QEMUBH *next;
3315
};
3316

    
3317
static QEMUBH *first_bh = NULL;
3318

    
3319
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3320
{
3321
    QEMUBH *bh;
3322
    bh = qemu_mallocz(sizeof(QEMUBH));
3323
    bh->cb = cb;
3324
    bh->opaque = opaque;
3325
    bh->next = first_bh;
3326
    first_bh = bh;
3327
    return bh;
3328
}
3329

    
3330
int qemu_bh_poll(void)
3331
{
3332
    QEMUBH *bh, **bhp;
3333
    int ret;
3334

    
3335
    ret = 0;
3336
    for (bh = first_bh; bh; bh = bh->next) {
3337
        if (!bh->deleted && bh->scheduled) {
3338
            bh->scheduled = 0;
3339
            if (!bh->idle)
3340
                ret = 1;
3341
            bh->idle = 0;
3342
            bh->cb(bh->opaque);
3343
        }
3344
    }
3345

    
3346
    /* remove deleted bhs */
3347
    bhp = &first_bh;
3348
    while (*bhp) {
3349
        bh = *bhp;
3350
        if (bh->deleted) {
3351
            *bhp = bh->next;
3352
            qemu_free(bh);
3353
        } else
3354
            bhp = &bh->next;
3355
    }
3356

    
3357
    return ret;
3358
}
3359

    
3360
void qemu_bh_schedule_idle(QEMUBH *bh)
3361
{
3362
    if (bh->scheduled)
3363
        return;
3364
    bh->scheduled = 1;
3365
    bh->idle = 1;
3366
}
3367

    
3368
void qemu_bh_schedule(QEMUBH *bh)
3369
{
3370
    CPUState *env = cpu_single_env;
3371
    if (bh->scheduled)
3372
        return;
3373
    bh->scheduled = 1;
3374
    bh->idle = 0;
3375
    /* stop the currently executing CPU to execute the BH ASAP */
3376
    if (env) {
3377
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3378
    }
3379
}
3380

    
3381
void qemu_bh_cancel(QEMUBH *bh)
3382
{
3383
    bh->scheduled = 0;
3384
}
3385

    
3386
void qemu_bh_delete(QEMUBH *bh)
3387
{
3388
    bh->scheduled = 0;
3389
    bh->deleted = 1;
3390
}
3391

    
3392
static void qemu_bh_update_timeout(int *timeout)
3393
{
3394
    QEMUBH *bh;
3395

    
3396
    for (bh = first_bh; bh; bh = bh->next) {
3397
        if (!bh->deleted && bh->scheduled) {
3398
            if (bh->idle) {
3399
                /* idle bottom halves will be polled at least
3400
                 * every 10ms */
3401
                *timeout = MIN(10, *timeout);
3402
            } else {
3403
                /* non-idle bottom halves will be executed
3404
                 * immediately */
3405
                *timeout = 0;
3406
                break;
3407
            }
3408
        }
3409
    }
3410
}
3411

    
3412
/***********************************************************/
3413
/* machine registration */
3414

    
3415
static QEMUMachine *first_machine = NULL;
3416
QEMUMachine *current_machine = NULL;
3417

    
3418
int qemu_register_machine(QEMUMachine *m)
3419
{
3420
    QEMUMachine **pm;
3421
    pm = &first_machine;
3422
    while (*pm != NULL)
3423
        pm = &(*pm)->next;
3424
    m->next = NULL;
3425
    *pm = m;
3426
    return 0;
3427
}
3428

    
3429
static QEMUMachine *find_machine(const char *name)
3430
{
3431
    QEMUMachine *m;
3432

    
3433
    for(m = first_machine; m != NULL; m = m->next) {
3434
        if (!strcmp(m->name, name))
3435
            return m;
3436
    }
3437
    return NULL;
3438
}
3439

    
3440
/***********************************************************/
3441
/* main execution loop */
3442

    
3443
static void gui_update(void *opaque)
3444
{
3445
    uint64_t interval = GUI_REFRESH_INTERVAL;
3446
    DisplayState *ds = opaque;
3447
    DisplayChangeListener *dcl = ds->listeners;
3448

    
3449
    dpy_refresh(ds);
3450

    
3451
    while (dcl != NULL) {
3452
        if (dcl->gui_timer_interval &&
3453
            dcl->gui_timer_interval < interval)
3454
            interval = dcl->gui_timer_interval;
3455
        dcl = dcl->next;
3456
    }
3457
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3458
}
3459

    
3460
static void nographic_update(void *opaque)
3461
{
3462
    uint64_t interval = GUI_REFRESH_INTERVAL;
3463

    
3464
    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3465
}
3466

    
3467
struct vm_change_state_entry {
3468
    VMChangeStateHandler *cb;
3469
    void *opaque;
3470
    LIST_ENTRY (vm_change_state_entry) entries;
3471
};
3472

    
3473
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3474

    
3475
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3476
                                                     void *opaque)
3477
{
3478
    VMChangeStateEntry *e;
3479

    
3480
    e = qemu_mallocz(sizeof (*e));
3481

    
3482
    e->cb = cb;
3483
    e->opaque = opaque;
3484
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3485
    return e;
3486
}
3487

    
3488
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3489
{
3490
    LIST_REMOVE (e, entries);
3491
    qemu_free (e);
3492
}
3493

    
3494
static void vm_state_notify(int running, int reason)
3495
{
3496
    VMChangeStateEntry *e;
3497

    
3498
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3499
        e->cb(e->opaque, running, reason);
3500
    }
3501
}
3502

    
3503
void vm_start(void)
3504
{
3505
    if (!vm_running) {
3506
        cpu_enable_ticks();
3507
        vm_running = 1;
3508
        vm_state_notify(1, 0);
3509
        qemu_rearm_alarm_timer(alarm_timer);
3510
    }
3511
}
3512

    
3513
void vm_stop(int reason)
3514
{
3515
    if (vm_running) {
3516
        cpu_disable_ticks();
3517
        vm_running = 0;
3518
        vm_state_notify(0, reason);
3519
    }
3520
}
3521

    
3522
/* reset/shutdown handler */
3523

    
3524
typedef struct QEMUResetEntry {
3525
    QEMUResetHandler *func;
3526
    void *opaque;
3527
    struct QEMUResetEntry *next;
3528
} QEMUResetEntry;
3529

    
3530
static QEMUResetEntry *first_reset_entry;
3531
static int reset_requested;
3532
static int shutdown_requested;
3533
static int powerdown_requested;
3534

    
3535
int qemu_shutdown_requested(void)
3536
{
3537
    int r = shutdown_requested;
3538
    shutdown_requested = 0;
3539
    return r;
3540
}
3541

    
3542
int qemu_reset_requested(void)
3543
{
3544
    int r = reset_requested;
3545
    reset_requested = 0;
3546
    return r;
3547
}
3548

    
3549
int qemu_powerdown_requested(void)
3550
{
3551
    int r = powerdown_requested;
3552
    powerdown_requested = 0;
3553
    return r;
3554
}
3555

    
3556
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3557
{
3558
    QEMUResetEntry **pre, *re;
3559

    
3560
    pre = &first_reset_entry;
3561
    while (*pre != NULL)
3562
        pre = &(*pre)->next;
3563
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3564
    re->func = func;
3565
    re->opaque = opaque;
3566
    re->next = NULL;
3567
    *pre = re;
3568
}
3569

    
3570
void qemu_system_reset(void)
3571
{
3572
    QEMUResetEntry *re;
3573

    
3574
    /* reset all devices */
3575
    for(re = first_reset_entry; re != NULL; re = re->next) {
3576
        re->func(re->opaque);
3577
    }
3578
}
3579

    
3580
void qemu_system_reset_request(void)
3581
{
3582
    if (no_reboot) {
3583
        shutdown_requested = 1;
3584
    } else {
3585
        reset_requested = 1;
3586
    }
3587
    if (cpu_single_env)
3588
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3589
}
3590

    
3591
void qemu_system_shutdown_request(void)
3592
{
3593
    shutdown_requested = 1;
3594
    if (cpu_single_env)
3595
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3596
}
3597

    
3598
void qemu_system_powerdown_request(void)
3599
{
3600
    powerdown_requested = 1;
3601
    if (cpu_single_env)
3602
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3603
}
3604

    
3605
#ifdef _WIN32
3606
static void host_main_loop_wait(int *timeout)
3607
{
3608
    int ret, ret2, i;
3609
    PollingEntry *pe;
3610

    
3611

    
3612
    /* XXX: need to suppress polling by better using win32 events */
3613
    ret = 0;
3614
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3615
        ret |= pe->func(pe->opaque);
3616
    }
3617
    if (ret == 0) {
3618
        int err;
3619
        WaitObjects *w = &wait_objects;
3620

    
3621
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3622
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3623
            if (w->func[ret - WAIT_OBJECT_0])
3624
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3625

    
3626
            /* Check for additional signaled events */
3627
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3628

    
3629
                /* Check if event is signaled */
3630
                ret2 = WaitForSingleObject(w->events[i], 0);
3631
                if(ret2 == WAIT_OBJECT_0) {
3632
                    if (w->func[i])
3633
                        w->func[i](w->opaque[i]);
3634
                } else if (ret2 == WAIT_TIMEOUT) {
3635
                } else {
3636
                    err = GetLastError();
3637
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3638
                }
3639
            }
3640
        } else if (ret == WAIT_TIMEOUT) {
3641
        } else {
3642
            err = GetLastError();
3643
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3644
        }
3645
    }
3646

    
3647
    *timeout = 0;
3648
}
3649
#else
3650
static void host_main_loop_wait(int *timeout)
3651
{
3652
}
3653
#endif
3654

    
3655
void main_loop_wait(int timeout)
3656
{
3657
    IOHandlerRecord *ioh;
3658
    fd_set rfds, wfds, xfds;
3659
    int ret, nfds;
3660
    struct timeval tv;
3661

    
3662
    qemu_bh_update_timeout(&timeout);
3663

    
3664
    host_main_loop_wait(&timeout);
3665

    
3666
    /* poll any events */
3667
    /* XXX: separate device handlers from system ones */
3668
    nfds = -1;
3669
    FD_ZERO(&rfds);
3670
    FD_ZERO(&wfds);
3671
    FD_ZERO(&xfds);
3672
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3673
        if (ioh->deleted)
3674
            continue;
3675
        if (ioh->fd_read &&
3676
            (!ioh->fd_read_poll ||
3677
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3678
            FD_SET(ioh->fd, &rfds);
3679
            if (ioh->fd > nfds)
3680
                nfds = ioh->fd;
3681
        }
3682
        if (ioh->fd_write) {
3683
            FD_SET(ioh->fd, &wfds);
3684
            if (ioh->fd > nfds)
3685
                nfds = ioh->fd;
3686
        }
3687
    }
3688

    
3689
    tv.tv_sec = timeout / 1000;
3690
    tv.tv_usec = (timeout % 1000) * 1000;
3691

    
3692
#if defined(CONFIG_SLIRP)
3693
    if (slirp_is_inited()) {
3694
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3695
    }
3696
#endif
3697
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3698
    if (ret > 0) {
3699
        IOHandlerRecord **pioh;
3700

    
3701
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3702
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3703
                ioh->fd_read(ioh->opaque);
3704
            }
3705
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3706
                ioh->fd_write(ioh->opaque);
3707
            }
3708
        }
3709

    
3710
        /* remove deleted IO handlers */
3711
        pioh = &first_io_handler;
3712
        while (*pioh) {
3713
            ioh = *pioh;
3714
            if (ioh->deleted) {
3715
                *pioh = ioh->next;
3716
                qemu_free(ioh);
3717
            } else
3718
                pioh = &ioh->next;
3719
        }
3720
    }
3721
#if defined(CONFIG_SLIRP)
3722
    if (slirp_is_inited()) {
3723
        if (ret < 0) {
3724
            FD_ZERO(&rfds);
3725
            FD_ZERO(&wfds);
3726
            FD_ZERO(&xfds);
3727
        }
3728
        slirp_select_poll(&rfds, &wfds, &xfds);
3729
    }
3730
#endif
3731

    
3732
    /* vm time timers */
3733
    if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3734
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3735
                        qemu_get_clock(vm_clock));
3736

    
3737
    /* real time timers */
3738
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3739
                    qemu_get_clock(rt_clock));
3740

    
3741
    /* Check bottom-halves last in case any of the earlier events triggered
3742
       them.  */
3743
    qemu_bh_poll();
3744

    
3745
}
3746

    
3747
static int main_loop(void)
3748
{
3749
    int ret, timeout;
3750
#ifdef CONFIG_PROFILER
3751
    int64_t ti;
3752
#endif
3753
    CPUState *env;
3754

    
3755
    cur_cpu = first_cpu;
3756
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
3757
    for(;;) {
3758
        if (vm_running) {
3759

    
3760
            for(;;) {
3761
                /* get next cpu */
3762
                env = next_cpu;
3763
#ifdef CONFIG_PROFILER
3764
                ti = profile_getclock();
3765
#endif
3766
                if (use_icount) {
3767
                    int64_t count;
3768
                    int decr;
3769
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3770
                    env->icount_decr.u16.low = 0;
3771
                    env->icount_extra = 0;
3772
                    count = qemu_next_deadline();
3773
                    count = (count + (1 << icount_time_shift) - 1)
3774
                            >> icount_time_shift;
3775
                    qemu_icount += count;
3776
                    decr = (count > 0xffff) ? 0xffff : count;
3777
                    count -= decr;
3778
                    env->icount_decr.u16.low = decr;
3779
                    env->icount_extra = count;
3780
                }
3781
                ret = cpu_exec(env);
3782
#ifdef CONFIG_PROFILER
3783
                qemu_time += profile_getclock() - ti;
3784
#endif
3785
                if (use_icount) {
3786
                    /* Fold pending instructions back into the
3787
                       instruction counter, and clear the interrupt flag.  */
3788
                    qemu_icount -= (env->icount_decr.u16.low
3789
                                    + env->icount_extra);
3790
                    env->icount_decr.u32 = 0;
3791
                    env->icount_extra = 0;
3792
                }
3793
                next_cpu = env->next_cpu ?: first_cpu;
3794
                if (event_pending && likely(ret != EXCP_DEBUG)) {
3795
                    ret = EXCP_INTERRUPT;
3796
                    event_pending = 0;
3797
                    break;
3798
                }
3799
                if (ret == EXCP_HLT) {
3800
                    /* Give the next CPU a chance to run.  */
3801
                    cur_cpu = env;
3802
                    continue;
3803
                }
3804
                if (ret != EXCP_HALTED)
3805
                    break;
3806
                /* all CPUs are halted ? */
3807
                if (env == cur_cpu)
3808
                    break;
3809
            }
3810
            cur_cpu = env;
3811

    
3812
            if (shutdown_requested) {
3813
                ret = EXCP_INTERRUPT;
3814
                if (no_shutdown) {
3815
                    vm_stop(0);
3816
                    no_shutdown = 0;
3817
                }
3818
                else
3819
                    break;
3820
            }
3821
            if (reset_requested) {
3822
                reset_requested = 0;
3823
                qemu_system_reset();
3824
                ret = EXCP_INTERRUPT;
3825
            }
3826
            if (powerdown_requested) {
3827
                powerdown_requested = 0;
3828
                qemu_system_powerdown();
3829
                ret = EXCP_INTERRUPT;
3830
            }
3831
            if (unlikely(ret == EXCP_DEBUG)) {
3832
                gdb_set_stop_cpu(cur_cpu);
3833
                vm_stop(EXCP_DEBUG);
3834
            }
3835
            /* If all cpus are halted then wait until the next IRQ */
3836
            /* XXX: use timeout computed from timers */
3837
            if (ret == EXCP_HALTED) {
3838
                if (use_icount) {
3839
                    int64_t add;
3840
                    int64_t delta;
3841
                    /* Advance virtual time to the next event.  */
3842
                    if (use_icount == 1) {
3843
                        /* When not using an adaptive execution frequency
3844
                           we tend to get badly out of sync with real time,
3845
                           so just delay for a reasonable amount of time.  */
3846
                        delta = 0;
3847
                    } else {
3848
                        delta = cpu_get_icount() - cpu_get_clock();
3849
                    }
3850
                    if (delta > 0) {
3851
                        /* If virtual time is ahead of real time then just
3852
                           wait for IO.  */
3853
                        timeout = (delta / 1000000) + 1;
3854
                    } else {
3855
                        /* Wait for either IO to occur or the next
3856
                           timer event.  */
3857
                        add = qemu_next_deadline();
3858
                        /* We advance the timer before checking for IO.
3859
                           Limit the amount we advance so that early IO
3860
                           activity won't get the guest too far ahead.  */
3861
                        if (add > 10000000)
3862
                            add = 10000000;
3863
                        delta += add;
3864
                        add = (add + (1 << icount_time_shift) - 1)
3865
                              >> icount_time_shift;
3866
                        qemu_icount += add;
3867
                        timeout = delta / 1000000;
3868
                        if (timeout < 0)
3869
                            timeout = 0;
3870
                    }
3871
                } else {
3872
                    timeout = 5000;
3873
                }
3874
            } else {
3875
                timeout = 0;
3876
            }
3877
        } else {
3878
            if (shutdown_requested) {
3879
                ret = EXCP_INTERRUPT;
3880
                break;
3881
            }
3882
            timeout = 5000;
3883
        }
3884
#ifdef CONFIG_PROFILER
3885
        ti = profile_getclock();
3886
#endif
3887
        main_loop_wait(timeout);
3888
#ifdef CONFIG_PROFILER
3889
        dev_time += profile_getclock() - ti;
3890
#endif
3891
    }
3892
    cpu_disable_ticks();
3893
    return ret;
3894
}
3895

    
3896
static void help(int exitcode)
3897
{
3898
    /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3899
       and qemu-doc.texi */
3900
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3901
           "usage: %s [options] [disk_image]\n"
3902
           "\n"
3903
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3904
           "\n"
3905
           "Standard options:\n"
3906
           "-h or -help     display this help and exit\n"
3907
           "-M machine      select emulated machine (-M ? for list)\n"
3908
           "-cpu cpu        select CPU (-cpu ? for list)\n"
3909
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
3910
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
3911
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
3912
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
3913
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3914
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3915
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3916
           "       [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3917
           "                use 'file' as a drive image\n"
3918
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
3919
           "-sd file        use 'file' as SecureDigital card image\n"
3920
           "-pflash file    use 'file' as a parallel flash image\n"
3921
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3922
           "-snapshot       write to temporary files instead of disk image files\n"
3923
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
3924
#ifndef _WIN32
3925
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
3926
#endif
3927
#ifdef HAS_AUDIO
3928
           "-audio-help     print list of audio drivers and their options\n"
3929
           "-soundhw c1,... enable audio support\n"
3930
           "                and only specified sound cards (comma separated list)\n"
3931
           "                use -soundhw ? to get the list of supported cards\n"
3932
           "                use -soundhw all to enable all of them\n"
3933
#endif
3934
           "-usb            enable the USB driver (will be the default soon)\n"
3935
           "-usbdevice name add the host or guest USB device 'name'\n"
3936
           "-name string    set the name of the guest\n"
3937
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3938
           "                specify machine UUID\n"
3939
           "\n"
3940
           "Display options:\n"
3941
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
3942
#ifdef CONFIG_CURSES
3943
           "-curses         use a curses/ncurses interface instead of SDL\n"
3944
#endif
3945
#ifdef CONFIG_SDL
3946
           "-no-frame       open SDL window without a frame and window decorations\n"
3947
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3948
           "-no-quit        disable SDL window close capability\n"
3949
           "-sdl            enable SDL\n"
3950
#endif
3951
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
3952
           "-vga [std|cirrus|vmware|none]\n"
3953
           "                select video card type\n"
3954
           "-full-screen    start in full screen\n"
3955
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
3956
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
3957
#endif
3958
           "-vnc display    start a VNC server on display\n"
3959
           "\n"
3960
           "Network options:\n"
3961
           "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3962
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
3963
#ifdef CONFIG_SLIRP
3964
           "-net user[,vlan=n][,name=str][,hostname=host]\n"
3965
           "                connect the user mode network stack to VLAN 'n' and send\n"
3966
           "                hostname 'host' to DHCP clients\n"
3967
#endif
3968
#ifdef _WIN32
3969
           "-net tap[,vlan=n][,name=str],ifname=name\n"
3970
           "                connect the host TAP network interface to VLAN 'n'\n"
3971
#else
3972
           "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3973
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
3974
           "                network scripts 'file' (default=%s)\n"
3975
           "                and 'dfile' (default=%s);\n"
3976
           "                use '[down]script=no' to disable script execution;\n"
3977
           "                use 'fd=h' to connect to an already opened TAP interface\n"
3978
#endif
3979
           "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3980
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
3981
           "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3982
           "                connect the vlan 'n' to multicast maddr and port\n"
3983
#ifdef CONFIG_VDE
3984
           "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3985
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
3986
           "                on host and listening for incoming connections on 'socketpath'.\n"
3987
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
3988
           "                ownership and permissions for communication port.\n"
3989
#endif
3990
           "-net none       use it alone to have zero network devices; if no -net option\n"
3991
           "                is provided, the default is '-net nic -net user'\n"
3992
#ifdef CONFIG_SLIRP
3993
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
3994
           "-bootp file     advertise file in BOOTP replies\n"
3995
#ifndef _WIN32
3996
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
3997
#endif
3998
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3999
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
4000
#endif
4001
           "\n"
4002
           "-bt hci,null    dumb bluetooth HCI - doesn't respond to commands\n"
4003
           "-bt hci,host[:id]\n"
4004
           "                use host's HCI with the given name\n"
4005
           "-bt hci[,vlan=n]\n"
4006
           "                emulate a standard HCI in virtual scatternet 'n'\n"
4007
           "-bt vhci[,vlan=n]\n"
4008
           "                add host computer to virtual scatternet 'n' using VHCI\n"
4009
           "-bt device:dev[,vlan=n]\n"
4010
           "                emulate a bluetooth device 'dev' in scatternet 'n'\n"
4011
           "\n"
4012
#ifdef TARGET_I386
4013
           "\n"
4014
           "i386 target only:\n"
4015
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
4016
           "-rtc-td-hack    use it to fix time drift in Windows ACPI HAL\n"
4017
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
4018
           "-no-acpi        disable ACPI\n"
4019
           "-no-hpet        disable HPET\n"
4020
           "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
4021
           "                ACPI table description\n"
4022
#endif
4023
           "Linux boot specific:\n"
4024
           "-kernel bzImage use 'bzImage' as kernel image\n"
4025
           "-append cmdline use 'cmdline' as kernel command line\n"
4026
           "-initrd file    use 'file' as initial ram disk\n"
4027
           "\n"
4028
           "Debug/Expert options:\n"
4029
           "-serial dev     redirect the serial port to char device 'dev'\n"
4030
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
4031
           "-monitor dev    redirect the monitor to char device 'dev'\n"
4032
           "-pidfile file   write PID to 'file'\n"
4033
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
4034
           "-s              wait gdb connection to port\n"
4035
           "-p port         set gdb connection port [default=%s]\n"
4036
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
4037
           "-hdachs c,h,s[,t]\n"
4038
           "                force hard disk 0 physical geometry and the optional BIOS\n"
4039
           "                translation (t=none or lba) (usually qemu can guess them)\n"
4040
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
4041
           "-bios file      set the filename for the BIOS\n"
4042
#ifdef USE_KQEMU
4043
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
4044
           "-no-kqemu       disable KQEMU kernel module usage\n"
4045
#endif
4046
#ifdef CONFIG_KVM
4047
           "-enable-kvm     enable KVM full virtualization support\n"
4048
#endif
4049
           "-no-reboot      exit instead of rebooting\n"
4050
           "-no-shutdown    stop before shutdown\n"
4051
           "-loadvm [tag|id]\n"
4052
           "                start right away with a saved state (loadvm in monitor)\n"
4053
#ifndef _WIN32
4054
           "-daemonize      daemonize QEMU after initializing\n"
4055
#endif
4056
           "-option-rom rom load a file, rom, into the option ROM space\n"
4057
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
4058
           "-prom-env variable=value\n"
4059
           "                set OpenBIOS nvram variables\n"
4060
#endif
4061
           "-clock          force the use of the given methods for timer alarm.\n"
4062
           "                To see what timers are available use -clock ?\n"
4063
           "-localtime      set the real time clock to local time [default=utc]\n"
4064
           "-startdate      select initial date of the clock\n"
4065
           "-icount [N|auto]\n"
4066
           "                enable virtual instruction counter with 2^N clock ticks per instruction\n"
4067
           "-echr chr       set terminal escape character instead of ctrl-a\n"
4068
           "-virtioconsole c\n"
4069
           "                set virtio console\n"
4070
           "-show-cursor    show cursor\n"
4071
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4072
           "-semihosting    semihosting mode\n"
4073
#endif
4074
#if defined(TARGET_ARM)
4075
           "-old-param      old param mode\n"
4076
#endif
4077
           "-tb-size n      set TB size\n"
4078
           "-incoming p     prepare for incoming migration, listen on port p\n"
4079
#ifndef _WIN32
4080
           "-chroot dir     Chroot to dir just before starting the VM.\n"
4081
           "-runas user     Change to user id user just before starting the VM.\n"
4082
#endif
4083
           "\n"
4084
           "During emulation, the following keys are useful:\n"
4085
           "ctrl-alt-f      toggle full screen\n"
4086
           "ctrl-alt-n      switch to virtual console 'n'\n"
4087
           "ctrl-alt        toggle mouse and keyboard grab\n"
4088
           "\n"
4089
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4090
           ,
4091
           "qemu",
4092
           DEFAULT_RAM_SIZE,
4093
#ifndef _WIN32
4094
           DEFAULT_NETWORK_SCRIPT,
4095
           DEFAULT_NETWORK_DOWN_SCRIPT,
4096
#endif
4097
           DEFAULT_GDBSTUB_PORT,
4098
           "/tmp/qemu.log");
4099
    exit(exitcode);
4100
}
4101

    
4102
#define HAS_ARG 0x0001
4103

    
4104
enum {
4105
    /* Please keep in synch with help, qemu_options[] and
4106
       qemu-doc.texi */
4107
    /* Standard options: */
4108
    QEMU_OPTION_h,
4109
    QEMU_OPTION_M,
4110
    QEMU_OPTION_cpu,
4111
    QEMU_OPTION_smp,
4112
    QEMU_OPTION_fda,
4113
    QEMU_OPTION_fdb,
4114
    QEMU_OPTION_hda,
4115
    QEMU_OPTION_hdb,
4116
    QEMU_OPTION_hdc,
4117
    QEMU_OPTION_hdd,
4118
    QEMU_OPTION_cdrom,
4119
    QEMU_OPTION_drive,
4120
    QEMU_OPTION_mtdblock,
4121
    QEMU_OPTION_sd,
4122
    QEMU_OPTION_pflash,
4123
    QEMU_OPTION_boot,
4124
    QEMU_OPTION_snapshot,
4125
    QEMU_OPTION_m,
4126
    QEMU_OPTION_k,
4127
    QEMU_OPTION_audio_help,
4128
    QEMU_OPTION_soundhw,
4129
    QEMU_OPTION_usb,
4130
    QEMU_OPTION_usbdevice,
4131
    QEMU_OPTION_name,
4132
    QEMU_OPTION_uuid,
4133

    
4134
    /* Display options: */
4135
    QEMU_OPTION_nographic,
4136
    QEMU_OPTION_curses,
4137
    QEMU_OPTION_no_frame,
4138
    QEMU_OPTION_alt_grab,
4139
    QEMU_OPTION_no_quit,
4140
    QEMU_OPTION_sdl,
4141
    QEMU_OPTION_portrait,
4142
    QEMU_OPTION_vga,
4143
    QEMU_OPTION_full_screen,
4144
    QEMU_OPTION_g,
4145
    QEMU_OPTION_vnc,
4146

    
4147
    /* Network options: */
4148
    QEMU_OPTION_net,
4149
    QEMU_OPTION_tftp,
4150
    QEMU_OPTION_bootp,
4151
    QEMU_OPTION_smb,
4152
    QEMU_OPTION_redir,
4153
    QEMU_OPTION_bt,
4154

    
4155
    /* i386 target only: */
4156
    QEMU_OPTION_win2k_hack,
4157
    QEMU_OPTION_rtc_td_hack,
4158
    QEMU_OPTION_no_fd_bootchk,
4159
    QEMU_OPTION_no_acpi,
4160
    QEMU_OPTION_no_hpet,
4161
    QEMU_OPTION_acpitable,
4162

    
4163
    /* Linux boot specific: */
4164
    QEMU_OPTION_kernel,
4165
    QEMU_OPTION_append,
4166
    QEMU_OPTION_initrd,
4167

    
4168
    /* Debug/Expert options: */
4169
    QEMU_OPTION_serial,
4170
    QEMU_OPTION_parallel,
4171
    QEMU_OPTION_monitor,
4172
    QEMU_OPTION_pidfile,
4173
    QEMU_OPTION_S,
4174
    QEMU_OPTION_s,
4175
    QEMU_OPTION_p,
4176
    QEMU_OPTION_d,
4177
    QEMU_OPTION_hdachs,
4178
    QEMU_OPTION_L,
4179
    QEMU_OPTION_bios,
4180
    QEMU_OPTION_kernel_kqemu,
4181
    QEMU_OPTION_no_kqemu,
4182
    QEMU_OPTION_enable_kvm,
4183
    QEMU_OPTION_no_reboot,
4184
    QEMU_OPTION_no_shutdown,
4185
    QEMU_OPTION_loadvm,
4186
    QEMU_OPTION_daemonize,
4187
    QEMU_OPTION_option_rom,
4188
    QEMU_OPTION_prom_env,
4189
    QEMU_OPTION_clock,
4190
    QEMU_OPTION_localtime,
4191
    QEMU_OPTION_startdate,
4192
    QEMU_OPTION_icount,
4193
    QEMU_OPTION_echr,
4194
    QEMU_OPTION_virtiocon,
4195
    QEMU_OPTION_show_cursor,
4196
    QEMU_OPTION_semihosting,
4197
    QEMU_OPTION_old_param,
4198
    QEMU_OPTION_tb_size,
4199
    QEMU_OPTION_incoming,
4200
    QEMU_OPTION_chroot,
4201
    QEMU_OPTION_runas,
4202
};
4203

    
4204
typedef struct QEMUOption {
4205
    const char *name;
4206
    int flags;
4207
    int index;
4208
} QEMUOption;
4209

    
4210
static const QEMUOption qemu_options[] = {
4211
    /* Please keep in synch with help, QEMU_OPTION_ enums, and
4212
       qemu-doc.texi */
4213
    /* Standard options: */
4214
    { "h", 0, QEMU_OPTION_h },
4215
    { "help", 0, QEMU_OPTION_h },
4216
    { "M", HAS_ARG, QEMU_OPTION_M },
4217
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4218
    { "smp", HAS_ARG, QEMU_OPTION_smp },
4219
    { "fda", HAS_ARG, QEMU_OPTION_fda },
4220
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4221
    { "hda", HAS_ARG, QEMU_OPTION_hda },
4222
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4223
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4224
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4225
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4226
    { "drive", HAS_ARG, QEMU_OPTION_drive },
4227
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4228
    { "sd", HAS_ARG, QEMU_OPTION_sd },
4229
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4230
    { "boot", HAS_ARG, QEMU_OPTION_boot },
4231
    { "snapshot", 0, QEMU_OPTION_snapshot },
4232
    { "m", HAS_ARG, QEMU_OPTION_m },
4233
#ifndef _WIN32
4234
    { "k", HAS_ARG, QEMU_OPTION_k },
4235
#endif
4236
#ifdef HAS_AUDIO
4237
    { "audio-help", 0, QEMU_OPTION_audio_help },
4238
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4239
#endif
4240
    { "usb", 0, QEMU_OPTION_usb },
4241
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4242
    { "name", HAS_ARG, QEMU_OPTION_name },
4243
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4244

    
4245
    /* Display options: */
4246
    { "nographic", 0, QEMU_OPTION_nographic },
4247
#ifdef CONFIG_CURSES
4248
    { "curses", 0, QEMU_OPTION_curses },
4249
#endif
4250
#ifdef CONFIG_SDL
4251
    { "no-frame", 0, QEMU_OPTION_no_frame },
4252
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
4253
    { "no-quit", 0, QEMU_OPTION_no_quit },
4254
    { "sdl", 0, QEMU_OPTION_sdl },
4255
#endif
4256
    { "portrait", 0, QEMU_OPTION_portrait },
4257
    { "vga", HAS_ARG, QEMU_OPTION_vga },
4258
    { "full-screen", 0, QEMU_OPTION_full_screen },
4259
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4260
    { "g", 1, QEMU_OPTION_g },
4261
#endif
4262
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4263

    
4264
    /* Network options: */
4265
    { "net", HAS_ARG, QEMU_OPTION_net},
4266
#ifdef CONFIG_SLIRP
4267
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4268
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4269
#ifndef _WIN32
4270
    { "smb", HAS_ARG, QEMU_OPTION_smb },
4271
#endif
4272
    { "redir", HAS_ARG, QEMU_OPTION_redir },
4273
#endif
4274
    { "bt", HAS_ARG, QEMU_OPTION_bt },
4275
#ifdef TARGET_I386
4276
    /* i386 target only: */
4277
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4278
    { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4279
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4280
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
4281
    { "no-hpet", 0, QEMU_OPTION_no_hpet },
4282
    { "acpitable", HAS_ARG, QEMU_OPTION_acpitable },
4283
#endif
4284

    
4285
    /* Linux boot specific: */
4286
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4287
    { "append", HAS_ARG, QEMU_OPTION_append },
4288
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4289

    
4290
    /* Debug/Expert options: */
4291
    { "serial", HAS_ARG, QEMU_OPTION_serial },
4292
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4293
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4294
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4295
    { "S", 0, QEMU_OPTION_S },
4296
    { "s", 0, QEMU_OPTION_s },
4297
    { "p", HAS_ARG, QEMU_OPTION_p },
4298
    { "d", HAS_ARG, QEMU_OPTION_d },
4299
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4300
    { "L", HAS_ARG, QEMU_OPTION_L },
4301
    { "bios", HAS_ARG, QEMU_OPTION_bios },
4302
#ifdef USE_KQEMU
4303
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4304
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4305
#endif
4306
#ifdef CONFIG_KVM
4307
    { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4308
#endif
4309
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
4310
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4311
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4312
    { "daemonize", 0, QEMU_OPTION_daemonize },
4313
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4314
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
4315
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4316
#endif
4317
    { "clock", HAS_ARG, QEMU_OPTION_clock },
4318
    { "localtime", 0, QEMU_OPTION_localtime },
4319
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4320
    { "icount", HAS_ARG, QEMU_OPTION_icount },
4321
    { "echr", HAS_ARG, QEMU_OPTION_echr },
4322
    { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4323
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
4324
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4325
    { "semihosting", 0, QEMU_OPTION_semihosting },
4326
#endif
4327
#if defined(TARGET_ARM)
4328
    { "old-param", 0, QEMU_OPTION_old_param },
4329
#endif
4330
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4331
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4332
    { "chroot", HAS_ARG, QEMU_OPTION_chroot },
4333
    { "runas", HAS_ARG, QEMU_OPTION_runas },
4334
    { NULL },
4335
};
4336

    
4337
/* password input */
4338

    
4339
int qemu_key_check(BlockDriverState *bs, const char *name)
4340
{
4341
    char password[256];
4342
    int i;
4343

    
4344
    if (!bdrv_is_encrypted(bs))
4345
        return 0;
4346

    
4347
    term_printf("%s is encrypted.\n", name);
4348
    for(i = 0; i < 3; i++) {
4349
        monitor_readline("Password: ", 1, password, sizeof(password));
4350
        if (bdrv_set_key(bs, password) == 0)
4351
            return 0;
4352
        term_printf("invalid password\n");
4353
    }
4354
    return -EPERM;
4355
}
4356

    
4357
static BlockDriverState *get_bdrv(int index)
4358
{
4359
    if (index > nb_drives)
4360
        return NULL;
4361
    return drives_table[index].bdrv;
4362
}
4363

    
4364
static void read_passwords(void)
4365
{
4366
    BlockDriverState *bs;
4367
    int i;
4368

    
4369
    for(i = 0; i < 6; i++) {
4370
        bs = get_bdrv(i);
4371
        if (bs)
4372
            qemu_key_check(bs, bdrv_get_device_name(bs));
4373
    }
4374
}
4375

    
4376
#ifdef HAS_AUDIO
4377
struct soundhw soundhw[] = {
4378
#ifdef HAS_AUDIO_CHOICE
4379
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4380
    {
4381
        "pcspk",
4382
        "PC speaker",
4383
        0,
4384
        1,
4385
        { .init_isa = pcspk_audio_init }
4386
    },
4387
#endif
4388

    
4389
#ifdef CONFIG_SB16
4390
    {
4391
        "sb16",
4392
        "Creative Sound Blaster 16",
4393
        0,
4394
        1,
4395
        { .init_isa = SB16_init }
4396
    },
4397
#endif
4398

    
4399
#ifdef CONFIG_CS4231A
4400
    {
4401
        "cs4231a",
4402
        "CS4231A",
4403
        0,
4404
        1,
4405
        { .init_isa = cs4231a_init }
4406
    },
4407
#endif
4408

    
4409
#ifdef CONFIG_ADLIB
4410
    {
4411
        "adlib",
4412
#ifdef HAS_YMF262
4413
        "Yamaha YMF262 (OPL3)",
4414
#else
4415
        "Yamaha YM3812 (OPL2)",
4416
#endif
4417
        0,
4418
        1,
4419
        { .init_isa = Adlib_init }
4420
    },
4421
#endif
4422

    
4423
#ifdef CONFIG_GUS
4424
    {
4425
        "gus",
4426
        "Gravis Ultrasound GF1",
4427
        0,
4428
        1,
4429
        { .init_isa = GUS_init }
4430
    },
4431
#endif
4432

    
4433
#ifdef CONFIG_AC97
4434
    {
4435
        "ac97",
4436
        "Intel 82801AA AC97 Audio",
4437
        0,
4438
        0,
4439
        { .init_pci = ac97_init }
4440
    },
4441
#endif
4442

    
4443
#ifdef CONFIG_ES1370
4444
    {
4445
        "es1370",
4446
        "ENSONIQ AudioPCI ES1370",
4447
        0,
4448
        0,
4449
        { .init_pci = es1370_init }
4450
    },
4451
#endif
4452

    
4453
#endif /* HAS_AUDIO_CHOICE */
4454

    
4455
    { NULL, NULL, 0, 0, { NULL } }
4456
};
4457

    
4458
static void select_soundhw (const char *optarg)
4459
{
4460
    struct soundhw *c;
4461

    
4462
    if (*optarg == '?') {
4463
    show_valid_cards:
4464

    
4465
        printf ("Valid sound card names (comma separated):\n");
4466
        for (c = soundhw; c->name; ++c) {
4467
            printf ("%-11s %s\n", c->name, c->descr);
4468
        }
4469
        printf ("\n-soundhw all will enable all of the above\n");
4470
        exit (*optarg != '?');
4471
    }
4472
    else {
4473
        size_t l;
4474
        const char *p;
4475
        char *e;
4476
        int bad_card = 0;
4477

    
4478
        if (!strcmp (optarg, "all")) {
4479
            for (c = soundhw; c->name; ++c) {
4480
                c->enabled = 1;
4481
            }
4482
            return;
4483
        }
4484

    
4485
        p = optarg;
4486
        while (*p) {
4487
            e = strchr (p, ',');
4488
            l = !e ? strlen (p) : (size_t) (e - p);
4489

    
4490
            for (c = soundhw; c->name; ++c) {
4491
                if (!strncmp (c->name, p, l)) {
4492
                    c->enabled = 1;
4493
                    break;
4494
                }
4495
            }
4496

    
4497
            if (!c->name) {
4498
                if (l > 80) {
4499
                    fprintf (stderr,
4500
                             "Unknown sound card name (too big to show)\n");
4501
                }
4502
                else {
4503
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4504
                             (int) l, p);
4505
                }
4506
                bad_card = 1;
4507
            }
4508
            p += l + (e != NULL);
4509
        }
4510

    
4511
        if (bad_card)
4512
            goto show_valid_cards;
4513
    }
4514
}
4515
#endif
4516

    
4517
static void select_vgahw (const char *p)
4518
{
4519
    const char *opts;
4520

    
4521
    if (strstart(p, "std", &opts)) {
4522
        std_vga_enabled = 1;
4523
        cirrus_vga_enabled = 0;
4524
        vmsvga_enabled = 0;
4525
    } else if (strstart(p, "cirrus", &opts)) {
4526
        cirrus_vga_enabled = 1;
4527
        std_vga_enabled = 0;
4528
        vmsvga_enabled = 0;
4529
    } else if (strstart(p, "vmware", &opts)) {
4530
        cirrus_vga_enabled = 0;
4531
        std_vga_enabled = 0;
4532
        vmsvga_enabled = 1;
4533
    } else if (strstart(p, "none", &opts)) {
4534
        cirrus_vga_enabled = 0;
4535
        std_vga_enabled = 0;
4536
        vmsvga_enabled = 0;
4537
    } else {
4538
    invalid_vga:
4539
        fprintf(stderr, "Unknown vga type: %s\n", p);
4540
        exit(1);
4541
    }
4542
    while (*opts) {
4543
        const char *nextopt;
4544

    
4545
        if (strstart(opts, ",retrace=", &nextopt)) {
4546
            opts = nextopt;
4547
            if (strstart(opts, "dumb", &nextopt))
4548
                vga_retrace_method = VGA_RETRACE_DUMB;
4549
            else if (strstart(opts, "precise", &nextopt))
4550
                vga_retrace_method = VGA_RETRACE_PRECISE;
4551
            else goto invalid_vga;
4552
        } else goto invalid_vga;
4553
        opts = nextopt;
4554
    }
4555
}
4556

    
4557
#ifdef _WIN32
4558
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4559
{
4560
    exit(STATUS_CONTROL_C_EXIT);
4561
    return TRUE;
4562
}
4563
#endif
4564

    
4565
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4566
{
4567
    int ret;
4568

    
4569
    if(strlen(str) != 36)
4570
        return -1;
4571

    
4572
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4573
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4574
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4575

    
4576
    if(ret != 16)
4577
        return -1;
4578

    
4579
    return 0;
4580
}
4581

    
4582
#define MAX_NET_CLIENTS 32
4583

    
4584
#ifndef _WIN32
4585

    
4586
static void termsig_handler(int signal)
4587
{
4588
    qemu_system_shutdown_request();
4589
}
4590

    
4591
static void termsig_setup(void)
4592
{
4593
    struct sigaction act;
4594

    
4595
    memset(&act, 0, sizeof(act));
4596
    act.sa_handler = termsig_handler;
4597
    sigaction(SIGINT,  &act, NULL);
4598
    sigaction(SIGHUP,  &act, NULL);
4599
    sigaction(SIGTERM, &act, NULL);
4600
}
4601

    
4602
#endif
4603

    
4604
int main(int argc, char **argv, char **envp)
4605
{
4606
#ifdef CONFIG_GDBSTUB
4607
    int use_gdbstub;
4608
    const char *gdbstub_port;
4609
#endif
4610
    uint32_t boot_devices_bitmap = 0;
4611
    int i;
4612
    int snapshot, linux_boot, net_boot;
4613
    const char *initrd_filename;
4614
    const char *kernel_filename, *kernel_cmdline;
4615
    const char *boot_devices = "";
4616
    DisplayState *ds;
4617
    DisplayChangeListener *dcl;
4618
    int cyls, heads, secs, translation;
4619
    const char *net_clients[MAX_NET_CLIENTS];
4620
    int nb_net_clients;
4621
    const char *bt_opts[MAX_BT_CMDLINE];
4622
    int nb_bt_opts;
4623
    int hda_index;
4624
    int optind;
4625
    const char *r, *optarg;
4626
    CharDriverState *monitor_hd = NULL;
4627
    const char *monitor_device;
4628
    const char *serial_devices[MAX_SERIAL_PORTS];
4629
    int serial_device_index;
4630
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4631
    int parallel_device_index;
4632
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4633
    int virtio_console_index;
4634
    const char *loadvm = NULL;
4635
    QEMUMachine *machine;
4636
    const char *cpu_model;
4637
    const char *usb_devices[MAX_USB_CMDLINE];
4638
    int usb_devices_index;
4639
    int fds[2];
4640
    int tb_size;
4641
    const char *pid_file = NULL;
4642
    int autostart;
4643
    const char *incoming = NULL;
4644
    int fd = 0;
4645
    struct passwd *pwd = NULL;
4646
    const char *chroot_dir = NULL;
4647
    const char *run_as = NULL;
4648

    
4649
    qemu_cache_utils_init(envp);
4650

    
4651
    LIST_INIT (&vm_change_state_head);
4652
#ifndef _WIN32
4653
    {
4654
        struct sigaction act;
4655
        sigfillset(&act.sa_mask);
4656
        act.sa_flags = 0;
4657
        act.sa_handler = SIG_IGN;
4658
        sigaction(SIGPIPE, &act, NULL);
4659
    }
4660
#else
4661
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4662
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4663
       QEMU to run on a single CPU */
4664
    {
4665
        HANDLE h;
4666
        DWORD mask, smask;
4667
        int i;
4668
        h = GetCurrentProcess();
4669
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4670
            for(i = 0; i < 32; i++) {
4671
                if (mask & (1 << i))
4672
                    break;
4673
            }
4674
            if (i != 32) {
4675
                mask = 1 << i;
4676
                SetProcessAffinityMask(h, mask);
4677
            }
4678
        }
4679
    }
4680
#endif
4681

    
4682
    register_machines();
4683
    machine = first_machine;
4684
    cpu_model = NULL;
4685
    initrd_filename = NULL;
4686
    ram_size = 0;
4687
    vga_ram_size = VGA_RAM_SIZE;
4688
#ifdef CONFIG_GDBSTUB
4689
    use_gdbstub = 0;
4690
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
4691
#endif
4692
    snapshot = 0;
4693
    nographic = 0;
4694
    curses = 0;
4695
    kernel_filename = NULL;
4696
    kernel_cmdline = "";
4697
    cyls = heads = secs = 0;
4698
    translation = BIOS_ATA_TRANSLATION_AUTO;
4699
    monitor_device = "vc";
4700

    
4701
    serial_devices[0] = "vc:80Cx24C";
4702
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4703
        serial_devices[i] = NULL;
4704
    serial_device_index = 0;
4705

    
4706
    parallel_devices[0] = "vc:80Cx24C";
4707
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4708
        parallel_devices[i] = NULL;
4709
    parallel_device_index = 0;
4710

    
4711
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4712
        virtio_consoles[i] = NULL;
4713
    virtio_console_index = 0;
4714

    
4715
    usb_devices_index = 0;
4716

    
4717
    nb_net_clients = 0;
4718
    nb_bt_opts = 0;
4719
    nb_drives = 0;
4720
    nb_drives_opt = 0;
4721
    hda_index = -1;
4722

    
4723
    nb_nics = 0;
4724

    
4725
    tb_size = 0;
4726
    autostart= 1;
4727

    
4728
    optind = 1;
4729
    for(;;) {
4730
        if (optind >= argc)
4731
            break;
4732
        r = argv[optind];
4733
        if (r[0] != '-') {
4734
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4735
        } else {
4736
            const QEMUOption *popt;
4737

    
4738
            optind++;
4739
            /* Treat --foo the same as -foo.  */
4740
            if (r[1] == '-')
4741
                r++;
4742
            popt = qemu_options;
4743
            for(;;) {
4744
                if (!popt->name) {
4745
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4746
                            argv[0], r);
4747
                    exit(1);
4748
                }
4749
                if (!strcmp(popt->name, r + 1))
4750
                    break;
4751
                popt++;
4752
            }
4753
            if (popt->flags & HAS_ARG) {
4754
                if (optind >= argc) {
4755
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4756
                            argv[0], r);
4757
                    exit(1);
4758
                }
4759
                optarg = argv[optind++];
4760
            } else {
4761
                optarg = NULL;
4762
            }
4763

    
4764
            switch(popt->index) {
4765
            case QEMU_OPTION_M:
4766
                machine = find_machine(optarg);
4767
                if (!machine) {
4768
                    QEMUMachine *m;
4769
                    printf("Supported machines are:\n");
4770
                    for(m = first_machine; m != NULL; m = m->next) {
4771
                        printf("%-10s %s%s\n",
4772
                               m->name, m->desc,
4773
                               m == first_machine ? " (default)" : "");
4774
                    }
4775
                    exit(*optarg != '?');
4776
                }
4777
                break;
4778
            case QEMU_OPTION_cpu:
4779
                /* hw initialization will check this */
4780
                if (*optarg == '?') {
4781
/* XXX: implement xxx_cpu_list for targets that still miss it */
4782
#if defined(cpu_list)
4783
                    cpu_list(stdout, &fprintf);
4784
#endif
4785
                    exit(0);
4786
                } else {
4787
                    cpu_model = optarg;
4788
                }
4789
                break;
4790
            case QEMU_OPTION_initrd:
4791
                initrd_filename = optarg;
4792
                break;
4793
            case QEMU_OPTION_hda:
4794
                if (cyls == 0)
4795
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4796
                else
4797
                    hda_index = drive_add(optarg, HD_ALIAS
4798
                             ",cyls=%d,heads=%d,secs=%d%s",
4799
                             0, cyls, heads, secs,
4800
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4801
                                 ",trans=lba" :
4802
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4803
                                 ",trans=none" : "");
4804
                 break;
4805
            case QEMU_OPTION_hdb:
4806
            case QEMU_OPTION_hdc:
4807
            case QEMU_OPTION_hdd:
4808
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4809
                break;
4810
            case QEMU_OPTION_drive:
4811
                drive_add(NULL, "%s", optarg);
4812
                break;
4813
            case QEMU_OPTION_mtdblock:
4814
                drive_add(optarg, MTD_ALIAS);
4815
                break;
4816
            case QEMU_OPTION_sd:
4817
                drive_add(optarg, SD_ALIAS);
4818
                break;
4819
            case QEMU_OPTION_pflash:
4820
                drive_add(optarg, PFLASH_ALIAS);
4821
                break;
4822
            case QEMU_OPTION_snapshot:
4823
                snapshot = 1;
4824
                break;
4825
            case QEMU_OPTION_hdachs:
4826
                {
4827
                    const char *p;
4828
                    p = optarg;
4829
                    cyls = strtol(p, (char **)&p, 0);
4830
                    if (cyls < 1 || cyls > 16383)
4831
                        goto chs_fail;
4832
                    if (*p != ',')
4833
                        goto chs_fail;
4834
                    p++;
4835
                    heads = strtol(p, (char **)&p, 0);
4836
                    if (heads < 1 || heads > 16)
4837
                        goto chs_fail;
4838
                    if (*p != ',')
4839
                        goto chs_fail;
4840
                    p++;
4841
                    secs = strtol(p, (char **)&p, 0);
4842
                    if (secs < 1 || secs > 63)
4843
                        goto chs_fail;
4844
                    if (*p == ',') {
4845
                        p++;
4846
                        if (!strcmp(p, "none"))
4847
                            translation = BIOS_ATA_TRANSLATION_NONE;
4848
                        else if (!strcmp(p, "lba"))
4849
                            translation = BIOS_ATA_TRANSLATION_LBA;
4850
                        else if (!strcmp(p, "auto"))
4851
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4852
                        else
4853
                            goto chs_fail;
4854
                    } else if (*p != '\0') {
4855
                    chs_fail:
4856
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4857
                        exit(1);
4858
                    }
4859
                    if (hda_index != -1)
4860
                        snprintf(drives_opt[hda_index].opt,
4861
                                 sizeof(drives_opt[hda_index].opt),
4862
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4863
                                 0, cyls, heads, secs,
4864
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
4865
                                         ",trans=lba" :
4866
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
4867
                                     ",trans=none" : "");
4868
                }
4869
                break;
4870
            case QEMU_OPTION_nographic:
4871
                nographic = 1;
4872
                break;
4873
#ifdef CONFIG_CURSES
4874
            case QEMU_OPTION_curses:
4875
                curses = 1;
4876
                break;
4877
#endif
4878
            case QEMU_OPTION_portrait:
4879
                graphic_rotate = 1;
4880
                break;
4881
            case QEMU_OPTION_kernel:
4882
                kernel_filename = optarg;
4883
                break;
4884
            case QEMU_OPTION_append:
4885
                kernel_cmdline = optarg;
4886
                break;
4887
            case QEMU_OPTION_cdrom:
4888
                drive_add(optarg, CDROM_ALIAS);
4889
                break;
4890
            case QEMU_OPTION_boot:
4891
                boot_devices = optarg;
4892
                /* We just do some generic consistency checks */
4893
                {
4894
                    /* Could easily be extended to 64 devices if needed */
4895
                    const char *p;
4896
                    
4897
                    boot_devices_bitmap = 0;
4898
                    for (p = boot_devices; *p != '\0'; p++) {
4899
                        /* Allowed boot devices are:
4900
                         * a b     : floppy disk drives
4901
                         * c ... f : IDE disk drives
4902
                         * g ... m : machine implementation dependant drives
4903
                         * n ... p : network devices
4904
                         * It's up to each machine implementation to check
4905
                         * if the given boot devices match the actual hardware
4906
                         * implementation and firmware features.
4907
                         */
4908
                        if (*p < 'a' || *p > 'q') {
4909
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
4910
                            exit(1);
4911
                        }
4912
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4913
                            fprintf(stderr,
4914
                                    "Boot device '%c' was given twice\n",*p);
4915
                            exit(1);
4916
                        }
4917
                        boot_devices_bitmap |= 1 << (*p - 'a');
4918
                    }
4919
                }
4920
                break;
4921
            case QEMU_OPTION_fda:
4922
            case QEMU_OPTION_fdb:
4923
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4924
                break;
4925
#ifdef TARGET_I386
4926
            case QEMU_OPTION_no_fd_bootchk:
4927
                fd_bootchk = 0;
4928
                break;
4929
#endif
4930
            case QEMU_OPTION_net:
4931
                if (nb_net_clients >= MAX_NET_CLIENTS) {
4932
                    fprintf(stderr, "qemu: too many network clients\n");
4933
                    exit(1);
4934
                }
4935
                net_clients[nb_net_clients] = optarg;
4936
                nb_net_clients++;
4937
                break;
4938
#ifdef CONFIG_SLIRP
4939
            case QEMU_OPTION_tftp:
4940
                tftp_prefix = optarg;
4941
                break;
4942
            case QEMU_OPTION_bootp:
4943
                bootp_filename = optarg;
4944
                break;
4945
#ifndef _WIN32
4946
            case QEMU_OPTION_smb:
4947
                net_slirp_smb(optarg);
4948
                break;
4949
#endif
4950
            case QEMU_OPTION_redir:
4951
                net_slirp_redir(optarg);
4952
                break;
4953
#endif
4954
            case QEMU_OPTION_bt:
4955
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
4956
                    fprintf(stderr, "qemu: too many bluetooth options\n");
4957
                    exit(1);
4958
                }
4959
                bt_opts[nb_bt_opts++] = optarg;
4960
                break;
4961
#ifdef HAS_AUDIO
4962
            case QEMU_OPTION_audio_help:
4963
                AUD_help ();
4964
                exit (0);
4965
                break;
4966
            case QEMU_OPTION_soundhw:
4967
                select_soundhw (optarg);
4968
                break;
4969
#endif
4970
            case QEMU_OPTION_h:
4971
                help(0);
4972
                break;
4973
            case QEMU_OPTION_m: {
4974
                uint64_t value;
4975
                char *ptr;
4976

    
4977
                value = strtoul(optarg, &ptr, 10);
4978
                switch (*ptr) {
4979
                case 0: case 'M': case 'm':
4980
                    value <<= 20;
4981
                    break;
4982
                case 'G': case 'g':
4983
                    value <<= 30;
4984
                    break;
4985
                default:
4986
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4987
                    exit(1);
4988
                }
4989

    
4990
                /* On 32-bit hosts, QEMU is limited by virtual address space */
4991
                if (value > (2047 << 20)
4992
#ifndef USE_KQEMU
4993
                    && HOST_LONG_BITS == 32
4994
#endif
4995
                    ) {
4996
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4997
                    exit(1);
4998
                }
4999
                if (value != (uint64_t)(ram_addr_t)value) {
5000
                    fprintf(stderr, "qemu: ram size too large\n");
5001
                    exit(1);
5002
                }
5003
                ram_size = value;
5004
                break;
5005
            }
5006
            case QEMU_OPTION_d:
5007
                {
5008
                    int mask;
5009
                    const CPULogItem *item;
5010

    
5011
                    mask = cpu_str_to_log_mask(optarg);
5012
                    if (!mask) {
5013
                        printf("Log items (comma separated):\n");
5014
                    for(item = cpu_log_items; item->mask != 0; item++) {
5015
                        printf("%-10s %s\n", item->name, item->help);
5016
                    }
5017
                    exit(1);
5018
                    }
5019
                    cpu_set_log(mask);
5020
                }
5021
                break;
5022
#ifdef CONFIG_GDBSTUB
5023
            case QEMU_OPTION_s:
5024
                use_gdbstub = 1;
5025
                break;
5026
            case QEMU_OPTION_p:
5027
                gdbstub_port = optarg;
5028
                break;
5029
#endif
5030
            case QEMU_OPTION_L:
5031
                bios_dir = optarg;
5032
                break;
5033
            case QEMU_OPTION_bios:
5034
                bios_name = optarg;
5035
                break;
5036
            case QEMU_OPTION_S:
5037
                autostart = 0;
5038
                break;
5039
            case QEMU_OPTION_k:
5040
                keyboard_layout = optarg;
5041
                break;
5042
            case QEMU_OPTION_localtime:
5043
                rtc_utc = 0;
5044
                break;
5045
            case QEMU_OPTION_vga:
5046
                select_vgahw (optarg);
5047
                break;
5048
            case QEMU_OPTION_g:
5049
                {
5050
                    const char *p;
5051
                    int w, h, depth;
5052
                    p = optarg;
5053
                    w = strtol(p, (char **)&p, 10);
5054
                    if (w <= 0) {
5055
                    graphic_error:
5056
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
5057
                        exit(1);
5058
                    }
5059
                    if (*p != 'x')
5060
                        goto graphic_error;
5061
                    p++;
5062
                    h = strtol(p, (char **)&p, 10);
5063
                    if (h <= 0)
5064
                        goto graphic_error;
5065
                    if (*p == 'x') {
5066
                        p++;
5067
                        depth = strtol(p, (char **)&p, 10);
5068
                        if (depth != 8 && depth != 15 && depth != 16 &&
5069
                            depth != 24 && depth != 32)
5070
                            goto graphic_error;
5071
                    } else if (*p == '\0') {
5072
                        depth = graphic_depth;
5073
                    } else {
5074
                        goto graphic_error;
5075
                    }
5076

    
5077
                    graphic_width = w;
5078
                    graphic_height = h;
5079
                    graphic_depth = depth;
5080
                }
5081
                break;
5082
            case QEMU_OPTION_echr:
5083
                {
5084
                    char *r;
5085
                    term_escape_char = strtol(optarg, &r, 0);
5086
                    if (r == optarg)
5087
                        printf("Bad argument to echr\n");
5088
                    break;
5089
                }
5090
            case QEMU_OPTION_monitor:
5091
                monitor_device = optarg;
5092
                break;
5093
            case QEMU_OPTION_serial:
5094
                if (serial_device_index >= MAX_SERIAL_PORTS) {
5095
                    fprintf(stderr, "qemu: too many serial ports\n");
5096
                    exit(1);
5097
                }
5098
                serial_devices[serial_device_index] = optarg;
5099
                serial_device_index++;
5100
                break;
5101
            case QEMU_OPTION_virtiocon:
5102
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5103
                    fprintf(stderr, "qemu: too many virtio consoles\n");
5104
                    exit(1);
5105
                }
5106
                virtio_consoles[virtio_console_index] = optarg;
5107
                virtio_console_index++;
5108
                break;
5109
            case QEMU_OPTION_parallel:
5110
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5111
                    fprintf(stderr, "qemu: too many parallel ports\n");
5112
                    exit(1);
5113
                }
5114
                parallel_devices[parallel_device_index] = optarg;
5115
                parallel_device_index++;
5116
                break;
5117
            case QEMU_OPTION_loadvm:
5118
                loadvm = optarg;
5119
                break;
5120
            case QEMU_OPTION_full_screen:
5121
                full_screen = 1;
5122
                break;
5123
#ifdef CONFIG_SDL
5124
            case QEMU_OPTION_no_frame:
5125
                no_frame = 1;
5126
                break;
5127
            case QEMU_OPTION_alt_grab:
5128
                alt_grab = 1;
5129
                break;
5130
            case QEMU_OPTION_no_quit:
5131
                no_quit = 1;
5132
                break;
5133
            case QEMU_OPTION_sdl:
5134
                sdl = 1;
5135
                break;
5136
#endif
5137
            case QEMU_OPTION_pidfile:
5138
                pid_file = optarg;
5139
                break;
5140
#ifdef TARGET_I386
5141
            case QEMU_OPTION_win2k_hack:
5142
                win2k_install_hack = 1;
5143
                break;
5144
            case QEMU_OPTION_rtc_td_hack:
5145
                rtc_td_hack = 1;
5146
                break;
5147
            case QEMU_OPTION_acpitable:
5148
                if(acpi_table_add(optarg) < 0) {
5149
                    fprintf(stderr, "Wrong acpi table provided\n");
5150
                    exit(1);
5151
                }
5152
                break;
5153
#endif
5154
#ifdef USE_KQEMU
5155
            case QEMU_OPTION_no_kqemu:
5156
                kqemu_allowed = 0;
5157
                break;
5158
            case QEMU_OPTION_kernel_kqemu:
5159
                kqemu_allowed = 2;
5160
                break;
5161
#endif
5162
#ifdef CONFIG_KVM
5163
            case QEMU_OPTION_enable_kvm:
5164
                kvm_allowed = 1;
5165
#ifdef USE_KQEMU
5166
                kqemu_allowed = 0;
5167
#endif
5168
                break;
5169
#endif
5170
            case QEMU_OPTION_usb:
5171
                usb_enabled = 1;
5172
                break;
5173
            case QEMU_OPTION_usbdevice:
5174
                usb_enabled = 1;
5175
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5176
                    fprintf(stderr, "Too many USB devices\n");
5177
                    exit(1);
5178
                }
5179
                usb_devices[usb_devices_index] = optarg;
5180
                usb_devices_index++;
5181
                break;
5182
            case QEMU_OPTION_smp:
5183
                smp_cpus = atoi(optarg);
5184
                if (smp_cpus < 1) {
5185
                    fprintf(stderr, "Invalid number of CPUs\n");
5186
                    exit(1);
5187
                }
5188
                break;
5189
            case QEMU_OPTION_vnc:
5190
                vnc_display = optarg;
5191
                break;
5192
            case QEMU_OPTION_no_acpi:
5193
                acpi_enabled = 0;
5194
                break;
5195
            case QEMU_OPTION_no_hpet:
5196
                no_hpet = 1;
5197
                break;
5198
            case QEMU_OPTION_no_reboot:
5199
                no_reboot = 1;
5200
                break;
5201
            case QEMU_OPTION_no_shutdown:
5202
                no_shutdown = 1;
5203
                break;
5204
            case QEMU_OPTION_show_cursor:
5205
                cursor_hide = 0;
5206
                break;
5207
            case QEMU_OPTION_uuid:
5208
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5209
                    fprintf(stderr, "Fail to parse UUID string."
5210
                            " Wrong format.\n");
5211
                    exit(1);
5212
                }
5213
                break;
5214
            case QEMU_OPTION_daemonize:
5215
                daemonize = 1;
5216
                break;
5217
            case QEMU_OPTION_option_rom:
5218
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5219
                    fprintf(stderr, "Too many option ROMs\n");
5220
                    exit(1);
5221
                }
5222
                option_rom[nb_option_roms] = optarg;
5223
                nb_option_roms++;
5224
                break;
5225
            case QEMU_OPTION_semihosting:
5226
                semihosting_enabled = 1;
5227
                break;
5228
            case QEMU_OPTION_name:
5229
                qemu_name = optarg;
5230
                break;
5231
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5232
            case QEMU_OPTION_prom_env:
5233
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5234
                    fprintf(stderr, "Too many prom variables\n");
5235
                    exit(1);
5236
                }
5237
                prom_envs[nb_prom_envs] = optarg;
5238
                nb_prom_envs++;
5239
                break;
5240
#endif
5241
#ifdef TARGET_ARM
5242
            case QEMU_OPTION_old_param:
5243
                old_param = 1;
5244
                break;
5245
#endif
5246
            case QEMU_OPTION_clock:
5247
                configure_alarms(optarg);
5248
                break;
5249
            case QEMU_OPTION_startdate:
5250
                {
5251
                    struct tm tm;
5252
                    time_t rtc_start_date;
5253
                    if (!strcmp(optarg, "now")) {
5254
                        rtc_date_offset = -1;
5255
                    } else {
5256
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5257
                               &tm.tm_year,
5258
                               &tm.tm_mon,
5259
                               &tm.tm_mday,
5260
                               &tm.tm_hour,
5261
                               &tm.tm_min,
5262
                               &tm.tm_sec) == 6) {
5263
                            /* OK */
5264
                        } else if (sscanf(optarg, "%d-%d-%d",
5265
                                          &tm.tm_year,
5266
                                          &tm.tm_mon,
5267
                                          &tm.tm_mday) == 3) {
5268
                            tm.tm_hour = 0;
5269
                            tm.tm_min = 0;
5270
                            tm.tm_sec = 0;
5271
                        } else {
5272
                            goto date_fail;
5273
                        }
5274
                        tm.tm_year -= 1900;
5275
                        tm.tm_mon--;
5276
                        rtc_start_date = mktimegm(&tm);
5277
                        if (rtc_start_date == -1) {
5278
                        date_fail:
5279
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5280
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5281
                            exit(1);
5282
                        }
5283
                        rtc_date_offset = time(NULL) - rtc_start_date;
5284
                    }
5285
                }
5286
                break;
5287
            case QEMU_OPTION_tb_size:
5288
                tb_size = strtol(optarg, NULL, 0);
5289
                if (tb_size < 0)
5290
                    tb_size = 0;
5291
                break;
5292
            case QEMU_OPTION_icount:
5293
                use_icount = 1;
5294
                if (strcmp(optarg, "auto") == 0) {
5295
                    icount_time_shift = -1;
5296
                } else {
5297
                    icount_time_shift = strtol(optarg, NULL, 0);
5298
                }
5299
                break;
5300
            case QEMU_OPTION_incoming:
5301
                incoming = optarg;
5302
                break;
5303
            case QEMU_OPTION_chroot:
5304
                chroot_dir = optarg;
5305
                break;
5306
            case QEMU_OPTION_runas:
5307
                run_as = optarg;
5308
                break;
5309
            }
5310
        }
5311
    }
5312

    
5313
#if defined(CONFIG_KVM) && defined(USE_KQEMU)
5314
    if (kvm_allowed && kqemu_allowed) {
5315
        fprintf(stderr,
5316
                "You can not enable both KVM and kqemu at the same time\n");
5317
        exit(1);
5318
    }
5319
#endif
5320

    
5321
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5322
    if (smp_cpus > machine->max_cpus) {
5323
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5324
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5325
                machine->max_cpus);
5326
        exit(1);
5327
    }
5328

    
5329
    if (nographic) {
5330
       if (serial_device_index == 0)
5331
           serial_devices[0] = "stdio";
5332
       if (parallel_device_index == 0)
5333
           parallel_devices[0] = "null";
5334
       if (strncmp(monitor_device, "vc", 2) == 0)
5335
           monitor_device = "stdio";
5336
    }
5337

    
5338
#ifndef _WIN32
5339
    if (daemonize) {
5340
        pid_t pid;
5341

    
5342
        if (pipe(fds) == -1)
5343
            exit(1);
5344

    
5345
        pid = fork();
5346
        if (pid > 0) {
5347
            uint8_t status;
5348
            ssize_t len;
5349

    
5350
            close(fds[1]);
5351

    
5352
        again:
5353
            len = read(fds[0], &status, 1);
5354
            if (len == -1 && (errno == EINTR))
5355
                goto again;
5356

    
5357
            if (len != 1)
5358
                exit(1);
5359
            else if (status == 1) {
5360
                fprintf(stderr, "Could not acquire pidfile\n");
5361
                exit(1);
5362
            } else
5363
                exit(0);
5364
        } else if (pid < 0)
5365
            exit(1);
5366

    
5367
        setsid();
5368

    
5369
        pid = fork();
5370
        if (pid > 0)
5371
            exit(0);
5372
        else if (pid < 0)
5373
            exit(1);
5374

    
5375
        umask(027);
5376

    
5377
        signal(SIGTSTP, SIG_IGN);
5378
        signal(SIGTTOU, SIG_IGN);
5379
        signal(SIGTTIN, SIG_IGN);
5380
    }
5381
#endif
5382

    
5383
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5384
        if (daemonize) {
5385
            uint8_t status = 1;
5386
            write(fds[1], &status, 1);
5387
        } else
5388
            fprintf(stderr, "Could not acquire pid file\n");
5389
        exit(1);
5390
    }
5391

    
5392
#ifdef USE_KQEMU
5393
    if (smp_cpus > 1)
5394
        kqemu_allowed = 0;
5395
#endif
5396
    linux_boot = (kernel_filename != NULL);
5397
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5398

    
5399
    if (!linux_boot && net_boot == 0 &&
5400
        !machine->nodisk_ok && nb_drives_opt == 0)
5401
        help(1);
5402

    
5403
    if (!linux_boot && *kernel_cmdline != '\0') {
5404
        fprintf(stderr, "-append only allowed with -kernel option\n");
5405
        exit(1);
5406
    }
5407

    
5408
    if (!linux_boot && initrd_filename != NULL) {
5409
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5410
        exit(1);
5411
    }
5412

    
5413
    /* boot to floppy or the default cd if no hard disk defined yet */
5414
    if (!boot_devices[0]) {
5415
        boot_devices = "cad";
5416
    }
5417
    setvbuf(stdout, NULL, _IOLBF, 0);
5418

    
5419
    init_timers();
5420
    if (init_timer_alarm() < 0) {
5421
        fprintf(stderr, "could not initialize alarm timer\n");
5422
        exit(1);
5423
    }
5424
    if (use_icount && icount_time_shift < 0) {
5425
        use_icount = 2;
5426
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5427
           It will be corrected fairly quickly anyway.  */
5428
        icount_time_shift = 3;
5429
        init_icount_adjust();
5430
    }
5431

    
5432
#ifdef _WIN32
5433
    socket_init();
5434
#endif
5435

    
5436
    /* init network clients */
5437
    if (nb_net_clients == 0) {
5438
        /* if no clients, we use a default config */
5439
        net_clients[nb_net_clients++] = "nic";
5440
#ifdef CONFIG_SLIRP
5441
        net_clients[nb_net_clients++] = "user";
5442
#endif
5443
    }
5444

    
5445
    for(i = 0;i < nb_net_clients; i++) {
5446
        if (net_client_parse(net_clients[i]) < 0)
5447
            exit(1);
5448
    }
5449
    net_client_check();
5450

    
5451
#ifdef TARGET_I386
5452
    /* XXX: this should be moved in the PC machine instantiation code */
5453
    if (net_boot != 0) {
5454
        int netroms = 0;
5455
        for (i = 0; i < nb_nics && i < 4; i++) {
5456
            const char *model = nd_table[i].model;
5457
            char buf[1024];
5458
            if (net_boot & (1 << i)) {
5459
                if (model == NULL)
5460
                    model = "ne2k_pci";
5461
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5462
                if (get_image_size(buf) > 0) {
5463
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5464
                        fprintf(stderr, "Too many option ROMs\n");
5465
                        exit(1);
5466
                    }
5467
                    option_rom[nb_option_roms] = strdup(buf);
5468
                    nb_option_roms++;
5469
                    netroms++;
5470
                }
5471
            }
5472
        }
5473
        if (netroms == 0) {
5474
            fprintf(stderr, "No valid PXE rom found for network device\n");
5475
            exit(1);
5476
        }
5477
    }
5478
#endif
5479

    
5480
    /* init the bluetooth world */
5481
    for (i = 0; i < nb_bt_opts; i++)
5482
        if (bt_parse(bt_opts[i]))
5483
            exit(1);
5484

    
5485
    /* init the memory */
5486
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5487

    
5488
    if (machine->ram_require & RAMSIZE_FIXED) {
5489
        if (ram_size > 0) {
5490
            if (ram_size < phys_ram_size) {
5491
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5492
                                machine->name, (unsigned long long) phys_ram_size);
5493
                exit(-1);
5494
            }
5495

    
5496
            phys_ram_size = ram_size;
5497
        } else
5498
            ram_size = phys_ram_size;
5499
    } else {
5500
        if (ram_size == 0)
5501
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5502

    
5503
        phys_ram_size += ram_size;
5504
    }
5505

    
5506
    phys_ram_base = qemu_vmalloc(phys_ram_size);
5507
    if (!phys_ram_base) {
5508
        fprintf(stderr, "Could not allocate physical memory\n");
5509
        exit(1);
5510
    }
5511

    
5512
    /* init the dynamic translator */
5513
    cpu_exec_init_all(tb_size * 1024 * 1024);
5514

    
5515
    bdrv_init();
5516

    
5517
    /* we always create the cdrom drive, even if no disk is there */
5518

    
5519
    if (nb_drives_opt < MAX_DRIVES)
5520
        drive_add(NULL, CDROM_ALIAS);
5521

    
5522
    /* we always create at least one floppy */
5523

    
5524
    if (nb_drives_opt < MAX_DRIVES)
5525
        drive_add(NULL, FD_ALIAS, 0);
5526

    
5527
    /* we always create one sd slot, even if no card is in it */
5528

    
5529
    if (nb_drives_opt < MAX_DRIVES)
5530
        drive_add(NULL, SD_ALIAS);
5531

    
5532
    /* open the virtual block devices */
5533

    
5534
    for(i = 0; i < nb_drives_opt; i++)
5535
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5536
            exit(1);
5537

    
5538
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5539
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5540

    
5541
#ifndef _WIN32
5542
    /* must be after terminal init, SDL library changes signal handlers */
5543
    termsig_setup();
5544
#endif
5545

    
5546
    /* Maintain compatibility with multiple stdio monitors */
5547
    if (!strcmp(monitor_device,"stdio")) {
5548
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5549
            const char *devname = serial_devices[i];
5550
            if (devname && !strcmp(devname,"mon:stdio")) {
5551
                monitor_device = NULL;
5552
                break;
5553
            } else if (devname && !strcmp(devname,"stdio")) {
5554
                monitor_device = NULL;
5555
                serial_devices[i] = "mon:stdio";
5556
                break;
5557
            }
5558
        }
5559
    }
5560

    
5561
    if (kvm_enabled()) {
5562
        int ret;
5563

    
5564
        ret = kvm_init(smp_cpus);
5565
        if (ret < 0) {
5566
            fprintf(stderr, "failed to initialize KVM\n");
5567
            exit(1);
5568
        }
5569
    }
5570

    
5571
    if (monitor_device) {
5572
        monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5573
        if (!monitor_hd) {
5574
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5575
            exit(1);
5576
        }
5577
    }
5578

    
5579
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5580
        const char *devname = serial_devices[i];
5581
        if (devname && strcmp(devname, "none")) {
5582
            char label[32];
5583
            snprintf(label, sizeof(label), "serial%d", i);
5584
            serial_hds[i] = qemu_chr_open(label, devname, NULL);
5585
            if (!serial_hds[i]) {
5586
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5587
                        devname);
5588
                exit(1);
5589
            }
5590
        }
5591
    }
5592

    
5593
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5594
        const char *devname = parallel_devices[i];
5595
        if (devname && strcmp(devname, "none")) {
5596
            char label[32];
5597
            snprintf(label, sizeof(label), "parallel%d", i);
5598
            parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5599
            if (!parallel_hds[i]) {
5600
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5601
                        devname);
5602
                exit(1);
5603
            }
5604
        }
5605
    }
5606

    
5607
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5608
        const char *devname = virtio_consoles[i];
5609
        if (devname && strcmp(devname, "none")) {
5610
            char label[32];
5611
            snprintf(label, sizeof(label), "virtcon%d", i);
5612
            virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5613
            if (!virtcon_hds[i]) {
5614
                fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5615
                        devname);
5616
                exit(1);
5617
            }
5618
        }
5619
    }
5620

    
5621
    machine->init(ram_size, vga_ram_size, boot_devices,
5622
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5623

    
5624
    current_machine = machine;
5625

    
5626
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5627
    if (kvm_enabled()) {
5628
        int ret;
5629

    
5630
        ret = kvm_sync_vcpus();
5631
        if (ret < 0) {
5632
            fprintf(stderr, "failed to initialize vcpus\n");
5633
            exit(1);
5634
        }
5635
    }
5636

    
5637
    /* init USB devices */
5638
    if (usb_enabled) {
5639
        for(i = 0; i < usb_devices_index; i++) {
5640
            if (usb_device_add(usb_devices[i]) < 0) {
5641
                fprintf(stderr, "Warning: could not add USB device %s\n",
5642
                        usb_devices[i]);
5643
            }
5644
        }
5645
    }
5646

    
5647
    if (!display_state)
5648
        dumb_display_init();
5649
    /* just use the first displaystate for the moment */
5650
    ds = display_state;
5651
    /* terminal init */
5652
    if (nographic) {
5653
        if (curses) {
5654
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5655
            exit(1);
5656
        }
5657
    } else { 
5658
#if defined(CONFIG_CURSES)
5659
            if (curses) {
5660
                /* At the moment curses cannot be used with other displays */
5661
                curses_display_init(ds, full_screen);
5662
            } else
5663
#endif
5664
            {
5665
                if (vnc_display != NULL) {
5666
                    vnc_display_init(ds);
5667
                    if (vnc_display_open(ds, vnc_display) < 0)
5668
                        exit(1);
5669
                }
5670
#if defined(CONFIG_SDL)
5671
                if (sdl || !vnc_display)
5672
                    sdl_display_init(ds, full_screen, no_frame);
5673
#elif defined(CONFIG_COCOA)
5674
                if (sdl || !vnc_display)
5675
                    cocoa_display_init(ds, full_screen);
5676
#endif
5677
            }
5678
    }
5679
    dpy_resize(ds);
5680

    
5681
    dcl = ds->listeners;
5682
    while (dcl != NULL) {
5683
        if (dcl->dpy_refresh != NULL) {
5684
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5685
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5686
        }
5687
        dcl = dcl->next;
5688
    }
5689

    
5690
    if (nographic || (vnc_display && !sdl)) {
5691
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5692
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5693
    }
5694

    
5695
    text_consoles_set_display(display_state);
5696
    qemu_chr_initial_reset();
5697

    
5698
    if (monitor_device && monitor_hd)
5699
        monitor_init(monitor_hd, !nographic);
5700

    
5701
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5702
        const char *devname = serial_devices[i];
5703
        if (devname && strcmp(devname, "none")) {
5704
            char label[32];
5705
            snprintf(label, sizeof(label), "serial%d", i);
5706
            if (strstart(devname, "vc", 0))
5707
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5708
        }
5709
    }
5710

    
5711
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5712
        const char *devname = parallel_devices[i];
5713
        if (devname && strcmp(devname, "none")) {
5714
            char label[32];
5715
            snprintf(label, sizeof(label), "parallel%d", i);
5716
            if (strstart(devname, "vc", 0))
5717
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5718
        }
5719
    }
5720

    
5721
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5722
        const char *devname = virtio_consoles[i];
5723
        if (virtcon_hds[i] && devname) {
5724
            char label[32];
5725
            snprintf(label, sizeof(label), "virtcon%d", i);
5726
            if (strstart(devname, "vc", 0))
5727
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5728
        }
5729
    }
5730

    
5731
#ifdef CONFIG_GDBSTUB
5732
    if (use_gdbstub) {
5733
        /* XXX: use standard host:port notation and modify options
5734
           accordingly. */
5735
        if (gdbserver_start(gdbstub_port) < 0) {
5736
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5737
                    gdbstub_port);
5738
            exit(1);
5739
        }
5740
    }
5741
#endif
5742

    
5743
    if (loadvm)
5744
        do_loadvm(loadvm);
5745

    
5746
    if (incoming) {
5747
        autostart = 0; /* fixme how to deal with -daemonize */
5748
        qemu_start_incoming_migration(incoming);
5749
    }
5750

    
5751
    {
5752
        /* XXX: simplify init */
5753
        read_passwords();
5754
        if (autostart) {
5755
            vm_start();
5756
        }
5757
    }
5758

    
5759
    if (daemonize) {
5760
        uint8_t status = 0;
5761
        ssize_t len;
5762

    
5763
    again1:
5764
        len = write(fds[1], &status, 1);
5765
        if (len == -1 && (errno == EINTR))
5766
            goto again1;
5767

    
5768
        if (len != 1)
5769
            exit(1);
5770

    
5771
        chdir("/");
5772
        TFR(fd = open("/dev/null", O_RDWR));
5773
        if (fd == -1)
5774
            exit(1);
5775
    }
5776

    
5777
#ifndef _WIN32
5778
    if (run_as) {
5779
        pwd = getpwnam(run_as);
5780
        if (!pwd) {
5781
            fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5782
            exit(1);
5783
        }
5784
    }
5785

    
5786
    if (chroot_dir) {
5787
        if (chroot(chroot_dir) < 0) {
5788
            fprintf(stderr, "chroot failed\n");
5789
            exit(1);
5790
        }
5791
        chdir("/");
5792
    }
5793

    
5794
    if (run_as) {
5795
        if (setgid(pwd->pw_gid) < 0) {
5796
            fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5797
            exit(1);
5798
        }
5799
        if (setuid(pwd->pw_uid) < 0) {
5800
            fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5801
            exit(1);
5802
        }
5803
        if (setuid(0) != -1) {
5804
            fprintf(stderr, "Dropping privileges failed\n");
5805
            exit(1);
5806
        }
5807
    }
5808
#endif
5809

    
5810
    if (daemonize) {
5811
        dup2(fd, 0);
5812
        dup2(fd, 1);
5813
        dup2(fd, 2);
5814

    
5815
        close(fd);
5816
    }
5817

    
5818
    main_loop();
5819
    quit_timers();
5820
    net_cleanup();
5821

    
5822
    return 0;
5823
}