Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 298e01b6

History | View | Annotate | Download (83.8 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 3475187d bellard
@item Sun4u (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
81 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
82 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
83 b00052e4 balrog
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
87 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
88 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
89 52c00a5f bellard
@end itemize
90 386405f7 bellard
91 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92 0806e3f6 bellard
93 debc7065 bellard
@node Installation
94 5b9f457a bellard
@chapter Installation
95 5b9f457a bellard
96 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
97 15a34c63 bellard
98 debc7065 bellard
@menu
99 debc7065 bellard
* install_linux::   Linux
100 debc7065 bellard
* install_windows:: Windows
101 debc7065 bellard
* install_mac::     Macintosh
102 debc7065 bellard
@end menu
103 debc7065 bellard
104 debc7065 bellard
@node install_linux
105 1f673135 bellard
@section Linux
106 1f673135 bellard
107 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
108 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
109 5b9f457a bellard
110 debc7065 bellard
@node install_windows
111 1f673135 bellard
@section Windows
112 8cd0ac2f bellard
113 15a34c63 bellard
Download the experimental binary installer at
114 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
115 d691f669 bellard
116 debc7065 bellard
@node install_mac
117 1f673135 bellard
@section Mac OS X
118 d691f669 bellard
119 15a34c63 bellard
Download the experimental binary installer at
120 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
121 df0f11a0 bellard
122 debc7065 bellard
@node QEMU PC System emulator
123 3f9f3aa1 bellard
@chapter QEMU PC System emulator
124 1eb20527 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* pcsys_introduction:: Introduction
127 debc7065 bellard
* pcsys_quickstart::   Quick Start
128 debc7065 bellard
* sec_invocation::     Invocation
129 debc7065 bellard
* pcsys_keys::         Keys
130 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
131 debc7065 bellard
* disk_images::        Disk Images
132 debc7065 bellard
* pcsys_network::      Network emulation
133 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
134 debc7065 bellard
* pcsys_usb::          USB emulation
135 f858dcae ths
* vnc_security::       VNC security
136 debc7065 bellard
* gdb_usage::          GDB usage
137 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
138 debc7065 bellard
@end menu
139 debc7065 bellard
140 debc7065 bellard
@node pcsys_introduction
141 0806e3f6 bellard
@section Introduction
142 0806e3f6 bellard
143 0806e3f6 bellard
@c man begin DESCRIPTION
144 0806e3f6 bellard
145 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
146 3f9f3aa1 bellard
following peripherals:
147 0806e3f6 bellard
148 0806e3f6 bellard
@itemize @minus
149 5fafdf24 ths
@item
150 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151 0806e3f6 bellard
@item
152 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153 15a34c63 bellard
extensions (hardware level, including all non standard modes).
154 0806e3f6 bellard
@item
155 0806e3f6 bellard
PS/2 mouse and keyboard
156 5fafdf24 ths
@item
157 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
158 1f673135 bellard
@item
159 1f673135 bellard
Floppy disk
160 5fafdf24 ths
@item
161 c4a7060c blueswir1
PCI/ISA PCI network adapters
162 0806e3f6 bellard
@item
163 05d5818c bellard
Serial ports
164 05d5818c bellard
@item
165 c0fe3827 bellard
Creative SoundBlaster 16 sound card
166 c0fe3827 bellard
@item
167 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
168 c0fe3827 bellard
@item
169 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
170 e5c9a13e balrog
@item
171 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
172 b389dbfb bellard
@item
173 26463dbc balrog
Gravis Ultrasound GF1 sound card
174 26463dbc balrog
@item
175 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
176 0806e3f6 bellard
@end itemize
177 0806e3f6 bellard
178 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
179 3f9f3aa1 bellard
180 423d65f4 balrog
Note that adlib, ac97 and gus are only available when QEMU was configured
181 423d65f4 balrog
with --enable-adlib, --enable-ac97 or --enable-gus respectively.
182 c0fe3827 bellard
183 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
184 15a34c63 bellard
VGA BIOS.
185 15a34c63 bellard
186 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
187 c0fe3827 bellard
188 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
189 26463dbc balrog
by Tibor "TS" Schรผtz.
190 423d65f4 balrog
191 0806e3f6 bellard
@c man end
192 0806e3f6 bellard
193 debc7065 bellard
@node pcsys_quickstart
194 1eb20527 bellard
@section Quick Start
195 1eb20527 bellard
196 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
197 0806e3f6 bellard
198 0806e3f6 bellard
@example
199 285dc330 bellard
qemu linux.img
200 0806e3f6 bellard
@end example
201 0806e3f6 bellard
202 0806e3f6 bellard
Linux should boot and give you a prompt.
203 0806e3f6 bellard
204 6cc721cf bellard
@node sec_invocation
205 ec410fc9 bellard
@section Invocation
206 ec410fc9 bellard
207 ec410fc9 bellard
@example
208 0806e3f6 bellard
@c man begin SYNOPSIS
209 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
210 0806e3f6 bellard
@c man end
211 ec410fc9 bellard
@end example
212 ec410fc9 bellard
213 0806e3f6 bellard
@c man begin OPTIONS
214 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
215 ec410fc9 bellard
216 ec410fc9 bellard
General options:
217 ec410fc9 bellard
@table @option
218 89dfe898 ths
@item -M @var{machine}
219 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
220 3dbbdc25 bellard
221 89dfe898 ths
@item -fda @var{file}
222 89dfe898 ths
@item -fdb @var{file}
223 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
224 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
225 2be3bc02 bellard
226 89dfe898 ths
@item -hda @var{file}
227 89dfe898 ths
@item -hdb @var{file}
228 89dfe898 ths
@item -hdc @var{file}
229 89dfe898 ths
@item -hdd @var{file}
230 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
231 1f47a922 bellard
232 89dfe898 ths
@item -cdrom @var{file}
233 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
234 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
235 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
236 181f1558 bellard
237 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
238 e0e7ada1 balrog
239 e0e7ada1 balrog
Define a new drive. Valid options are:
240 e0e7ada1 balrog
241 e0e7ada1 balrog
@table @code
242 e0e7ada1 balrog
@item file=@var{file}
243 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
244 609497ab balrog
this drive. If the filename contains comma, you must double it
245 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
246 e0e7ada1 balrog
@item if=@var{interface}
247 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
248 e0e7ada1 balrog
Available types are: ide, scsi, sd, mtd, floppy, pflash.
249 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
250 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
251 e0e7ada1 balrog
the unit id.
252 e0e7ada1 balrog
@item index=@var{index}
253 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
254 e0e7ada1 balrog
of available connectors of a given interface type.
255 e0e7ada1 balrog
@item media=@var{media}
256 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
257 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
258 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
259 e0e7ada1 balrog
@item snapshot=@var{snapshot}
260 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
261 33f00271 balrog
@item cache=@var{cache}
262 33f00271 balrog
@var{cache} is "on" or "off" and allows to disable host cache to access data.
263 e0e7ada1 balrog
@end table
264 e0e7ada1 balrog
265 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
266 e0e7ada1 balrog
@example
267 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
268 e0e7ada1 balrog
@end example
269 e0e7ada1 balrog
270 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
271 e0e7ada1 balrog
use:
272 e0e7ada1 balrog
@example
273 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
274 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
275 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
276 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
277 e0e7ada1 balrog
@end example
278 e0e7ada1 balrog
279 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
280 e0e7ada1 balrog
@example
281 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
282 e0e7ada1 balrog
@end example
283 e0e7ada1 balrog
284 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
285 e0e7ada1 balrog
@example
286 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
287 e0e7ada1 balrog
@end example
288 e0e7ada1 balrog
289 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
290 e0e7ada1 balrog
@example
291 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
292 e0e7ada1 balrog
@end example
293 e0e7ada1 balrog
294 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
295 e0e7ada1 balrog
@example
296 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
297 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
298 e0e7ada1 balrog
@end example
299 e0e7ada1 balrog
300 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
301 e0e7ada1 balrog
incremented:
302 e0e7ada1 balrog
@example
303 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
304 e0e7ada1 balrog
@end example
305 e0e7ada1 balrog
is interpreted like:
306 e0e7ada1 balrog
@example
307 e0e7ada1 balrog
qemu -hda a -hdb b
308 e0e7ada1 balrog
@end example
309 e0e7ada1 balrog
310 eec85c2a ths
@item -boot [a|c|d|n]
311 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
312 eec85c2a ths
is the default.
313 1f47a922 bellard
314 181f1558 bellard
@item -snapshot
315 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
316 1f47a922 bellard
the raw disk image you use is not written back. You can however force
317 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
318 ec410fc9 bellard
319 52ca8d6a bellard
@item -no-fd-bootchk
320 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
321 52ca8d6a bellard
be needed to boot from old floppy disks.
322 52ca8d6a bellard
323 89dfe898 ths
@item -m @var{megs}
324 89dfe898 ths
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.
325 ec410fc9 bellard
326 89dfe898 ths
@item -smp @var{n}
327 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
328 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
329 a785e42e blueswir1
to 4.
330 3f9f3aa1 bellard
331 1d14ffa9 bellard
@item -audio-help
332 1d14ffa9 bellard
333 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
334 1d14ffa9 bellard
parameters.
335 1d14ffa9 bellard
336 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
337 1d14ffa9 bellard
338 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
339 1d14ffa9 bellard
available sound hardware.
340 1d14ffa9 bellard
341 1d14ffa9 bellard
@example
342 1d14ffa9 bellard
qemu -soundhw sb16,adlib hda
343 1d14ffa9 bellard
qemu -soundhw es1370 hda
344 e5c9a13e balrog
qemu -soundhw ac97 hda
345 6a36d84e bellard
qemu -soundhw all hda
346 1d14ffa9 bellard
qemu -soundhw ?
347 1d14ffa9 bellard
@end example
348 a8c490cd bellard
349 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
350 e5c9a13e balrog
require manually specifying clocking.
351 e5c9a13e balrog
352 e5c9a13e balrog
@example
353 e5c9a13e balrog
modprobe i810_audio clocking=48000
354 e5c9a13e balrog
@end example
355 e5c9a13e balrog
356 15a34c63 bellard
@item -localtime
357 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
358 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
359 15a34c63 bellard
Windows.
360 15a34c63 bellard
361 89dfe898 ths
@item -startdate @var{date}
362 7e0af5d0 bellard
Set the initial date of the real time clock. Valid format for
363 7e0af5d0 bellard
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
364 7e0af5d0 bellard
@code{2006-06-17}. The default value is @code{now}.
365 7e0af5d0 bellard
366 89dfe898 ths
@item -pidfile @var{file}
367 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
368 f7cce898 bellard
from a script.
369 f7cce898 bellard
370 71e3ceb8 ths
@item -daemonize
371 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
372 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
373 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
374 71e3ceb8 ths
to cope with initialization race conditions.
375 71e3ceb8 ths
376 9d0a8e6f bellard
@item -win2k-hack
377 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
378 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
379 9d0a8e6f bellard
slows down the IDE transfers).
380 9d0a8e6f bellard
381 89dfe898 ths
@item -option-rom @var{file}
382 89dfe898 ths
Load the contents of @var{file} as an option ROM.
383 89dfe898 ths
This option is useful to load things like EtherBoot.
384 9ae02555 ths
385 89dfe898 ths
@item -name @var{name}
386 89dfe898 ths
Sets the @var{name} of the guest.
387 89dfe898 ths
This name will be display in the SDL window caption.
388 89dfe898 ths
The @var{name} will also be used for the VNC server.
389 c35734b2 ths
390 0806e3f6 bellard
@end table
391 0806e3f6 bellard
392 f858dcae ths
Display options:
393 f858dcae ths
@table @option
394 f858dcae ths
395 f858dcae ths
@item -nographic
396 f858dcae ths
397 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
398 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
399 f858dcae ths
command line application. The emulated serial port is redirected on
400 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
401 f858dcae ths
with a serial console.
402 f858dcae ths
403 052caf70 aurel32
@item -curses
404 052caf70 aurel32
405 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
406 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
407 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
408 052caf70 aurel32
409 f858dcae ths
@item -no-frame
410 f858dcae ths
411 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
412 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
413 f858dcae ths
workspace more convenient.
414 f858dcae ths
415 f858dcae ths
@item -full-screen
416 f858dcae ths
Start in full screen.
417 f858dcae ths
418 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
419 f858dcae ths
420 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
421 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
422 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
423 f858dcae ths
tablet device when using this option (option @option{-usbdevice
424 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
425 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
426 f858dcae ths
syntax for the @var{display} is
427 f858dcae ths
428 f858dcae ths
@table @code
429 f858dcae ths
430 3aa3eea3 balrog
@item @var{host}:@var{d}
431 f858dcae ths
432 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
433 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
434 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
435 f858dcae ths
436 3aa3eea3 balrog
@item @code{unix}:@var{path}
437 f858dcae ths
438 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
439 f858dcae ths
location of a unix socket to listen for connections on.
440 f858dcae ths
441 89dfe898 ths
@item none
442 f858dcae ths
443 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
444 3aa3eea3 balrog
can be used to later start the VNC server.
445 f858dcae ths
446 f858dcae ths
@end table
447 f858dcae ths
448 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
449 f858dcae ths
separated by commas. Valid options are
450 f858dcae ths
451 f858dcae ths
@table @code
452 f858dcae ths
453 3aa3eea3 balrog
@item reverse
454 3aa3eea3 balrog
455 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
456 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
457 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
458 3aa3eea3 balrog
is a TCP port number, not a display number.
459 3aa3eea3 balrog
460 89dfe898 ths
@item password
461 f858dcae ths
462 f858dcae ths
Require that password based authentication is used for client connections.
463 f858dcae ths
The password must be set separately using the @code{change} command in the
464 f858dcae ths
@ref{pcsys_monitor}
465 f858dcae ths
466 89dfe898 ths
@item tls
467 f858dcae ths
468 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
469 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
470 f858dcae ths
attack. It is recommended that this option be combined with either the
471 f858dcae ths
@var{x509} or @var{x509verify} options.
472 f858dcae ths
473 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
474 f858dcae ths
475 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
476 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
477 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
478 f858dcae ths
to provide authentication of the client when this is used. The path following
479 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
480 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
481 f858dcae ths
482 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
483 f858dcae ths
484 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
485 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
486 f858dcae ths
to the client, and request that the client send its own x509 certificate.
487 f858dcae ths
The server will validate the client's certificate against the CA certificate,
488 f858dcae ths
and reject clients when validation fails. If the certificate authority is
489 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
490 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
491 f858dcae ths
path following this option specifies where the x509 certificates are to
492 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
493 f858dcae ths
certificates.
494 f858dcae ths
495 f858dcae ths
@end table
496 f858dcae ths
497 89dfe898 ths
@item -k @var{language}
498 f858dcae ths
499 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
500 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
501 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
502 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
503 f858dcae ths
hosts.
504 f858dcae ths
505 f858dcae ths
The available layouts are:
506 f858dcae ths
@example
507 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
508 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
509 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
510 f858dcae ths
@end example
511 f858dcae ths
512 f858dcae ths
The default is @code{en-us}.
513 f858dcae ths
514 f858dcae ths
@end table
515 f858dcae ths
516 b389dbfb bellard
USB options:
517 b389dbfb bellard
@table @option
518 b389dbfb bellard
519 b389dbfb bellard
@item -usb
520 b389dbfb bellard
Enable the USB driver (will be the default soon)
521 b389dbfb bellard
522 89dfe898 ths
@item -usbdevice @var{devname}
523 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
524 8fccda83 ths
525 8fccda83 ths
@table @code
526 8fccda83 ths
527 8fccda83 ths
@item mouse
528 8fccda83 ths
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
529 8fccda83 ths
530 8fccda83 ths
@item tablet
531 8fccda83 ths
Pointer device that uses absolute coordinates (like a touchscreen). This
532 8fccda83 ths
means qemu is able to report the mouse position without having to grab the
533 8fccda83 ths
mouse. Also overrides the PS/2 mouse emulation when activated.
534 8fccda83 ths
535 8fccda83 ths
@item disk:file
536 8fccda83 ths
Mass storage device based on file
537 8fccda83 ths
538 8fccda83 ths
@item host:bus.addr
539 8fccda83 ths
Pass through the host device identified by bus.addr (Linux only).
540 8fccda83 ths
541 8fccda83 ths
@item host:vendor_id:product_id
542 8fccda83 ths
Pass through the host device identified by vendor_id:product_id (Linux only).
543 8fccda83 ths
544 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
545 db380c06 balrog
Serial converter to host character device @var{dev}, see @code{-serial} for the
546 db380c06 balrog
available devices.
547 db380c06 balrog
548 8fccda83 ths
@end table
549 8fccda83 ths
550 b389dbfb bellard
@end table
551 b389dbfb bellard
552 1f673135 bellard
Network options:
553 1f673135 bellard
554 1f673135 bellard
@table @option
555 1f673135 bellard
556 89dfe898 ths
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
557 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
558 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
559 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
560 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
561 549444e1 balrog
Qemu can emulate several different models of network card.
562 549444e1 balrog
Valid values for @var{type} are
563 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
564 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
565 7c23b892 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
566 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
567 c4a7060c blueswir1
for a list of available devices for your target.
568 41d03949 bellard
569 89dfe898 ths
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
570 7e89463d bellard
Use the user mode network stack which requires no administrator
571 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
572 115defd1 pbrook
hostname reported by the builtin DHCP server.
573 41d03949 bellard
574 89dfe898 ths
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
575 41d03949 bellard
Connect the host TAP network interface @var{name} to VLAN @var{n} and
576 41d03949 bellard
use the network script @var{file} to configure it. The default
577 6a1cbf68 ths
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
578 6a1cbf68 ths
disable script execution. If @var{name} is not
579 89dfe898 ths
provided, the OS automatically provides one. @option{fd}=@var{h} can be
580 41d03949 bellard
used to specify the handle of an already opened host TAP interface. Example:
581 1f673135 bellard
582 41d03949 bellard
@example
583 41d03949 bellard
qemu linux.img -net nic -net tap
584 41d03949 bellard
@end example
585 41d03949 bellard
586 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
587 41d03949 bellard
@example
588 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
589 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
590 41d03949 bellard
@end example
591 3f1a88f4 bellard
592 3f1a88f4 bellard
593 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
594 1f673135 bellard
595 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
596 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
597 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
598 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
599 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
600 3d830459 bellard
specifies an already opened TCP socket.
601 1f673135 bellard
602 41d03949 bellard
Example:
603 41d03949 bellard
@example
604 41d03949 bellard
# launch a first QEMU instance
605 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
606 debc7065 bellard
               -net socket,listen=:1234
607 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
608 debc7065 bellard
# of the first instance
609 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
610 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
611 41d03949 bellard
@end example
612 52c00a5f bellard
613 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
614 3d830459 bellard
615 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
616 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
617 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
618 3d830459 bellard
NOTES:
619 3d830459 bellard
@enumerate
620 5fafdf24 ths
@item
621 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
622 3d830459 bellard
correct multicast setup for these hosts).
623 3d830459 bellard
@item
624 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
625 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
626 4be456f1 ths
@item
627 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
628 3d830459 bellard
@end enumerate
629 3d830459 bellard
630 3d830459 bellard
Example:
631 3d830459 bellard
@example
632 3d830459 bellard
# launch one QEMU instance
633 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
634 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
635 3d830459 bellard
# launch another QEMU instance on same "bus"
636 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
637 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
638 3d830459 bellard
# launch yet another QEMU instance on same "bus"
639 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
640 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
641 3d830459 bellard
@end example
642 3d830459 bellard
643 3d830459 bellard
Example (User Mode Linux compat.):
644 3d830459 bellard
@example
645 debc7065 bellard
# launch QEMU instance (note mcast address selected
646 debc7065 bellard
# is UML's default)
647 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
648 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
649 3d830459 bellard
# launch UML
650 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
651 3d830459 bellard
@end example
652 3d830459 bellard
653 41d03949 bellard
@item -net none
654 41d03949 bellard
Indicate that no network devices should be configured. It is used to
655 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
656 039af320 bellard
is activated if no @option{-net} options are provided.
657 52c00a5f bellard
658 89dfe898 ths
@item -tftp @var{dir}
659 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
660 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
661 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
662 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
663 0db1137d ths
usual 10.0.2.2.
664 9bf05444 bellard
665 89dfe898 ths
@item -bootp @var{file}
666 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
667 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
668 47d5d01a ths
a guest from a local directory.
669 47d5d01a ths
670 47d5d01a ths
Example (using pxelinux):
671 47d5d01a ths
@example
672 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
673 47d5d01a ths
@end example
674 47d5d01a ths
675 89dfe898 ths
@item -smb @var{dir}
676 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
677 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
678 2518bd0d bellard
transparently.
679 2518bd0d bellard
680 2518bd0d bellard
In the guest Windows OS, the line:
681 2518bd0d bellard
@example
682 2518bd0d bellard
10.0.2.4 smbserver
683 2518bd0d bellard
@end example
684 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
685 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
686 2518bd0d bellard
687 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
688 2518bd0d bellard
689 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
690 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
691 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
692 2518bd0d bellard
693 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
694 9bf05444 bellard
695 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
696 9bf05444 bellard
connections to the host port @var{host-port} to the guest
697 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
698 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
699 9bf05444 bellard
built-in DHCP server).
700 9bf05444 bellard
701 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
702 9bf05444 bellard
screen 0, use the following:
703 9bf05444 bellard
704 9bf05444 bellard
@example
705 9bf05444 bellard
# on the host
706 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
707 9bf05444 bellard
# this host xterm should open in the guest X11 server
708 9bf05444 bellard
xterm -display :1
709 9bf05444 bellard
@end example
710 9bf05444 bellard
711 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
712 9bf05444 bellard
the guest, use the following:
713 9bf05444 bellard
714 9bf05444 bellard
@example
715 9bf05444 bellard
# on the host
716 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
717 9bf05444 bellard
telnet localhost 5555
718 9bf05444 bellard
@end example
719 9bf05444 bellard
720 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
721 9bf05444 bellard
connect to the guest telnet server.
722 9bf05444 bellard
723 1f673135 bellard
@end table
724 1f673135 bellard
725 41d03949 bellard
Linux boot specific: When using these options, you can use a given
726 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
727 1f673135 bellard
for easier testing of various kernels.
728 1f673135 bellard
729 0806e3f6 bellard
@table @option
730 0806e3f6 bellard
731 89dfe898 ths
@item -kernel @var{bzImage}
732 0806e3f6 bellard
Use @var{bzImage} as kernel image.
733 0806e3f6 bellard
734 89dfe898 ths
@item -append @var{cmdline}
735 0806e3f6 bellard
Use @var{cmdline} as kernel command line
736 0806e3f6 bellard
737 89dfe898 ths
@item -initrd @var{file}
738 0806e3f6 bellard
Use @var{file} as initial ram disk.
739 0806e3f6 bellard
740 ec410fc9 bellard
@end table
741 ec410fc9 bellard
742 15a34c63 bellard
Debug/Expert options:
743 ec410fc9 bellard
@table @option
744 a0a821a4 bellard
745 89dfe898 ths
@item -serial @var{dev}
746 0bab00f3 bellard
Redirect the virtual serial port to host character device
747 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
748 0bab00f3 bellard
@code{stdio} in non graphical mode.
749 0bab00f3 bellard
750 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
751 0bab00f3 bellard
ports.
752 0bab00f3 bellard
753 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
754 c03b0f0f bellard
755 0bab00f3 bellard
Available character devices are:
756 a0a821a4 bellard
@table @code
757 af3a9031 ths
@item vc[:WxH]
758 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
759 af3a9031 ths
@example
760 af3a9031 ths
vc:800x600
761 af3a9031 ths
@end example
762 af3a9031 ths
It is also possible to specify width or height in characters:
763 af3a9031 ths
@example
764 af3a9031 ths
vc:80Cx24C
765 af3a9031 ths
@end example
766 a0a821a4 bellard
@item pty
767 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
768 c03b0f0f bellard
@item none
769 c03b0f0f bellard
No device is allocated.
770 a0a821a4 bellard
@item null
771 a0a821a4 bellard
void device
772 f8d179e3 bellard
@item /dev/XXX
773 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
774 f8d179e3 bellard
parameters are set according to the emulated ones.
775 89dfe898 ths
@item /dev/parport@var{N}
776 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
777 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
778 89dfe898 ths
@item file:@var{filename}
779 89dfe898 ths
Write output to @var{filename}. No character can be read.
780 a0a821a4 bellard
@item stdio
781 a0a821a4 bellard
[Unix only] standard input/output
782 89dfe898 ths
@item pipe:@var{filename}
783 0bab00f3 bellard
name pipe @var{filename}
784 89dfe898 ths
@item COM@var{n}
785 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
786 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
787 89dfe898 ths
This implements UDP Net Console.
788 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
789 89dfe898 ths
they default to @code{0.0.0.0}.
790 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
791 951f1351 bellard
792 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
793 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
794 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
795 951f1351 bellard
will appear in the netconsole session.
796 0bab00f3 bellard
797 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
798 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
799 0bab00f3 bellard
source port each time by using something like @code{-serial
800 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
801 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
802 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
803 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
804 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
805 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
806 0bab00f3 bellard
@table @code
807 951f1351 bellard
@item Qemu Options:
808 951f1351 bellard
-serial udp::4555@@:4556
809 951f1351 bellard
@item netcat options:
810 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
811 951f1351 bellard
@item telnet options:
812 951f1351 bellard
localhost 5555
813 951f1351 bellard
@end table
814 951f1351 bellard
815 951f1351 bellard
816 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
817 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
818 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
819 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
820 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
821 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
822 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
823 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
824 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
825 951f1351 bellard
connect to the corresponding character device.
826 951f1351 bellard
@table @code
827 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
828 951f1351 bellard
-serial tcp:192.168.0.2:4444
829 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
830 951f1351 bellard
-serial tcp::4444,server
831 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
832 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
833 a0a821a4 bellard
@end table
834 a0a821a4 bellard
835 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
836 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
837 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
838 951f1351 bellard
difference is that the port acts like a telnet server or client using
839 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
840 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
841 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
842 951f1351 bellard
type "send break" followed by pressing the enter key.
843 0bab00f3 bellard
844 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
845 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
846 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
847 ffd843bc ths
@var{path} is used for connections.
848 ffd843bc ths
849 89dfe898 ths
@item mon:@var{dev_string}
850 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
851 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
852 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
853 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
854 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
855 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
856 20d8a3ed ths
listening on port 4444 would be:
857 20d8a3ed ths
@table @code
858 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
859 20d8a3ed ths
@end table
860 20d8a3ed ths
861 0bab00f3 bellard
@end table
862 05d5818c bellard
863 89dfe898 ths
@item -parallel @var{dev}
864 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
865 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
866 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
867 e57a8c0e bellard
parallel port.
868 e57a8c0e bellard
869 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
870 e57a8c0e bellard
ports.
871 e57a8c0e bellard
872 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
873 c03b0f0f bellard
874 89dfe898 ths
@item -monitor @var{dev}
875 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
876 a0a821a4 bellard
serial port).
877 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
878 a0a821a4 bellard
non graphical mode.
879 a0a821a4 bellard
880 20d8a3ed ths
@item -echr numeric_ascii_value
881 20d8a3ed ths
Change the escape character used for switching to the monitor when using
882 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
883 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
884 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
885 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
886 20d8a3ed ths
instance you could use the either of the following to change the escape
887 20d8a3ed ths
character to Control-t.
888 20d8a3ed ths
@table @code
889 20d8a3ed ths
@item -echr 0x14
890 20d8a3ed ths
@item -echr 20
891 20d8a3ed ths
@end table
892 20d8a3ed ths
893 ec410fc9 bellard
@item -s
894 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
895 89dfe898 ths
@item -p @var{port}
896 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
897 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
898 52c00a5f bellard
@item -S
899 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
900 3b46e624 ths
@item -d
901 9d4520d0 bellard
Output log in /tmp/qemu.log
902 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
903 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
904 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
905 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
906 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
907 46d4767d bellard
images.
908 7c3fc84d bellard
909 87b47350 bellard
@item -L path
910 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
911 87b47350 bellard
912 15a34c63 bellard
@item -std-vga
913 15a34c63 bellard
Simulate a standard VGA card with Bochs VBE extensions (default is
914 3cb0853a bellard
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
915 3cb0853a bellard
VBE extensions (e.g. Windows XP) and if you want to use high
916 3cb0853a bellard
resolution modes (>= 1280x1024x16) then you should use this option.
917 3cb0853a bellard
918 3c656346 bellard
@item -no-acpi
919 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
920 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
921 3c656346 bellard
only).
922 3c656346 bellard
923 d1beab82 bellard
@item -no-reboot
924 d1beab82 bellard
Exit instead of rebooting.
925 d1beab82 bellard
926 d63d307f bellard
@item -loadvm file
927 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
928 8e71621f pbrook
929 8e71621f pbrook
@item -semihosting
930 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
931 a87295e8 pbrook
932 a87295e8 pbrook
On ARM this implements the "Angel" interface.
933 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
934 a87295e8 pbrook
935 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
936 8e71621f pbrook
so should only be used with trusted guest OS.
937 ec410fc9 bellard
@end table
938 ec410fc9 bellard
939 3e11db9a bellard
@c man end
940 3e11db9a bellard
941 debc7065 bellard
@node pcsys_keys
942 3e11db9a bellard
@section Keys
943 3e11db9a bellard
944 3e11db9a bellard
@c man begin OPTIONS
945 3e11db9a bellard
946 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
947 a1b74fe8 bellard
@table @key
948 f9859310 bellard
@item Ctrl-Alt-f
949 a1b74fe8 bellard
Toggle full screen
950 a0a821a4 bellard
951 f9859310 bellard
@item Ctrl-Alt-n
952 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
953 a0a821a4 bellard
@table @emph
954 a0a821a4 bellard
@item 1
955 a0a821a4 bellard
Target system display
956 a0a821a4 bellard
@item 2
957 a0a821a4 bellard
Monitor
958 a0a821a4 bellard
@item 3
959 a0a821a4 bellard
Serial port
960 a1b74fe8 bellard
@end table
961 a1b74fe8 bellard
962 f9859310 bellard
@item Ctrl-Alt
963 a0a821a4 bellard
Toggle mouse and keyboard grab.
964 a0a821a4 bellard
@end table
965 a0a821a4 bellard
966 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
967 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
968 3e11db9a bellard
969 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
970 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
971 ec410fc9 bellard
972 ec410fc9 bellard
@table @key
973 a1b74fe8 bellard
@item Ctrl-a h
974 ec410fc9 bellard
Print this help
975 3b46e624 ths
@item Ctrl-a x
976 366dfc52 ths
Exit emulator
977 3b46e624 ths
@item Ctrl-a s
978 1f47a922 bellard
Save disk data back to file (if -snapshot)
979 20d8a3ed ths
@item Ctrl-a t
980 20d8a3ed ths
toggle console timestamps
981 a1b74fe8 bellard
@item Ctrl-a b
982 1f673135 bellard
Send break (magic sysrq in Linux)
983 a1b74fe8 bellard
@item Ctrl-a c
984 1f673135 bellard
Switch between console and monitor
985 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
986 a1b74fe8 bellard
Send Ctrl-a
987 ec410fc9 bellard
@end table
988 0806e3f6 bellard
@c man end
989 0806e3f6 bellard
990 0806e3f6 bellard
@ignore
991 0806e3f6 bellard
992 1f673135 bellard
@c man begin SEEALSO
993 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
994 1f673135 bellard
user mode emulator invocation.
995 1f673135 bellard
@c man end
996 1f673135 bellard
997 1f673135 bellard
@c man begin AUTHOR
998 1f673135 bellard
Fabrice Bellard
999 1f673135 bellard
@c man end
1000 1f673135 bellard
1001 1f673135 bellard
@end ignore
1002 1f673135 bellard
1003 debc7065 bellard
@node pcsys_monitor
1004 1f673135 bellard
@section QEMU Monitor
1005 1f673135 bellard
1006 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1007 1f673135 bellard
emulator. You can use it to:
1008 1f673135 bellard
1009 1f673135 bellard
@itemize @minus
1010 1f673135 bellard
1011 1f673135 bellard
@item
1012 e598752a ths
Remove or insert removable media images
1013 89dfe898 ths
(such as CD-ROM or floppies).
1014 1f673135 bellard
1015 5fafdf24 ths
@item
1016 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1017 1f673135 bellard
from a disk file.
1018 1f673135 bellard
1019 1f673135 bellard
@item Inspect the VM state without an external debugger.
1020 1f673135 bellard
1021 1f673135 bellard
@end itemize
1022 1f673135 bellard
1023 1f673135 bellard
@subsection Commands
1024 1f673135 bellard
1025 1f673135 bellard
The following commands are available:
1026 1f673135 bellard
1027 1f673135 bellard
@table @option
1028 1f673135 bellard
1029 89dfe898 ths
@item help or ? [@var{cmd}]
1030 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1031 1f673135 bellard
1032 3b46e624 ths
@item commit
1033 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1034 1f673135 bellard
1035 89dfe898 ths
@item info @var{subcommand}
1036 89dfe898 ths
Show various information about the system state.
1037 1f673135 bellard
1038 1f673135 bellard
@table @option
1039 1f673135 bellard
@item info network
1040 41d03949 bellard
show the various VLANs and the associated devices
1041 1f673135 bellard
@item info block
1042 1f673135 bellard
show the block devices
1043 1f673135 bellard
@item info registers
1044 1f673135 bellard
show the cpu registers
1045 1f673135 bellard
@item info history
1046 1f673135 bellard
show the command line history
1047 b389dbfb bellard
@item info pci
1048 b389dbfb bellard
show emulated PCI device
1049 b389dbfb bellard
@item info usb
1050 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1051 b389dbfb bellard
@item info usbhost
1052 b389dbfb bellard
show all USB host devices
1053 a3c25997 bellard
@item info capture
1054 a3c25997 bellard
show information about active capturing
1055 13a2e80f bellard
@item info snapshots
1056 13a2e80f bellard
show list of VM snapshots
1057 455204eb ths
@item info mice
1058 455204eb ths
show which guest mouse is receiving events
1059 1f673135 bellard
@end table
1060 1f673135 bellard
1061 1f673135 bellard
@item q or quit
1062 1f673135 bellard
Quit the emulator.
1063 1f673135 bellard
1064 89dfe898 ths
@item eject [-f] @var{device}
1065 e598752a ths
Eject a removable medium (use -f to force it).
1066 1f673135 bellard
1067 89dfe898 ths
@item change @var{device} @var{setting}
1068 f858dcae ths
1069 89dfe898 ths
Change the configuration of a device.
1070 f858dcae ths
1071 f858dcae ths
@table @option
1072 f858dcae ths
@item change @var{diskdevice} @var{filename}
1073 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1074 f858dcae ths
1075 f858dcae ths
@example
1076 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1077 f858dcae ths
@end example
1078 f858dcae ths
1079 89dfe898 ths
@item change vnc @var{display},@var{options}
1080 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1081 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1082 f858dcae ths
1083 f858dcae ths
@example
1084 f858dcae ths
(qemu) change vnc localhost:1
1085 f858dcae ths
@end example
1086 f858dcae ths
1087 f858dcae ths
@item change vnc password
1088 f858dcae ths
1089 f858dcae ths
Change the password associated with the VNC server. The monitor will prompt for
1090 f858dcae ths
the new password to be entered. VNC passwords are only significant upto 8 letters.
1091 f858dcae ths
eg.
1092 f858dcae ths
1093 f858dcae ths
@example
1094 f858dcae ths
(qemu) change vnc password
1095 f858dcae ths
Password: ********
1096 f858dcae ths
@end example
1097 f858dcae ths
1098 f858dcae ths
@end table
1099 1f673135 bellard
1100 89dfe898 ths
@item screendump @var{filename}
1101 1f673135 bellard
Save screen into PPM image @var{filename}.
1102 1f673135 bellard
1103 89dfe898 ths
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1104 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1105 455204eb ths
with optional scroll axis @var{dz}.
1106 455204eb ths
1107 89dfe898 ths
@item mouse_button @var{val}
1108 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1109 455204eb ths
1110 89dfe898 ths
@item mouse_set @var{index}
1111 455204eb ths
Set which mouse device receives events at given @var{index}, index
1112 455204eb ths
can be obtained with
1113 455204eb ths
@example
1114 455204eb ths
info mice
1115 455204eb ths
@end example
1116 455204eb ths
1117 89dfe898 ths
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1118 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
1119 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
1120 a3c25997 bellard
1121 a3c25997 bellard
Defaults:
1122 a3c25997 bellard
@itemize @minus
1123 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
1124 a3c25997 bellard
@item Bits = 16
1125 a3c25997 bellard
@item Number of channels = 2 - Stereo
1126 a3c25997 bellard
@end itemize
1127 a3c25997 bellard
1128 89dfe898 ths
@item stopcapture @var{index}
1129 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
1130 a3c25997 bellard
@example
1131 a3c25997 bellard
info capture
1132 a3c25997 bellard
@end example
1133 a3c25997 bellard
1134 89dfe898 ths
@item log @var{item1}[,...]
1135 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1136 1f673135 bellard
1137 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1138 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1139 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1140 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1141 13a2e80f bellard
@ref{vm_snapshots}.
1142 1f673135 bellard
1143 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1144 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1145 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1146 13a2e80f bellard
1147 89dfe898 ths
@item delvm @var{tag}|@var{id}
1148 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1149 1f673135 bellard
1150 1f673135 bellard
@item stop
1151 1f673135 bellard
Stop emulation.
1152 1f673135 bellard
1153 1f673135 bellard
@item c or cont
1154 1f673135 bellard
Resume emulation.
1155 1f673135 bellard
1156 89dfe898 ths
@item gdbserver [@var{port}]
1157 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1158 1f673135 bellard
1159 89dfe898 ths
@item x/fmt @var{addr}
1160 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1161 1f673135 bellard
1162 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1163 1f673135 bellard
Physical memory dump starting at @var{addr}.
1164 1f673135 bellard
1165 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1166 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1167 1f673135 bellard
1168 1f673135 bellard
@table @var
1169 5fafdf24 ths
@item count
1170 1f673135 bellard
is the number of items to be dumped.
1171 1f673135 bellard
1172 1f673135 bellard
@item format
1173 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1174 1f673135 bellard
c (char) or i (asm instruction).
1175 1f673135 bellard
1176 1f673135 bellard
@item size
1177 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1178 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1179 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1180 1f673135 bellard
1181 1f673135 bellard
@end table
1182 1f673135 bellard
1183 5fafdf24 ths
Examples:
1184 1f673135 bellard
@itemize
1185 1f673135 bellard
@item
1186 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1187 5fafdf24 ths
@example
1188 1f673135 bellard
(qemu) x/10i $eip
1189 1f673135 bellard
0x90107063:  ret
1190 1f673135 bellard
0x90107064:  sti
1191 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1192 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1193 1f673135 bellard
0x90107070:  ret
1194 1f673135 bellard
0x90107071:  jmp    0x90107080
1195 1f673135 bellard
0x90107073:  nop
1196 1f673135 bellard
0x90107074:  nop
1197 1f673135 bellard
0x90107075:  nop
1198 1f673135 bellard
0x90107076:  nop
1199 1f673135 bellard
@end example
1200 1f673135 bellard
1201 1f673135 bellard
@item
1202 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1203 5fafdf24 ths
@smallexample
1204 1f673135 bellard
(qemu) xp/80hx 0xb8000
1205 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1206 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1207 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1208 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1209 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1210 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1211 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1212 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1213 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1214 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1215 debc7065 bellard
@end smallexample
1216 1f673135 bellard
@end itemize
1217 1f673135 bellard
1218 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1219 1f673135 bellard
1220 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1221 1f673135 bellard
used.
1222 0806e3f6 bellard
1223 89dfe898 ths
@item sendkey @var{keys}
1224 a3a91a35 bellard
1225 a3a91a35 bellard
Send @var{keys} to the emulator. Use @code{-} to press several keys
1226 a3a91a35 bellard
simultaneously. Example:
1227 a3a91a35 bellard
@example
1228 a3a91a35 bellard
sendkey ctrl-alt-f1
1229 a3a91a35 bellard
@end example
1230 a3a91a35 bellard
1231 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1232 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1233 a3a91a35 bellard
1234 15a34c63 bellard
@item system_reset
1235 15a34c63 bellard
1236 15a34c63 bellard
Reset the system.
1237 15a34c63 bellard
1238 89dfe898 ths
@item usb_add @var{devname}
1239 b389dbfb bellard
1240 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1241 0aff66b5 pbrook
@ref{usb_devices}
1242 b389dbfb bellard
1243 89dfe898 ths
@item usb_del @var{devname}
1244 b389dbfb bellard
1245 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1246 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1247 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1248 b389dbfb bellard
1249 1f673135 bellard
@end table
1250 0806e3f6 bellard
1251 1f673135 bellard
@subsection Integer expressions
1252 1f673135 bellard
1253 1f673135 bellard
The monitor understands integers expressions for every integer
1254 1f673135 bellard
argument. You can use register names to get the value of specifics
1255 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1256 ec410fc9 bellard
1257 1f47a922 bellard
@node disk_images
1258 1f47a922 bellard
@section Disk Images
1259 1f47a922 bellard
1260 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1261 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1262 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1263 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1264 13a2e80f bellard
snapshots.
1265 1f47a922 bellard
1266 debc7065 bellard
@menu
1267 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1268 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1269 13a2e80f bellard
* vm_snapshots::              VM snapshots
1270 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1271 19cb3738 bellard
* host_drives::               Using host drives
1272 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1273 debc7065 bellard
@end menu
1274 debc7065 bellard
1275 debc7065 bellard
@node disk_images_quickstart
1276 acd935ef bellard
@subsection Quick start for disk image creation
1277 acd935ef bellard
1278 acd935ef bellard
You can create a disk image with the command:
1279 1f47a922 bellard
@example
1280 acd935ef bellard
qemu-img create myimage.img mysize
1281 1f47a922 bellard
@end example
1282 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1283 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1284 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1285 acd935ef bellard
1286 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1287 1f47a922 bellard
1288 debc7065 bellard
@node disk_images_snapshot_mode
1289 1f47a922 bellard
@subsection Snapshot mode
1290 1f47a922 bellard
1291 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1292 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1293 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1294 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1295 acd935ef bellard
command (or @key{C-a s} in the serial console).
1296 1f47a922 bellard
1297 13a2e80f bellard
@node vm_snapshots
1298 13a2e80f bellard
@subsection VM snapshots
1299 13a2e80f bellard
1300 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1301 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1302 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1303 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1304 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1305 13a2e80f bellard
1306 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1307 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1308 19d36792 bellard
snapshot in addition to its numerical ID.
1309 13a2e80f bellard
1310 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1311 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1312 13a2e80f bellard
with their associated information:
1313 13a2e80f bellard
1314 13a2e80f bellard
@example
1315 13a2e80f bellard
(qemu) info snapshots
1316 13a2e80f bellard
Snapshot devices: hda
1317 13a2e80f bellard
Snapshot list (from hda):
1318 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1319 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1320 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1321 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1322 13a2e80f bellard
@end example
1323 13a2e80f bellard
1324 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1325 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1326 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1327 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1328 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1329 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1330 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1331 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1332 19d36792 bellard
disk images).
1333 13a2e80f bellard
1334 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1335 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1336 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1337 13a2e80f bellard
1338 13a2e80f bellard
VM snapshots currently have the following known limitations:
1339 13a2e80f bellard
@itemize
1340 5fafdf24 ths
@item
1341 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1342 13a2e80f bellard
inserted after a snapshot is done.
1343 5fafdf24 ths
@item
1344 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1345 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1346 13a2e80f bellard
@end itemize
1347 13a2e80f bellard
1348 acd935ef bellard
@node qemu_img_invocation
1349 acd935ef bellard
@subsection @code{qemu-img} Invocation
1350 1f47a922 bellard
1351 acd935ef bellard
@include qemu-img.texi
1352 05efe46e bellard
1353 19cb3738 bellard
@node host_drives
1354 19cb3738 bellard
@subsection Using host drives
1355 19cb3738 bellard
1356 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1357 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1358 19cb3738 bellard
1359 19cb3738 bellard
@subsubsection Linux
1360 19cb3738 bellard
1361 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1362 4be456f1 ths
disk image filename provided you have enough privileges to access
1363 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1364 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1365 19cb3738 bellard
1366 f542086d bellard
@table @code
1367 19cb3738 bellard
@item CD
1368 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1369 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1370 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1371 19cb3738 bellard
@item Floppy
1372 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1373 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1374 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1375 19cb3738 bellard
OS will think that the same floppy is loaded).
1376 19cb3738 bellard
@item Hard disks
1377 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1378 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1379 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1380 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1381 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1382 19cb3738 bellard
line option or modify the device permissions accordingly).
1383 19cb3738 bellard
@end table
1384 19cb3738 bellard
1385 19cb3738 bellard
@subsubsection Windows
1386 19cb3738 bellard
1387 01781963 bellard
@table @code
1388 01781963 bellard
@item CD
1389 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1390 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1391 01781963 bellard
supported as an alias to the first CDROM drive.
1392 19cb3738 bellard
1393 e598752a ths
Currently there is no specific code to handle removable media, so it
1394 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1395 19cb3738 bellard
change or eject media.
1396 01781963 bellard
@item Hard disks
1397 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1398 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1399 01781963 bellard
1400 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1401 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1402 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1403 01781963 bellard
modifications are written in a temporary file).
1404 01781963 bellard
@end table
1405 01781963 bellard
1406 19cb3738 bellard
1407 19cb3738 bellard
@subsubsection Mac OS X
1408 19cb3738 bellard
1409 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1410 19cb3738 bellard
1411 e598752a ths
Currently there is no specific code to handle removable media, so it
1412 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1413 19cb3738 bellard
change or eject media.
1414 19cb3738 bellard
1415 debc7065 bellard
@node disk_images_fat_images
1416 2c6cadd4 bellard
@subsection Virtual FAT disk images
1417 2c6cadd4 bellard
1418 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1419 2c6cadd4 bellard
directory tree. In order to use it, just type:
1420 2c6cadd4 bellard
1421 5fafdf24 ths
@example
1422 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1423 2c6cadd4 bellard
@end example
1424 2c6cadd4 bellard
1425 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1426 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1427 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1428 2c6cadd4 bellard
1429 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1430 2c6cadd4 bellard
1431 5fafdf24 ths
@example
1432 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1433 2c6cadd4 bellard
@end example
1434 2c6cadd4 bellard
1435 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1436 2c6cadd4 bellard
@code{:rw:} option:
1437 2c6cadd4 bellard
1438 5fafdf24 ths
@example
1439 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1440 2c6cadd4 bellard
@end example
1441 2c6cadd4 bellard
1442 2c6cadd4 bellard
What you should @emph{never} do:
1443 2c6cadd4 bellard
@itemize
1444 2c6cadd4 bellard
@item use non-ASCII filenames ;
1445 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1446 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1447 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1448 2c6cadd4 bellard
@end itemize
1449 2c6cadd4 bellard
1450 debc7065 bellard
@node pcsys_network
1451 9d4fb82e bellard
@section Network emulation
1452 9d4fb82e bellard
1453 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1454 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1455 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1456 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1457 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1458 41d03949 bellard
network stack can replace the TAP device to have a basic network
1459 41d03949 bellard
connection.
1460 41d03949 bellard
1461 41d03949 bellard
@subsection VLANs
1462 9d4fb82e bellard
1463 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1464 41d03949 bellard
connection between several network devices. These devices can be for
1465 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1466 41d03949 bellard
(TAP devices).
1467 9d4fb82e bellard
1468 41d03949 bellard
@subsection Using TAP network interfaces
1469 41d03949 bellard
1470 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1471 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1472 41d03949 bellard
can then configure it as if it was a real ethernet card.
1473 9d4fb82e bellard
1474 8f40c388 bellard
@subsubsection Linux host
1475 8f40c388 bellard
1476 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1477 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1478 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1479 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1480 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1481 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1482 9d4fb82e bellard
1483 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1484 ee0f4751 bellard
TAP network interfaces.
1485 9d4fb82e bellard
1486 8f40c388 bellard
@subsubsection Windows host
1487 8f40c388 bellard
1488 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1489 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1490 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1491 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1492 8f40c388 bellard
1493 9d4fb82e bellard
@subsection Using the user mode network stack
1494 9d4fb82e bellard
1495 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1496 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1497 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1498 41d03949 bellard
network). The virtual network configuration is the following:
1499 9d4fb82e bellard
1500 9d4fb82e bellard
@example
1501 9d4fb82e bellard
1502 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1503 41d03949 bellard
                           |          (10.0.2.2)
1504 9d4fb82e bellard
                           |
1505 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1506 3b46e624 ths
                           |
1507 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1508 9d4fb82e bellard
@end example
1509 9d4fb82e bellard
1510 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1511 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1512 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1513 41d03949 bellard
to the hosts starting from 10.0.2.15.
1514 9d4fb82e bellard
1515 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1516 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1517 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1518 9d4fb82e bellard
1519 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1520 4be456f1 ths
would require root privileges. It means you can only ping the local
1521 b415a407 bellard
router (10.0.2.2).
1522 b415a407 bellard
1523 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1524 9bf05444 bellard
server.
1525 9bf05444 bellard
1526 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1527 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1528 9bf05444 bellard
redirect X11, telnet or SSH connections.
1529 443f1376 bellard
1530 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1531 41d03949 bellard
1532 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1533 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1534 41d03949 bellard
basic example.
1535 41d03949 bellard
1536 9d4fb82e bellard
@node direct_linux_boot
1537 9d4fb82e bellard
@section Direct Linux Boot
1538 1f673135 bellard
1539 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1540 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1541 ee0f4751 bellard
kernel testing.
1542 1f673135 bellard
1543 ee0f4751 bellard
The syntax is:
1544 1f673135 bellard
@example
1545 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1546 1f673135 bellard
@end example
1547 1f673135 bellard
1548 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1549 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1550 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1551 1f673135 bellard
1552 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1553 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1554 ee0f4751 bellard
Linux kernel.
1555 1f673135 bellard
1556 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1557 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1558 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1559 1f673135 bellard
@example
1560 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1561 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1562 1f673135 bellard
@end example
1563 1f673135 bellard
1564 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1565 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1566 1f673135 bellard
1567 debc7065 bellard
@node pcsys_usb
1568 b389dbfb bellard
@section USB emulation
1569 b389dbfb bellard
1570 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1571 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1572 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1573 f542086d bellard
as necessary to connect multiple USB devices.
1574 b389dbfb bellard
1575 0aff66b5 pbrook
@menu
1576 0aff66b5 pbrook
* usb_devices::
1577 0aff66b5 pbrook
* host_usb_devices::
1578 0aff66b5 pbrook
@end menu
1579 0aff66b5 pbrook
@node usb_devices
1580 0aff66b5 pbrook
@subsection Connecting USB devices
1581 b389dbfb bellard
1582 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1583 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1584 b389dbfb bellard
1585 db380c06 balrog
@table @code
1586 db380c06 balrog
@item mouse
1587 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1588 db380c06 balrog
@item tablet
1589 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1590 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1591 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1592 db380c06 balrog
@item disk:@var{file}
1593 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1594 db380c06 balrog
@item host:@var{bus.addr}
1595 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1596 0aff66b5 pbrook
(Linux only)
1597 db380c06 balrog
@item host:@var{vendor_id:product_id}
1598 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1599 0aff66b5 pbrook
(Linux only)
1600 db380c06 balrog
@item wacom-tablet
1601 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1602 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1603 f6d2a316 balrog
coordinates it reports touch pressure.
1604 db380c06 balrog
@item keyboard
1605 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1606 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1607 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1608 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1609 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1610 a11d070e balrog
used to override the default 0403:6001. For instance, 
1611 db380c06 balrog
@example
1612 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1613 db380c06 balrog
@end example
1614 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1615 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1616 0aff66b5 pbrook
@end table
1617 b389dbfb bellard
1618 0aff66b5 pbrook
@node host_usb_devices
1619 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1620 b389dbfb bellard
1621 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1622 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1623 b389dbfb bellard
Cameras) are not supported yet.
1624 b389dbfb bellard
1625 b389dbfb bellard
@enumerate
1626 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1627 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1628 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1629 b389dbfb bellard
to @file{mydriver.o.disabled}.
1630 b389dbfb bellard
1631 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1632 b389dbfb bellard
@example
1633 b389dbfb bellard
ls /proc/bus/usb
1634 b389dbfb bellard
001  devices  drivers
1635 b389dbfb bellard
@end example
1636 b389dbfb bellard
1637 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1638 b389dbfb bellard
@example
1639 b389dbfb bellard
chown -R myuid /proc/bus/usb
1640 b389dbfb bellard
@end example
1641 b389dbfb bellard
1642 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1643 5fafdf24 ths
@example
1644 b389dbfb bellard
info usbhost
1645 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1646 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1647 b389dbfb bellard
@end example
1648 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1649 b389dbfb bellard
hubs, it won't work).
1650 b389dbfb bellard
1651 b389dbfb bellard
@item Add the device in QEMU by using:
1652 5fafdf24 ths
@example
1653 b389dbfb bellard
usb_add host:1234:5678
1654 b389dbfb bellard
@end example
1655 b389dbfb bellard
1656 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1657 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1658 b389dbfb bellard
1659 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1660 b389dbfb bellard
1661 b389dbfb bellard
@end enumerate
1662 b389dbfb bellard
1663 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1664 b389dbfb bellard
device to make it work again (this is a bug).
1665 b389dbfb bellard
1666 f858dcae ths
@node vnc_security
1667 f858dcae ths
@section VNC security
1668 f858dcae ths
1669 f858dcae ths
The VNC server capability provides access to the graphical console
1670 f858dcae ths
of the guest VM across the network. This has a number of security
1671 f858dcae ths
considerations depending on the deployment scenarios.
1672 f858dcae ths
1673 f858dcae ths
@menu
1674 f858dcae ths
* vnc_sec_none::
1675 f858dcae ths
* vnc_sec_password::
1676 f858dcae ths
* vnc_sec_certificate::
1677 f858dcae ths
* vnc_sec_certificate_verify::
1678 f858dcae ths
* vnc_sec_certificate_pw::
1679 f858dcae ths
* vnc_generate_cert::
1680 f858dcae ths
@end menu
1681 f858dcae ths
@node vnc_sec_none
1682 f858dcae ths
@subsection Without passwords
1683 f858dcae ths
1684 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1685 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1686 f858dcae ths
socket only. For example
1687 f858dcae ths
1688 f858dcae ths
@example
1689 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1690 f858dcae ths
@end example
1691 f858dcae ths
1692 f858dcae ths
This ensures that only users on local box with read/write access to that
1693 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1694 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1695 f858dcae ths
tunnel.
1696 f858dcae ths
1697 f858dcae ths
@node vnc_sec_password
1698 f858dcae ths
@subsection With passwords
1699 f858dcae ths
1700 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1701 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1702 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1703 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1704 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1705 f858dcae ths
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1706 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1707 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1708 f858dcae ths
1709 f858dcae ths
@example
1710 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1711 f858dcae ths
(qemu) change vnc password
1712 f858dcae ths
Password: ********
1713 f858dcae ths
(qemu)
1714 f858dcae ths
@end example
1715 f858dcae ths
1716 f858dcae ths
@node vnc_sec_certificate
1717 f858dcae ths
@subsection With x509 certificates
1718 f858dcae ths
1719 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1720 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1721 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1722 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1723 f858dcae ths
support provides a secure session, but no authentication. This allows any
1724 f858dcae ths
client to connect, and provides an encrypted session.
1725 f858dcae ths
1726 f858dcae ths
@example
1727 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1728 f858dcae ths
@end example
1729 f858dcae ths
1730 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1731 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1732 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1733 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1734 f858dcae ths
only be readable by the user owning it.
1735 f858dcae ths
1736 f858dcae ths
@node vnc_sec_certificate_verify
1737 f858dcae ths
@subsection With x509 certificates and client verification
1738 f858dcae ths
1739 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1740 f858dcae ths
The server will request that the client provide a certificate, which it will
1741 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1742 f858dcae ths
in an environment with a private internal certificate authority.
1743 f858dcae ths
1744 f858dcae ths
@example
1745 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1746 f858dcae ths
@end example
1747 f858dcae ths
1748 f858dcae ths
1749 f858dcae ths
@node vnc_sec_certificate_pw
1750 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1751 f858dcae ths
1752 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1753 f858dcae ths
to provide two layers of authentication for clients.
1754 f858dcae ths
1755 f858dcae ths
@example
1756 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1757 f858dcae ths
(qemu) change vnc password
1758 f858dcae ths
Password: ********
1759 f858dcae ths
(qemu)
1760 f858dcae ths
@end example
1761 f858dcae ths
1762 f858dcae ths
@node vnc_generate_cert
1763 f858dcae ths
@subsection Generating certificates for VNC
1764 f858dcae ths
1765 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1766 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1767 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1768 f858dcae ths
each server. If using certificates for authentication, then each client
1769 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1770 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1771 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1772 f858dcae ths
1773 f858dcae ths
@menu
1774 f858dcae ths
* vnc_generate_ca::
1775 f858dcae ths
* vnc_generate_server::
1776 f858dcae ths
* vnc_generate_client::
1777 f858dcae ths
@end menu
1778 f858dcae ths
@node vnc_generate_ca
1779 f858dcae ths
@subsubsection Setup the Certificate Authority
1780 f858dcae ths
1781 f858dcae ths
This step only needs to be performed once per organization / organizational
1782 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1783 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1784 f858dcae ths
issued with it is lost.
1785 f858dcae ths
1786 f858dcae ths
@example
1787 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1788 f858dcae ths
@end example
1789 f858dcae ths
1790 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1791 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1792 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1793 f858dcae ths
name of the organization.
1794 f858dcae ths
1795 f858dcae ths
@example
1796 f858dcae ths
# cat > ca.info <<EOF
1797 f858dcae ths
cn = Name of your organization
1798 f858dcae ths
ca
1799 f858dcae ths
cert_signing_key
1800 f858dcae ths
EOF
1801 f858dcae ths
# certtool --generate-self-signed \
1802 f858dcae ths
           --load-privkey ca-key.pem
1803 f858dcae ths
           --template ca.info \
1804 f858dcae ths
           --outfile ca-cert.pem
1805 f858dcae ths
@end example
1806 f858dcae ths
1807 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1808 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1809 f858dcae ths
1810 f858dcae ths
@node vnc_generate_server
1811 f858dcae ths
@subsubsection Issuing server certificates
1812 f858dcae ths
1813 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1814 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1815 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1816 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1817 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1818 f858dcae ths
secure CA private key:
1819 f858dcae ths
1820 f858dcae ths
@example
1821 f858dcae ths
# cat > server.info <<EOF
1822 f858dcae ths
organization = Name  of your organization
1823 f858dcae ths
cn = server.foo.example.com
1824 f858dcae ths
tls_www_server
1825 f858dcae ths
encryption_key
1826 f858dcae ths
signing_key
1827 f858dcae ths
EOF
1828 f858dcae ths
# certtool --generate-privkey > server-key.pem
1829 f858dcae ths
# certtool --generate-certificate \
1830 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1831 f858dcae ths
           --load-ca-privkey ca-key.pem \
1832 f858dcae ths
           --load-privkey server server-key.pem \
1833 f858dcae ths
           --template server.info \
1834 f858dcae ths
           --outfile server-cert.pem
1835 f858dcae ths
@end example
1836 f858dcae ths
1837 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1838 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1839 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1840 f858dcae ths
1841 f858dcae ths
@node vnc_generate_client
1842 f858dcae ths
@subsubsection Issuing client certificates
1843 f858dcae ths
1844 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1845 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1846 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1847 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1848 f858dcae ths
the secure CA private key:
1849 f858dcae ths
1850 f858dcae ths
@example
1851 f858dcae ths
# cat > client.info <<EOF
1852 f858dcae ths
country = GB
1853 f858dcae ths
state = London
1854 f858dcae ths
locality = London
1855 f858dcae ths
organiazation = Name of your organization
1856 f858dcae ths
cn = client.foo.example.com
1857 f858dcae ths
tls_www_client
1858 f858dcae ths
encryption_key
1859 f858dcae ths
signing_key
1860 f858dcae ths
EOF
1861 f858dcae ths
# certtool --generate-privkey > client-key.pem
1862 f858dcae ths
# certtool --generate-certificate \
1863 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1864 f858dcae ths
           --load-ca-privkey ca-key.pem \
1865 f858dcae ths
           --load-privkey client-key.pem \
1866 f858dcae ths
           --template client.info \
1867 f858dcae ths
           --outfile client-cert.pem
1868 f858dcae ths
@end example
1869 f858dcae ths
1870 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1871 f858dcae ths
copied to the client for which they were generated.
1872 f858dcae ths
1873 0806e3f6 bellard
@node gdb_usage
1874 da415d54 bellard
@section GDB usage
1875 da415d54 bellard
1876 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1877 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1878 da415d54 bellard
1879 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1880 da415d54 bellard
gdb connection:
1881 da415d54 bellard
@example
1882 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1883 debc7065 bellard
       -append "root=/dev/hda"
1884 da415d54 bellard
Connected to host network interface: tun0
1885 da415d54 bellard
Waiting gdb connection on port 1234
1886 da415d54 bellard
@end example
1887 da415d54 bellard
1888 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1889 da415d54 bellard
@example
1890 da415d54 bellard
> gdb vmlinux
1891 da415d54 bellard
@end example
1892 da415d54 bellard
1893 da415d54 bellard
In gdb, connect to QEMU:
1894 da415d54 bellard
@example
1895 6c9bf893 bellard
(gdb) target remote localhost:1234
1896 da415d54 bellard
@end example
1897 da415d54 bellard
1898 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1899 da415d54 bellard
@example
1900 da415d54 bellard
(gdb) c
1901 da415d54 bellard
@end example
1902 da415d54 bellard
1903 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1904 0806e3f6 bellard
1905 0806e3f6 bellard
@enumerate
1906 0806e3f6 bellard
@item
1907 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1908 0806e3f6 bellard
@item
1909 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1910 0806e3f6 bellard
@item
1911 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1912 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1913 0806e3f6 bellard
@end enumerate
1914 0806e3f6 bellard
1915 debc7065 bellard
@node pcsys_os_specific
1916 1a084f3d bellard
@section Target OS specific information
1917 1a084f3d bellard
1918 1a084f3d bellard
@subsection Linux
1919 1a084f3d bellard
1920 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1921 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1922 15a34c63 bellard
color depth in the guest and the host OS.
1923 1a084f3d bellard
1924 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1925 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1926 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1927 e3371e62 bellard
cannot simulate exactly.
1928 e3371e62 bellard
1929 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1930 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1931 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1932 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1933 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1934 7c3fc84d bellard
1935 1a084f3d bellard
@subsection Windows
1936 1a084f3d bellard
1937 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1938 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1939 1a084f3d bellard
1940 e3371e62 bellard
@subsubsection SVGA graphic modes support
1941 e3371e62 bellard
1942 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1943 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1944 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1945 15a34c63 bellard
depth in the guest and the host OS.
1946 1a084f3d bellard
1947 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1948 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1949 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1950 3cb0853a bellard
(option @option{-std-vga}).
1951 3cb0853a bellard
1952 e3371e62 bellard
@subsubsection CPU usage reduction
1953 e3371e62 bellard
1954 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1955 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1956 15a34c63 bellard
idle. You can install the utility from
1957 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1958 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1959 1a084f3d bellard
1960 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1961 e3371e62 bellard
1962 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1963 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1964 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1965 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1966 9d0a8e6f bellard
IDE transfers).
1967 e3371e62 bellard
1968 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1969 6cc721cf bellard
1970 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1971 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1972 6cc721cf bellard
use the APM driver provided by the BIOS.
1973 6cc721cf bellard
1974 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1975 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1976 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1977 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1978 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1979 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1980 6cc721cf bellard
1981 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1982 6cc721cf bellard
1983 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1984 6cc721cf bellard
1985 2192c332 bellard
@subsubsection Windows XP security problem
1986 e3371e62 bellard
1987 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1988 e3371e62 bellard
error when booting:
1989 e3371e62 bellard
@example
1990 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1991 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1992 e3371e62 bellard
@end example
1993 e3371e62 bellard
1994 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1995 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1996 2192c332 bellard
network while in safe mode, its recommended to download the full
1997 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1998 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1999 e3371e62 bellard
2000 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2001 a0a821a4 bellard
2002 a0a821a4 bellard
@subsubsection CPU usage reduction
2003 a0a821a4 bellard
2004 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2005 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2006 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2007 a0a821a4 bellard
problem.
2008 a0a821a4 bellard
2009 debc7065 bellard
@node QEMU System emulator for non PC targets
2010 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2011 3f9f3aa1 bellard
2012 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2013 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2014 4be456f1 ths
differences are mentioned in the following sections.
2015 3f9f3aa1 bellard
2016 debc7065 bellard
@menu
2017 debc7065 bellard
* QEMU PowerPC System emulator::
2018 24d4de45 ths
* Sparc32 System emulator::
2019 24d4de45 ths
* Sparc64 System emulator::
2020 24d4de45 ths
* MIPS System emulator::
2021 24d4de45 ths
* ARM System emulator::
2022 24d4de45 ths
* ColdFire System emulator::
2023 debc7065 bellard
@end menu
2024 debc7065 bellard
2025 debc7065 bellard
@node QEMU PowerPC System emulator
2026 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2027 1a084f3d bellard
2028 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2029 15a34c63 bellard
or PowerMac PowerPC system.
2030 1a084f3d bellard
2031 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2032 1a084f3d bellard
2033 15a34c63 bellard
@itemize @minus
2034 5fafdf24 ths
@item
2035 5fafdf24 ths
UniNorth PCI Bridge
2036 15a34c63 bellard
@item
2037 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2038 5fafdf24 ths
@item
2039 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2040 5fafdf24 ths
@item
2041 15a34c63 bellard
NE2000 PCI adapters
2042 15a34c63 bellard
@item
2043 15a34c63 bellard
Non Volatile RAM
2044 15a34c63 bellard
@item
2045 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2046 1a084f3d bellard
@end itemize
2047 1a084f3d bellard
2048 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2049 52c00a5f bellard
2050 52c00a5f bellard
@itemize @minus
2051 5fafdf24 ths
@item
2052 15a34c63 bellard
PCI Bridge
2053 15a34c63 bellard
@item
2054 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2055 5fafdf24 ths
@item
2056 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2057 52c00a5f bellard
@item
2058 52c00a5f bellard
Floppy disk
2059 5fafdf24 ths
@item
2060 15a34c63 bellard
NE2000 network adapters
2061 52c00a5f bellard
@item
2062 52c00a5f bellard
Serial port
2063 52c00a5f bellard
@item
2064 52c00a5f bellard
PREP Non Volatile RAM
2065 15a34c63 bellard
@item
2066 15a34c63 bellard
PC compatible keyboard and mouse.
2067 52c00a5f bellard
@end itemize
2068 52c00a5f bellard
2069 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2070 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2071 52c00a5f bellard
2072 15a34c63 bellard
@c man begin OPTIONS
2073 15a34c63 bellard
2074 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2075 15a34c63 bellard
2076 15a34c63 bellard
@table @option
2077 15a34c63 bellard
2078 3b46e624 ths
@item -g WxH[xDEPTH]
2079 15a34c63 bellard
2080 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2081 15a34c63 bellard
2082 15a34c63 bellard
@end table
2083 15a34c63 bellard
2084 5fafdf24 ths
@c man end
2085 15a34c63 bellard
2086 15a34c63 bellard
2087 52c00a5f bellard
More information is available at
2088 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2089 52c00a5f bellard
2090 24d4de45 ths
@node Sparc32 System emulator
2091 24d4de45 ths
@section Sparc32 System emulator
2092 e80cfcfc bellard
2093 6a3b9cc9 blueswir1
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2094 ee76f82e blueswir1
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2095 ee76f82e blueswir1
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2096 ee76f82e blueswir1
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2097 ee76f82e blueswir1
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2098 ee76f82e blueswir1
of usable CPUs to 4.
2099 e80cfcfc bellard
2100 7d85892b blueswir1
QEMU emulates the following sun4m/sun4d peripherals:
2101 e80cfcfc bellard
2102 e80cfcfc bellard
@itemize @minus
2103 3475187d bellard
@item
2104 7d85892b blueswir1
IOMMU or IO-UNITs
2105 e80cfcfc bellard
@item
2106 e80cfcfc bellard
TCX Frame buffer
2107 5fafdf24 ths
@item
2108 e80cfcfc bellard
Lance (Am7990) Ethernet
2109 e80cfcfc bellard
@item
2110 e80cfcfc bellard
Non Volatile RAM M48T08
2111 e80cfcfc bellard
@item
2112 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2113 3475187d bellard
and power/reset logic
2114 3475187d bellard
@item
2115 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2116 3475187d bellard
@item
2117 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2118 a2502b58 blueswir1
@item
2119 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2120 e80cfcfc bellard
@end itemize
2121 e80cfcfc bellard
2122 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2123 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2124 7d85892b blueswir1
others 2047MB.
2125 3475187d bellard
2126 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2127 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2128 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2129 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2130 3475187d bellard
2131 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2132 0986ac3b bellard
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2133 0986ac3b bellard
Solaris kernels don't work.
2134 3475187d bellard
2135 3475187d bellard
@c man begin OPTIONS
2136 3475187d bellard
2137 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2138 3475187d bellard
2139 3475187d bellard
@table @option
2140 3475187d bellard
2141 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2142 3475187d bellard
2143 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2144 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2145 3475187d bellard
2146 66508601 blueswir1
@item -prom-env string
2147 66508601 blueswir1
2148 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2149 66508601 blueswir1
2150 66508601 blueswir1
@example
2151 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2152 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2153 66508601 blueswir1
@end example
2154 66508601 blueswir1
2155 ee76f82e blueswir1
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2156 a2502b58 blueswir1
2157 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2158 a2502b58 blueswir1
2159 3475187d bellard
@end table
2160 3475187d bellard
2161 5fafdf24 ths
@c man end
2162 3475187d bellard
2163 24d4de45 ths
@node Sparc64 System emulator
2164 24d4de45 ths
@section Sparc64 System emulator
2165 e80cfcfc bellard
2166 3475187d bellard
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2167 3475187d bellard
The emulator is not usable for anything yet.
2168 b756921a bellard
2169 83469015 bellard
QEMU emulates the following sun4u peripherals:
2170 83469015 bellard
2171 83469015 bellard
@itemize @minus
2172 83469015 bellard
@item
2173 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2174 83469015 bellard
@item
2175 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2176 83469015 bellard
@item
2177 83469015 bellard
Non Volatile RAM M48T59
2178 83469015 bellard
@item
2179 83469015 bellard
PC-compatible serial ports
2180 83469015 bellard
@end itemize
2181 83469015 bellard
2182 24d4de45 ths
@node MIPS System emulator
2183 24d4de45 ths
@section MIPS System emulator
2184 9d0a8e6f bellard
2185 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2186 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2187 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2188 d9aedc32 ths
Four different machine types are emulated:
2189 24d4de45 ths
2190 24d4de45 ths
@itemize @minus
2191 24d4de45 ths
@item
2192 24d4de45 ths
A generic ISA PC-like machine "mips"
2193 24d4de45 ths
@item
2194 24d4de45 ths
The MIPS Malta prototype board "malta"
2195 24d4de45 ths
@item
2196 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2197 6bf5b4e8 ths
@item
2198 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2199 24d4de45 ths
@end itemize
2200 24d4de45 ths
2201 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2202 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2203 24d4de45 ths
emulated:
2204 3f9f3aa1 bellard
2205 3f9f3aa1 bellard
@itemize @minus
2206 5fafdf24 ths
@item
2207 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2208 3f9f3aa1 bellard
@item
2209 3f9f3aa1 bellard
PC style serial port
2210 3f9f3aa1 bellard
@item
2211 24d4de45 ths
PC style IDE disk
2212 24d4de45 ths
@item
2213 3f9f3aa1 bellard
NE2000 network card
2214 3f9f3aa1 bellard
@end itemize
2215 3f9f3aa1 bellard
2216 24d4de45 ths
The Malta emulation supports the following devices:
2217 24d4de45 ths
2218 24d4de45 ths
@itemize @minus
2219 24d4de45 ths
@item
2220 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2221 24d4de45 ths
@item
2222 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2223 24d4de45 ths
@item
2224 24d4de45 ths
The Multi-I/O chip's serial device
2225 24d4de45 ths
@item
2226 24d4de45 ths
PCnet32 PCI network card
2227 24d4de45 ths
@item
2228 24d4de45 ths
Malta FPGA serial device
2229 24d4de45 ths
@item
2230 24d4de45 ths
Cirrus VGA graphics card
2231 24d4de45 ths
@end itemize
2232 24d4de45 ths
2233 24d4de45 ths
The ACER Pica emulation supports:
2234 24d4de45 ths
2235 24d4de45 ths
@itemize @minus
2236 24d4de45 ths
@item
2237 24d4de45 ths
MIPS R4000 CPU
2238 24d4de45 ths
@item
2239 24d4de45 ths
PC-style IRQ and DMA controllers
2240 24d4de45 ths
@item
2241 24d4de45 ths
PC Keyboard
2242 24d4de45 ths
@item
2243 24d4de45 ths
IDE controller
2244 24d4de45 ths
@end itemize
2245 3f9f3aa1 bellard
2246 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2247 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2248 f0fc6f8f ths
It supports:
2249 6bf5b4e8 ths
2250 6bf5b4e8 ths
@itemize @minus
2251 6bf5b4e8 ths
@item
2252 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2253 6bf5b4e8 ths
@item
2254 6bf5b4e8 ths
PC style serial port
2255 6bf5b4e8 ths
@item
2256 6bf5b4e8 ths
MIPSnet network emulation
2257 6bf5b4e8 ths
@end itemize
2258 6bf5b4e8 ths
2259 24d4de45 ths
@node ARM System emulator
2260 24d4de45 ths
@section ARM System emulator
2261 3f9f3aa1 bellard
2262 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2263 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2264 3f9f3aa1 bellard
devices:
2265 3f9f3aa1 bellard
2266 3f9f3aa1 bellard
@itemize @minus
2267 3f9f3aa1 bellard
@item
2268 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2269 3f9f3aa1 bellard
@item
2270 3f9f3aa1 bellard
Two PL011 UARTs
2271 5fafdf24 ths
@item
2272 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2273 00a9bf19 pbrook
@item
2274 00a9bf19 pbrook
PL110 LCD controller
2275 00a9bf19 pbrook
@item
2276 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2277 a1bb27b1 pbrook
@item
2278 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2279 00a9bf19 pbrook
@end itemize
2280 00a9bf19 pbrook
2281 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2282 00a9bf19 pbrook
2283 00a9bf19 pbrook
@itemize @minus
2284 00a9bf19 pbrook
@item
2285 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2286 00a9bf19 pbrook
@item
2287 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2288 00a9bf19 pbrook
@item
2289 00a9bf19 pbrook
Four PL011 UARTs
2290 5fafdf24 ths
@item
2291 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2292 00a9bf19 pbrook
@item
2293 00a9bf19 pbrook
PL110 LCD controller
2294 00a9bf19 pbrook
@item
2295 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2296 00a9bf19 pbrook
@item
2297 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2298 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2299 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2300 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2301 00a9bf19 pbrook
mapped control registers.
2302 e6de1bad pbrook
@item
2303 e6de1bad pbrook
PCI OHCI USB controller.
2304 e6de1bad pbrook
@item
2305 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2306 a1bb27b1 pbrook
@item
2307 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2308 3f9f3aa1 bellard
@end itemize
2309 3f9f3aa1 bellard
2310 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2311 d7739d75 pbrook
2312 d7739d75 pbrook
@itemize @minus
2313 d7739d75 pbrook
@item
2314 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2315 d7739d75 pbrook
@item
2316 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2317 d7739d75 pbrook
@item
2318 d7739d75 pbrook
Four PL011 UARTs
2319 5fafdf24 ths
@item
2320 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2321 d7739d75 pbrook
@item
2322 d7739d75 pbrook
PL110 LCD controller
2323 d7739d75 pbrook
@item
2324 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2325 d7739d75 pbrook
@item
2326 d7739d75 pbrook
PCI host bridge
2327 d7739d75 pbrook
@item
2328 d7739d75 pbrook
PCI OHCI USB controller
2329 d7739d75 pbrook
@item
2330 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2331 a1bb27b1 pbrook
@item
2332 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2333 d7739d75 pbrook
@end itemize
2334 d7739d75 pbrook
2335 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2336 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2337 b00052e4 balrog
2338 b00052e4 balrog
@itemize @minus
2339 b00052e4 balrog
@item
2340 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2341 b00052e4 balrog
@item
2342 b00052e4 balrog
NAND Flash memory
2343 b00052e4 balrog
@item
2344 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2345 b00052e4 balrog
@item
2346 b00052e4 balrog
On-chip OHCI USB controller
2347 b00052e4 balrog
@item
2348 b00052e4 balrog
On-chip LCD controller
2349 b00052e4 balrog
@item
2350 b00052e4 balrog
On-chip Real Time Clock
2351 b00052e4 balrog
@item
2352 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2353 b00052e4 balrog
@item
2354 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2355 b00052e4 balrog
@item
2356 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2357 b00052e4 balrog
@item
2358 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2359 b00052e4 balrog
@item
2360 b00052e4 balrog
Three on-chip UARTs
2361 b00052e4 balrog
@item
2362 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2363 b00052e4 balrog
@end itemize
2364 b00052e4 balrog
2365 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2366 02645926 balrog
following elements:
2367 02645926 balrog
2368 02645926 balrog
@itemize @minus
2369 02645926 balrog
@item
2370 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2371 02645926 balrog
@item
2372 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2373 02645926 balrog
@item
2374 02645926 balrog
On-chip LCD controller
2375 02645926 balrog
@item
2376 02645926 balrog
On-chip Real Time Clock
2377 02645926 balrog
@item
2378 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2379 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2380 02645926 balrog
@item
2381 02645926 balrog
GPIO-connected matrix keypad
2382 02645926 balrog
@item
2383 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2384 02645926 balrog
@item
2385 02645926 balrog
Three on-chip UARTs
2386 02645926 balrog
@end itemize
2387 02645926 balrog
2388 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2389 9ee6e8bb pbrook
devices:
2390 9ee6e8bb pbrook
2391 9ee6e8bb pbrook
@itemize @minus
2392 9ee6e8bb pbrook
@item
2393 9ee6e8bb pbrook
Cortex-M3 CPU core.
2394 9ee6e8bb pbrook
@item
2395 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2396 9ee6e8bb pbrook
@item
2397 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2398 9ee6e8bb pbrook
@item
2399 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2400 9ee6e8bb pbrook
@end itemize
2401 9ee6e8bb pbrook
2402 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2403 9ee6e8bb pbrook
devices:
2404 9ee6e8bb pbrook
2405 9ee6e8bb pbrook
@itemize @minus
2406 9ee6e8bb pbrook
@item
2407 9ee6e8bb pbrook
Cortex-M3 CPU core.
2408 9ee6e8bb pbrook
@item
2409 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2410 9ee6e8bb pbrook
@item
2411 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2412 9ee6e8bb pbrook
@item
2413 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2414 9ee6e8bb pbrook
@end itemize
2415 9ee6e8bb pbrook
2416 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2417 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2418 9d0a8e6f bellard
2419 24d4de45 ths
@node ColdFire System emulator
2420 24d4de45 ths
@section ColdFire System emulator
2421 209a4e69 pbrook
2422 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2423 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2424 707e011b pbrook
2425 707e011b pbrook
The M5208EVB emulation includes the following devices:
2426 707e011b pbrook
2427 707e011b pbrook
@itemize @minus
2428 5fafdf24 ths
@item
2429 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2430 707e011b pbrook
@item
2431 707e011b pbrook
Three Two on-chip UARTs.
2432 707e011b pbrook
@item
2433 707e011b pbrook
Fast Ethernet Controller (FEC)
2434 707e011b pbrook
@end itemize
2435 707e011b pbrook
2436 707e011b pbrook
The AN5206 emulation includes the following devices:
2437 209a4e69 pbrook
2438 209a4e69 pbrook
@itemize @minus
2439 5fafdf24 ths
@item
2440 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2441 209a4e69 pbrook
@item
2442 209a4e69 pbrook
Two on-chip UARTs.
2443 209a4e69 pbrook
@end itemize
2444 209a4e69 pbrook
2445 5fafdf24 ths
@node QEMU User space emulator
2446 5fafdf24 ths
@chapter QEMU User space emulator
2447 83195237 bellard
2448 83195237 bellard
@menu
2449 83195237 bellard
* Supported Operating Systems ::
2450 83195237 bellard
* Linux User space emulator::
2451 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2452 83195237 bellard
@end menu
2453 83195237 bellard
2454 83195237 bellard
@node Supported Operating Systems
2455 83195237 bellard
@section Supported Operating Systems
2456 83195237 bellard
2457 83195237 bellard
The following OS are supported in user space emulation:
2458 83195237 bellard
2459 83195237 bellard
@itemize @minus
2460 83195237 bellard
@item
2461 4be456f1 ths
Linux (referred as qemu-linux-user)
2462 83195237 bellard
@item
2463 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2464 83195237 bellard
@end itemize
2465 83195237 bellard
2466 83195237 bellard
@node Linux User space emulator
2467 83195237 bellard
@section Linux User space emulator
2468 386405f7 bellard
2469 debc7065 bellard
@menu
2470 debc7065 bellard
* Quick Start::
2471 debc7065 bellard
* Wine launch::
2472 debc7065 bellard
* Command line options::
2473 79737e4a pbrook
* Other binaries::
2474 debc7065 bellard
@end menu
2475 debc7065 bellard
2476 debc7065 bellard
@node Quick Start
2477 83195237 bellard
@subsection Quick Start
2478 df0f11a0 bellard
2479 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2480 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2481 386405f7 bellard
2482 1f673135 bellard
@itemize
2483 386405f7 bellard
2484 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2485 1f673135 bellard
libraries:
2486 386405f7 bellard
2487 5fafdf24 ths
@example
2488 1f673135 bellard
qemu-i386 -L / /bin/ls
2489 1f673135 bellard
@end example
2490 386405f7 bellard
2491 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2492 1f673135 bellard
@file{/} prefix.
2493 386405f7 bellard
2494 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2495 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2496 386405f7 bellard
2497 5fafdf24 ths
@example
2498 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2499 1f673135 bellard
@end example
2500 386405f7 bellard
2501 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2502 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2503 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2504 df0f11a0 bellard
2505 1f673135 bellard
@example
2506 5fafdf24 ths
unset LD_LIBRARY_PATH
2507 1f673135 bellard
@end example
2508 1eb87257 bellard
2509 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2510 1eb87257 bellard
2511 1f673135 bellard
@example
2512 1f673135 bellard
qemu-i386 tests/i386/ls
2513 1f673135 bellard
@end example
2514 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2515 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2516 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2517 1f673135 bellard
Linux kernel.
2518 1eb87257 bellard
2519 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2520 1f673135 bellard
@example
2521 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2522 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2523 1f673135 bellard
@end example
2524 1eb20527 bellard
2525 1f673135 bellard
@end itemize
2526 1eb20527 bellard
2527 debc7065 bellard
@node Wine launch
2528 83195237 bellard
@subsection Wine launch
2529 1eb20527 bellard
2530 1f673135 bellard
@itemize
2531 386405f7 bellard
2532 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2533 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2534 1f673135 bellard
able to do:
2535 386405f7 bellard
2536 1f673135 bellard
@example
2537 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2538 1f673135 bellard
@end example
2539 386405f7 bellard
2540 1f673135 bellard
@item Download the binary x86 Wine install
2541 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2542 386405f7 bellard
2543 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2544 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2545 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2546 386405f7 bellard
2547 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2548 386405f7 bellard
2549 1f673135 bellard
@example
2550 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2551 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2552 1f673135 bellard
@end example
2553 386405f7 bellard
2554 1f673135 bellard
@end itemize
2555 fd429f2f bellard
2556 debc7065 bellard
@node Command line options
2557 83195237 bellard
@subsection Command line options
2558 1eb20527 bellard
2559 1f673135 bellard
@example
2560 1f673135 bellard
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2561 1f673135 bellard
@end example
2562 1eb20527 bellard
2563 1f673135 bellard
@table @option
2564 1f673135 bellard
@item -h
2565 1f673135 bellard
Print the help
2566 3b46e624 ths
@item -L path
2567 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2568 1f673135 bellard
@item -s size
2569 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2570 386405f7 bellard
@end table
2571 386405f7 bellard
2572 1f673135 bellard
Debug options:
2573 386405f7 bellard
2574 1f673135 bellard
@table @option
2575 1f673135 bellard
@item -d
2576 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2577 1f673135 bellard
@item -p pagesize
2578 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2579 1f673135 bellard
@end table
2580 386405f7 bellard
2581 b01bcae6 balrog
Environment variables:
2582 b01bcae6 balrog
2583 b01bcae6 balrog
@table @env
2584 b01bcae6 balrog
@item QEMU_STRACE
2585 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2586 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2587 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2588 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2589 b01bcae6 balrog
format are printed with information for six arguments.  Many
2590 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2591 5cfdf930 ths
@end table
2592 b01bcae6 balrog
2593 79737e4a pbrook
@node Other binaries
2594 83195237 bellard
@subsection Other binaries
2595 79737e4a pbrook
2596 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2597 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2598 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2599 79737e4a pbrook
2600 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2601 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2602 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2603 e6e5906b pbrook
2604 79737e4a pbrook
The binary format is detected automatically.
2605 79737e4a pbrook
2606 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2607 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2608 a785e42e blueswir1
2609 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2610 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2611 a785e42e blueswir1
2612 83195237 bellard
@node Mac OS X/Darwin User space emulator
2613 83195237 bellard
@section Mac OS X/Darwin User space emulator
2614 83195237 bellard
2615 83195237 bellard
@menu
2616 83195237 bellard
* Mac OS X/Darwin Status::
2617 83195237 bellard
* Mac OS X/Darwin Quick Start::
2618 83195237 bellard
* Mac OS X/Darwin Command line options::
2619 83195237 bellard
@end menu
2620 83195237 bellard
2621 83195237 bellard
@node Mac OS X/Darwin Status
2622 83195237 bellard
@subsection Mac OS X/Darwin Status
2623 83195237 bellard
2624 83195237 bellard
@itemize @minus
2625 83195237 bellard
@item
2626 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2627 83195237 bellard
@item
2628 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2629 83195237 bellard
@item
2630 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2631 83195237 bellard
@item
2632 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2633 83195237 bellard
@end itemize
2634 83195237 bellard
2635 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2636 83195237 bellard
2637 83195237 bellard
@node Mac OS X/Darwin Quick Start
2638 83195237 bellard
@subsection Quick Start
2639 83195237 bellard
2640 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2641 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2642 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2643 83195237 bellard
CD or compile them by hand.
2644 83195237 bellard
2645 83195237 bellard
@itemize
2646 83195237 bellard
2647 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2648 83195237 bellard
libraries:
2649 83195237 bellard
2650 5fafdf24 ths
@example
2651 dbcf5e82 ths
qemu-i386 /bin/ls
2652 83195237 bellard
@end example
2653 83195237 bellard
2654 83195237 bellard
or to run the ppc version of the executable:
2655 83195237 bellard
2656 5fafdf24 ths
@example
2657 dbcf5e82 ths
qemu-ppc /bin/ls
2658 83195237 bellard
@end example
2659 83195237 bellard
2660 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2661 83195237 bellard
are installed:
2662 83195237 bellard
2663 5fafdf24 ths
@example
2664 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2665 83195237 bellard
@end example
2666 83195237 bellard
2667 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2668 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2669 83195237 bellard
2670 83195237 bellard
@end itemize
2671 83195237 bellard
2672 83195237 bellard
@node Mac OS X/Darwin Command line options
2673 83195237 bellard
@subsection Command line options
2674 83195237 bellard
2675 83195237 bellard
@example
2676 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2677 83195237 bellard
@end example
2678 83195237 bellard
2679 83195237 bellard
@table @option
2680 83195237 bellard
@item -h
2681 83195237 bellard
Print the help
2682 3b46e624 ths
@item -L path
2683 83195237 bellard
Set the library root path (default=/)
2684 83195237 bellard
@item -s size
2685 83195237 bellard
Set the stack size in bytes (default=524288)
2686 83195237 bellard
@end table
2687 83195237 bellard
2688 83195237 bellard
Debug options:
2689 83195237 bellard
2690 83195237 bellard
@table @option
2691 83195237 bellard
@item -d
2692 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2693 83195237 bellard
@item -p pagesize
2694 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2695 83195237 bellard
@end table
2696 83195237 bellard
2697 15a34c63 bellard
@node compilation
2698 15a34c63 bellard
@chapter Compilation from the sources
2699 15a34c63 bellard
2700 debc7065 bellard
@menu
2701 debc7065 bellard
* Linux/Unix::
2702 debc7065 bellard
* Windows::
2703 debc7065 bellard
* Cross compilation for Windows with Linux::
2704 debc7065 bellard
* Mac OS X::
2705 debc7065 bellard
@end menu
2706 debc7065 bellard
2707 debc7065 bellard
@node Linux/Unix
2708 7c3fc84d bellard
@section Linux/Unix
2709 7c3fc84d bellard
2710 7c3fc84d bellard
@subsection Compilation
2711 7c3fc84d bellard
2712 7c3fc84d bellard
First you must decompress the sources:
2713 7c3fc84d bellard
@example
2714 7c3fc84d bellard
cd /tmp
2715 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2716 7c3fc84d bellard
cd qemu-x.y.z
2717 7c3fc84d bellard
@end example
2718 7c3fc84d bellard
2719 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2720 7c3fc84d bellard
@example
2721 7c3fc84d bellard
./configure
2722 7c3fc84d bellard
make
2723 7c3fc84d bellard
@end example
2724 7c3fc84d bellard
2725 7c3fc84d bellard
Then type as root user:
2726 7c3fc84d bellard
@example
2727 7c3fc84d bellard
make install
2728 7c3fc84d bellard
@end example
2729 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2730 7c3fc84d bellard
2731 4fe8b87a bellard
@subsection GCC version
2732 7c3fc84d bellard
2733 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
2734 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
2735 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2736 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
2737 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
2738 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
2739 4be456f1 ths
these older versions so that usually you don't have to do anything.
2740 15a34c63 bellard
2741 debc7065 bellard
@node Windows
2742 15a34c63 bellard
@section Windows
2743 15a34c63 bellard
2744 15a34c63 bellard
@itemize
2745 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2746 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2747 15a34c63 bellard
instructions in the download section and the FAQ.
2748 15a34c63 bellard
2749 5fafdf24 ths
@item Download
2750 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2751 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2752 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2753 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2754 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2755 15a34c63 bellard
correct SDL directory when invoked.
2756 15a34c63 bellard
2757 15a34c63 bellard
@item Extract the current version of QEMU.
2758 5fafdf24 ths
2759 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2760 15a34c63 bellard
2761 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2762 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2763 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2764 15a34c63 bellard
2765 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2766 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2767 15a34c63 bellard
@file{Program Files/Qemu}.
2768 15a34c63 bellard
2769 15a34c63 bellard
@end itemize
2770 15a34c63 bellard
2771 debc7065 bellard
@node Cross compilation for Windows with Linux
2772 15a34c63 bellard
@section Cross compilation for Windows with Linux
2773 15a34c63 bellard
2774 15a34c63 bellard
@itemize
2775 15a34c63 bellard
@item
2776 15a34c63 bellard
Install the MinGW cross compilation tools available at
2777 15a34c63 bellard
@url{http://www.mingw.org/}.
2778 15a34c63 bellard
2779 5fafdf24 ths
@item
2780 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2781 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2782 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2783 15a34c63 bellard
the QEMU configuration script.
2784 15a34c63 bellard
2785 5fafdf24 ths
@item
2786 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2787 15a34c63 bellard
@example
2788 15a34c63 bellard
./configure --enable-mingw32
2789 15a34c63 bellard
@end example
2790 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2791 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2792 15a34c63 bellard
--prefix to set the Win32 install path.
2793 15a34c63 bellard
2794 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2795 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2796 5fafdf24 ths
installation directory.
2797 15a34c63 bellard
2798 15a34c63 bellard
@end itemize
2799 15a34c63 bellard
2800 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2801 15a34c63 bellard
QEMU for Win32.
2802 15a34c63 bellard
2803 debc7065 bellard
@node Mac OS X
2804 15a34c63 bellard
@section Mac OS X
2805 15a34c63 bellard
2806 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2807 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2808 15a34c63 bellard
information.
2809 15a34c63 bellard
2810 debc7065 bellard
@node Index
2811 debc7065 bellard
@chapter Index
2812 debc7065 bellard
@printindex cp
2813 debc7065 bellard
2814 debc7065 bellard
@bye