Statistics
| Branch: | Revision:

root / alpha-dis.c @ 2a29ca73

History | View | Annotate | Download (80.8 kB)

1
/* alpha-dis.c -- Disassemble Alpha AXP instructions
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Richard Henderson <rth@tamu.edu>,
4
   patterned after the PPC opcode handling written by Ian Lance Taylor.
5

6
This file is part of GDB, GAS, and the GNU binutils.
7

8
GDB, GAS, and the GNU binutils are free software; you can redistribute
9
them and/or modify them under the terms of the GNU General Public
10
License as published by the Free Software Foundation; either version
11
2, or (at your option) any later version.
12

13
GDB, GAS, and the GNU binutils are distributed in the hope that they
14
will be useful, but WITHOUT ANY WARRANTY; without even the implied
15
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
16
the GNU General Public License for more details.
17

18
You should have received a copy of the GNU General Public License
19
along with this file; see the file COPYING.  If not, write to the Free
20
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21
02111-1307, USA.  */
22

    
23
#include <stdio.h>
24
#include "dis-asm.h"
25

    
26
#define ATTRIBUTE_UNUSED __attribute__((unused))
27
#define _(x) x
28

    
29
/* The opcode table is an array of struct alpha_opcode.  */
30

    
31
struct alpha_opcode
32
{
33
  /* The opcode name.  */
34
  const char *name;
35

    
36
  /* The opcode itself.  Those bits which will be filled in with
37
     operands are zeroes.  */
38
  unsigned opcode;
39

    
40
  /* The opcode mask.  This is used by the disassembler.  This is a
41
     mask containing ones indicating those bits which must match the
42
     opcode field, and zeroes indicating those bits which need not
43
     match (and are presumably filled in by operands).  */
44
  unsigned mask;
45

    
46
  /* One bit flags for the opcode.  These are primarily used to
47
     indicate specific processors and environments support the
48
     instructions.  The defined values are listed below. */
49
  unsigned flags;
50

    
51
  /* An array of operand codes.  Each code is an index into the
52
     operand table.  They appear in the order which the operands must
53
     appear in assembly code, and are terminated by a zero.  */
54
  unsigned char operands[4];
55
};
56

    
57
/* The table itself is sorted by major opcode number, and is otherwise
58
   in the order in which the disassembler should consider
59
   instructions.  */
60
extern const struct alpha_opcode alpha_opcodes[];
61
extern const unsigned alpha_num_opcodes;
62

    
63
/* Values defined for the flags field of a struct alpha_opcode.  */
64

    
65
/* CPU Availability */
66
#define AXP_OPCODE_BASE  0x0001  /* Base architecture -- all cpus.  */
67
#define AXP_OPCODE_EV4   0x0002  /* EV4 specific PALcode insns.  */
68
#define AXP_OPCODE_EV5   0x0004  /* EV5 specific PALcode insns.  */
69
#define AXP_OPCODE_EV6   0x0008  /* EV6 specific PALcode insns.  */
70
#define AXP_OPCODE_BWX   0x0100  /* Byte/word extension (amask bit 0).  */
71
#define AXP_OPCODE_CIX   0x0200  /* "Count" extension (amask bit 1).  */
72
#define AXP_OPCODE_MAX   0x0400  /* Multimedia extension (amask bit 8).  */
73

    
74
#define AXP_OPCODE_NOPAL (~(AXP_OPCODE_EV4|AXP_OPCODE_EV5|AXP_OPCODE_EV6))
75

    
76
/* A macro to extract the major opcode from an instruction.  */
77
#define AXP_OP(i)        (((i) >> 26) & 0x3F)
78

    
79
/* The total number of major opcodes. */
80
#define AXP_NOPS        0x40
81

    
82
 
83
/* The operands table is an array of struct alpha_operand.  */
84

    
85
struct alpha_operand
86
{
87
  /* The number of bits in the operand.  */
88
  unsigned int bits : 5;
89

    
90
  /* How far the operand is left shifted in the instruction.  */
91
  unsigned int shift : 5;
92

    
93
  /* The default relocation type for this operand.  */
94
  signed int default_reloc : 16;
95

    
96
  /* One bit syntax flags.  */
97
  unsigned int flags : 16;
98

    
99
  /* Insertion function.  This is used by the assembler.  To insert an
100
     operand value into an instruction, check this field.
101

102
     If it is NULL, execute
103
         i |= (op & ((1 << o->bits) - 1)) << o->shift;
104
     (i is the instruction which we are filling in, o is a pointer to
105
     this structure, and op is the opcode value; this assumes twos
106
     complement arithmetic).
107

108
     If this field is not NULL, then simply call it with the
109
     instruction and the operand value.  It will return the new value
110
     of the instruction.  If the ERRMSG argument is not NULL, then if
111
     the operand value is illegal, *ERRMSG will be set to a warning
112
     string (the operand will be inserted in any case).  If the
113
     operand value is legal, *ERRMSG will be unchanged (most operands
114
     can accept any value).  */
115
  unsigned (*insert) PARAMS ((unsigned instruction, int op,
116
                              const char **errmsg));
117

    
118
  /* Extraction function.  This is used by the disassembler.  To
119
     extract this operand type from an instruction, check this field.
120

121
     If it is NULL, compute
122
         op = ((i) >> o->shift) & ((1 << o->bits) - 1);
123
         if ((o->flags & AXP_OPERAND_SIGNED) != 0
124
             && (op & (1 << (o->bits - 1))) != 0)
125
           op -= 1 << o->bits;
126
     (i is the instruction, o is a pointer to this structure, and op
127
     is the result; this assumes twos complement arithmetic).
128

129
     If this field is not NULL, then simply call it with the
130
     instruction value.  It will return the value of the operand.  If
131
     the INVALID argument is not NULL, *INVALID will be set to
132
     non-zero if this operand type can not actually be extracted from
133
     this operand (i.e., the instruction does not match).  If the
134
     operand is valid, *INVALID will not be changed.  */
135
  int (*extract) PARAMS ((unsigned instruction, int *invalid));
136
};
137

    
138
/* Elements in the table are retrieved by indexing with values from
139
   the operands field of the alpha_opcodes table.  */
140

    
141
extern const struct alpha_operand alpha_operands[];
142
extern const unsigned alpha_num_operands;
143

    
144
/* Values defined for the flags field of a struct alpha_operand.  */
145

    
146
/* Mask for selecting the type for typecheck purposes */
147
#define AXP_OPERAND_TYPECHECK_MASK                                        \
148
  (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA | AXP_OPERAND_IR |                \
149
   AXP_OPERAND_FPR | AXP_OPERAND_RELATIVE | AXP_OPERAND_SIGNED |         \
150
   AXP_OPERAND_UNSIGNED)
151

    
152
/* This operand does not actually exist in the assembler input.  This
153
   is used to support extended mnemonics, for which two operands fields
154
   are identical.  The assembler should call the insert function with
155
   any op value.  The disassembler should call the extract function,
156
   ignore the return value, and check the value placed in the invalid
157
   argument.  */
158
#define AXP_OPERAND_FAKE        01
159

    
160
/* The operand should be wrapped in parentheses rather than separated
161
   from the previous by a comma.  This is used for the load and store
162
   instructions which want their operands to look like "Ra,disp(Rb)".  */
163
#define AXP_OPERAND_PARENS        02
164

    
165
/* Used in combination with PARENS, this supresses the supression of
166
   the comma.  This is used for "jmp Ra,(Rb),hint".  */
167
#define AXP_OPERAND_COMMA        04
168

    
169
/* This operand names an integer register.  */
170
#define AXP_OPERAND_IR                010
171

    
172
/* This operand names a floating point register.  */
173
#define AXP_OPERAND_FPR                020
174

    
175
/* This operand is a relative branch displacement.  The disassembler
176
   prints these symbolically if possible.  */
177
#define AXP_OPERAND_RELATIVE        040
178

    
179
/* This operand takes signed values.  */
180
#define AXP_OPERAND_SIGNED        0100
181

    
182
/* This operand takes unsigned values.  This exists primarily so that
183
   a flags value of 0 can be treated as end-of-arguments.  */
184
#define AXP_OPERAND_UNSIGNED        0200
185

    
186
/* Supress overflow detection on this field.  This is used for hints. */
187
#define AXP_OPERAND_NOOVERFLOW        0400
188

    
189
/* Mask for optional argument default value.  */
190
#define AXP_OPERAND_OPTIONAL_MASK 07000
191

    
192
/* This operand defaults to zero.  This is used for jump hints.  */
193
#define AXP_OPERAND_DEFAULT_ZERO 01000
194

    
195
/* This operand should default to the first (real) operand and is used
196
   in conjunction with AXP_OPERAND_OPTIONAL.  This allows
197
   "and $0,3,$0" to be written as "and $0,3", etc.  I don't like
198
   it, but it's what DEC does.  */
199
#define AXP_OPERAND_DEFAULT_FIRST 02000
200

    
201
/* Similarly, this operand should default to the second (real) operand.
202
   This allows "negl $0" instead of "negl $0,$0".  */
203
#define AXP_OPERAND_DEFAULT_SECOND 04000
204

    
205
 
206
/* Register common names */
207

    
208
#define AXP_REG_V0        0
209
#define AXP_REG_T0        1
210
#define AXP_REG_T1        2
211
#define AXP_REG_T2        3
212
#define AXP_REG_T3        4
213
#define AXP_REG_T4        5
214
#define AXP_REG_T5        6
215
#define AXP_REG_T6        7
216
#define AXP_REG_T7        8
217
#define AXP_REG_S0        9
218
#define AXP_REG_S1        10
219
#define AXP_REG_S2        11
220
#define AXP_REG_S3        12
221
#define AXP_REG_S4        13
222
#define AXP_REG_S5        14
223
#define AXP_REG_FP        15
224
#define AXP_REG_A0        16
225
#define AXP_REG_A1        17
226
#define AXP_REG_A2        18
227
#define AXP_REG_A3        19
228
#define AXP_REG_A4        20
229
#define AXP_REG_A5        21
230
#define AXP_REG_T8        22
231
#define AXP_REG_T9        23
232
#define AXP_REG_T10        24
233
#define AXP_REG_T11        25
234
#define AXP_REG_RA        26
235
#define AXP_REG_PV        27
236
#define AXP_REG_T12        27
237
#define AXP_REG_AT        28
238
#define AXP_REG_GP        29
239
#define AXP_REG_SP        30
240
#define AXP_REG_ZERO        31
241

    
242
#define bfd_mach_alpha_ev4  0x10
243
#define bfd_mach_alpha_ev5  0x20
244
#define bfd_mach_alpha_ev6  0x30
245

    
246
enum bfd_reloc_code_real {
247
    BFD_RELOC_23_PCREL_S2,
248
    BFD_RELOC_ALPHA_HINT
249
};
250

    
251
bfd_vma
252
bfd_getl32 (addr)
253
     register const bfd_byte *addr;
254
{
255
  unsigned long v;
256

    
257
  v = (unsigned long) addr[0];
258
  v |= (unsigned long) addr[1] << 8;
259
  v |= (unsigned long) addr[2] << 16;
260
  v |= (unsigned long) addr[3] << 24;
261
  return (bfd_vma) v;
262
}
263

    
264
/* This file holds the Alpha AXP opcode table.  The opcode table includes
265
   almost all of the extended instruction mnemonics.  This permits the
266
   disassembler to use them, and simplifies the assembler logic, at the
267
   cost of increasing the table size.  The table is strictly constant
268
   data, so the compiler should be able to put it in the text segment.
269

270
   This file also holds the operand table.  All knowledge about inserting
271
   and extracting operands from instructions is kept in this file.
272

273
   The information for the base instruction set was compiled from the
274
   _Alpha Architecture Handbook_, Digital Order Number EC-QD2KB-TE,
275
   version 2.
276

277
   The information for the post-ev5 architecture extensions BWX, CIX and
278
   MAX came from version 3 of this same document, which is also available
279
   on-line at http://ftp.digital.com/pub/Digital/info/semiconductor
280
   /literature/alphahb2.pdf
281

282
   The information for the EV4 PALcode instructions was compiled from
283
   _DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors Hardware
284
   Reference Manual_, Digital Order Number EC-Q9ZUA-TE, preliminary
285
   revision dated June 1994.
286

287
   The information for the EV5 PALcode instructions was compiled from
288
   _Alpha 21164 Microprocessor Hardware Reference Manual_, Digital
289
   Order Number EC-QAEQB-TE, preliminary revision dated April 1995.  */
290
 
291
/* Local insertion and extraction functions */
292

    
293
static unsigned insert_rba PARAMS((unsigned, int, const char **));
294
static unsigned insert_rca PARAMS((unsigned, int, const char **));
295
static unsigned insert_za PARAMS((unsigned, int, const char **));
296
static unsigned insert_zb PARAMS((unsigned, int, const char **));
297
static unsigned insert_zc PARAMS((unsigned, int, const char **));
298
static unsigned insert_bdisp PARAMS((unsigned, int, const char **));
299
static unsigned insert_jhint PARAMS((unsigned, int, const char **));
300
static unsigned insert_ev6hwjhint PARAMS((unsigned, int, const char **));
301

    
302
static int extract_rba PARAMS((unsigned, int *));
303
static int extract_rca PARAMS((unsigned, int *));
304
static int extract_za PARAMS((unsigned, int *));
305
static int extract_zb PARAMS((unsigned, int *));
306
static int extract_zc PARAMS((unsigned, int *));
307
static int extract_bdisp PARAMS((unsigned, int *));
308
static int extract_jhint PARAMS((unsigned, int *));
309
static int extract_ev6hwjhint PARAMS((unsigned, int *));
310

    
311
 
312
/* The operands table  */
313

    
314
const struct alpha_operand alpha_operands[] =
315
{
316
  /* The fields are bits, shift, insert, extract, flags */
317
  /* The zero index is used to indicate end-of-list */
318
#define UNUSED                0
319
  { 0, 0, 0, 0, 0, 0 },
320

    
321
  /* The plain integer register fields */
322
#define RA                (UNUSED + 1)
323
  { 5, 21, 0, AXP_OPERAND_IR, 0, 0 },
324
#define RB                (RA + 1)
325
  { 5, 16, 0, AXP_OPERAND_IR, 0, 0 },
326
#define RC                (RB + 1)
327
  { 5, 0, 0, AXP_OPERAND_IR, 0, 0 },
328

    
329
  /* The plain fp register fields */
330
#define FA                (RC + 1)
331
  { 5, 21, 0, AXP_OPERAND_FPR, 0, 0 },
332
#define FB                (FA + 1)
333
  { 5, 16, 0, AXP_OPERAND_FPR, 0, 0 },
334
#define FC                (FB + 1)
335
  { 5, 0, 0, AXP_OPERAND_FPR, 0, 0 },
336

    
337
  /* The integer registers when they are ZERO */
338
#define ZA                (FC + 1)
339
  { 5, 21, 0, AXP_OPERAND_FAKE, insert_za, extract_za },
340
#define ZB                (ZA + 1)
341
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_zb, extract_zb },
342
#define ZC                (ZB + 1)
343
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_zc, extract_zc },
344

    
345
  /* The RB field when it needs parentheses */
346
#define PRB                (ZC + 1)
347
  { 5, 16, 0, AXP_OPERAND_IR|AXP_OPERAND_PARENS, 0, 0 },
348

    
349
  /* The RB field when it needs parentheses _and_ a preceding comma */
350
#define CPRB                (PRB + 1)
351
  { 5, 16, 0,
352
    AXP_OPERAND_IR|AXP_OPERAND_PARENS|AXP_OPERAND_COMMA, 0, 0 },
353

    
354
  /* The RB field when it must be the same as the RA field */
355
#define RBA                (CPRB + 1)
356
  { 5, 16, 0, AXP_OPERAND_FAKE, insert_rba, extract_rba },
357

    
358
  /* The RC field when it must be the same as the RB field */
359
#define RCA                (RBA + 1)
360
  { 5, 0, 0, AXP_OPERAND_FAKE, insert_rca, extract_rca },
361

    
362
  /* The RC field when it can *default* to RA */
363
#define DRC1                (RCA + 1)
364
  { 5, 0, 0,
365
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
366

    
367
  /* The RC field when it can *default* to RB */
368
#define DRC2                (DRC1 + 1)
369
  { 5, 0, 0,
370
    AXP_OPERAND_IR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
371

    
372
  /* The FC field when it can *default* to RA */
373
#define DFC1                (DRC2 + 1)
374
  { 5, 0, 0,
375
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_FIRST, 0, 0 },
376

    
377
  /* The FC field when it can *default* to RB */
378
#define DFC2                (DFC1 + 1)
379
  { 5, 0, 0,
380
    AXP_OPERAND_FPR|AXP_OPERAND_DEFAULT_SECOND, 0, 0 },
381

    
382
  /* The unsigned 8-bit literal of Operate format insns */
383
#define LIT                (DFC2 + 1)
384
  { 8, 13, -LIT, AXP_OPERAND_UNSIGNED, 0, 0 },
385

    
386
  /* The signed 16-bit displacement of Memory format insns.  From here
387
     we can't tell what relocation should be used, so don't use a default. */
388
#define MDISP                (LIT + 1)
389
  { 16, 0, -MDISP, AXP_OPERAND_SIGNED, 0, 0 },
390

    
391
  /* The signed "23-bit" aligned displacement of Branch format insns */
392
#define BDISP                (MDISP + 1)
393
  { 21, 0, BFD_RELOC_23_PCREL_S2, 
394
    AXP_OPERAND_RELATIVE, insert_bdisp, extract_bdisp },
395

    
396
  /* The 26-bit PALcode function */
397
#define PALFN                (BDISP + 1)
398
  { 26, 0, -PALFN, AXP_OPERAND_UNSIGNED, 0, 0 },
399

    
400
  /* The optional signed "16-bit" aligned displacement of the JMP/JSR hint */
401
#define JMPHINT                (PALFN + 1)
402
  { 14, 0, BFD_RELOC_ALPHA_HINT,
403
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
404
    insert_jhint, extract_jhint },
405

    
406
  /* The optional hint to RET/JSR_COROUTINE */
407
#define RETHINT                (JMPHINT + 1)
408
  { 14, 0, -RETHINT,
409
    AXP_OPERAND_UNSIGNED|AXP_OPERAND_DEFAULT_ZERO, 0, 0 },
410

    
411
  /* The 12-bit displacement for the ev[46] hw_{ld,st} (pal1b/pal1f) insns */
412
#define EV4HWDISP        (RETHINT + 1)
413
#define EV6HWDISP        (EV4HWDISP)
414
  { 12, 0, -EV4HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
415

    
416
  /* The 5-bit index for the ev4 hw_m[ft]pr (pal19/pal1d) insns */
417
#define EV4HWINDEX        (EV4HWDISP + 1)
418
  { 5, 0, -EV4HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
419

    
420
  /* The 8-bit index for the oddly unqualified hw_m[tf]pr insns
421
     that occur in DEC PALcode.  */
422
#define EV4EXTHWINDEX        (EV4HWINDEX + 1)
423
  { 8, 0, -EV4EXTHWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
424

    
425
  /* The 10-bit displacement for the ev5 hw_{ld,st} (pal1b/pal1f) insns */
426
#define EV5HWDISP        (EV4EXTHWINDEX + 1)
427
  { 10, 0, -EV5HWDISP, AXP_OPERAND_SIGNED, 0, 0 },
428

    
429
  /* The 16-bit index for the ev5 hw_m[ft]pr (pal19/pal1d) insns */
430
#define EV5HWINDEX        (EV5HWDISP + 1)
431
  { 16, 0, -EV5HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
432

    
433
  /* The 16-bit combined index/scoreboard mask for the ev6
434
     hw_m[ft]pr (pal19/pal1d) insns */
435
#define EV6HWINDEX        (EV5HWINDEX + 1)
436
  { 16, 0, -EV6HWINDEX, AXP_OPERAND_UNSIGNED, 0, 0 },
437

    
438
  /* The 13-bit branch hint for the ev6 hw_jmp/jsr (pal1e) insn */
439
#define EV6HWJMPHINT        (EV6HWINDEX+ 1)
440
  { 8, 0, -EV6HWJMPHINT,
441
    AXP_OPERAND_RELATIVE|AXP_OPERAND_DEFAULT_ZERO|AXP_OPERAND_NOOVERFLOW,
442
    insert_ev6hwjhint, extract_ev6hwjhint }
443
};
444

    
445
const unsigned alpha_num_operands = sizeof(alpha_operands)/sizeof(*alpha_operands);
446

    
447
/* The RB field when it is the same as the RA field in the same insn.
448
   This operand is marked fake.  The insertion function just copies
449
   the RA field into the RB field, and the extraction function just
450
   checks that the fields are the same. */
451

    
452
/*ARGSUSED*/
453
static unsigned
454
insert_rba(insn, value, errmsg)
455
     unsigned insn;
456
     int value ATTRIBUTE_UNUSED;
457
     const char **errmsg ATTRIBUTE_UNUSED;
458
{
459
  return insn | (((insn >> 21) & 0x1f) << 16);
460
}
461

    
462
static int
463
extract_rba(insn, invalid)
464
     unsigned insn;
465
     int *invalid;
466
{
467
  if (invalid != (int *) NULL
468
      && ((insn >> 21) & 0x1f) != ((insn >> 16) & 0x1f))
469
    *invalid = 1;
470
  return 0;
471
}
472

    
473

    
474
/* The same for the RC field */
475

    
476
/*ARGSUSED*/
477
static unsigned
478
insert_rca(insn, value, errmsg)
479
     unsigned insn;
480
     int value ATTRIBUTE_UNUSED;
481
     const char **errmsg ATTRIBUTE_UNUSED;
482
{
483
  return insn | ((insn >> 21) & 0x1f);
484
}
485

    
486
static int
487
extract_rca(insn, invalid)
488
     unsigned insn;
489
     int *invalid;
490
{
491
  if (invalid != (int *) NULL
492
      && ((insn >> 21) & 0x1f) != (insn & 0x1f))
493
    *invalid = 1;
494
  return 0;
495
}
496

    
497

    
498
/* Fake arguments in which the registers must be set to ZERO */
499

    
500
/*ARGSUSED*/
501
static unsigned
502
insert_za(insn, value, errmsg)
503
     unsigned insn;
504
     int value ATTRIBUTE_UNUSED;
505
     const char **errmsg ATTRIBUTE_UNUSED;
506
{
507
  return insn | (31 << 21);
508
}
509

    
510
static int
511
extract_za(insn, invalid)
512
     unsigned insn;
513
     int *invalid;
514
{
515
  if (invalid != (int *) NULL && ((insn >> 21) & 0x1f) != 31)
516
    *invalid = 1;
517
  return 0;
518
}
519

    
520
/*ARGSUSED*/
521
static unsigned
522
insert_zb(insn, value, errmsg)
523
     unsigned insn;
524
     int value ATTRIBUTE_UNUSED;
525
     const char **errmsg ATTRIBUTE_UNUSED;
526
{
527
  return insn | (31 << 16);
528
}
529

    
530
static int
531
extract_zb(insn, invalid)
532
     unsigned insn;
533
     int *invalid;
534
{
535
  if (invalid != (int *) NULL && ((insn >> 16) & 0x1f) != 31)
536
    *invalid = 1;
537
  return 0;
538
}
539

    
540
/*ARGSUSED*/
541
static unsigned
542
insert_zc(insn, value, errmsg)
543
     unsigned insn;
544
     int value ATTRIBUTE_UNUSED;
545
     const char **errmsg ATTRIBUTE_UNUSED;
546
{
547
  return insn | 31;
548
}
549

    
550
static int
551
extract_zc(insn, invalid)
552
     unsigned insn;
553
     int *invalid;
554
{
555
  if (invalid != (int *) NULL && (insn & 0x1f) != 31)
556
    *invalid = 1;
557
  return 0;
558
}
559

    
560

    
561
/* The displacement field of a Branch format insn.  */
562

    
563
static unsigned
564
insert_bdisp(insn, value, errmsg)
565
     unsigned insn;
566
     int value;
567
     const char **errmsg;
568
{
569
  if (errmsg != (const char **)NULL && (value & 3))
570
    *errmsg = _("branch operand unaligned");
571
  return insn | ((value / 4) & 0x1FFFFF);
572
}
573

    
574
/*ARGSUSED*/
575
static int
576
extract_bdisp(insn, invalid)
577
     unsigned insn;
578
     int *invalid ATTRIBUTE_UNUSED;
579
{
580
  return 4 * (((insn & 0x1FFFFF) ^ 0x100000) - 0x100000);
581
}
582

    
583

    
584
/* The hint field of a JMP/JSR insn.  */
585

    
586
static unsigned
587
insert_jhint(insn, value, errmsg)
588
     unsigned insn;
589
     int value;
590
     const char **errmsg;
591
{
592
  if (errmsg != (const char **)NULL && (value & 3))
593
    *errmsg = _("jump hint unaligned");
594
  return insn | ((value / 4) & 0x3FFF);
595
}
596

    
597
/*ARGSUSED*/
598
static int
599
extract_jhint(insn, invalid)
600
     unsigned insn;
601
     int *invalid ATTRIBUTE_UNUSED;
602
{
603
  return 4 * (((insn & 0x3FFF) ^ 0x2000) - 0x2000);
604
}
605

    
606
/* The hint field of an EV6 HW_JMP/JSR insn.  */
607

    
608
static unsigned
609
insert_ev6hwjhint(insn, value, errmsg)
610
     unsigned insn;
611
     int value;
612
     const char **errmsg;
613
{
614
  if (errmsg != (const char **)NULL && (value & 3))
615
    *errmsg = _("jump hint unaligned");
616
  return insn | ((value / 4) & 0x1FFF);
617
}
618

    
619
/*ARGSUSED*/
620
static int
621
extract_ev6hwjhint(insn, invalid)
622
     unsigned insn;
623
     int *invalid ATTRIBUTE_UNUSED;
624
{
625
  return 4 * (((insn & 0x1FFF) ^ 0x1000) - 0x1000);
626
}
627

    
628
 
629
/* Macros used to form opcodes */
630

    
631
/* The main opcode */
632
#define OP(x)                (((x) & 0x3F) << 26)
633
#define OP_MASK                0xFC000000
634

    
635
/* Branch format instructions */
636
#define BRA_(oo)        OP(oo)
637
#define BRA_MASK        OP_MASK
638
#define BRA(oo)                BRA_(oo), BRA_MASK
639

    
640
/* Floating point format instructions */
641
#define FP_(oo,fff)        (OP(oo) | (((fff) & 0x7FF) << 5))
642
#define FP_MASK                (OP_MASK | 0xFFE0)
643
#define FP(oo,fff)        FP_(oo,fff), FP_MASK
644

    
645
/* Memory format instructions */
646
#define MEM_(oo)        OP(oo)
647
#define MEM_MASK        OP_MASK
648
#define MEM(oo)                MEM_(oo), MEM_MASK
649

    
650
/* Memory/Func Code format instructions */
651
#define MFC_(oo,ffff)        (OP(oo) | ((ffff) & 0xFFFF))
652
#define MFC_MASK        (OP_MASK | 0xFFFF)
653
#define MFC(oo,ffff)        MFC_(oo,ffff), MFC_MASK
654

    
655
/* Memory/Branch format instructions */
656
#define MBR_(oo,h)        (OP(oo) | (((h) & 3) << 14))
657
#define MBR_MASK        (OP_MASK | 0xC000)
658
#define MBR(oo,h)        MBR_(oo,h), MBR_MASK
659

    
660
/* Operate format instructions.  The OPRL variant specifies a
661
   literal second argument. */
662
#define OPR_(oo,ff)        (OP(oo) | (((ff) & 0x7F) << 5))
663
#define OPRL_(oo,ff)        (OPR_((oo),(ff)) | 0x1000)
664
#define OPR_MASK        (OP_MASK | 0x1FE0)
665
#define OPR(oo,ff)        OPR_(oo,ff), OPR_MASK
666
#define OPRL(oo,ff)        OPRL_(oo,ff), OPR_MASK
667

    
668
/* Generic PALcode format instructions */
669
#define PCD_(oo)        OP(oo)
670
#define PCD_MASK        OP_MASK
671
#define PCD(oo)                PCD_(oo), PCD_MASK
672

    
673
/* Specific PALcode instructions */
674
#define SPCD_(oo,ffff)        (OP(oo) | ((ffff) & 0x3FFFFFF))
675
#define SPCD_MASK        0xFFFFFFFF
676
#define SPCD(oo,ffff)        SPCD_(oo,ffff), SPCD_MASK
677

    
678
/* Hardware memory (hw_{ld,st}) instructions */
679
#define EV4HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
680
#define EV4HWMEM_MASK        (OP_MASK | 0xF000)
681
#define EV4HWMEM(oo,f)        EV4HWMEM_(oo,f), EV4HWMEM_MASK
682

    
683
#define EV5HWMEM_(oo,f)        (OP(oo) | (((f) & 0x3F) << 10))
684
#define EV5HWMEM_MASK        (OP_MASK | 0xF800)
685
#define EV5HWMEM(oo,f)        EV5HWMEM_(oo,f), EV5HWMEM_MASK
686

    
687
#define EV6HWMEM_(oo,f)        (OP(oo) | (((f) & 0xF) << 12))
688
#define EV6HWMEM_MASK        (OP_MASK | 0xF000)
689
#define EV6HWMEM(oo,f)        EV6HWMEM_(oo,f), EV6HWMEM_MASK
690

    
691
#define EV6HWMBR_(oo,h)        (OP(oo) | (((h) & 7) << 13))
692
#define EV6HWMBR_MASK        (OP_MASK | 0xE000)
693
#define EV6HWMBR(oo,h)        EV6HWMBR_(oo,h), EV6HWMBR_MASK
694

    
695
/* Abbreviations for instruction subsets.  */
696
#define BASE                        AXP_OPCODE_BASE
697
#define EV4                        AXP_OPCODE_EV4
698
#define EV5                        AXP_OPCODE_EV5
699
#define EV6                        AXP_OPCODE_EV6
700
#define BWX                        AXP_OPCODE_BWX
701
#define CIX                        AXP_OPCODE_CIX
702
#define MAX                        AXP_OPCODE_MAX
703

    
704
/* Common combinations of arguments */
705
#define ARG_NONE                { 0 }
706
#define ARG_BRA                        { RA, BDISP }
707
#define ARG_FBRA                { FA, BDISP }
708
#define ARG_FP                        { FA, FB, DFC1 }
709
#define ARG_FPZ1                { ZA, FB, DFC1 }
710
#define ARG_MEM                        { RA, MDISP, PRB }
711
#define ARG_FMEM                { FA, MDISP, PRB }
712
#define ARG_OPR                        { RA, RB, DRC1 }
713
#define ARG_OPRL                { RA, LIT, DRC1 }
714
#define ARG_OPRZ1                { ZA, RB, DRC1 }
715
#define ARG_OPRLZ1                { ZA, LIT, RC }
716
#define ARG_PCD                        { PALFN }
717
#define ARG_EV4HWMEM                { RA, EV4HWDISP, PRB }
718
#define ARG_EV4HWMPR                { RA, RBA, EV4HWINDEX }
719
#define ARG_EV5HWMEM                { RA, EV5HWDISP, PRB }
720
#define ARG_EV6HWMEM                { RA, EV6HWDISP, PRB }
721
 
722
/* The opcode table.
723

724
   The format of the opcode table is:
725

726
   NAME OPCODE MASK { OPERANDS }
727

728
   NAME                is the name of the instruction.
729

730
   OPCODE        is the instruction opcode.
731

732
   MASK                is the opcode mask; this is used to tell the disassembler
733
                    which bits in the actual opcode must match OPCODE.
734

735
   OPERANDS        is the list of operands.
736

737
   The preceding macros merge the text of the OPCODE and MASK fields.
738

739
   The disassembler reads the table in order and prints the first
740
   instruction which matches, so this table is sorted to put more
741
   specific instructions before more general instructions.
742

743
   Otherwise, it is sorted by major opcode and minor function code.
744

745
   There are three classes of not-really-instructions in this table:
746

747
   ALIAS        is another name for another instruction.  Some of
748
                these come from the Architecture Handbook, some
749
                come from the original gas opcode tables.  In all
750
                cases, the functionality of the opcode is unchanged.
751

752
   PSEUDO        a stylized code form endorsed by Chapter A.4 of the
753
                Architecture Handbook.
754

755
   EXTRA        a stylized code form found in the original gas tables.
756

757
   And two annotations:
758

759
   EV56 BUT        opcodes that are officially introduced as of the ev56,
760
                   but with defined results on previous implementations.
761

762
   EV56 UNA        opcodes that were introduced as of the ev56 with
763
                   presumably undefined results on previous implementations
764
                that were not assigned to a particular extension.
765
*/
766

    
767
const struct alpha_opcode alpha_opcodes[] = {
768
  { "halt",                SPCD(0x00,0x0000), BASE, ARG_NONE },
769
  { "draina",                SPCD(0x00,0x0002), BASE, ARG_NONE },
770
  { "bpt",                SPCD(0x00,0x0080), BASE, ARG_NONE },
771
  { "bugchk",                SPCD(0x00,0x0081), BASE, ARG_NONE },
772
  { "callsys",                SPCD(0x00,0x0083), BASE, ARG_NONE },
773
  { "chmk",                 SPCD(0x00,0x0083), BASE, ARG_NONE },
774
  { "imb",                SPCD(0x00,0x0086), BASE, ARG_NONE },
775
  { "rduniq",                SPCD(0x00,0x009e), BASE, ARG_NONE },
776
  { "wruniq",                SPCD(0x00,0x009f), BASE, ARG_NONE },
777
  { "gentrap",                SPCD(0x00,0x00aa), BASE, ARG_NONE },
778
  { "call_pal",                PCD(0x00), BASE, ARG_PCD },
779
  { "pal",                PCD(0x00), BASE, ARG_PCD },                /* alias */
780

    
781
  { "lda",                MEM(0x08), BASE, { RA, MDISP, ZB } },        /* pseudo */
782
  { "lda",                MEM(0x08), BASE, ARG_MEM },
783
  { "ldah",                MEM(0x09), BASE, { RA, MDISP, ZB } },        /* pseudo */
784
  { "ldah",                MEM(0x09), BASE, ARG_MEM },
785
  { "ldbu",                MEM(0x0A), BWX, ARG_MEM },
786
  { "unop",                MEM_(0x0B) | (30 << 16),
787
                        MEM_MASK, BASE, { ZA } },                /* pseudo */
788
  { "ldq_u",                MEM(0x0B), BASE, ARG_MEM },
789
  { "ldwu",                MEM(0x0C), BWX, ARG_MEM },
790
  { "stw",                MEM(0x0D), BWX, ARG_MEM },
791
  { "stb",                MEM(0x0E), BWX, ARG_MEM },
792
  { "stq_u",                MEM(0x0F), BASE, ARG_MEM },
793

    
794
  { "sextl",                OPR(0x10,0x00), BASE, ARG_OPRZ1 },        /* pseudo */
795
  { "sextl",                OPRL(0x10,0x00), BASE, ARG_OPRLZ1 },        /* pseudo */
796
  { "addl",                OPR(0x10,0x00), BASE, ARG_OPR },
797
  { "addl",                OPRL(0x10,0x00), BASE, ARG_OPRL },
798
  { "s4addl",                OPR(0x10,0x02), BASE, ARG_OPR },
799
  { "s4addl",                OPRL(0x10,0x02), BASE, ARG_OPRL },
800
  { "negl",                OPR(0x10,0x09), BASE, ARG_OPRZ1 },        /* pseudo */
801
  { "negl",                OPRL(0x10,0x09), BASE, ARG_OPRLZ1 },        /* pseudo */
802
  { "subl",                OPR(0x10,0x09), BASE, ARG_OPR },
803
  { "subl",                OPRL(0x10,0x09), BASE, ARG_OPRL },
804
  { "s4subl",                OPR(0x10,0x0B), BASE, ARG_OPR },
805
  { "s4subl",                OPRL(0x10,0x0B), BASE, ARG_OPRL },
806
  { "cmpbge",                OPR(0x10,0x0F), BASE, ARG_OPR },
807
  { "cmpbge",                OPRL(0x10,0x0F), BASE, ARG_OPRL },
808
  { "s8addl",                OPR(0x10,0x12), BASE, ARG_OPR },
809
  { "s8addl",                OPRL(0x10,0x12), BASE, ARG_OPRL },
810
  { "s8subl",                OPR(0x10,0x1B), BASE, ARG_OPR },
811
  { "s8subl",                OPRL(0x10,0x1B), BASE, ARG_OPRL },
812
  { "cmpult",                OPR(0x10,0x1D), BASE, ARG_OPR },
813
  { "cmpult",                OPRL(0x10,0x1D), BASE, ARG_OPRL },
814
  { "addq",                OPR(0x10,0x20), BASE, ARG_OPR },
815
  { "addq",                OPRL(0x10,0x20), BASE, ARG_OPRL },
816
  { "s4addq",                OPR(0x10,0x22), BASE, ARG_OPR },
817
  { "s4addq",                OPRL(0x10,0x22), BASE, ARG_OPRL },
818
  { "negq",                 OPR(0x10,0x29), BASE, ARG_OPRZ1 },        /* pseudo */
819
  { "negq",                 OPRL(0x10,0x29), BASE, ARG_OPRLZ1 },        /* pseudo */
820
  { "subq",                OPR(0x10,0x29), BASE, ARG_OPR },
821
  { "subq",                OPRL(0x10,0x29), BASE, ARG_OPRL },
822
  { "s4subq",                OPR(0x10,0x2B), BASE, ARG_OPR },
823
  { "s4subq",                OPRL(0x10,0x2B), BASE, ARG_OPRL },
824
  { "cmpeq",                OPR(0x10,0x2D), BASE, ARG_OPR },
825
  { "cmpeq",                OPRL(0x10,0x2D), BASE, ARG_OPRL },
826
  { "s8addq",                OPR(0x10,0x32), BASE, ARG_OPR },
827
  { "s8addq",                OPRL(0x10,0x32), BASE, ARG_OPRL },
828
  { "s8subq",                OPR(0x10,0x3B), BASE, ARG_OPR },
829
  { "s8subq",                OPRL(0x10,0x3B), BASE, ARG_OPRL },
830
  { "cmpule",                OPR(0x10,0x3D), BASE, ARG_OPR },
831
  { "cmpule",                OPRL(0x10,0x3D), BASE, ARG_OPRL },
832
  { "addl/v",                OPR(0x10,0x40), BASE, ARG_OPR },
833
  { "addl/v",                OPRL(0x10,0x40), BASE, ARG_OPRL },
834
  { "negl/v",                OPR(0x10,0x49), BASE, ARG_OPRZ1 },        /* pseudo */
835
  { "negl/v",                OPRL(0x10,0x49), BASE, ARG_OPRLZ1 },        /* pseudo */
836
  { "subl/v",                OPR(0x10,0x49), BASE, ARG_OPR },
837
  { "subl/v",                OPRL(0x10,0x49), BASE, ARG_OPRL },
838
  { "cmplt",                OPR(0x10,0x4D), BASE, ARG_OPR },
839
  { "cmplt",                OPRL(0x10,0x4D), BASE, ARG_OPRL },
840
  { "addq/v",                OPR(0x10,0x60), BASE, ARG_OPR },
841
  { "addq/v",                OPRL(0x10,0x60), BASE, ARG_OPRL },
842
  { "negq/v",                OPR(0x10,0x69), BASE, ARG_OPRZ1 },        /* pseudo */
843
  { "negq/v",                OPRL(0x10,0x69), BASE, ARG_OPRLZ1 },        /* pseudo */
844
  { "subq/v",                OPR(0x10,0x69), BASE, ARG_OPR },
845
  { "subq/v",                OPRL(0x10,0x69), BASE, ARG_OPRL },
846
  { "cmple",                OPR(0x10,0x6D), BASE, ARG_OPR },
847
  { "cmple",                OPRL(0x10,0x6D), BASE, ARG_OPRL },
848

    
849
  { "and",                OPR(0x11,0x00), BASE, ARG_OPR },
850
  { "and",                OPRL(0x11,0x00), BASE, ARG_OPRL },
851
  { "andnot",                OPR(0x11,0x08), BASE, ARG_OPR },        /* alias */
852
  { "andnot",                OPRL(0x11,0x08), BASE, ARG_OPRL },        /* alias */
853
  { "bic",                OPR(0x11,0x08), BASE, ARG_OPR },
854
  { "bic",                OPRL(0x11,0x08), BASE, ARG_OPRL },
855
  { "cmovlbs",                OPR(0x11,0x14), BASE, ARG_OPR },
856
  { "cmovlbs",                OPRL(0x11,0x14), BASE, ARG_OPRL },
857
  { "cmovlbc",                OPR(0x11,0x16), BASE, ARG_OPR },
858
  { "cmovlbc",                OPRL(0x11,0x16), BASE, ARG_OPRL },
859
  { "nop",                OPR(0x11,0x20), BASE, { ZA, ZB, ZC } }, /* pseudo */
860
  { "clr",                OPR(0x11,0x20), BASE, { ZA, ZB, RC } }, /* pseudo */
861
  { "mov",                OPR(0x11,0x20), BASE, { ZA, RB, RC } }, /* pseudo */
862
  { "mov",                OPR(0x11,0x20), BASE, { RA, RBA, RC } }, /* pseudo */
863
  { "mov",                OPRL(0x11,0x20), BASE, { ZA, LIT, RC } }, /* pseudo */
864
  { "or",                OPR(0x11,0x20), BASE, ARG_OPR },        /* alias */
865
  { "or",                OPRL(0x11,0x20), BASE, ARG_OPRL },        /* alias */
866
  { "bis",                OPR(0x11,0x20), BASE, ARG_OPR },
867
  { "bis",                OPRL(0x11,0x20), BASE, ARG_OPRL },
868
  { "cmoveq",                OPR(0x11,0x24), BASE, ARG_OPR },
869
  { "cmoveq",                OPRL(0x11,0x24), BASE, ARG_OPRL },
870
  { "cmovne",                OPR(0x11,0x26), BASE, ARG_OPR },
871
  { "cmovne",                OPRL(0x11,0x26), BASE, ARG_OPRL },
872
  { "not",                OPR(0x11,0x28), BASE, ARG_OPRZ1 },        /* pseudo */
873
  { "not",                OPRL(0x11,0x28), BASE, ARG_OPRLZ1 },        /* pseudo */
874
  { "ornot",                OPR(0x11,0x28), BASE, ARG_OPR },
875
  { "ornot",                OPRL(0x11,0x28), BASE, ARG_OPRL },
876
  { "xor",                OPR(0x11,0x40), BASE, ARG_OPR },
877
  { "xor",                OPRL(0x11,0x40), BASE, ARG_OPRL },
878
  { "cmovlt",                OPR(0x11,0x44), BASE, ARG_OPR },
879
  { "cmovlt",                OPRL(0x11,0x44), BASE, ARG_OPRL },
880
  { "cmovge",                OPR(0x11,0x46), BASE, ARG_OPR },
881
  { "cmovge",                OPRL(0x11,0x46), BASE, ARG_OPRL },
882
  { "eqv",                OPR(0x11,0x48), BASE, ARG_OPR },
883
  { "eqv",                OPRL(0x11,0x48), BASE, ARG_OPRL },
884
  { "xornot",                OPR(0x11,0x48), BASE, ARG_OPR },        /* alias */
885
  { "xornot",                OPRL(0x11,0x48), BASE, ARG_OPRL },        /* alias */
886
  { "amask",                OPR(0x11,0x61), BASE, ARG_OPRZ1 },        /* ev56 but */
887
  { "amask",                OPRL(0x11,0x61), BASE, ARG_OPRLZ1 },        /* ev56 but */
888
  { "cmovle",                OPR(0x11,0x64), BASE, ARG_OPR },
889
  { "cmovle",                OPRL(0x11,0x64), BASE, ARG_OPRL },
890
  { "cmovgt",                OPR(0x11,0x66), BASE, ARG_OPR },
891
  { "cmovgt",                OPRL(0x11,0x66), BASE, ARG_OPRL },
892
  { "implver",                OPRL_(0x11,0x6C)|(31<<21)|(1<<13),
893
                            0xFFFFFFE0, BASE, { RC } },                /* ev56 but */
894

    
895
  { "mskbl",                OPR(0x12,0x02), BASE, ARG_OPR },
896
  { "mskbl",                OPRL(0x12,0x02), BASE, ARG_OPRL },
897
  { "extbl",                OPR(0x12,0x06), BASE, ARG_OPR },
898
  { "extbl",                OPRL(0x12,0x06), BASE, ARG_OPRL },
899
  { "insbl",                OPR(0x12,0x0B), BASE, ARG_OPR },
900
  { "insbl",                OPRL(0x12,0x0B), BASE, ARG_OPRL },
901
  { "mskwl",                OPR(0x12,0x12), BASE, ARG_OPR },
902
  { "mskwl",                OPRL(0x12,0x12), BASE, ARG_OPRL },
903
  { "extwl",                OPR(0x12,0x16), BASE, ARG_OPR },
904
  { "extwl",                OPRL(0x12,0x16), BASE, ARG_OPRL },
905
  { "inswl",                OPR(0x12,0x1B), BASE, ARG_OPR },
906
  { "inswl",                OPRL(0x12,0x1B), BASE, ARG_OPRL },
907
  { "mskll",                OPR(0x12,0x22), BASE, ARG_OPR },
908
  { "mskll",                OPRL(0x12,0x22), BASE, ARG_OPRL },
909
  { "extll",                OPR(0x12,0x26), BASE, ARG_OPR },
910
  { "extll",                OPRL(0x12,0x26), BASE, ARG_OPRL },
911
  { "insll",                OPR(0x12,0x2B), BASE, ARG_OPR },
912
  { "insll",                OPRL(0x12,0x2B), BASE, ARG_OPRL },
913
  { "zap",                OPR(0x12,0x30), BASE, ARG_OPR },
914
  { "zap",                OPRL(0x12,0x30), BASE, ARG_OPRL },
915
  { "zapnot",                OPR(0x12,0x31), BASE, ARG_OPR },
916
  { "zapnot",                OPRL(0x12,0x31), BASE, ARG_OPRL },
917
  { "mskql",                OPR(0x12,0x32), BASE, ARG_OPR },
918
  { "mskql",                OPRL(0x12,0x32), BASE, ARG_OPRL },
919
  { "srl",                OPR(0x12,0x34), BASE, ARG_OPR },
920
  { "srl",                OPRL(0x12,0x34), BASE, ARG_OPRL },
921
  { "extql",                OPR(0x12,0x36), BASE, ARG_OPR },
922
  { "extql",                OPRL(0x12,0x36), BASE, ARG_OPRL },
923
  { "sll",                OPR(0x12,0x39), BASE, ARG_OPR },
924
  { "sll",                OPRL(0x12,0x39), BASE, ARG_OPRL },
925
  { "insql",                OPR(0x12,0x3B), BASE, ARG_OPR },
926
  { "insql",                OPRL(0x12,0x3B), BASE, ARG_OPRL },
927
  { "sra",                OPR(0x12,0x3C), BASE, ARG_OPR },
928
  { "sra",                OPRL(0x12,0x3C), BASE, ARG_OPRL },
929
  { "mskwh",                OPR(0x12,0x52), BASE, ARG_OPR },
930
  { "mskwh",                OPRL(0x12,0x52), BASE, ARG_OPRL },
931
  { "inswh",                OPR(0x12,0x57), BASE, ARG_OPR },
932
  { "inswh",                OPRL(0x12,0x57), BASE, ARG_OPRL },
933
  { "extwh",                OPR(0x12,0x5A), BASE, ARG_OPR },
934
  { "extwh",                OPRL(0x12,0x5A), BASE, ARG_OPRL },
935
  { "msklh",                OPR(0x12,0x62), BASE, ARG_OPR },
936
  { "msklh",                OPRL(0x12,0x62), BASE, ARG_OPRL },
937
  { "inslh",                OPR(0x12,0x67), BASE, ARG_OPR },
938
  { "inslh",                OPRL(0x12,0x67), BASE, ARG_OPRL },
939
  { "extlh",                OPR(0x12,0x6A), BASE, ARG_OPR },
940
  { "extlh",                OPRL(0x12,0x6A), BASE, ARG_OPRL },
941
  { "mskqh",                OPR(0x12,0x72), BASE, ARG_OPR },
942
  { "mskqh",                OPRL(0x12,0x72), BASE, ARG_OPRL },
943
  { "insqh",                OPR(0x12,0x77), BASE, ARG_OPR },
944
  { "insqh",                OPRL(0x12,0x77), BASE, ARG_OPRL },
945
  { "extqh",                OPR(0x12,0x7A), BASE, ARG_OPR },
946
  { "extqh",                OPRL(0x12,0x7A), BASE, ARG_OPRL },
947

    
948
  { "mull",                OPR(0x13,0x00), BASE, ARG_OPR },
949
  { "mull",                OPRL(0x13,0x00), BASE, ARG_OPRL },
950
  { "mulq",                OPR(0x13,0x20), BASE, ARG_OPR },
951
  { "mulq",                OPRL(0x13,0x20), BASE, ARG_OPRL },
952
  { "umulh",                OPR(0x13,0x30), BASE, ARG_OPR },
953
  { "umulh",                OPRL(0x13,0x30), BASE, ARG_OPRL },
954
  { "mull/v",                OPR(0x13,0x40), BASE, ARG_OPR },
955
  { "mull/v",                OPRL(0x13,0x40), BASE, ARG_OPRL },
956
  { "mulq/v",                OPR(0x13,0x60), BASE, ARG_OPR },
957
  { "mulq/v",                OPRL(0x13,0x60), BASE, ARG_OPRL },
958

    
959
  { "itofs",                FP(0x14,0x004), CIX, { RA, ZB, FC } },
960
  { "sqrtf/c",                FP(0x14,0x00A), CIX, ARG_FPZ1 },
961
  { "sqrts/c",                FP(0x14,0x00B), CIX, ARG_FPZ1 },
962
  { "itoff",                FP(0x14,0x014), CIX, { RA, ZB, FC } },
963
  { "itoft",                FP(0x14,0x024), CIX, { RA, ZB, FC } },
964
  { "sqrtg/c",                FP(0x14,0x02A), CIX, ARG_FPZ1 },
965
  { "sqrtt/c",                FP(0x14,0x02B), CIX, ARG_FPZ1 },
966
  { "sqrts/m",                FP(0x14,0x04B), CIX, ARG_FPZ1 },
967
  { "sqrtt/m",                FP(0x14,0x06B), CIX, ARG_FPZ1 },
968
  { "sqrtf",                FP(0x14,0x08A), CIX, ARG_FPZ1 },
969
  { "sqrts",                FP(0x14,0x08B), CIX, ARG_FPZ1 },
970
  { "sqrtg",                FP(0x14,0x0AA), CIX, ARG_FPZ1 },
971
  { "sqrtt",                FP(0x14,0x0AB), CIX, ARG_FPZ1 },
972
  { "sqrts/d",                FP(0x14,0x0CB), CIX, ARG_FPZ1 },
973
  { "sqrtt/d",                FP(0x14,0x0EB), CIX, ARG_FPZ1 },
974
  { "sqrtf/uc",                FP(0x14,0x10A), CIX, ARG_FPZ1 },
975
  { "sqrts/uc",                FP(0x14,0x10B), CIX, ARG_FPZ1 },
976
  { "sqrtg/uc",                FP(0x14,0x12A), CIX, ARG_FPZ1 },
977
  { "sqrtt/uc",                FP(0x14,0x12B), CIX, ARG_FPZ1 },
978
  { "sqrts/um",                FP(0x14,0x14B), CIX, ARG_FPZ1 },
979
  { "sqrtt/um",                FP(0x14,0x16B), CIX, ARG_FPZ1 },
980
  { "sqrtf/u",                FP(0x14,0x18A), CIX, ARG_FPZ1 },
981
  { "sqrts/u",                FP(0x14,0x18B), CIX, ARG_FPZ1 },
982
  { "sqrtg/u",                FP(0x14,0x1AA), CIX, ARG_FPZ1 },
983
  { "sqrtt/u",                FP(0x14,0x1AB), CIX, ARG_FPZ1 },
984
  { "sqrts/ud",                FP(0x14,0x1CB), CIX, ARG_FPZ1 },
985
  { "sqrtt/ud",                FP(0x14,0x1EB), CIX, ARG_FPZ1 },
986
  { "sqrtf/sc",                FP(0x14,0x40A), CIX, ARG_FPZ1 },
987
  { "sqrtg/sc",                FP(0x14,0x42A), CIX, ARG_FPZ1 },
988
  { "sqrtf/s",                FP(0x14,0x48A), CIX, ARG_FPZ1 },
989
  { "sqrtg/s",                FP(0x14,0x4AA), CIX, ARG_FPZ1 },
990
  { "sqrtf/suc",        FP(0x14,0x50A), CIX, ARG_FPZ1 },
991
  { "sqrts/suc",        FP(0x14,0x50B), CIX, ARG_FPZ1 },
992
  { "sqrtg/suc",        FP(0x14,0x52A), CIX, ARG_FPZ1 },
993
  { "sqrtt/suc",        FP(0x14,0x52B), CIX, ARG_FPZ1 },
994
  { "sqrts/sum",        FP(0x14,0x54B), CIX, ARG_FPZ1 },
995
  { "sqrtt/sum",        FP(0x14,0x56B), CIX, ARG_FPZ1 },
996
  { "sqrtf/su",                FP(0x14,0x58A), CIX, ARG_FPZ1 },
997
  { "sqrts/su",                FP(0x14,0x58B), CIX, ARG_FPZ1 },
998
  { "sqrtg/su",                FP(0x14,0x5AA), CIX, ARG_FPZ1 },
999
  { "sqrtt/su",                FP(0x14,0x5AB), CIX, ARG_FPZ1 },
1000
  { "sqrts/sud",        FP(0x14,0x5CB), CIX, ARG_FPZ1 },
1001
  { "sqrtt/sud",        FP(0x14,0x5EB), CIX, ARG_FPZ1 },
1002
  { "sqrts/suic",        FP(0x14,0x70B), CIX, ARG_FPZ1 },
1003
  { "sqrtt/suic",        FP(0x14,0x72B), CIX, ARG_FPZ1 },
1004
  { "sqrts/suim",        FP(0x14,0x74B), CIX, ARG_FPZ1 },
1005
  { "sqrtt/suim",        FP(0x14,0x76B), CIX, ARG_FPZ1 },
1006
  { "sqrts/sui",        FP(0x14,0x78B), CIX, ARG_FPZ1 },
1007
  { "sqrtt/sui",        FP(0x14,0x7AB), CIX, ARG_FPZ1 },
1008
  { "sqrts/suid",        FP(0x14,0x7CB), CIX, ARG_FPZ1 },
1009
  { "sqrtt/suid",        FP(0x14,0x7EB), CIX, ARG_FPZ1 },
1010

    
1011
  { "addf/c",                FP(0x15,0x000), BASE, ARG_FP },
1012
  { "subf/c",                FP(0x15,0x001), BASE, ARG_FP },
1013
  { "mulf/c",                FP(0x15,0x002), BASE, ARG_FP },
1014
  { "divf/c",                FP(0x15,0x003), BASE, ARG_FP },
1015
  { "cvtdg/c",                FP(0x15,0x01E), BASE, ARG_FPZ1 },
1016
  { "addg/c",                FP(0x15,0x020), BASE, ARG_FP },
1017
  { "subg/c",                FP(0x15,0x021), BASE, ARG_FP },
1018
  { "mulg/c",                FP(0x15,0x022), BASE, ARG_FP },
1019
  { "divg/c",                FP(0x15,0x023), BASE, ARG_FP },
1020
  { "cvtgf/c",                FP(0x15,0x02C), BASE, ARG_FPZ1 },
1021
  { "cvtgd/c",                FP(0x15,0x02D), BASE, ARG_FPZ1 },
1022
  { "cvtgq/c",                FP(0x15,0x02F), BASE, ARG_FPZ1 },
1023
  { "cvtqf/c",                FP(0x15,0x03C), BASE, ARG_FPZ1 },
1024
  { "cvtqg/c",                FP(0x15,0x03E), BASE, ARG_FPZ1 },
1025
  { "addf",                FP(0x15,0x080), BASE, ARG_FP },
1026
  { "negf",                FP(0x15,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1027
  { "subf",                FP(0x15,0x081), BASE, ARG_FP },
1028
  { "mulf",                FP(0x15,0x082), BASE, ARG_FP },
1029
  { "divf",                FP(0x15,0x083), BASE, ARG_FP },
1030
  { "cvtdg",                FP(0x15,0x09E), BASE, ARG_FPZ1 },
1031
  { "addg",                FP(0x15,0x0A0), BASE, ARG_FP },
1032
  { "negg",                FP(0x15,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1033
  { "subg",                FP(0x15,0x0A1), BASE, ARG_FP },
1034
  { "mulg",                FP(0x15,0x0A2), BASE, ARG_FP },
1035
  { "divg",                FP(0x15,0x0A3), BASE, ARG_FP },
1036
  { "cmpgeq",                FP(0x15,0x0A5), BASE, ARG_FP },
1037
  { "cmpglt",                FP(0x15,0x0A6), BASE, ARG_FP },
1038
  { "cmpgle",                FP(0x15,0x0A7), BASE, ARG_FP },
1039
  { "cvtgf",                FP(0x15,0x0AC), BASE, ARG_FPZ1 },
1040
  { "cvtgd",                FP(0x15,0x0AD), BASE, ARG_FPZ1 },
1041
  { "cvtgq",                FP(0x15,0x0AF), BASE, ARG_FPZ1 },
1042
  { "cvtqf",                FP(0x15,0x0BC), BASE, ARG_FPZ1 },
1043
  { "cvtqg",                FP(0x15,0x0BE), BASE, ARG_FPZ1 },
1044
  { "addf/uc",                FP(0x15,0x100), BASE, ARG_FP },
1045
  { "subf/uc",                FP(0x15,0x101), BASE, ARG_FP },
1046
  { "mulf/uc",                FP(0x15,0x102), BASE, ARG_FP },
1047
  { "divf/uc",                FP(0x15,0x103), BASE, ARG_FP },
1048
  { "cvtdg/uc",                FP(0x15,0x11E), BASE, ARG_FPZ1 },
1049
  { "addg/uc",                FP(0x15,0x120), BASE, ARG_FP },
1050
  { "subg/uc",                FP(0x15,0x121), BASE, ARG_FP },
1051
  { "mulg/uc",                FP(0x15,0x122), BASE, ARG_FP },
1052
  { "divg/uc",                FP(0x15,0x123), BASE, ARG_FP },
1053
  { "cvtgf/uc",                FP(0x15,0x12C), BASE, ARG_FPZ1 },
1054
  { "cvtgd/uc",                FP(0x15,0x12D), BASE, ARG_FPZ1 },
1055
  { "cvtgq/vc",                FP(0x15,0x12F), BASE, ARG_FPZ1 },
1056
  { "addf/u",                FP(0x15,0x180), BASE, ARG_FP },
1057
  { "subf/u",                FP(0x15,0x181), BASE, ARG_FP },
1058
  { "mulf/u",                FP(0x15,0x182), BASE, ARG_FP },
1059
  { "divf/u",                FP(0x15,0x183), BASE, ARG_FP },
1060
  { "cvtdg/u",                FP(0x15,0x19E), BASE, ARG_FPZ1 },
1061
  { "addg/u",                FP(0x15,0x1A0), BASE, ARG_FP },
1062
  { "subg/u",                FP(0x15,0x1A1), BASE, ARG_FP },
1063
  { "mulg/u",                FP(0x15,0x1A2), BASE, ARG_FP },
1064
  { "divg/u",                FP(0x15,0x1A3), BASE, ARG_FP },
1065
  { "cvtgf/u",                FP(0x15,0x1AC), BASE, ARG_FPZ1 },
1066
  { "cvtgd/u",                FP(0x15,0x1AD), BASE, ARG_FPZ1 },
1067
  { "cvtgq/v",                FP(0x15,0x1AF), BASE, ARG_FPZ1 },
1068
  { "addf/sc",                FP(0x15,0x400), BASE, ARG_FP },
1069
  { "subf/sc",                FP(0x15,0x401), BASE, ARG_FP },
1070
  { "mulf/sc",                FP(0x15,0x402), BASE, ARG_FP },
1071
  { "divf/sc",                FP(0x15,0x403), BASE, ARG_FP },
1072
  { "cvtdg/sc",                FP(0x15,0x41E), BASE, ARG_FPZ1 },
1073
  { "addg/sc",                FP(0x15,0x420), BASE, ARG_FP },
1074
  { "subg/sc",                FP(0x15,0x421), BASE, ARG_FP },
1075
  { "mulg/sc",                FP(0x15,0x422), BASE, ARG_FP },
1076
  { "divg/sc",                FP(0x15,0x423), BASE, ARG_FP },
1077
  { "cvtgf/sc",                FP(0x15,0x42C), BASE, ARG_FPZ1 },
1078
  { "cvtgd/sc",                FP(0x15,0x42D), BASE, ARG_FPZ1 },
1079
  { "cvtgq/sc",                FP(0x15,0x42F), BASE, ARG_FPZ1 },
1080
  { "addf/s",                FP(0x15,0x480), BASE, ARG_FP },
1081
  { "negf/s",                FP(0x15,0x481), BASE, ARG_FPZ1 },        /* pseudo */
1082
  { "subf/s",                FP(0x15,0x481), BASE, ARG_FP },
1083
  { "mulf/s",                FP(0x15,0x482), BASE, ARG_FP },
1084
  { "divf/s",                FP(0x15,0x483), BASE, ARG_FP },
1085
  { "cvtdg/s",                FP(0x15,0x49E), BASE, ARG_FPZ1 },
1086
  { "addg/s",                FP(0x15,0x4A0), BASE, ARG_FP },
1087
  { "negg/s",                FP(0x15,0x4A1), BASE, ARG_FPZ1 },        /* pseudo */
1088
  { "subg/s",                FP(0x15,0x4A1), BASE, ARG_FP },
1089
  { "mulg/s",                FP(0x15,0x4A2), BASE, ARG_FP },
1090
  { "divg/s",                FP(0x15,0x4A3), BASE, ARG_FP },
1091
  { "cmpgeq/s",                FP(0x15,0x4A5), BASE, ARG_FP },
1092
  { "cmpglt/s",                FP(0x15,0x4A6), BASE, ARG_FP },
1093
  { "cmpgle/s",                FP(0x15,0x4A7), BASE, ARG_FP },
1094
  { "cvtgf/s",                FP(0x15,0x4AC), BASE, ARG_FPZ1 },
1095
  { "cvtgd/s",                FP(0x15,0x4AD), BASE, ARG_FPZ1 },
1096
  { "cvtgq/s",                FP(0x15,0x4AF), BASE, ARG_FPZ1 },
1097
  { "addf/suc",                FP(0x15,0x500), BASE, ARG_FP },
1098
  { "subf/suc",                FP(0x15,0x501), BASE, ARG_FP },
1099
  { "mulf/suc",                FP(0x15,0x502), BASE, ARG_FP },
1100
  { "divf/suc",                FP(0x15,0x503), BASE, ARG_FP },
1101
  { "cvtdg/suc",        FP(0x15,0x51E), BASE, ARG_FPZ1 },
1102
  { "addg/suc",                FP(0x15,0x520), BASE, ARG_FP },
1103
  { "subg/suc",                FP(0x15,0x521), BASE, ARG_FP },
1104
  { "mulg/suc",                FP(0x15,0x522), BASE, ARG_FP },
1105
  { "divg/suc",                FP(0x15,0x523), BASE, ARG_FP },
1106
  { "cvtgf/suc",        FP(0x15,0x52C), BASE, ARG_FPZ1 },
1107
  { "cvtgd/suc",        FP(0x15,0x52D), BASE, ARG_FPZ1 },
1108
  { "cvtgq/svc",        FP(0x15,0x52F), BASE, ARG_FPZ1 },
1109
  { "addf/su",                FP(0x15,0x580), BASE, ARG_FP },
1110
  { "subf/su",                FP(0x15,0x581), BASE, ARG_FP },
1111
  { "mulf/su",                FP(0x15,0x582), BASE, ARG_FP },
1112
  { "divf/su",                FP(0x15,0x583), BASE, ARG_FP },
1113
  { "cvtdg/su",                FP(0x15,0x59E), BASE, ARG_FPZ1 },
1114
  { "addg/su",                FP(0x15,0x5A0), BASE, ARG_FP },
1115
  { "subg/su",                FP(0x15,0x5A1), BASE, ARG_FP },
1116
  { "mulg/su",                FP(0x15,0x5A2), BASE, ARG_FP },
1117
  { "divg/su",                FP(0x15,0x5A3), BASE, ARG_FP },
1118
  { "cvtgf/su",                FP(0x15,0x5AC), BASE, ARG_FPZ1 },
1119
  { "cvtgd/su",                FP(0x15,0x5AD), BASE, ARG_FPZ1 },
1120
  { "cvtgq/sv",                FP(0x15,0x5AF), BASE, ARG_FPZ1 },
1121

    
1122
  { "adds/c",                FP(0x16,0x000), BASE, ARG_FP },
1123
  { "subs/c",                FP(0x16,0x001), BASE, ARG_FP },
1124
  { "muls/c",                FP(0x16,0x002), BASE, ARG_FP },
1125
  { "divs/c",                FP(0x16,0x003), BASE, ARG_FP },
1126
  { "addt/c",                FP(0x16,0x020), BASE, ARG_FP },
1127
  { "subt/c",                FP(0x16,0x021), BASE, ARG_FP },
1128
  { "mult/c",                FP(0x16,0x022), BASE, ARG_FP },
1129
  { "divt/c",                FP(0x16,0x023), BASE, ARG_FP },
1130
  { "cvtts/c",                FP(0x16,0x02C), BASE, ARG_FPZ1 },
1131
  { "cvttq/c",                FP(0x16,0x02F), BASE, ARG_FPZ1 },
1132
  { "cvtqs/c",                FP(0x16,0x03C), BASE, ARG_FPZ1 },
1133
  { "cvtqt/c",                FP(0x16,0x03E), BASE, ARG_FPZ1 },
1134
  { "adds/m",                FP(0x16,0x040), BASE, ARG_FP },
1135
  { "subs/m",                FP(0x16,0x041), BASE, ARG_FP },
1136
  { "muls/m",                FP(0x16,0x042), BASE, ARG_FP },
1137
  { "divs/m",                FP(0x16,0x043), BASE, ARG_FP },
1138
  { "addt/m",                FP(0x16,0x060), BASE, ARG_FP },
1139
  { "subt/m",                FP(0x16,0x061), BASE, ARG_FP },
1140
  { "mult/m",                FP(0x16,0x062), BASE, ARG_FP },
1141
  { "divt/m",                FP(0x16,0x063), BASE, ARG_FP },
1142
  { "cvtts/m",                FP(0x16,0x06C), BASE, ARG_FPZ1 },
1143
  { "cvttq/m",                FP(0x16,0x06F), BASE, ARG_FPZ1 },
1144
  { "cvtqs/m",                FP(0x16,0x07C), BASE, ARG_FPZ1 },
1145
  { "cvtqt/m",                FP(0x16,0x07E), BASE, ARG_FPZ1 },
1146
  { "adds",                FP(0x16,0x080), BASE, ARG_FP },
1147
  { "negs",                 FP(0x16,0x081), BASE, ARG_FPZ1 },        /* pseudo */
1148
  { "subs",                FP(0x16,0x081), BASE, ARG_FP },
1149
  { "muls",                FP(0x16,0x082), BASE, ARG_FP },
1150
  { "divs",                FP(0x16,0x083), BASE, ARG_FP },
1151
  { "addt",                FP(0x16,0x0A0), BASE, ARG_FP },
1152
  { "negt",                 FP(0x16,0x0A1), BASE, ARG_FPZ1 },        /* pseudo */
1153
  { "subt",                FP(0x16,0x0A1), BASE, ARG_FP },
1154
  { "mult",                FP(0x16,0x0A2), BASE, ARG_FP },
1155
  { "divt",                FP(0x16,0x0A3), BASE, ARG_FP },
1156
  { "cmptun",                FP(0x16,0x0A4), BASE, ARG_FP },
1157
  { "cmpteq",                FP(0x16,0x0A5), BASE, ARG_FP },
1158
  { "cmptlt",                FP(0x16,0x0A6), BASE, ARG_FP },
1159
  { "cmptle",                FP(0x16,0x0A7), BASE, ARG_FP },
1160
  { "cvtts",                FP(0x16,0x0AC), BASE, ARG_FPZ1 },
1161
  { "cvttq",                FP(0x16,0x0AF), BASE, ARG_FPZ1 },
1162
  { "cvtqs",                FP(0x16,0x0BC), BASE, ARG_FPZ1 },
1163
  { "cvtqt",                FP(0x16,0x0BE), BASE, ARG_FPZ1 },
1164
  { "adds/d",                FP(0x16,0x0C0), BASE, ARG_FP },
1165
  { "subs/d",                FP(0x16,0x0C1), BASE, ARG_FP },
1166
  { "muls/d",                FP(0x16,0x0C2), BASE, ARG_FP },
1167
  { "divs/d",                FP(0x16,0x0C3), BASE, ARG_FP },
1168
  { "addt/d",                FP(0x16,0x0E0), BASE, ARG_FP },
1169
  { "subt/d",                FP(0x16,0x0E1), BASE, ARG_FP },
1170
  { "mult/d",                FP(0x16,0x0E2), BASE, ARG_FP },
1171
  { "divt/d",                FP(0x16,0x0E3), BASE, ARG_FP },
1172
  { "cvtts/d",                FP(0x16,0x0EC), BASE, ARG_FPZ1 },
1173
  { "cvttq/d",                FP(0x16,0x0EF), BASE, ARG_FPZ1 },
1174
  { "cvtqs/d",                FP(0x16,0x0FC), BASE, ARG_FPZ1 },
1175
  { "cvtqt/d",                FP(0x16,0x0FE), BASE, ARG_FPZ1 },
1176
  { "adds/uc",                FP(0x16,0x100), BASE, ARG_FP },
1177
  { "subs/uc",                FP(0x16,0x101), BASE, ARG_FP },
1178
  { "muls/uc",                FP(0x16,0x102), BASE, ARG_FP },
1179
  { "divs/uc",                FP(0x16,0x103), BASE, ARG_FP },
1180
  { "addt/uc",                FP(0x16,0x120), BASE, ARG_FP },
1181
  { "subt/uc",                FP(0x16,0x121), BASE, ARG_FP },
1182
  { "mult/uc",                FP(0x16,0x122), BASE, ARG_FP },
1183
  { "divt/uc",                FP(0x16,0x123), BASE, ARG_FP },
1184
  { "cvtts/uc",                FP(0x16,0x12C), BASE, ARG_FPZ1 },
1185
  { "cvttq/vc",                FP(0x16,0x12F), BASE, ARG_FPZ1 },
1186
  { "adds/um",                FP(0x16,0x140), BASE, ARG_FP },
1187
  { "subs/um",                FP(0x16,0x141), BASE, ARG_FP },
1188
  { "muls/um",                FP(0x16,0x142), BASE, ARG_FP },
1189
  { "divs/um",                FP(0x16,0x143), BASE, ARG_FP },
1190
  { "addt/um",                FP(0x16,0x160), BASE, ARG_FP },
1191
  { "subt/um",                FP(0x16,0x161), BASE, ARG_FP },
1192
  { "mult/um",                FP(0x16,0x162), BASE, ARG_FP },
1193
  { "divt/um",                FP(0x16,0x163), BASE, ARG_FP },
1194
  { "cvtts/um",                FP(0x16,0x16C), BASE, ARG_FPZ1 },
1195
  { "cvttq/vm",                FP(0x16,0x16F), BASE, ARG_FPZ1 },
1196
  { "adds/u",                FP(0x16,0x180), BASE, ARG_FP },
1197
  { "subs/u",                FP(0x16,0x181), BASE, ARG_FP },
1198
  { "muls/u",                FP(0x16,0x182), BASE, ARG_FP },
1199
  { "divs/u",                FP(0x16,0x183), BASE, ARG_FP },
1200
  { "addt/u",                FP(0x16,0x1A0), BASE, ARG_FP },
1201
  { "subt/u",                FP(0x16,0x1A1), BASE, ARG_FP },
1202
  { "mult/u",                FP(0x16,0x1A2), BASE, ARG_FP },
1203
  { "divt/u",                FP(0x16,0x1A3), BASE, ARG_FP },
1204
  { "cvtts/u",                FP(0x16,0x1AC), BASE, ARG_FPZ1 },
1205
  { "cvttq/v",                FP(0x16,0x1AF), BASE, ARG_FPZ1 },
1206
  { "adds/ud",                FP(0x16,0x1C0), BASE, ARG_FP },
1207
  { "subs/ud",                FP(0x16,0x1C1), BASE, ARG_FP },
1208
  { "muls/ud",                FP(0x16,0x1C2), BASE, ARG_FP },
1209
  { "divs/ud",                FP(0x16,0x1C3), BASE, ARG_FP },
1210
  { "addt/ud",                FP(0x16,0x1E0), BASE, ARG_FP },
1211
  { "subt/ud",                FP(0x16,0x1E1), BASE, ARG_FP },
1212
  { "mult/ud",                FP(0x16,0x1E2), BASE, ARG_FP },
1213
  { "divt/ud",                FP(0x16,0x1E3), BASE, ARG_FP },
1214
  { "cvtts/ud",                FP(0x16,0x1EC), BASE, ARG_FPZ1 },
1215
  { "cvttq/vd",                FP(0x16,0x1EF), BASE, ARG_FPZ1 },
1216
  { "cvtst",                FP(0x16,0x2AC), BASE, ARG_FPZ1 },
1217
  { "adds/suc",                FP(0x16,0x500), BASE, ARG_FP },
1218
  { "subs/suc",                FP(0x16,0x501), BASE, ARG_FP },
1219
  { "muls/suc",                FP(0x16,0x502), BASE, ARG_FP },
1220
  { "divs/suc",                FP(0x16,0x503), BASE, ARG_FP },
1221
  { "addt/suc",                FP(0x16,0x520), BASE, ARG_FP },
1222
  { "subt/suc",                FP(0x16,0x521), BASE, ARG_FP },
1223
  { "mult/suc",                FP(0x16,0x522), BASE, ARG_FP },
1224
  { "divt/suc",                FP(0x16,0x523), BASE, ARG_FP },
1225
  { "cvtts/suc",        FP(0x16,0x52C), BASE, ARG_FPZ1 },
1226
  { "cvttq/svc",        FP(0x16,0x52F), BASE, ARG_FPZ1 },
1227
  { "adds/sum",                FP(0x16,0x540), BASE, ARG_FP },
1228
  { "subs/sum",                FP(0x16,0x541), BASE, ARG_FP },
1229
  { "muls/sum",                FP(0x16,0x542), BASE, ARG_FP },
1230
  { "divs/sum",                FP(0x16,0x543), BASE, ARG_FP },
1231
  { "addt/sum",                FP(0x16,0x560), BASE, ARG_FP },
1232
  { "subt/sum",                FP(0x16,0x561), BASE, ARG_FP },
1233
  { "mult/sum",                FP(0x16,0x562), BASE, ARG_FP },
1234
  { "divt/sum",                FP(0x16,0x563), BASE, ARG_FP },
1235
  { "cvtts/sum",        FP(0x16,0x56C), BASE, ARG_FPZ1 },
1236
  { "cvttq/svm",        FP(0x16,0x56F), BASE, ARG_FPZ1 },
1237
  { "adds/su",                FP(0x16,0x580), BASE, ARG_FP },
1238
  { "negs/su",                FP(0x16,0x581), BASE, ARG_FPZ1 },        /* pseudo */
1239
  { "subs/su",                FP(0x16,0x581), BASE, ARG_FP },
1240
  { "muls/su",                FP(0x16,0x582), BASE, ARG_FP },
1241
  { "divs/su",                FP(0x16,0x583), BASE, ARG_FP },
1242
  { "addt/su",                FP(0x16,0x5A0), BASE, ARG_FP },
1243
  { "negt/su",                FP(0x16,0x5A1), BASE, ARG_FPZ1 },        /* pseudo */
1244
  { "subt/su",                FP(0x16,0x5A1), BASE, ARG_FP },
1245
  { "mult/su",                FP(0x16,0x5A2), BASE, ARG_FP },
1246
  { "divt/su",                FP(0x16,0x5A3), BASE, ARG_FP },
1247
  { "cmptun/su",        FP(0x16,0x5A4), BASE, ARG_FP },
1248
  { "cmpteq/su",        FP(0x16,0x5A5), BASE, ARG_FP },
1249
  { "cmptlt/su",        FP(0x16,0x5A6), BASE, ARG_FP },
1250
  { "cmptle/su",        FP(0x16,0x5A7), BASE, ARG_FP },
1251
  { "cvtts/su",                FP(0x16,0x5AC), BASE, ARG_FPZ1 },
1252
  { "cvttq/sv",                FP(0x16,0x5AF), BASE, ARG_FPZ1 },
1253
  { "adds/sud",                FP(0x16,0x5C0), BASE, ARG_FP },
1254
  { "subs/sud",                FP(0x16,0x5C1), BASE, ARG_FP },
1255
  { "muls/sud",                FP(0x16,0x5C2), BASE, ARG_FP },
1256
  { "divs/sud",                FP(0x16,0x5C3), BASE, ARG_FP },
1257
  { "addt/sud",                FP(0x16,0x5E0), BASE, ARG_FP },
1258
  { "subt/sud",                FP(0x16,0x5E1), BASE, ARG_FP },
1259
  { "mult/sud",                FP(0x16,0x5E2), BASE, ARG_FP },
1260
  { "divt/sud",                FP(0x16,0x5E3), BASE, ARG_FP },
1261
  { "cvtts/sud",        FP(0x16,0x5EC), BASE, ARG_FPZ1 },
1262
  { "cvttq/svd",        FP(0x16,0x5EF), BASE, ARG_FPZ1 },
1263
  { "cvtst/s",                FP(0x16,0x6AC), BASE, ARG_FPZ1 },
1264
  { "adds/suic",        FP(0x16,0x700), BASE, ARG_FP },
1265
  { "subs/suic",        FP(0x16,0x701), BASE, ARG_FP },
1266
  { "muls/suic",        FP(0x16,0x702), BASE, ARG_FP },
1267
  { "divs/suic",        FP(0x16,0x703), BASE, ARG_FP },
1268
  { "addt/suic",        FP(0x16,0x720), BASE, ARG_FP },
1269
  { "subt/suic",        FP(0x16,0x721), BASE, ARG_FP },
1270
  { "mult/suic",        FP(0x16,0x722), BASE, ARG_FP },
1271
  { "divt/suic",        FP(0x16,0x723), BASE, ARG_FP },
1272
  { "cvtts/suic",        FP(0x16,0x72C), BASE, ARG_FPZ1 },
1273
  { "cvttq/svic",        FP(0x16,0x72F), BASE, ARG_FPZ1 },
1274
  { "cvtqs/suic",        FP(0x16,0x73C), BASE, ARG_FPZ1 },
1275
  { "cvtqt/suic",        FP(0x16,0x73E), BASE, ARG_FPZ1 },
1276
  { "adds/suim",        FP(0x16,0x740), BASE, ARG_FP },
1277
  { "subs/suim",        FP(0x16,0x741), BASE, ARG_FP },
1278
  { "muls/suim",        FP(0x16,0x742), BASE, ARG_FP },
1279
  { "divs/suim",        FP(0x16,0x743), BASE, ARG_FP },
1280
  { "addt/suim",        FP(0x16,0x760), BASE, ARG_FP },
1281
  { "subt/suim",        FP(0x16,0x761), BASE, ARG_FP },
1282
  { "mult/suim",        FP(0x16,0x762), BASE, ARG_FP },
1283
  { "divt/suim",        FP(0x16,0x763), BASE, ARG_FP },
1284
  { "cvtts/suim",        FP(0x16,0x76C), BASE, ARG_FPZ1 },
1285
  { "cvttq/svim",        FP(0x16,0x76F), BASE, ARG_FPZ1 },
1286
  { "cvtqs/suim",        FP(0x16,0x77C), BASE, ARG_FPZ1 },
1287
  { "cvtqt/suim",        FP(0x16,0x77E), BASE, ARG_FPZ1 },
1288
  { "adds/sui",                FP(0x16,0x780), BASE, ARG_FP },
1289
  { "negs/sui",         FP(0x16,0x781), BASE, ARG_FPZ1 },        /* pseudo */
1290
  { "subs/sui",                FP(0x16,0x781), BASE, ARG_FP },
1291
  { "muls/sui",                FP(0x16,0x782), BASE, ARG_FP },
1292
  { "divs/sui",                FP(0x16,0x783), BASE, ARG_FP },
1293
  { "addt/sui",                FP(0x16,0x7A0), BASE, ARG_FP },
1294
  { "negt/sui",         FP(0x16,0x7A1), BASE, ARG_FPZ1 },        /* pseudo */
1295
  { "subt/sui",                FP(0x16,0x7A1), BASE, ARG_FP },
1296
  { "mult/sui",                FP(0x16,0x7A2), BASE, ARG_FP },
1297
  { "divt/sui",                FP(0x16,0x7A3), BASE, ARG_FP },
1298
  { "cvtts/sui",        FP(0x16,0x7AC), BASE, ARG_FPZ1 },
1299
  { "cvttq/svi",        FP(0x16,0x7AF), BASE, ARG_FPZ1 },
1300
  { "cvtqs/sui",        FP(0x16,0x7BC), BASE, ARG_FPZ1 },
1301
  { "cvtqt/sui",        FP(0x16,0x7BE), BASE, ARG_FPZ1 },
1302
  { "adds/suid",        FP(0x16,0x7C0), BASE, ARG_FP },
1303
  { "subs/suid",        FP(0x16,0x7C1), BASE, ARG_FP },
1304
  { "muls/suid",        FP(0x16,0x7C2), BASE, ARG_FP },
1305
  { "divs/suid",        FP(0x16,0x7C3), BASE, ARG_FP },
1306
  { "addt/suid",        FP(0x16,0x7E0), BASE, ARG_FP },
1307
  { "subt/suid",        FP(0x16,0x7E1), BASE, ARG_FP },
1308
  { "mult/suid",        FP(0x16,0x7E2), BASE, ARG_FP },
1309
  { "divt/suid",        FP(0x16,0x7E3), BASE, ARG_FP },
1310
  { "cvtts/suid",        FP(0x16,0x7EC), BASE, ARG_FPZ1 },
1311
  { "cvttq/svid",        FP(0x16,0x7EF), BASE, ARG_FPZ1 },
1312
  { "cvtqs/suid",        FP(0x16,0x7FC), BASE, ARG_FPZ1 },
1313
  { "cvtqt/suid",        FP(0x16,0x7FE), BASE, ARG_FPZ1 },
1314

    
1315
  { "cvtlq",                FP(0x17,0x010), BASE, ARG_FPZ1 },
1316
  { "fnop",                FP(0x17,0x020), BASE, { ZA, ZB, ZC } },        /* pseudo */
1317
  { "fclr",                FP(0x17,0x020), BASE, { ZA, ZB, FC } },        /* pseudo */
1318
  { "fabs",                FP(0x17,0x020), BASE, ARG_FPZ1 },        /* pseudo */
1319
  { "fmov",                FP(0x17,0x020), BASE, { FA, RBA, FC } }, /* pseudo */
1320
  { "cpys",                FP(0x17,0x020), BASE, ARG_FP },
1321
  { "fneg",                FP(0x17,0x021), BASE, { FA, RBA, FC } }, /* pseudo */
1322
  { "cpysn",                FP(0x17,0x021), BASE, ARG_FP },
1323
  { "cpyse",                FP(0x17,0x022), BASE, ARG_FP },
1324
  { "mt_fpcr",                FP(0x17,0x024), BASE, { FA, RBA, RCA } },
1325
  { "mf_fpcr",                FP(0x17,0x025), BASE, { FA, RBA, RCA } },
1326
  { "fcmoveq",                FP(0x17,0x02A), BASE, ARG_FP },
1327
  { "fcmovne",                FP(0x17,0x02B), BASE, ARG_FP },
1328
  { "fcmovlt",                FP(0x17,0x02C), BASE, ARG_FP },
1329
  { "fcmovge",                FP(0x17,0x02D), BASE, ARG_FP },
1330
  { "fcmovle",                FP(0x17,0x02E), BASE, ARG_FP },
1331
  { "fcmovgt",                FP(0x17,0x02F), BASE, ARG_FP },
1332
  { "cvtql",                FP(0x17,0x030), BASE, ARG_FPZ1 },
1333
  { "cvtql/v",                FP(0x17,0x130), BASE, ARG_FPZ1 },
1334
  { "cvtql/sv",                FP(0x17,0x530), BASE, ARG_FPZ1 },
1335

    
1336
  { "trapb",                MFC(0x18,0x0000), BASE, ARG_NONE },
1337
  { "draint",                MFC(0x18,0x0000), BASE, ARG_NONE },        /* alias */
1338
  { "excb",                MFC(0x18,0x0400), BASE, ARG_NONE },
1339
  { "mb",                MFC(0x18,0x4000), BASE, ARG_NONE },
1340
  { "wmb",                MFC(0x18,0x4400), BASE, ARG_NONE },
1341
  { "fetch",                MFC(0x18,0x8000), BASE, { ZA, PRB } },
1342
  { "fetch_m",                MFC(0x18,0xA000), BASE, { ZA, PRB } },
1343
  { "rpcc",                MFC(0x18,0xC000), BASE, { RA } },
1344
  { "rc",                MFC(0x18,0xE000), BASE, { RA } },
1345
  { "ecb",                MFC(0x18,0xE800), BASE, { ZA, PRB } },        /* ev56 una */
1346
  { "rs",                MFC(0x18,0xF000), BASE, { RA } },
1347
  { "wh64",                MFC(0x18,0xF800), BASE, { ZA, PRB } },        /* ev56 una */
1348
  { "wh64en",                MFC(0x18,0xFC00), BASE, { ZA, PRB } },        /* ev7 una */
1349

    
1350
  { "hw_mfpr",                OPR(0x19,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1351
  { "hw_mfpr",                OP(0x19), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1352
  { "hw_mfpr",                OP(0x19), OP_MASK, EV6, { RA, ZB, EV6HWINDEX } },
1353
  { "hw_mfpr/i",        OPR(0x19,0x01), EV4, ARG_EV4HWMPR },
1354
  { "hw_mfpr/a",        OPR(0x19,0x02), EV4, ARG_EV4HWMPR },
1355
  { "hw_mfpr/ai",        OPR(0x19,0x03), EV4, ARG_EV4HWMPR },
1356
  { "hw_mfpr/p",        OPR(0x19,0x04), EV4, ARG_EV4HWMPR },
1357
  { "hw_mfpr/pi",        OPR(0x19,0x05), EV4, ARG_EV4HWMPR },
1358
  { "hw_mfpr/pa",        OPR(0x19,0x06), EV4, ARG_EV4HWMPR },
1359
  { "hw_mfpr/pai",        OPR(0x19,0x07), EV4, ARG_EV4HWMPR },
1360
  { "pal19",                PCD(0x19), BASE, ARG_PCD },
1361

    
1362
  { "jmp",                MBR_(0x1A,0), MBR_MASK | 0x3FFF,        /* pseudo */
1363
                        BASE, { ZA, CPRB } },
1364
  { "jmp",                MBR(0x1A,0), BASE, { RA, CPRB, JMPHINT } },
1365
  { "jsr",                MBR(0x1A,1), BASE, { RA, CPRB, JMPHINT } },
1366
  { "ret",                MBR_(0x1A,2) | (31 << 21) | (26 << 16) | 1,/* pseudo */
1367
                        0xFFFFFFFF, BASE, { 0 } },
1368
  { "ret",                MBR(0x1A,2), BASE, { RA, CPRB, RETHINT } },
1369
  { "jcr",                MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } }, /* alias */
1370
  { "jsr_coroutine",        MBR(0x1A,3), BASE, { RA, CPRB, RETHINT } },
1371

    
1372
  { "hw_ldl",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1373
  { "hw_ldl",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1374
  { "hw_ldl",                EV6HWMEM(0x1B,0x8), EV6, ARG_EV6HWMEM },
1375
  { "hw_ldl/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1376
  { "hw_ldl/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1377
  { "hw_ldl/a",                EV6HWMEM(0x1B,0xC), EV6, ARG_EV6HWMEM },
1378
  { "hw_ldl/al",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1379
  { "hw_ldl/ar",        EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1380
  { "hw_ldl/av",        EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1381
  { "hw_ldl/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1382
  { "hw_ldl/aw",        EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1383
  { "hw_ldl/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1384
  { "hw_ldl/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1385
  { "hw_ldl/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1386
  { "hw_ldl/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1387
  { "hw_ldl/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1388
  { "hw_ldl/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1389
  { "hw_ldl/p",                EV6HWMEM(0x1B,0x0), EV6, ARG_EV6HWMEM },
1390
  { "hw_ldl/pa",        EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1391
  { "hw_ldl/pa",        EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1392
  { "hw_ldl/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1393
  { "hw_ldl/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1394
  { "hw_ldl/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1395
  { "hw_ldl/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1396
  { "hw_ldl/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1397
  { "hw_ldl/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1398
  { "hw_ldl/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1399
  { "hw_ldl/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1400
  { "hw_ldl/pl",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1401
  { "hw_ldl/pr",        EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1402
  { "hw_ldl/pv",        EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1403
  { "hw_ldl/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1404
  { "hw_ldl/pw",        EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1405
  { "hw_ldl/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1406
  { "hw_ldl/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1407
  { "hw_ldl/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1408
  { "hw_ldl/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1409
  { "hw_ldl/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1410
  { "hw_ldl/v",                EV6HWMEM(0x1B,0x4), EV6, ARG_EV6HWMEM },
1411
  { "hw_ldl/vl",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1412
  { "hw_ldl/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1413
  { "hw_ldl/w",                EV6HWMEM(0x1B,0xA), EV6, ARG_EV6HWMEM },
1414
  { "hw_ldl/wa",        EV6HWMEM(0x1B,0xE), EV6, ARG_EV6HWMEM },
1415
  { "hw_ldl/wl",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1416
  { "hw_ldl/wv",        EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1417
  { "hw_ldl/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1418
  { "hw_ldl_l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1419
  { "hw_ldl_l/a",        EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1420
  { "hw_ldl_l/av",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1421
  { "hw_ldl_l/aw",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1422
  { "hw_ldl_l/awv",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1423
  { "hw_ldl_l/p",        EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1424
  { "hw_ldl_l/p",        EV6HWMEM(0x1B,0x2), EV6, ARG_EV6HWMEM },
1425
  { "hw_ldl_l/pa",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1426
  { "hw_ldl_l/pav",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1427
  { "hw_ldl_l/paw",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1428
  { "hw_ldl_l/pawv",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1429
  { "hw_ldl_l/pv",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1430
  { "hw_ldl_l/pw",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1431
  { "hw_ldl_l/pwv",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1432
  { "hw_ldl_l/v",        EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1433
  { "hw_ldl_l/w",        EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1434
  { "hw_ldl_l/wv",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1435
  { "hw_ldq",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1436
  { "hw_ldq",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1437
  { "hw_ldq",                EV6HWMEM(0x1B,0x9), EV6, ARG_EV6HWMEM },
1438
  { "hw_ldq/a",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1439
  { "hw_ldq/a",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1440
  { "hw_ldq/a",                EV6HWMEM(0x1B,0xD), EV6, ARG_EV6HWMEM },
1441
  { "hw_ldq/al",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1442
  { "hw_ldq/ar",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1443
  { "hw_ldq/av",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1444
  { "hw_ldq/avl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1445
  { "hw_ldq/aw",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1446
  { "hw_ldq/awl",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1447
  { "hw_ldq/awv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1448
  { "hw_ldq/awvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1449
  { "hw_ldq/l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1450
  { "hw_ldq/p",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1451
  { "hw_ldq/p",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1452
  { "hw_ldq/p",                EV6HWMEM(0x1B,0x1), EV6, ARG_EV6HWMEM },
1453
  { "hw_ldq/pa",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1454
  { "hw_ldq/pa",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1455
  { "hw_ldq/pal",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1456
  { "hw_ldq/par",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1457
  { "hw_ldq/pav",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1458
  { "hw_ldq/pavl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1459
  { "hw_ldq/paw",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1460
  { "hw_ldq/pawl",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1461
  { "hw_ldq/pawv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1462
  { "hw_ldq/pawvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1463
  { "hw_ldq/pl",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1464
  { "hw_ldq/pr",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1465
  { "hw_ldq/pv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1466
  { "hw_ldq/pvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1467
  { "hw_ldq/pw",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1468
  { "hw_ldq/pwl",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1469
  { "hw_ldq/pwv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1470
  { "hw_ldq/pwvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1471
  { "hw_ldq/r",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1472
  { "hw_ldq/v",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1473
  { "hw_ldq/v",                EV6HWMEM(0x1B,0x5), EV6, ARG_EV6HWMEM },
1474
  { "hw_ldq/vl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1475
  { "hw_ldq/w",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1476
  { "hw_ldq/w",                EV6HWMEM(0x1B,0xB), EV6, ARG_EV6HWMEM },
1477
  { "hw_ldq/wa",        EV6HWMEM(0x1B,0xF), EV6, ARG_EV6HWMEM },
1478
  { "hw_ldq/wl",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1479
  { "hw_ldq/wv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1480
  { "hw_ldq/wvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1481
  { "hw_ldq_l",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1482
  { "hw_ldq_l/a",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1483
  { "hw_ldq_l/av",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1484
  { "hw_ldq_l/aw",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1485
  { "hw_ldq_l/awv",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1486
  { "hw_ldq_l/p",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1487
  { "hw_ldq_l/p",        EV6HWMEM(0x1B,0x3), EV6, ARG_EV6HWMEM },
1488
  { "hw_ldq_l/pa",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1489
  { "hw_ldq_l/pav",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1490
  { "hw_ldq_l/paw",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1491
  { "hw_ldq_l/pawv",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1492
  { "hw_ldq_l/pv",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1493
  { "hw_ldq_l/pw",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1494
  { "hw_ldq_l/pwv",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1495
  { "hw_ldq_l/v",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1496
  { "hw_ldq_l/w",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1497
  { "hw_ldq_l/wv",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1498
  { "hw_ld",                EV4HWMEM(0x1B,0x0), EV4, ARG_EV4HWMEM },
1499
  { "hw_ld",                EV5HWMEM(0x1B,0x00), EV5, ARG_EV5HWMEM },
1500
  { "hw_ld/a",                EV4HWMEM(0x1B,0x4), EV4, ARG_EV4HWMEM },
1501
  { "hw_ld/a",                EV5HWMEM(0x1B,0x10), EV5, ARG_EV5HWMEM },
1502
  { "hw_ld/al",                EV5HWMEM(0x1B,0x11), EV5, ARG_EV5HWMEM },
1503
  { "hw_ld/aq",                EV4HWMEM(0x1B,0x5), EV4, ARG_EV4HWMEM },
1504
  { "hw_ld/aq",                EV5HWMEM(0x1B,0x14), EV5, ARG_EV5HWMEM },
1505
  { "hw_ld/aql",        EV5HWMEM(0x1B,0x15), EV5, ARG_EV5HWMEM },
1506
  { "hw_ld/aqv",        EV5HWMEM(0x1B,0x16), EV5, ARG_EV5HWMEM },
1507
  { "hw_ld/aqvl",        EV5HWMEM(0x1B,0x17), EV5, ARG_EV5HWMEM },
1508
  { "hw_ld/ar",                EV4HWMEM(0x1B,0x6), EV4, ARG_EV4HWMEM },
1509
  { "hw_ld/arq",        EV4HWMEM(0x1B,0x7), EV4, ARG_EV4HWMEM },
1510
  { "hw_ld/av",                EV5HWMEM(0x1B,0x12), EV5, ARG_EV5HWMEM },
1511
  { "hw_ld/avl",        EV5HWMEM(0x1B,0x13), EV5, ARG_EV5HWMEM },
1512
  { "hw_ld/aw",                EV5HWMEM(0x1B,0x18), EV5, ARG_EV5HWMEM },
1513
  { "hw_ld/awl",        EV5HWMEM(0x1B,0x19), EV5, ARG_EV5HWMEM },
1514
  { "hw_ld/awq",        EV5HWMEM(0x1B,0x1c), EV5, ARG_EV5HWMEM },
1515
  { "hw_ld/awql",        EV5HWMEM(0x1B,0x1d), EV5, ARG_EV5HWMEM },
1516
  { "hw_ld/awqv",        EV5HWMEM(0x1B,0x1e), EV5, ARG_EV5HWMEM },
1517
  { "hw_ld/awqvl",        EV5HWMEM(0x1B,0x1f), EV5, ARG_EV5HWMEM },
1518
  { "hw_ld/awv",        EV5HWMEM(0x1B,0x1a), EV5, ARG_EV5HWMEM },
1519
  { "hw_ld/awvl",        EV5HWMEM(0x1B,0x1b), EV5, ARG_EV5HWMEM },
1520
  { "hw_ld/l",                EV5HWMEM(0x1B,0x01), EV5, ARG_EV5HWMEM },
1521
  { "hw_ld/p",                EV4HWMEM(0x1B,0x8), EV4, ARG_EV4HWMEM },
1522
  { "hw_ld/p",                EV5HWMEM(0x1B,0x20), EV5, ARG_EV5HWMEM },
1523
  { "hw_ld/pa",                EV4HWMEM(0x1B,0xC), EV4, ARG_EV4HWMEM },
1524
  { "hw_ld/pa",                EV5HWMEM(0x1B,0x30), EV5, ARG_EV5HWMEM },
1525
  { "hw_ld/pal",        EV5HWMEM(0x1B,0x31), EV5, ARG_EV5HWMEM },
1526
  { "hw_ld/paq",        EV4HWMEM(0x1B,0xD), EV4, ARG_EV4HWMEM },
1527
  { "hw_ld/paq",        EV5HWMEM(0x1B,0x34), EV5, ARG_EV5HWMEM },
1528
  { "hw_ld/paql",        EV5HWMEM(0x1B,0x35), EV5, ARG_EV5HWMEM },
1529
  { "hw_ld/paqv",        EV5HWMEM(0x1B,0x36), EV5, ARG_EV5HWMEM },
1530
  { "hw_ld/paqvl",        EV5HWMEM(0x1B,0x37), EV5, ARG_EV5HWMEM },
1531
  { "hw_ld/par",        EV4HWMEM(0x1B,0xE), EV4, ARG_EV4HWMEM },
1532
  { "hw_ld/parq",        EV4HWMEM(0x1B,0xF), EV4, ARG_EV4HWMEM },
1533
  { "hw_ld/pav",        EV5HWMEM(0x1B,0x32), EV5, ARG_EV5HWMEM },
1534
  { "hw_ld/pavl",        EV5HWMEM(0x1B,0x33), EV5, ARG_EV5HWMEM },
1535
  { "hw_ld/paw",        EV5HWMEM(0x1B,0x38), EV5, ARG_EV5HWMEM },
1536
  { "hw_ld/pawl",        EV5HWMEM(0x1B,0x39), EV5, ARG_EV5HWMEM },
1537
  { "hw_ld/pawq",        EV5HWMEM(0x1B,0x3c), EV5, ARG_EV5HWMEM },
1538
  { "hw_ld/pawql",        EV5HWMEM(0x1B,0x3d), EV5, ARG_EV5HWMEM },
1539
  { "hw_ld/pawqv",        EV5HWMEM(0x1B,0x3e), EV5, ARG_EV5HWMEM },
1540
  { "hw_ld/pawqvl",        EV5HWMEM(0x1B,0x3f), EV5, ARG_EV5HWMEM },
1541
  { "hw_ld/pawv",        EV5HWMEM(0x1B,0x3a), EV5, ARG_EV5HWMEM },
1542
  { "hw_ld/pawvl",        EV5HWMEM(0x1B,0x3b), EV5, ARG_EV5HWMEM },
1543
  { "hw_ld/pl",                EV5HWMEM(0x1B,0x21), EV5, ARG_EV5HWMEM },
1544
  { "hw_ld/pq",                EV4HWMEM(0x1B,0x9), EV4, ARG_EV4HWMEM },
1545
  { "hw_ld/pq",                EV5HWMEM(0x1B,0x24), EV5, ARG_EV5HWMEM },
1546
  { "hw_ld/pql",        EV5HWMEM(0x1B,0x25), EV5, ARG_EV5HWMEM },
1547
  { "hw_ld/pqv",        EV5HWMEM(0x1B,0x26), EV5, ARG_EV5HWMEM },
1548
  { "hw_ld/pqvl",        EV5HWMEM(0x1B,0x27), EV5, ARG_EV5HWMEM },
1549
  { "hw_ld/pr",                EV4HWMEM(0x1B,0xA), EV4, ARG_EV4HWMEM },
1550
  { "hw_ld/prq",        EV4HWMEM(0x1B,0xB), EV4, ARG_EV4HWMEM },
1551
  { "hw_ld/pv",                EV5HWMEM(0x1B,0x22), EV5, ARG_EV5HWMEM },
1552
  { "hw_ld/pvl",        EV5HWMEM(0x1B,0x23), EV5, ARG_EV5HWMEM },
1553
  { "hw_ld/pw",                EV5HWMEM(0x1B,0x28), EV5, ARG_EV5HWMEM },
1554
  { "hw_ld/pwl",        EV5HWMEM(0x1B,0x29), EV5, ARG_EV5HWMEM },
1555
  { "hw_ld/pwq",        EV5HWMEM(0x1B,0x2c), EV5, ARG_EV5HWMEM },
1556
  { "hw_ld/pwql",        EV5HWMEM(0x1B,0x2d), EV5, ARG_EV5HWMEM },
1557
  { "hw_ld/pwqv",        EV5HWMEM(0x1B,0x2e), EV5, ARG_EV5HWMEM },
1558
  { "hw_ld/pwqvl",        EV5HWMEM(0x1B,0x2f), EV5, ARG_EV5HWMEM },
1559
  { "hw_ld/pwv",        EV5HWMEM(0x1B,0x2a), EV5, ARG_EV5HWMEM },
1560
  { "hw_ld/pwvl",        EV5HWMEM(0x1B,0x2b), EV5, ARG_EV5HWMEM },
1561
  { "hw_ld/q",                EV4HWMEM(0x1B,0x1), EV4, ARG_EV4HWMEM },
1562
  { "hw_ld/q",                EV5HWMEM(0x1B,0x04), EV5, ARG_EV5HWMEM },
1563
  { "hw_ld/ql",                EV5HWMEM(0x1B,0x05), EV5, ARG_EV5HWMEM },
1564
  { "hw_ld/qv",                EV5HWMEM(0x1B,0x06), EV5, ARG_EV5HWMEM },
1565
  { "hw_ld/qvl",        EV5HWMEM(0x1B,0x07), EV5, ARG_EV5HWMEM },
1566
  { "hw_ld/r",                EV4HWMEM(0x1B,0x2), EV4, ARG_EV4HWMEM },
1567
  { "hw_ld/rq",                EV4HWMEM(0x1B,0x3), EV4, ARG_EV4HWMEM },
1568
  { "hw_ld/v",                EV5HWMEM(0x1B,0x02), EV5, ARG_EV5HWMEM },
1569
  { "hw_ld/vl",                EV5HWMEM(0x1B,0x03), EV5, ARG_EV5HWMEM },
1570
  { "hw_ld/w",                EV5HWMEM(0x1B,0x08), EV5, ARG_EV5HWMEM },
1571
  { "hw_ld/wl",                EV5HWMEM(0x1B,0x09), EV5, ARG_EV5HWMEM },
1572
  { "hw_ld/wq",                EV5HWMEM(0x1B,0x0c), EV5, ARG_EV5HWMEM },
1573
  { "hw_ld/wql",        EV5HWMEM(0x1B,0x0d), EV5, ARG_EV5HWMEM },
1574
  { "hw_ld/wqv",        EV5HWMEM(0x1B,0x0e), EV5, ARG_EV5HWMEM },
1575
  { "hw_ld/wqvl",        EV5HWMEM(0x1B,0x0f), EV5, ARG_EV5HWMEM },
1576
  { "hw_ld/wv",                EV5HWMEM(0x1B,0x0a), EV5, ARG_EV5HWMEM },
1577
  { "hw_ld/wvl",        EV5HWMEM(0x1B,0x0b), EV5, ARG_EV5HWMEM },
1578
  { "pal1b",                PCD(0x1B), BASE, ARG_PCD },
1579

    
1580
  { "sextb",                OPR(0x1C, 0x00), BWX, ARG_OPRZ1 },
1581
  { "sextw",                OPR(0x1C, 0x01), BWX, ARG_OPRZ1 },
1582
  { "ctpop",                OPR(0x1C, 0x30), CIX, ARG_OPRZ1 },
1583
  { "perr",                OPR(0x1C, 0x31), MAX, ARG_OPR },
1584
  { "ctlz",                OPR(0x1C, 0x32), CIX, ARG_OPRZ1 },
1585
  { "cttz",                OPR(0x1C, 0x33), CIX, ARG_OPRZ1 },
1586
  { "unpkbw",                OPR(0x1C, 0x34), MAX, ARG_OPRZ1 },
1587
  { "unpkbl",                OPR(0x1C, 0x35), MAX, ARG_OPRZ1 },
1588
  { "pkwb",                OPR(0x1C, 0x36), MAX, ARG_OPRZ1 },
1589
  { "pklb",                OPR(0x1C, 0x37), MAX, ARG_OPRZ1 },
1590
  { "minsb8",                 OPR(0x1C, 0x38), MAX, ARG_OPR },
1591
  { "minsb8",                 OPRL(0x1C, 0x38), MAX, ARG_OPRL },
1592
  { "minsw4",                 OPR(0x1C, 0x39), MAX, ARG_OPR },
1593
  { "minsw4",                 OPRL(0x1C, 0x39), MAX, ARG_OPRL },
1594
  { "minub8",                 OPR(0x1C, 0x3A), MAX, ARG_OPR },
1595
  { "minub8",                 OPRL(0x1C, 0x3A), MAX, ARG_OPRL },
1596
  { "minuw4",                 OPR(0x1C, 0x3B), MAX, ARG_OPR },
1597
  { "minuw4",                 OPRL(0x1C, 0x3B), MAX, ARG_OPRL },
1598
  { "maxub8",                OPR(0x1C, 0x3C), MAX, ARG_OPR },
1599
  { "maxub8",                OPRL(0x1C, 0x3C), MAX, ARG_OPRL },
1600
  { "maxuw4",                OPR(0x1C, 0x3D), MAX, ARG_OPR },
1601
  { "maxuw4",                OPRL(0x1C, 0x3D), MAX, ARG_OPRL },
1602
  { "maxsb8",                OPR(0x1C, 0x3E), MAX, ARG_OPR },
1603
  { "maxsb8",                OPRL(0x1C, 0x3E), MAX, ARG_OPRL },
1604
  { "maxsw4",                OPR(0x1C, 0x3F), MAX, ARG_OPR },
1605
  { "maxsw4",                OPRL(0x1C, 0x3F), MAX, ARG_OPRL },
1606
  { "ftoit",                FP(0x1C, 0x70), CIX, { FA, ZB, RC } },
1607
  { "ftois",                FP(0x1C, 0x78), CIX, { FA, ZB, RC } },
1608

    
1609
  { "hw_mtpr",                OPR(0x1D,0x00), EV4, { RA, RBA, EV4EXTHWINDEX } },
1610
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV5, { RA, RBA, EV5HWINDEX } },
1611
  { "hw_mtpr",                OP(0x1D), OP_MASK, EV6, { ZA, RB, EV6HWINDEX } },
1612
  { "hw_mtpr/i",         OPR(0x1D,0x01), EV4, ARG_EV4HWMPR },
1613
  { "hw_mtpr/a",         OPR(0x1D,0x02), EV4, ARG_EV4HWMPR },
1614
  { "hw_mtpr/ai",        OPR(0x1D,0x03), EV4, ARG_EV4HWMPR },
1615
  { "hw_mtpr/p",         OPR(0x1D,0x04), EV4, ARG_EV4HWMPR },
1616
  { "hw_mtpr/pi",        OPR(0x1D,0x05), EV4, ARG_EV4HWMPR },
1617
  { "hw_mtpr/pa",        OPR(0x1D,0x06), EV4, ARG_EV4HWMPR },
1618
  { "hw_mtpr/pai",        OPR(0x1D,0x07), EV4, ARG_EV4HWMPR },
1619
  { "pal1d",                PCD(0x1D), BASE, ARG_PCD },
1620

    
1621
  { "hw_rei",                SPCD(0x1E,0x3FF8000), EV4|EV5, ARG_NONE },
1622
  { "hw_rei_stall",        SPCD(0x1E,0x3FFC000), EV5, ARG_NONE },
1623
  { "hw_jmp",                 EV6HWMBR(0x1E,0x0), EV6, { ZA, PRB, EV6HWJMPHINT } },
1624
  { "hw_jsr",                 EV6HWMBR(0x1E,0x2), EV6, { ZA, PRB, EV6HWJMPHINT } },
1625
  { "hw_ret",                 EV6HWMBR(0x1E,0x4), EV6, { ZA, PRB } },
1626
  { "hw_jcr",                 EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } },
1627
  { "hw_coroutine",        EV6HWMBR(0x1E,0x6), EV6, { ZA, PRB } }, /* alias */
1628
  { "hw_jmp/stall",        EV6HWMBR(0x1E,0x1), EV6, { ZA, PRB, EV6HWJMPHINT } },
1629
  { "hw_jsr/stall",         EV6HWMBR(0x1E,0x3), EV6, { ZA, PRB, EV6HWJMPHINT } },
1630
  { "hw_ret/stall",        EV6HWMBR(0x1E,0x5), EV6, { ZA, PRB } },
1631
  { "hw_jcr/stall",         EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } },
1632
  { "hw_coroutine/stall", EV6HWMBR(0x1E,0x7), EV6, { ZA, PRB } }, /* alias */
1633
  { "pal1e",                PCD(0x1E), BASE, ARG_PCD },
1634

    
1635
  { "hw_stl",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1636
  { "hw_stl",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1637
  { "hw_stl",                EV6HWMEM(0x1F,0x4), EV6, ARG_EV6HWMEM }, /* ??? 8 */
1638
  { "hw_stl/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1639
  { "hw_stl/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1640
  { "hw_stl/a",                EV6HWMEM(0x1F,0xC), EV6, ARG_EV6HWMEM },
1641
  { "hw_stl/ac",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1642
  { "hw_stl/ar",        EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1643
  { "hw_stl/av",        EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1644
  { "hw_stl/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1645
  { "hw_stl/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1646
  { "hw_stl/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1647
  { "hw_stl/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1648
  { "hw_stl/p",                EV6HWMEM(0x1F,0x0), EV6, ARG_EV6HWMEM },
1649
  { "hw_stl/pa",        EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1650
  { "hw_stl/pa",        EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1651
  { "hw_stl/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1652
  { "hw_stl/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1653
  { "hw_stl/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1654
  { "hw_stl/pc",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1655
  { "hw_stl/pr",        EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1656
  { "hw_stl/pv",        EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1657
  { "hw_stl/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1658
  { "hw_stl/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1659
  { "hw_stl/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1660
  { "hw_stl/vc",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1661
  { "hw_stl_c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1662
  { "hw_stl_c/a",        EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1663
  { "hw_stl_c/av",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1664
  { "hw_stl_c/p",        EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1665
  { "hw_stl_c/p",        EV6HWMEM(0x1F,0x2), EV6, ARG_EV6HWMEM },
1666
  { "hw_stl_c/pa",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1667
  { "hw_stl_c/pav",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1668
  { "hw_stl_c/pv",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1669
  { "hw_stl_c/v",        EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1670
  { "hw_stq",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1671
  { "hw_stq",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1672
  { "hw_stq",                EV6HWMEM(0x1F,0x5), EV6, ARG_EV6HWMEM }, /* ??? 9 */
1673
  { "hw_stq/a",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1674
  { "hw_stq/a",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1675
  { "hw_stq/a",                EV6HWMEM(0x1F,0xD), EV6, ARG_EV6HWMEM },
1676
  { "hw_stq/ac",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1677
  { "hw_stq/ar",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1678
  { "hw_stq/av",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1679
  { "hw_stq/avc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1680
  { "hw_stq/c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1681
  { "hw_stq/p",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1682
  { "hw_stq/p",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1683
  { "hw_stq/p",                EV6HWMEM(0x1F,0x1), EV6, ARG_EV6HWMEM },
1684
  { "hw_stq/pa",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1685
  { "hw_stq/pa",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1686
  { "hw_stq/pac",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1687
  { "hw_stq/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1688
  { "hw_stq/par",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1689
  { "hw_stq/pav",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1690
  { "hw_stq/pavc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1691
  { "hw_stq/pc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1692
  { "hw_stq/pr",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1693
  { "hw_stq/pv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1694
  { "hw_stq/pvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1695
  { "hw_stq/r",                EV4HWMEM(0x1F,0x3), EV4, ARG_EV4HWMEM },
1696
  { "hw_stq/v",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1697
  { "hw_stq/vc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1698
  { "hw_stq_c",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1699
  { "hw_stq_c/a",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1700
  { "hw_stq_c/av",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1701
  { "hw_stq_c/p",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1702
  { "hw_stq_c/p",        EV6HWMEM(0x1F,0x3), EV6, ARG_EV6HWMEM },
1703
  { "hw_stq_c/pa",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1704
  { "hw_stq_c/pav",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1705
  { "hw_stq_c/pv",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1706
  { "hw_stq_c/v",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1707
  { "hw_st",                EV4HWMEM(0x1F,0x0), EV4, ARG_EV4HWMEM },
1708
  { "hw_st",                EV5HWMEM(0x1F,0x00), EV5, ARG_EV5HWMEM },
1709
  { "hw_st/a",                EV4HWMEM(0x1F,0x4), EV4, ARG_EV4HWMEM },
1710
  { "hw_st/a",                EV5HWMEM(0x1F,0x10), EV5, ARG_EV5HWMEM },
1711
  { "hw_st/ac",                EV5HWMEM(0x1F,0x11), EV5, ARG_EV5HWMEM },
1712
  { "hw_st/aq",                EV4HWMEM(0x1F,0x5), EV4, ARG_EV4HWMEM },
1713
  { "hw_st/aq",                EV5HWMEM(0x1F,0x14), EV5, ARG_EV5HWMEM },
1714
  { "hw_st/aqc",        EV5HWMEM(0x1F,0x15), EV5, ARG_EV5HWMEM },
1715
  { "hw_st/aqv",        EV5HWMEM(0x1F,0x16), EV5, ARG_EV5HWMEM },
1716
  { "hw_st/aqvc",        EV5HWMEM(0x1F,0x17), EV5, ARG_EV5HWMEM },
1717
  { "hw_st/ar",                EV4HWMEM(0x1F,0x6), EV4, ARG_EV4HWMEM },
1718
  { "hw_st/arq",        EV4HWMEM(0x1F,0x7), EV4, ARG_EV4HWMEM },
1719
  { "hw_st/av",                EV5HWMEM(0x1F,0x12), EV5, ARG_EV5HWMEM },
1720
  { "hw_st/avc",        EV5HWMEM(0x1F,0x13), EV5, ARG_EV5HWMEM },
1721
  { "hw_st/c",                EV5HWMEM(0x1F,0x01), EV5, ARG_EV5HWMEM },
1722
  { "hw_st/p",                EV4HWMEM(0x1F,0x8), EV4, ARG_EV4HWMEM },
1723
  { "hw_st/p",                EV5HWMEM(0x1F,0x20), EV5, ARG_EV5HWMEM },
1724
  { "hw_st/pa",                EV4HWMEM(0x1F,0xC), EV4, ARG_EV4HWMEM },
1725
  { "hw_st/pa",                EV5HWMEM(0x1F,0x30), EV5, ARG_EV5HWMEM },
1726
  { "hw_st/pac",        EV5HWMEM(0x1F,0x31), EV5, ARG_EV5HWMEM },
1727
  { "hw_st/paq",        EV4HWMEM(0x1F,0xD), EV4, ARG_EV4HWMEM },
1728
  { "hw_st/paq",        EV5HWMEM(0x1F,0x34), EV5, ARG_EV5HWMEM },
1729
  { "hw_st/paqc",        EV5HWMEM(0x1F,0x35), EV5, ARG_EV5HWMEM },
1730
  { "hw_st/paqv",        EV5HWMEM(0x1F,0x36), EV5, ARG_EV5HWMEM },
1731
  { "hw_st/paqvc",        EV5HWMEM(0x1F,0x37), EV5, ARG_EV5HWMEM },
1732
  { "hw_st/par",        EV4HWMEM(0x1F,0xE), EV4, ARG_EV4HWMEM },
1733
  { "hw_st/parq",        EV4HWMEM(0x1F,0xF), EV4, ARG_EV4HWMEM },
1734
  { "hw_st/pav",        EV5HWMEM(0x1F,0x32), EV5, ARG_EV5HWMEM },
1735
  { "hw_st/pavc",        EV5HWMEM(0x1F,0x33), EV5, ARG_EV5HWMEM },
1736
  { "hw_st/pc",                EV5HWMEM(0x1F,0x21), EV5, ARG_EV5HWMEM },
1737
  { "hw_st/pq",                EV4HWMEM(0x1F,0x9), EV4, ARG_EV4HWMEM },
1738
  { "hw_st/pq",                EV5HWMEM(0x1F,0x24), EV5, ARG_EV5HWMEM },
1739
  { "hw_st/pqc",        EV5HWMEM(0x1F,0x25), EV5, ARG_EV5HWMEM },
1740
  { "hw_st/pqv",        EV5HWMEM(0x1F,0x26), EV5, ARG_EV5HWMEM },
1741
  { "hw_st/pqvc",        EV5HWMEM(0x1F,0x27), EV5, ARG_EV5HWMEM },
1742
  { "hw_st/pr",                EV4HWMEM(0x1F,0xA), EV4, ARG_EV4HWMEM },
1743
  { "hw_st/prq",        EV4HWMEM(0x1F,0xB), EV4, ARG_EV4HWMEM },
1744
  { "hw_st/pv",                EV5HWMEM(0x1F,0x22), EV5, ARG_EV5HWMEM },
1745
  { "hw_st/pvc",        EV5HWMEM(0x1F,0x23), EV5, ARG_EV5HWMEM },
1746
  { "hw_st/q",                EV4HWMEM(0x1F,0x1), EV4, ARG_EV4HWMEM },
1747
  { "hw_st/q",                EV5HWMEM(0x1F,0x04), EV5, ARG_EV5HWMEM },
1748
  { "hw_st/qc",                EV5HWMEM(0x1F,0x05), EV5, ARG_EV5HWMEM },
1749
  { "hw_st/qv",                EV5HWMEM(0x1F,0x06), EV5, ARG_EV5HWMEM },
1750
  { "hw_st/qvc",        EV5HWMEM(0x1F,0x07), EV5, ARG_EV5HWMEM },
1751
  { "hw_st/r",                EV4HWMEM(0x1F,0x2), EV4, ARG_EV4HWMEM },
1752
  { "hw_st/v",                EV5HWMEM(0x1F,0x02), EV5, ARG_EV5HWMEM },
1753
  { "hw_st/vc",                EV5HWMEM(0x1F,0x03), EV5, ARG_EV5HWMEM },
1754
  { "pal1f",                PCD(0x1F), BASE, ARG_PCD },
1755

    
1756
  { "ldf",                MEM(0x20), BASE, ARG_FMEM },
1757
  { "ldg",                MEM(0x21), BASE, ARG_FMEM },
1758
  { "lds",                MEM(0x22), BASE, ARG_FMEM },
1759
  { "ldt",                MEM(0x23), BASE, ARG_FMEM },
1760
  { "stf",                MEM(0x24), BASE, ARG_FMEM },
1761
  { "stg",                MEM(0x25), BASE, ARG_FMEM },
1762
  { "sts",                MEM(0x26), BASE, ARG_FMEM },
1763
  { "stt",                MEM(0x27), BASE, ARG_FMEM },
1764

    
1765
  { "ldl",                MEM(0x28), BASE, ARG_MEM },
1766
  { "ldq",                MEM(0x29), BASE, ARG_MEM },
1767
  { "ldl_l",                MEM(0x2A), BASE, ARG_MEM },
1768
  { "ldq_l",                MEM(0x2B), BASE, ARG_MEM },
1769
  { "stl",                MEM(0x2C), BASE, ARG_MEM },
1770
  { "stq",                MEM(0x2D), BASE, ARG_MEM },
1771
  { "stl_c",                MEM(0x2E), BASE, ARG_MEM },
1772
  { "stq_c",                MEM(0x2F), BASE, ARG_MEM },
1773

    
1774
  { "br",                BRA(0x30), BASE, { ZA, BDISP } },        /* pseudo */
1775
  { "br",                BRA(0x30), BASE, ARG_BRA },
1776
  { "fbeq",                BRA(0x31), BASE, ARG_FBRA },
1777
  { "fblt",                BRA(0x32), BASE, ARG_FBRA },
1778
  { "fble",                BRA(0x33), BASE, ARG_FBRA },
1779
  { "bsr",                BRA(0x34), BASE, ARG_BRA },
1780
  { "fbne",                BRA(0x35), BASE, ARG_FBRA },
1781
  { "fbge",                BRA(0x36), BASE, ARG_FBRA },
1782
  { "fbgt",                BRA(0x37), BASE, ARG_FBRA },
1783
  { "blbc",                BRA(0x38), BASE, ARG_BRA },
1784
  { "beq",                BRA(0x39), BASE, ARG_BRA },
1785
  { "blt",                BRA(0x3A), BASE, ARG_BRA },
1786
  { "ble",                BRA(0x3B), BASE, ARG_BRA },
1787
  { "blbs",                BRA(0x3C), BASE, ARG_BRA },
1788
  { "bne",                BRA(0x3D), BASE, ARG_BRA },
1789
  { "bge",                BRA(0x3E), BASE, ARG_BRA },
1790
  { "bgt",                BRA(0x3F), BASE, ARG_BRA },
1791
};
1792

    
1793
const unsigned alpha_num_opcodes = sizeof(alpha_opcodes)/sizeof(*alpha_opcodes);
1794

    
1795
/* OSF register names.  */
1796

    
1797
static const char * const osf_regnames[64] = {
1798
  "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
1799
  "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
1800
  "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
1801
  "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
1802
  "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
1803
  "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
1804
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
1805
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31"
1806
};
1807

    
1808
/* VMS register names.  */
1809

    
1810
static const char * const vms_regnames[64] = {
1811
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7",
1812
  "R8", "R9", "R10", "R11", "R12", "R13", "R14", "R15",
1813
  "R16", "R17", "R18", "R19", "R20", "R21", "R22", "R23",
1814
  "R24", "AI", "RA", "PV", "AT", "FP", "SP", "RZ",
1815
  "F0", "F1", "F2", "F3", "F4", "F5", "F6", "F7",
1816
  "F8", "F9", "F10", "F11", "F12", "F13", "F14", "F15",
1817
  "F16", "F17", "F18", "F19", "F20", "F21", "F22", "F23",
1818
  "F24", "F25", "F26", "F27", "F28", "F29", "F30", "FZ"
1819
};
1820

    
1821
/* Disassemble Alpha instructions.  */
1822

    
1823
int
1824
print_insn_alpha (memaddr, info)
1825
     bfd_vma memaddr;
1826
     struct disassemble_info *info;
1827
{
1828
  static const struct alpha_opcode *opcode_index[AXP_NOPS+1];
1829
  const char * const * regnames;
1830
  const struct alpha_opcode *opcode, *opcode_end;
1831
  const unsigned char *opindex;
1832
  unsigned insn, op, isa_mask;
1833
  int need_comma;
1834

    
1835
  /* Initialize the majorop table the first time through */
1836
  if (!opcode_index[0])
1837
    {
1838
      opcode = alpha_opcodes;
1839
      opcode_end = opcode + alpha_num_opcodes;
1840

    
1841
      for (op = 0; op < AXP_NOPS; ++op)
1842
        {
1843
          opcode_index[op] = opcode;
1844
          while (opcode < opcode_end && op == AXP_OP (opcode->opcode))
1845
            ++opcode;
1846
        }
1847
      opcode_index[op] = opcode;
1848
    }
1849

    
1850
  if (info->flavour == bfd_target_evax_flavour)
1851
    regnames = vms_regnames;
1852
  else
1853
    regnames = osf_regnames;
1854

    
1855
  isa_mask = AXP_OPCODE_NOPAL;
1856
  switch (info->mach)
1857
    {
1858
    case bfd_mach_alpha_ev4:
1859
      isa_mask |= AXP_OPCODE_EV4;
1860
      break;
1861
    case bfd_mach_alpha_ev5:
1862
      isa_mask |= AXP_OPCODE_EV5;
1863
      break;
1864
    case bfd_mach_alpha_ev6:
1865
      isa_mask |= AXP_OPCODE_EV6;
1866
      break;
1867
    }
1868

    
1869
  /* Read the insn into a host word */
1870
  {
1871
    bfd_byte buffer[4];
1872
    int status = (*info->read_memory_func) (memaddr, buffer, 4, info);
1873
    if (status != 0)
1874
      {
1875
        (*info->memory_error_func) (status, memaddr, info);
1876
        return -1;
1877
      }
1878
    insn = bfd_getl32 (buffer);
1879
  }
1880

    
1881
  /* Get the major opcode of the instruction.  */
1882
  op = AXP_OP (insn);
1883

    
1884
  /* Find the first match in the opcode table.  */
1885
  opcode_end = opcode_index[op + 1];
1886
  for (opcode = opcode_index[op]; opcode < opcode_end; ++opcode)
1887
    {
1888
      if ((insn ^ opcode->opcode) & opcode->mask)
1889
        continue;
1890

    
1891
      if (!(opcode->flags & isa_mask))
1892
        continue;
1893

    
1894
      /* Make two passes over the operands.  First see if any of them
1895
         have extraction functions, and, if they do, make sure the
1896
         instruction is valid.  */
1897
      {
1898
        int invalid = 0;
1899
        for (opindex = opcode->operands; *opindex != 0; opindex++)
1900
          {
1901
            const struct alpha_operand *operand = alpha_operands + *opindex;
1902
            if (operand->extract)
1903
              (*operand->extract) (insn, &invalid);
1904
          }
1905
        if (invalid)
1906
          continue;
1907
      }
1908

    
1909
      /* The instruction is valid.  */
1910
      goto found;
1911
    }
1912

    
1913
  /* No instruction found */
1914
  (*info->fprintf_func) (info->stream, ".long %#08x", insn);
1915

    
1916
  return 4;
1917

    
1918
found:
1919
  (*info->fprintf_func) (info->stream, "%s", opcode->name);
1920
  if (opcode->operands[0] != 0)
1921
    (*info->fprintf_func) (info->stream, "\t");
1922

    
1923
  /* Now extract and print the operands.  */
1924
  need_comma = 0;
1925
  for (opindex = opcode->operands; *opindex != 0; opindex++)
1926
    {
1927
      const struct alpha_operand *operand = alpha_operands + *opindex;
1928
      int value;
1929

    
1930
      /* Operands that are marked FAKE are simply ignored.  We
1931
         already made sure that the extract function considered
1932
         the instruction to be valid.  */
1933
      if ((operand->flags & AXP_OPERAND_FAKE) != 0)
1934
        continue;
1935

    
1936
      /* Extract the value from the instruction.  */
1937
      if (operand->extract)
1938
        value = (*operand->extract) (insn, (int *) NULL);
1939
      else
1940
        {
1941
          value = (insn >> operand->shift) & ((1 << operand->bits) - 1);
1942
          if (operand->flags & AXP_OPERAND_SIGNED)
1943
            {
1944
              int signbit = 1 << (operand->bits - 1);
1945
              value = (value ^ signbit) - signbit;
1946
            }
1947
        }
1948

    
1949
      if (need_comma &&
1950
          ((operand->flags & (AXP_OPERAND_PARENS | AXP_OPERAND_COMMA))
1951
           != AXP_OPERAND_PARENS))
1952
        {
1953
          (*info->fprintf_func) (info->stream, ",");
1954
        }
1955
      if (operand->flags & AXP_OPERAND_PARENS)
1956
        (*info->fprintf_func) (info->stream, "(");
1957

    
1958
      /* Print the operand as directed by the flags.  */
1959
      if (operand->flags & AXP_OPERAND_IR)
1960
        (*info->fprintf_func) (info->stream, "%s", regnames[value]);
1961
      else if (operand->flags & AXP_OPERAND_FPR)
1962
        (*info->fprintf_func) (info->stream, "%s", regnames[value + 32]);
1963
      else if (operand->flags & AXP_OPERAND_RELATIVE)
1964
        (*info->print_address_func) (memaddr + 4 + value, info);
1965
      else if (operand->flags & AXP_OPERAND_SIGNED)
1966
        (*info->fprintf_func) (info->stream, "%d", value);
1967
      else
1968
        (*info->fprintf_func) (info->stream, "%#x", value);
1969

    
1970
      if (operand->flags & AXP_OPERAND_PARENS)
1971
        (*info->fprintf_func) (info->stream, ")");
1972
      need_comma = 1;
1973
    }
1974

    
1975
  return 4;
1976
}