Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 2ac71179

History | View | Annotate | Download (76 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@end itemize
95

    
96
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97

    
98
@node Installation
99
@chapter Installation
100

    
101
If you want to compile QEMU yourself, see @ref{compilation}.
102

    
103
@menu
104
* install_linux::   Linux
105
* install_windows:: Windows
106
* install_mac::     Macintosh
107
@end menu
108

    
109
@node install_linux
110
@section Linux
111

    
112
If a precompiled package is available for your distribution - you just
113
have to install it. Otherwise, see @ref{compilation}.
114

    
115
@node install_windows
116
@section Windows
117

    
118
Download the experimental binary installer at
119
@url{http://www.free.oszoo.org/@/download.html}.
120

    
121
@node install_mac
122
@section Mac OS X
123

    
124
Download the experimental binary installer at
125
@url{http://www.free.oszoo.org/@/download.html}.
126

    
127
@node QEMU PC System emulator
128
@chapter QEMU PC System emulator
129

    
130
@menu
131
* pcsys_introduction:: Introduction
132
* pcsys_quickstart::   Quick Start
133
* sec_invocation::     Invocation
134
* pcsys_keys::         Keys
135
* pcsys_monitor::      QEMU Monitor
136
* disk_images::        Disk Images
137
* pcsys_network::      Network emulation
138
* direct_linux_boot::  Direct Linux Boot
139
* pcsys_usb::          USB emulation
140
* vnc_security::       VNC security
141
* gdb_usage::          GDB usage
142
* pcsys_os_specific::  Target OS specific information
143
@end menu
144

    
145
@node pcsys_introduction
146
@section Introduction
147

    
148
@c man begin DESCRIPTION
149

    
150
The QEMU PC System emulator simulates the
151
following peripherals:
152

    
153
@itemize @minus
154
@item
155
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156
@item
157
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158
extensions (hardware level, including all non standard modes).
159
@item
160
PS/2 mouse and keyboard
161
@item
162
2 PCI IDE interfaces with hard disk and CD-ROM support
163
@item
164
Floppy disk
165
@item
166
PCI/ISA PCI network adapters
167
@item
168
Serial ports
169
@item
170
Creative SoundBlaster 16 sound card
171
@item
172
ENSONIQ AudioPCI ES1370 sound card
173
@item
174
Intel 82801AA AC97 Audio compatible sound card
175
@item
176
Adlib(OPL2) - Yamaha YM3812 compatible chip
177
@item
178
Gravis Ultrasound GF1 sound card
179
@item
180
CS4231A compatible sound card
181
@item
182
PCI UHCI USB controller and a virtual USB hub.
183
@end itemize
184

    
185
SMP is supported with up to 255 CPUs.
186

    
187
Note that adlib, gus and cs4231a are only available when QEMU was
188
configured with --audio-card-list option containing the name(s) of
189
required card(s).
190

    
191
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192
VGA BIOS.
193

    
194
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195

    
196
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197
by Tibor "TS" Sch?tz.
198

    
199
CS4231A is the chip used in Windows Sound System and GUSMAX products
200

    
201
@c man end
202

    
203
@node pcsys_quickstart
204
@section Quick Start
205

    
206
Download and uncompress the linux image (@file{linux.img}) and type:
207

    
208
@example
209
qemu linux.img
210
@end example
211

    
212
Linux should boot and give you a prompt.
213

    
214
@node sec_invocation
215
@section Invocation
216

    
217
@example
218
@c man begin SYNOPSIS
219
usage: qemu [options] [@var{disk_image}]
220
@c man end
221
@end example
222

    
223
@c man begin OPTIONS
224
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225
targets do not need a disk image.
226

    
227
@include qemu-options.texi
228

    
229
@c man end
230

    
231
@node pcsys_keys
232
@section Keys
233

    
234
@c man begin OPTIONS
235

    
236
During the graphical emulation, you can use the following keys:
237
@table @key
238
@item Ctrl-Alt-f
239
Toggle full screen
240

    
241
@item Ctrl-Alt-n
242
Switch to virtual console 'n'. Standard console mappings are:
243
@table @emph
244
@item 1
245
Target system display
246
@item 2
247
Monitor
248
@item 3
249
Serial port
250
@end table
251

    
252
@item Ctrl-Alt
253
Toggle mouse and keyboard grab.
254
@end table
255

    
256
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
257
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
258

    
259
During emulation, if you are using the @option{-nographic} option, use
260
@key{Ctrl-a h} to get terminal commands:
261

    
262
@table @key
263
@item Ctrl-a h
264
@item Ctrl-a ?
265
Print this help
266
@item Ctrl-a x
267
Exit emulator
268
@item Ctrl-a s
269
Save disk data back to file (if -snapshot)
270
@item Ctrl-a t
271
Toggle console timestamps
272
@item Ctrl-a b
273
Send break (magic sysrq in Linux)
274
@item Ctrl-a c
275
Switch between console and monitor
276
@item Ctrl-a Ctrl-a
277
Send Ctrl-a
278
@end table
279
@c man end
280

    
281
@ignore
282

    
283
@c man begin SEEALSO
284
The HTML documentation of QEMU for more precise information and Linux
285
user mode emulator invocation.
286
@c man end
287

    
288
@c man begin AUTHOR
289
Fabrice Bellard
290
@c man end
291

    
292
@end ignore
293

    
294
@node pcsys_monitor
295
@section QEMU Monitor
296

    
297
The QEMU monitor is used to give complex commands to the QEMU
298
emulator. You can use it to:
299

    
300
@itemize @minus
301

    
302
@item
303
Remove or insert removable media images
304
(such as CD-ROM or floppies).
305

    
306
@item
307
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
308
from a disk file.
309

    
310
@item Inspect the VM state without an external debugger.
311

    
312
@end itemize
313

    
314
@subsection Commands
315

    
316
The following commands are available:
317

    
318
@table @option
319

    
320
@item help or ? [@var{cmd}]
321
Show the help for all commands or just for command @var{cmd}.
322

    
323
@item commit
324
Commit changes to the disk images (if -snapshot is used).
325

    
326
@item info @var{subcommand}
327
Show various information about the system state.
328

    
329
@table @option
330
@item info version
331
show the version of QEMU
332
@item info network
333
show the various VLANs and the associated devices
334
@item info chardev
335
show the character devices
336
@item info block
337
show the block devices
338
@item info block
339
show block device statistics
340
@item info registers
341
show the cpu registers
342
@item info cpus
343
show infos for each CPU
344
@item info history
345
show the command line history
346
@item info irq
347
show the interrupts statistics (if available)
348
@item info pic
349
show i8259 (PIC) state
350
@item info pci
351
show emulated PCI device info
352
@item info tlb
353
show virtual to physical memory mappings (i386 only)
354
@item info mem
355
show the active virtual memory mappings (i386 only)
356
@item info hpet
357
show state of HPET (i386 only)
358
@item info kqemu
359
show KQEMU information
360
@item info kvm
361
show KVM information
362
@item info usb
363
show USB devices plugged on the virtual USB hub
364
@item info usbhost
365
show all USB host devices
366
@item info profile
367
show profiling information
368
@item info capture
369
show information about active capturing
370
@item info snapshots
371
show list of VM snapshots
372
@item info status
373
show the current VM status (running|paused)
374
@item info pcmcia
375
show guest PCMCIA status
376
@item info mice
377
show which guest mouse is receiving events
378
@item info vnc
379
show the vnc server status
380
@item info name
381
show the current VM name
382
@item info uuid
383
show the current VM UUID
384
@item info cpustats
385
show CPU statistics
386
@item info slirp
387
show SLIRP statistics (if available)
388
@item info migrate
389
show migration status
390
@item info balloon
391
show balloon information
392
@end table
393

    
394
@item q or quit
395
Quit the emulator.
396

    
397
@item eject [-f] @var{device}
398
Eject a removable medium (use -f to force it).
399

    
400
@item change @var{device} @var{setting}
401

    
402
Change the configuration of a device.
403

    
404
@table @option
405
@item change @var{diskdevice} @var{filename} [@var{format}]
406
Change the medium for a removable disk device to point to @var{filename}. eg
407

    
408
@example
409
(qemu) change ide1-cd0 /path/to/some.iso
410
@end example
411

    
412
@var{format} is optional.
413

    
414
@item change vnc @var{display},@var{options}
415
Change the configuration of the VNC server. The valid syntax for @var{display}
416
and @var{options} are described at @ref{sec_invocation}. eg
417

    
418
@example
419
(qemu) change vnc localhost:1
420
@end example
421

    
422
@item change vnc password [@var{password}]
423

    
424
Change the password associated with the VNC server. If the new password is not
425
supplied, the monitor will prompt for it to be entered. VNC passwords are only
426
significant up to 8 letters. eg
427

    
428
@example
429
(qemu) change vnc password
430
Password: ********
431
@end example
432

    
433
@end table
434

    
435
@item acl @var{subcommand} @var{aclname} @var{match} @var{index}
436

    
437
Manage access control lists for network services. There are currently
438
two named access control lists, @var{vnc.x509dname} and @var{vnc.username}
439
matching on the x509 client certificate distinguished name, and SASL
440
username respectively.
441

    
442
@table @option
443
@item acl show <aclname>
444
list all the match rules in the access control list, and the default
445
policy
446
@item acl policy <aclname> @code{allow|deny}
447
set the default access control list policy, used in the event that
448
none of the explicit rules match. The default policy at startup is
449
always @code{deny}
450
@item acl allow <aclname> <match> [<index>]
451
add a match to the access control list, allowing access. The match will
452
normally be an exact username or x509 distinguished name, but can
453
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
454
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
455
normally be appended to the end of the ACL, but can be inserted
456
earlier in the list if the optional @code{index} parameter is supplied.
457
@item acl deny <aclname> <match> [<index>]
458
add a match to the access control list, denying access. The match will
459
normally be an exact username or x509 distinguished name, but can
460
optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
461
all users in the @code{EXAMPLE.COM} kerberos realm. The match will
462
normally be appended to the end of the ACL, but can be inserted
463
earlier in the list if the optional @code{index} parameter is supplied.
464
@item acl remove <aclname> <match>
465
remove the specified match rule from the access control list.
466
@item acl reset <aclname>
467
remove all matches from the access control list, and set the default
468
policy back to @code{deny}.
469
@end table
470

    
471
@item screendump @var{filename}
472
Save screen into PPM image @var{filename}.
473

    
474
@item logfile @var{filename}
475
Output logs to @var{filename}.
476

    
477
@item log @var{item1}[,...]
478
Activate logging of the specified items to @file{/tmp/qemu.log}.
479

    
480
@item savevm [@var{tag}|@var{id}]
481
Create a snapshot of the whole virtual machine. If @var{tag} is
482
provided, it is used as human readable identifier. If there is already
483
a snapshot with the same tag or ID, it is replaced. More info at
484
@ref{vm_snapshots}.
485

    
486
@item loadvm @var{tag}|@var{id}
487
Set the whole virtual machine to the snapshot identified by the tag
488
@var{tag} or the unique snapshot ID @var{id}.
489

    
490
@item delvm @var{tag}|@var{id}
491
Delete the snapshot identified by @var{tag} or @var{id}.
492

    
493
@item singlestep [off]
494
Run the emulation in single step mode.
495
If called with option off, the emulation returns to normal mode.
496

    
497
@item stop
498
Stop emulation.
499

    
500
@item c or cont
501
Resume emulation.
502

    
503
@item gdbserver [@var{port}]
504
Start gdbserver session (default @var{port}=1234)
505

    
506
@item x/fmt @var{addr}
507
Virtual memory dump starting at @var{addr}.
508

    
509
@item xp /@var{fmt} @var{addr}
510
Physical memory dump starting at @var{addr}.
511

    
512
@var{fmt} is a format which tells the command how to format the
513
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
514

    
515
@table @var
516
@item count
517
is the number of items to be dumped.
518

    
519
@item format
520
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
521
c (char) or i (asm instruction).
522

    
523
@item size
524
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
525
@code{h} or @code{w} can be specified with the @code{i} format to
526
respectively select 16 or 32 bit code instruction size.
527

    
528
@end table
529

    
530
Examples:
531
@itemize
532
@item
533
Dump 10 instructions at the current instruction pointer:
534
@example
535
(qemu) x/10i $eip
536
0x90107063:  ret
537
0x90107064:  sti
538
0x90107065:  lea    0x0(%esi,1),%esi
539
0x90107069:  lea    0x0(%edi,1),%edi
540
0x90107070:  ret
541
0x90107071:  jmp    0x90107080
542
0x90107073:  nop
543
0x90107074:  nop
544
0x90107075:  nop
545
0x90107076:  nop
546
@end example
547

    
548
@item
549
Dump 80 16 bit values at the start of the video memory.
550
@smallexample
551
(qemu) xp/80hx 0xb8000
552
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
553
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
554
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
555
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
556
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
557
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
558
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
559
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
560
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
561
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
562
@end smallexample
563
@end itemize
564

    
565
@item p or print/@var{fmt} @var{expr}
566

    
567
Print expression value. Only the @var{format} part of @var{fmt} is
568
used.
569

    
570
@item sendkey @var{keys}
571

    
572
Send @var{keys} to the emulator. @var{keys} could be the name of the
573
key or @code{#} followed by the raw value in either decimal or hexadecimal
574
format. Use @code{-} to press several keys simultaneously. Example:
575
@example
576
sendkey ctrl-alt-f1
577
@end example
578

    
579
This command is useful to send keys that your graphical user interface
580
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
581

    
582
@item system_reset
583

    
584
Reset the system.
585

    
586
@item system_powerdown
587

    
588
Power down the system (if supported).
589

    
590
@item sum @var{addr} @var{size}
591

    
592
Compute the checksum of a memory region.
593

    
594
@item usb_add @var{devname}
595

    
596
Add the USB device @var{devname}.  For details of available devices see
597
@ref{usb_devices}
598

    
599
@item usb_del @var{devname}
600

    
601
Remove the USB device @var{devname} from the QEMU virtual USB
602
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
603
command @code{info usb} to see the devices you can remove.
604

    
605
@item mouse_move @var{dx} @var{dy} [@var{dz}]
606
Move the active mouse to the specified coordinates @var{dx} @var{dy}
607
with optional scroll axis @var{dz}.
608

    
609
@item mouse_button @var{val}
610
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
611

    
612
@item mouse_set @var{index}
613
Set which mouse device receives events at given @var{index}, index
614
can be obtained with
615
@example
616
info mice
617
@end example
618

    
619
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
620
Capture audio into @var{filename}. Using sample rate @var{frequency}
621
bits per sample @var{bits} and number of channels @var{channels}.
622

    
623
Defaults:
624
@itemize @minus
625
@item Sample rate = 44100 Hz - CD quality
626
@item Bits = 16
627
@item Number of channels = 2 - Stereo
628
@end itemize
629

    
630
@item stopcapture @var{index}
631
Stop capture with a given @var{index}, index can be obtained with
632
@example
633
info capture
634
@end example
635

    
636
@item memsave @var{addr} @var{size} @var{file}
637
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
638

    
639
@item pmemsave @var{addr} @var{size} @var{file}
640
save to disk physical memory dump starting at @var{addr} of size @var{size}.
641

    
642
@item boot_set @var{bootdevicelist}
643

    
644
Define new values for the boot device list. Those values will override
645
the values specified on the command line through the @code{-boot} option.
646

    
647
The values that can be specified here depend on the machine type, but are
648
the same that can be specified in the @code{-boot} command line option.
649

    
650
@item nmi @var{cpu}
651
Inject an NMI on the given CPU.
652

    
653
@item migrate [-d] @var{uri}
654
Migrate to @var{uri} (using -d to not wait for completion).
655

    
656
@item migrate_cancel
657
Cancel the current VM migration.
658

    
659
@item migrate_set_speed @var{value}
660
Set maximum speed to @var{value} (in bytes) for migrations.
661

    
662
@item balloon @var{value}
663
Request VM to change its memory allocation to @var{value} (in MB).
664

    
665
@item set_link @var{name} [up|down]
666
Set link @var{name} up or down.
667

    
668
@end table
669

    
670
@subsection Integer expressions
671

    
672
The monitor understands integers expressions for every integer
673
argument. You can use register names to get the value of specifics
674
CPU registers by prefixing them with @emph{$}.
675

    
676
@node disk_images
677
@section Disk Images
678

    
679
Since version 0.6.1, QEMU supports many disk image formats, including
680
growable disk images (their size increase as non empty sectors are
681
written), compressed and encrypted disk images. Version 0.8.3 added
682
the new qcow2 disk image format which is essential to support VM
683
snapshots.
684

    
685
@menu
686
* disk_images_quickstart::    Quick start for disk image creation
687
* disk_images_snapshot_mode:: Snapshot mode
688
* vm_snapshots::              VM snapshots
689
* qemu_img_invocation::       qemu-img Invocation
690
* qemu_nbd_invocation::       qemu-nbd Invocation
691
* host_drives::               Using host drives
692
* disk_images_fat_images::    Virtual FAT disk images
693
* disk_images_nbd::           NBD access
694
@end menu
695

    
696
@node disk_images_quickstart
697
@subsection Quick start for disk image creation
698

    
699
You can create a disk image with the command:
700
@example
701
qemu-img create myimage.img mysize
702
@end example
703
where @var{myimage.img} is the disk image filename and @var{mysize} is its
704
size in kilobytes. You can add an @code{M} suffix to give the size in
705
megabytes and a @code{G} suffix for gigabytes.
706

    
707
See @ref{qemu_img_invocation} for more information.
708

    
709
@node disk_images_snapshot_mode
710
@subsection Snapshot mode
711

    
712
If you use the option @option{-snapshot}, all disk images are
713
considered as read only. When sectors in written, they are written in
714
a temporary file created in @file{/tmp}. You can however force the
715
write back to the raw disk images by using the @code{commit} monitor
716
command (or @key{C-a s} in the serial console).
717

    
718
@node vm_snapshots
719
@subsection VM snapshots
720

    
721
VM snapshots are snapshots of the complete virtual machine including
722
CPU state, RAM, device state and the content of all the writable
723
disks. In order to use VM snapshots, you must have at least one non
724
removable and writable block device using the @code{qcow2} disk image
725
format. Normally this device is the first virtual hard drive.
726

    
727
Use the monitor command @code{savevm} to create a new VM snapshot or
728
replace an existing one. A human readable name can be assigned to each
729
snapshot in addition to its numerical ID.
730

    
731
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
732
a VM snapshot. @code{info snapshots} lists the available snapshots
733
with their associated information:
734

    
735
@example
736
(qemu) info snapshots
737
Snapshot devices: hda
738
Snapshot list (from hda):
739
ID        TAG                 VM SIZE                DATE       VM CLOCK
740
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
741
2                                 40M 2006-08-06 12:43:29   00:00:18.633
742
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
743
@end example
744

    
745
A VM snapshot is made of a VM state info (its size is shown in
746
@code{info snapshots}) and a snapshot of every writable disk image.
747
The VM state info is stored in the first @code{qcow2} non removable
748
and writable block device. The disk image snapshots are stored in
749
every disk image. The size of a snapshot in a disk image is difficult
750
to evaluate and is not shown by @code{info snapshots} because the
751
associated disk sectors are shared among all the snapshots to save
752
disk space (otherwise each snapshot would need a full copy of all the
753
disk images).
754

    
755
When using the (unrelated) @code{-snapshot} option
756
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
757
but they are deleted as soon as you exit QEMU.
758

    
759
VM snapshots currently have the following known limitations:
760
@itemize
761
@item
762
They cannot cope with removable devices if they are removed or
763
inserted after a snapshot is done.
764
@item
765
A few device drivers still have incomplete snapshot support so their
766
state is not saved or restored properly (in particular USB).
767
@end itemize
768

    
769
@node qemu_img_invocation
770
@subsection @code{qemu-img} Invocation
771

    
772
@include qemu-img.texi
773

    
774
@node qemu_nbd_invocation
775
@subsection @code{qemu-nbd} Invocation
776

    
777
@include qemu-nbd.texi
778

    
779
@node host_drives
780
@subsection Using host drives
781

    
782
In addition to disk image files, QEMU can directly access host
783
devices. We describe here the usage for QEMU version >= 0.8.3.
784

    
785
@subsubsection Linux
786

    
787
On Linux, you can directly use the host device filename instead of a
788
disk image filename provided you have enough privileges to access
789
it. For example, use @file{/dev/cdrom} to access to the CDROM or
790
@file{/dev/fd0} for the floppy.
791

    
792
@table @code
793
@item CD
794
You can specify a CDROM device even if no CDROM is loaded. QEMU has
795
specific code to detect CDROM insertion or removal. CDROM ejection by
796
the guest OS is supported. Currently only data CDs are supported.
797
@item Floppy
798
You can specify a floppy device even if no floppy is loaded. Floppy
799
removal is currently not detected accurately (if you change floppy
800
without doing floppy access while the floppy is not loaded, the guest
801
OS will think that the same floppy is loaded).
802
@item Hard disks
803
Hard disks can be used. Normally you must specify the whole disk
804
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
805
see it as a partitioned disk. WARNING: unless you know what you do, it
806
is better to only make READ-ONLY accesses to the hard disk otherwise
807
you may corrupt your host data (use the @option{-snapshot} command
808
line option or modify the device permissions accordingly).
809
@end table
810

    
811
@subsubsection Windows
812

    
813
@table @code
814
@item CD
815
The preferred syntax is the drive letter (e.g. @file{d:}). The
816
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
817
supported as an alias to the first CDROM drive.
818

    
819
Currently there is no specific code to handle removable media, so it
820
is better to use the @code{change} or @code{eject} monitor commands to
821
change or eject media.
822
@item Hard disks
823
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
824
where @var{N} is the drive number (0 is the first hard disk).
825

    
826
WARNING: unless you know what you do, it is better to only make
827
READ-ONLY accesses to the hard disk otherwise you may corrupt your
828
host data (use the @option{-snapshot} command line so that the
829
modifications are written in a temporary file).
830
@end table
831

    
832

    
833
@subsubsection Mac OS X
834

    
835
@file{/dev/cdrom} is an alias to the first CDROM.
836

    
837
Currently there is no specific code to handle removable media, so it
838
is better to use the @code{change} or @code{eject} monitor commands to
839
change or eject media.
840

    
841
@node disk_images_fat_images
842
@subsection Virtual FAT disk images
843

    
844
QEMU can automatically create a virtual FAT disk image from a
845
directory tree. In order to use it, just type:
846

    
847
@example
848
qemu linux.img -hdb fat:/my_directory
849
@end example
850

    
851
Then you access access to all the files in the @file{/my_directory}
852
directory without having to copy them in a disk image or to export
853
them via SAMBA or NFS. The default access is @emph{read-only}.
854

    
855
Floppies can be emulated with the @code{:floppy:} option:
856

    
857
@example
858
qemu linux.img -fda fat:floppy:/my_directory
859
@end example
860

    
861
A read/write support is available for testing (beta stage) with the
862
@code{:rw:} option:
863

    
864
@example
865
qemu linux.img -fda fat:floppy:rw:/my_directory
866
@end example
867

    
868
What you should @emph{never} do:
869
@itemize
870
@item use non-ASCII filenames ;
871
@item use "-snapshot" together with ":rw:" ;
872
@item expect it to work when loadvm'ing ;
873
@item write to the FAT directory on the host system while accessing it with the guest system.
874
@end itemize
875

    
876
@node disk_images_nbd
877
@subsection NBD access
878

    
879
QEMU can access directly to block device exported using the Network Block Device
880
protocol.
881

    
882
@example
883
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
884
@end example
885

    
886
If the NBD server is located on the same host, you can use an unix socket instead
887
of an inet socket:
888

    
889
@example
890
qemu linux.img -hdb nbd:unix:/tmp/my_socket
891
@end example
892

    
893
In this case, the block device must be exported using qemu-nbd:
894

    
895
@example
896
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
897
@end example
898

    
899
The use of qemu-nbd allows to share a disk between several guests:
900
@example
901
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
902
@end example
903

    
904
and then you can use it with two guests:
905
@example
906
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
907
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
908
@end example
909

    
910
@node pcsys_network
911
@section Network emulation
912

    
913
QEMU can simulate several network cards (PCI or ISA cards on the PC
914
target) and can connect them to an arbitrary number of Virtual Local
915
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
916
VLAN. VLAN can be connected between separate instances of QEMU to
917
simulate large networks. For simpler usage, a non privileged user mode
918
network stack can replace the TAP device to have a basic network
919
connection.
920

    
921
@subsection VLANs
922

    
923
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
924
connection between several network devices. These devices can be for
925
example QEMU virtual Ethernet cards or virtual Host ethernet devices
926
(TAP devices).
927

    
928
@subsection Using TAP network interfaces
929

    
930
This is the standard way to connect QEMU to a real network. QEMU adds
931
a virtual network device on your host (called @code{tapN}), and you
932
can then configure it as if it was a real ethernet card.
933

    
934
@subsubsection Linux host
935

    
936
As an example, you can download the @file{linux-test-xxx.tar.gz}
937
archive and copy the script @file{qemu-ifup} in @file{/etc} and
938
configure properly @code{sudo} so that the command @code{ifconfig}
939
contained in @file{qemu-ifup} can be executed as root. You must verify
940
that your host kernel supports the TAP network interfaces: the
941
device @file{/dev/net/tun} must be present.
942

    
943
See @ref{sec_invocation} to have examples of command lines using the
944
TAP network interfaces.
945

    
946
@subsubsection Windows host
947

    
948
There is a virtual ethernet driver for Windows 2000/XP systems, called
949
TAP-Win32. But it is not included in standard QEMU for Windows,
950
so you will need to get it separately. It is part of OpenVPN package,
951
so download OpenVPN from : @url{http://openvpn.net/}.
952

    
953
@subsection Using the user mode network stack
954

    
955
By using the option @option{-net user} (default configuration if no
956
@option{-net} option is specified), QEMU uses a completely user mode
957
network stack (you don't need root privilege to use the virtual
958
network). The virtual network configuration is the following:
959

    
960
@example
961

    
962
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
963
                           |          (10.0.2.2)
964
                           |
965
                           ---->  DNS server (10.0.2.3)
966
                           |
967
                           ---->  SMB server (10.0.2.4)
968
@end example
969

    
970
The QEMU VM behaves as if it was behind a firewall which blocks all
971
incoming connections. You can use a DHCP client to automatically
972
configure the network in the QEMU VM. The DHCP server assign addresses
973
to the hosts starting from 10.0.2.15.
974

    
975
In order to check that the user mode network is working, you can ping
976
the address 10.0.2.2 and verify that you got an address in the range
977
10.0.2.x from the QEMU virtual DHCP server.
978

    
979
Note that @code{ping} is not supported reliably to the internet as it
980
would require root privileges. It means you can only ping the local
981
router (10.0.2.2).
982

    
983
When using the built-in TFTP server, the router is also the TFTP
984
server.
985

    
986
When using the @option{-redir} option, TCP or UDP connections can be
987
redirected from the host to the guest. It allows for example to
988
redirect X11, telnet or SSH connections.
989

    
990
@subsection Connecting VLANs between QEMU instances
991

    
992
Using the @option{-net socket} option, it is possible to make VLANs
993
that span several QEMU instances. See @ref{sec_invocation} to have a
994
basic example.
995

    
996
@node direct_linux_boot
997
@section Direct Linux Boot
998

    
999
This section explains how to launch a Linux kernel inside QEMU without
1000
having to make a full bootable image. It is very useful for fast Linux
1001
kernel testing.
1002

    
1003
The syntax is:
1004
@example
1005
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1006
@end example
1007

    
1008
Use @option{-kernel} to provide the Linux kernel image and
1009
@option{-append} to give the kernel command line arguments. The
1010
@option{-initrd} option can be used to provide an INITRD image.
1011

    
1012
When using the direct Linux boot, a disk image for the first hard disk
1013
@file{hda} is required because its boot sector is used to launch the
1014
Linux kernel.
1015

    
1016
If you do not need graphical output, you can disable it and redirect
1017
the virtual serial port and the QEMU monitor to the console with the
1018
@option{-nographic} option. The typical command line is:
1019
@example
1020
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1021
     -append "root=/dev/hda console=ttyS0" -nographic
1022
@end example
1023

    
1024
Use @key{Ctrl-a c} to switch between the serial console and the
1025
monitor (@pxref{pcsys_keys}).
1026

    
1027
@node pcsys_usb
1028
@section USB emulation
1029

    
1030
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1031
virtual USB devices or real host USB devices (experimental, works only
1032
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1033
as necessary to connect multiple USB devices.
1034

    
1035
@menu
1036
* usb_devices::
1037
* host_usb_devices::
1038
@end menu
1039
@node usb_devices
1040
@subsection Connecting USB devices
1041

    
1042
USB devices can be connected with the @option{-usbdevice} commandline option
1043
or the @code{usb_add} monitor command.  Available devices are:
1044

    
1045
@table @code
1046
@item mouse
1047
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1048
@item tablet
1049
Pointer device that uses absolute coordinates (like a touchscreen).
1050
This means qemu is able to report the mouse position without having
1051
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1052
@item disk:@var{file}
1053
Mass storage device based on @var{file} (@pxref{disk_images})
1054
@item host:@var{bus.addr}
1055
Pass through the host device identified by @var{bus.addr}
1056
(Linux only)
1057
@item host:@var{vendor_id:product_id}
1058
Pass through the host device identified by @var{vendor_id:product_id}
1059
(Linux only)
1060
@item wacom-tablet
1061
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1062
above but it can be used with the tslib library because in addition to touch
1063
coordinates it reports touch pressure.
1064
@item keyboard
1065
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1066
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1067
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1068
device @var{dev}. The available character devices are the same as for the
1069
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1070
used to override the default 0403:6001. For instance, 
1071
@example
1072
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1073
@end example
1074
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1075
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1076
@item braille
1077
Braille device.  This will use BrlAPI to display the braille output on a real
1078
or fake device.
1079
@item net:@var{options}
1080
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1081
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1082
For instance, user-mode networking can be used with
1083
@example
1084
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1085
@end example
1086
Currently this cannot be used in machines that support PCI NICs.
1087
@item bt[:@var{hci-type}]
1088
Bluetooth dongle whose type is specified in the same format as with
1089
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1090
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1091
This USB device implements the USB Transport Layer of HCI.  Example
1092
usage:
1093
@example
1094
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1095
@end example
1096
@end table
1097

    
1098
@node host_usb_devices
1099
@subsection Using host USB devices on a Linux host
1100

    
1101
WARNING: this is an experimental feature. QEMU will slow down when
1102
using it. USB devices requiring real time streaming (i.e. USB Video
1103
Cameras) are not supported yet.
1104

    
1105
@enumerate
1106
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1107
is actually using the USB device. A simple way to do that is simply to
1108
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1109
to @file{mydriver.o.disabled}.
1110

    
1111
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1112
@example
1113
ls /proc/bus/usb
1114
001  devices  drivers
1115
@end example
1116

    
1117
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1118
@example
1119
chown -R myuid /proc/bus/usb
1120
@end example
1121

    
1122
@item Launch QEMU and do in the monitor:
1123
@example
1124
info usbhost
1125
  Device 1.2, speed 480 Mb/s
1126
    Class 00: USB device 1234:5678, USB DISK
1127
@end example
1128
You should see the list of the devices you can use (Never try to use
1129
hubs, it won't work).
1130

    
1131
@item Add the device in QEMU by using:
1132
@example
1133
usb_add host:1234:5678
1134
@end example
1135

    
1136
Normally the guest OS should report that a new USB device is
1137
plugged. You can use the option @option{-usbdevice} to do the same.
1138

    
1139
@item Now you can try to use the host USB device in QEMU.
1140

    
1141
@end enumerate
1142

    
1143
When relaunching QEMU, you may have to unplug and plug again the USB
1144
device to make it work again (this is a bug).
1145

    
1146
@node vnc_security
1147
@section VNC security
1148

    
1149
The VNC server capability provides access to the graphical console
1150
of the guest VM across the network. This has a number of security
1151
considerations depending on the deployment scenarios.
1152

    
1153
@menu
1154
* vnc_sec_none::
1155
* vnc_sec_password::
1156
* vnc_sec_certificate::
1157
* vnc_sec_certificate_verify::
1158
* vnc_sec_certificate_pw::
1159
* vnc_sec_sasl::
1160
* vnc_sec_certificate_sasl::
1161
* vnc_generate_cert::
1162
* vnc_setup_sasl::
1163
@end menu
1164
@node vnc_sec_none
1165
@subsection Without passwords
1166

    
1167
The simplest VNC server setup does not include any form of authentication.
1168
For this setup it is recommended to restrict it to listen on a UNIX domain
1169
socket only. For example
1170

    
1171
@example
1172
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1173
@end example
1174

    
1175
This ensures that only users on local box with read/write access to that
1176
path can access the VNC server. To securely access the VNC server from a
1177
remote machine, a combination of netcat+ssh can be used to provide a secure
1178
tunnel.
1179

    
1180
@node vnc_sec_password
1181
@subsection With passwords
1182

    
1183
The VNC protocol has limited support for password based authentication. Since
1184
the protocol limits passwords to 8 characters it should not be considered
1185
to provide high security. The password can be fairly easily brute-forced by
1186
a client making repeat connections. For this reason, a VNC server using password
1187
authentication should be restricted to only listen on the loopback interface
1188
or UNIX domain sockets. Password authentication is requested with the @code{password}
1189
option, and then once QEMU is running the password is set with the monitor. Until
1190
the monitor is used to set the password all clients will be rejected.
1191

    
1192
@example
1193
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1194
(qemu) change vnc password
1195
Password: ********
1196
(qemu)
1197
@end example
1198

    
1199
@node vnc_sec_certificate
1200
@subsection With x509 certificates
1201

    
1202
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1203
TLS for encryption of the session, and x509 certificates for authentication.
1204
The use of x509 certificates is strongly recommended, because TLS on its
1205
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1206
support provides a secure session, but no authentication. This allows any
1207
client to connect, and provides an encrypted session.
1208

    
1209
@example
1210
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1211
@end example
1212

    
1213
In the above example @code{/etc/pki/qemu} should contain at least three files,
1214
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1215
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1216
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1217
only be readable by the user owning it.
1218

    
1219
@node vnc_sec_certificate_verify
1220
@subsection With x509 certificates and client verification
1221

    
1222
Certificates can also provide a means to authenticate the client connecting.
1223
The server will request that the client provide a certificate, which it will
1224
then validate against the CA certificate. This is a good choice if deploying
1225
in an environment with a private internal certificate authority.
1226

    
1227
@example
1228
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1229
@end example
1230

    
1231

    
1232
@node vnc_sec_certificate_pw
1233
@subsection With x509 certificates, client verification and passwords
1234

    
1235
Finally, the previous method can be combined with VNC password authentication
1236
to provide two layers of authentication for clients.
1237

    
1238
@example
1239
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1240
(qemu) change vnc password
1241
Password: ********
1242
(qemu)
1243
@end example
1244

    
1245

    
1246
@node vnc_sec_sasl
1247
@subsection With SASL authentication
1248

    
1249
The SASL authentication method is a VNC extension, that provides an
1250
easily extendable, pluggable authentication method. This allows for
1251
integration with a wide range of authentication mechanisms, such as
1252
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1253
The strength of the authentication depends on the exact mechanism
1254
configured. If the chosen mechanism also provides a SSF layer, then
1255
it will encrypt the datastream as well.
1256

    
1257
Refer to the later docs on how to choose the exact SASL mechanism
1258
used for authentication, but assuming use of one supporting SSF,
1259
then QEMU can be launched with:
1260

    
1261
@example
1262
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1263
@end example
1264

    
1265
@node vnc_sec_certificate_sasl
1266
@subsection With x509 certificates and SASL authentication
1267

    
1268
If the desired SASL authentication mechanism does not supported
1269
SSF layers, then it is strongly advised to run it in combination
1270
with TLS and x509 certificates. This provides securely encrypted
1271
data stream, avoiding risk of compromising of the security
1272
credentials. This can be enabled, by combining the 'sasl' option
1273
with the aforementioned TLS + x509 options:
1274

    
1275
@example
1276
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1277
@end example
1278

    
1279

    
1280
@node vnc_generate_cert
1281
@subsection Generating certificates for VNC
1282

    
1283
The GNU TLS packages provides a command called @code{certtool} which can
1284
be used to generate certificates and keys in PEM format. At a minimum it
1285
is neccessary to setup a certificate authority, and issue certificates to
1286
each server. If using certificates for authentication, then each client
1287
will also need to be issued a certificate. The recommendation is for the
1288
server to keep its certificates in either @code{/etc/pki/qemu} or for
1289
unprivileged users in @code{$HOME/.pki/qemu}.
1290

    
1291
@menu
1292
* vnc_generate_ca::
1293
* vnc_generate_server::
1294
* vnc_generate_client::
1295
@end menu
1296
@node vnc_generate_ca
1297
@subsubsection Setup the Certificate Authority
1298

    
1299
This step only needs to be performed once per organization / organizational
1300
unit. First the CA needs a private key. This key must be kept VERY secret
1301
and secure. If this key is compromised the entire trust chain of the certificates
1302
issued with it is lost.
1303

    
1304
@example
1305
# certtool --generate-privkey > ca-key.pem
1306
@end example
1307

    
1308
A CA needs to have a public certificate. For simplicity it can be a self-signed
1309
certificate, or one issue by a commercial certificate issuing authority. To
1310
generate a self-signed certificate requires one core piece of information, the
1311
name of the organization.
1312

    
1313
@example
1314
# cat > ca.info <<EOF
1315
cn = Name of your organization
1316
ca
1317
cert_signing_key
1318
EOF
1319
# certtool --generate-self-signed \
1320
           --load-privkey ca-key.pem
1321
           --template ca.info \
1322
           --outfile ca-cert.pem
1323
@end example
1324

    
1325
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1326
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1327

    
1328
@node vnc_generate_server
1329
@subsubsection Issuing server certificates
1330

    
1331
Each server (or host) needs to be issued with a key and certificate. When connecting
1332
the certificate is sent to the client which validates it against the CA certificate.
1333
The core piece of information for a server certificate is the hostname. This should
1334
be the fully qualified hostname that the client will connect with, since the client
1335
will typically also verify the hostname in the certificate. On the host holding the
1336
secure CA private key:
1337

    
1338
@example
1339
# cat > server.info <<EOF
1340
organization = Name  of your organization
1341
cn = server.foo.example.com
1342
tls_www_server
1343
encryption_key
1344
signing_key
1345
EOF
1346
# certtool --generate-privkey > server-key.pem
1347
# certtool --generate-certificate \
1348
           --load-ca-certificate ca-cert.pem \
1349
           --load-ca-privkey ca-key.pem \
1350
           --load-privkey server server-key.pem \
1351
           --template server.info \
1352
           --outfile server-cert.pem
1353
@end example
1354

    
1355
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1356
to the server for which they were generated. The @code{server-key.pem} is security
1357
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1358

    
1359
@node vnc_generate_client
1360
@subsubsection Issuing client certificates
1361

    
1362
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1363
certificates as its authentication mechanism, each client also needs to be issued
1364
a certificate. The client certificate contains enough metadata to uniquely identify
1365
the client, typically organization, state, city, building, etc. On the host holding
1366
the secure CA private key:
1367

    
1368
@example
1369
# cat > client.info <<EOF
1370
country = GB
1371
state = London
1372
locality = London
1373
organiazation = Name of your organization
1374
cn = client.foo.example.com
1375
tls_www_client
1376
encryption_key
1377
signing_key
1378
EOF
1379
# certtool --generate-privkey > client-key.pem
1380
# certtool --generate-certificate \
1381
           --load-ca-certificate ca-cert.pem \
1382
           --load-ca-privkey ca-key.pem \
1383
           --load-privkey client-key.pem \
1384
           --template client.info \
1385
           --outfile client-cert.pem
1386
@end example
1387

    
1388
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1389
copied to the client for which they were generated.
1390

    
1391

    
1392
@node vnc_setup_sasl
1393

    
1394
@subsection Configuring SASL mechanisms
1395

    
1396
The following documentation assumes use of the Cyrus SASL implementation on a
1397
Linux host, but the principals should apply to any other SASL impl. When SASL
1398
is enabled, the mechanism configuration will be loaded from system default
1399
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1400
unprivileged user, an environment variable SASL_CONF_PATH can be used
1401
to make it search alternate locations for the service config.
1402

    
1403
The default configuration might contain
1404

    
1405
@example
1406
mech_list: digest-md5
1407
sasldb_path: /etc/qemu/passwd.db
1408
@end example
1409

    
1410
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1411
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1412
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1413
command. While this mechanism is easy to configure and use, it is not
1414
considered secure by modern standards, so only suitable for developers /
1415
ad-hoc testing.
1416

    
1417
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1418
mechanism
1419

    
1420
@example
1421
mech_list: gssapi
1422
keytab: /etc/qemu/krb5.tab
1423
@end example
1424

    
1425
For this to work the administrator of your KDC must generate a Kerberos
1426
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1427
replacing 'somehost.example.com' with the fully qualified host name of the
1428
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1429

    
1430
Other configurations will be left as an exercise for the reader. It should
1431
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1432
encryption. For all other mechanisms, VNC should always be configured to
1433
use TLS and x509 certificates to protect security credentials from snooping.
1434

    
1435
@node gdb_usage
1436
@section GDB usage
1437

    
1438
QEMU has a primitive support to work with gdb, so that you can do
1439
'Ctrl-C' while the virtual machine is running and inspect its state.
1440

    
1441
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1442
gdb connection:
1443
@example
1444
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1445
       -append "root=/dev/hda"
1446
Connected to host network interface: tun0
1447
Waiting gdb connection on port 1234
1448
@end example
1449

    
1450
Then launch gdb on the 'vmlinux' executable:
1451
@example
1452
> gdb vmlinux
1453
@end example
1454

    
1455
In gdb, connect to QEMU:
1456
@example
1457
(gdb) target remote localhost:1234
1458
@end example
1459

    
1460
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1461
@example
1462
(gdb) c
1463
@end example
1464

    
1465
Here are some useful tips in order to use gdb on system code:
1466

    
1467
@enumerate
1468
@item
1469
Use @code{info reg} to display all the CPU registers.
1470
@item
1471
Use @code{x/10i $eip} to display the code at the PC position.
1472
@item
1473
Use @code{set architecture i8086} to dump 16 bit code. Then use
1474
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1475
@end enumerate
1476

    
1477
Advanced debugging options:
1478

    
1479
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1480
@table @code
1481
@item maintenance packet qqemu.sstepbits
1482

    
1483
This will display the MASK bits used to control the single stepping IE:
1484
@example
1485
(gdb) maintenance packet qqemu.sstepbits
1486
sending: "qqemu.sstepbits"
1487
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1488
@end example
1489
@item maintenance packet qqemu.sstep
1490

    
1491
This will display the current value of the mask used when single stepping IE:
1492
@example
1493
(gdb) maintenance packet qqemu.sstep
1494
sending: "qqemu.sstep"
1495
received: "0x7"
1496
@end example
1497
@item maintenance packet Qqemu.sstep=HEX_VALUE
1498

    
1499
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1500
@example
1501
(gdb) maintenance packet Qqemu.sstep=0x5
1502
sending: "qemu.sstep=0x5"
1503
received: "OK"
1504
@end example
1505
@end table
1506

    
1507
@node pcsys_os_specific
1508
@section Target OS specific information
1509

    
1510
@subsection Linux
1511

    
1512
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1513
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1514
color depth in the guest and the host OS.
1515

    
1516
When using a 2.6 guest Linux kernel, you should add the option
1517
@code{clock=pit} on the kernel command line because the 2.6 Linux
1518
kernels make very strict real time clock checks by default that QEMU
1519
cannot simulate exactly.
1520

    
1521
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1522
not activated because QEMU is slower with this patch. The QEMU
1523
Accelerator Module is also much slower in this case. Earlier Fedora
1524
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1525
patch by default. Newer kernels don't have it.
1526

    
1527
@subsection Windows
1528

    
1529
If you have a slow host, using Windows 95 is better as it gives the
1530
best speed. Windows 2000 is also a good choice.
1531

    
1532
@subsubsection SVGA graphic modes support
1533

    
1534
QEMU emulates a Cirrus Logic GD5446 Video
1535
card. All Windows versions starting from Windows 95 should recognize
1536
and use this graphic card. For optimal performances, use 16 bit color
1537
depth in the guest and the host OS.
1538

    
1539
If you are using Windows XP as guest OS and if you want to use high
1540
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1541
1280x1024x16), then you should use the VESA VBE virtual graphic card
1542
(option @option{-std-vga}).
1543

    
1544
@subsubsection CPU usage reduction
1545

    
1546
Windows 9x does not correctly use the CPU HLT
1547
instruction. The result is that it takes host CPU cycles even when
1548
idle. You can install the utility from
1549
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1550
problem. Note that no such tool is needed for NT, 2000 or XP.
1551

    
1552
@subsubsection Windows 2000 disk full problem
1553

    
1554
Windows 2000 has a bug which gives a disk full problem during its
1555
installation. When installing it, use the @option{-win2k-hack} QEMU
1556
option to enable a specific workaround. After Windows 2000 is
1557
installed, you no longer need this option (this option slows down the
1558
IDE transfers).
1559

    
1560
@subsubsection Windows 2000 shutdown
1561

    
1562
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1563
can. It comes from the fact that Windows 2000 does not automatically
1564
use the APM driver provided by the BIOS.
1565

    
1566
In order to correct that, do the following (thanks to Struan
1567
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1568
Add/Troubleshoot a device => Add a new device & Next => No, select the
1569
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1570
(again) a few times. Now the driver is installed and Windows 2000 now
1571
correctly instructs QEMU to shutdown at the appropriate moment.
1572

    
1573
@subsubsection Share a directory between Unix and Windows
1574

    
1575
See @ref{sec_invocation} about the help of the option @option{-smb}.
1576

    
1577
@subsubsection Windows XP security problem
1578

    
1579
Some releases of Windows XP install correctly but give a security
1580
error when booting:
1581
@example
1582
A problem is preventing Windows from accurately checking the
1583
license for this computer. Error code: 0x800703e6.
1584
@end example
1585

    
1586
The workaround is to install a service pack for XP after a boot in safe
1587
mode. Then reboot, and the problem should go away. Since there is no
1588
network while in safe mode, its recommended to download the full
1589
installation of SP1 or SP2 and transfer that via an ISO or using the
1590
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1591

    
1592
@subsection MS-DOS and FreeDOS
1593

    
1594
@subsubsection CPU usage reduction
1595

    
1596
DOS does not correctly use the CPU HLT instruction. The result is that
1597
it takes host CPU cycles even when idle. You can install the utility
1598
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1599
problem.
1600

    
1601
@node QEMU System emulator for non PC targets
1602
@chapter QEMU System emulator for non PC targets
1603

    
1604
QEMU is a generic emulator and it emulates many non PC
1605
machines. Most of the options are similar to the PC emulator. The
1606
differences are mentioned in the following sections.
1607

    
1608
@menu
1609
* QEMU PowerPC System emulator::
1610
* Sparc32 System emulator::
1611
* Sparc64 System emulator::
1612
* MIPS System emulator::
1613
* ARM System emulator::
1614
* ColdFire System emulator::
1615
@end menu
1616

    
1617
@node QEMU PowerPC System emulator
1618
@section QEMU PowerPC System emulator
1619

    
1620
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1621
or PowerMac PowerPC system.
1622

    
1623
QEMU emulates the following PowerMac peripherals:
1624

    
1625
@itemize @minus
1626
@item
1627
UniNorth or Grackle PCI Bridge
1628
@item
1629
PCI VGA compatible card with VESA Bochs Extensions
1630
@item
1631
2 PMAC IDE interfaces with hard disk and CD-ROM support
1632
@item
1633
NE2000 PCI adapters
1634
@item
1635
Non Volatile RAM
1636
@item
1637
VIA-CUDA with ADB keyboard and mouse.
1638
@end itemize
1639

    
1640
QEMU emulates the following PREP peripherals:
1641

    
1642
@itemize @minus
1643
@item
1644
PCI Bridge
1645
@item
1646
PCI VGA compatible card with VESA Bochs Extensions
1647
@item
1648
2 IDE interfaces with hard disk and CD-ROM support
1649
@item
1650
Floppy disk
1651
@item
1652
NE2000 network adapters
1653
@item
1654
Serial port
1655
@item
1656
PREP Non Volatile RAM
1657
@item
1658
PC compatible keyboard and mouse.
1659
@end itemize
1660

    
1661
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1662
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1663

    
1664
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1665
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1666
v2) portable firmware implementation. The goal is to implement a 100%
1667
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1668

    
1669
@c man begin OPTIONS
1670

    
1671
The following options are specific to the PowerPC emulation:
1672

    
1673
@table @option
1674

    
1675
@item -g WxH[xDEPTH]
1676

    
1677
Set the initial VGA graphic mode. The default is 800x600x15.
1678

    
1679
@item -prom-env string
1680

    
1681
Set OpenBIOS variables in NVRAM, for example:
1682

    
1683
@example
1684
qemu-system-ppc -prom-env 'auto-boot?=false' \
1685
 -prom-env 'boot-device=hd:2,\yaboot' \
1686
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1687
@end example
1688

    
1689
These variables are not used by Open Hack'Ware.
1690

    
1691
@end table
1692

    
1693
@c man end
1694

    
1695

    
1696
More information is available at
1697
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1698

    
1699
@node Sparc32 System emulator
1700
@section Sparc32 System emulator
1701

    
1702
Use the executable @file{qemu-system-sparc} to simulate the following
1703
Sun4m architecture machines:
1704
@itemize @minus
1705
@item
1706
SPARCstation 4
1707
@item
1708
SPARCstation 5
1709
@item
1710
SPARCstation 10
1711
@item
1712
SPARCstation 20
1713
@item
1714
SPARCserver 600MP
1715
@item
1716
SPARCstation LX
1717
@item
1718
SPARCstation Voyager
1719
@item
1720
SPARCclassic
1721
@item
1722
SPARCbook
1723
@end itemize
1724

    
1725
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1726
but Linux limits the number of usable CPUs to 4.
1727

    
1728
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1729
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1730
emulators are not usable yet.
1731

    
1732
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1733

    
1734
@itemize @minus
1735
@item
1736
IOMMU or IO-UNITs
1737
@item
1738
TCX Frame buffer
1739
@item
1740
Lance (Am7990) Ethernet
1741
@item
1742
Non Volatile RAM M48T02/M48T08
1743
@item
1744
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1745
and power/reset logic
1746
@item
1747
ESP SCSI controller with hard disk and CD-ROM support
1748
@item
1749
Floppy drive (not on SS-600MP)
1750
@item
1751
CS4231 sound device (only on SS-5, not working yet)
1752
@end itemize
1753

    
1754
The number of peripherals is fixed in the architecture.  Maximum
1755
memory size depends on the machine type, for SS-5 it is 256MB and for
1756
others 2047MB.
1757

    
1758
Since version 0.8.2, QEMU uses OpenBIOS
1759
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1760
firmware implementation. The goal is to implement a 100% IEEE
1761
1275-1994 (referred to as Open Firmware) compliant firmware.
1762

    
1763
A sample Linux 2.6 series kernel and ram disk image are available on
1764
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1765
some kernel versions work. Please note that currently Solaris kernels
1766
don't work probably due to interface issues between OpenBIOS and
1767
Solaris.
1768

    
1769
@c man begin OPTIONS
1770

    
1771
The following options are specific to the Sparc32 emulation:
1772

    
1773
@table @option
1774

    
1775
@item -g WxHx[xDEPTH]
1776

    
1777
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1778
the only other possible mode is 1024x768x24.
1779

    
1780
@item -prom-env string
1781

    
1782
Set OpenBIOS variables in NVRAM, for example:
1783

    
1784
@example
1785
qemu-system-sparc -prom-env 'auto-boot?=false' \
1786
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1787
@end example
1788

    
1789
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1790

    
1791
Set the emulated machine type. Default is SS-5.
1792

    
1793
@end table
1794

    
1795
@c man end
1796

    
1797
@node Sparc64 System emulator
1798
@section Sparc64 System emulator
1799

    
1800
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1801
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1802
Niagara (T1) machine. The emulator is not usable for anything yet, but
1803
it can launch some kernels.
1804

    
1805
QEMU emulates the following peripherals:
1806

    
1807
@itemize @minus
1808
@item
1809
UltraSparc IIi APB PCI Bridge
1810
@item
1811
PCI VGA compatible card with VESA Bochs Extensions
1812
@item
1813
PS/2 mouse and keyboard
1814
@item
1815
Non Volatile RAM M48T59
1816
@item
1817
PC-compatible serial ports
1818
@item
1819
2 PCI IDE interfaces with hard disk and CD-ROM support
1820
@item
1821
Floppy disk
1822
@end itemize
1823

    
1824
@c man begin OPTIONS
1825

    
1826
The following options are specific to the Sparc64 emulation:
1827

    
1828
@table @option
1829

    
1830
@item -prom-env string
1831

    
1832
Set OpenBIOS variables in NVRAM, for example:
1833

    
1834
@example
1835
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1836
@end example
1837

    
1838
@item -M [sun4u|sun4v|Niagara]
1839

    
1840
Set the emulated machine type. The default is sun4u.
1841

    
1842
@end table
1843

    
1844
@c man end
1845

    
1846
@node MIPS System emulator
1847
@section MIPS System emulator
1848

    
1849
Four executables cover simulation of 32 and 64-bit MIPS systems in
1850
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1851
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1852
Five different machine types are emulated:
1853

    
1854
@itemize @minus
1855
@item
1856
A generic ISA PC-like machine "mips"
1857
@item
1858
The MIPS Malta prototype board "malta"
1859
@item
1860
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1861
@item
1862
MIPS emulator pseudo board "mipssim"
1863
@item
1864
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1865
@end itemize
1866

    
1867
The generic emulation is supported by Debian 'Etch' and is able to
1868
install Debian into a virtual disk image. The following devices are
1869
emulated:
1870

    
1871
@itemize @minus
1872
@item
1873
A range of MIPS CPUs, default is the 24Kf
1874
@item
1875
PC style serial port
1876
@item
1877
PC style IDE disk
1878
@item
1879
NE2000 network card
1880
@end itemize
1881

    
1882
The Malta emulation supports the following devices:
1883

    
1884
@itemize @minus
1885
@item
1886
Core board with MIPS 24Kf CPU and Galileo system controller
1887
@item
1888
PIIX4 PCI/USB/SMbus controller
1889
@item
1890
The Multi-I/O chip's serial device
1891
@item
1892
PCnet32 PCI network card
1893
@item
1894
Malta FPGA serial device
1895
@item
1896
Cirrus (default) or any other PCI VGA graphics card
1897
@end itemize
1898

    
1899
The ACER Pica emulation supports:
1900

    
1901
@itemize @minus
1902
@item
1903
MIPS R4000 CPU
1904
@item
1905
PC-style IRQ and DMA controllers
1906
@item
1907
PC Keyboard
1908
@item
1909
IDE controller
1910
@end itemize
1911

    
1912
The mipssim pseudo board emulation provides an environment similiar
1913
to what the proprietary MIPS emulator uses for running Linux.
1914
It supports:
1915

    
1916
@itemize @minus
1917
@item
1918
A range of MIPS CPUs, default is the 24Kf
1919
@item
1920
PC style serial port
1921
@item
1922
MIPSnet network emulation
1923
@end itemize
1924

    
1925
The MIPS Magnum R4000 emulation supports:
1926

    
1927
@itemize @minus
1928
@item
1929
MIPS R4000 CPU
1930
@item
1931
PC-style IRQ controller
1932
@item
1933
PC Keyboard
1934
@item
1935
SCSI controller
1936
@item
1937
G364 framebuffer
1938
@end itemize
1939

    
1940

    
1941
@node ARM System emulator
1942
@section ARM System emulator
1943

    
1944
Use the executable @file{qemu-system-arm} to simulate a ARM
1945
machine. The ARM Integrator/CP board is emulated with the following
1946
devices:
1947

    
1948
@itemize @minus
1949
@item
1950
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1951
@item
1952
Two PL011 UARTs
1953
@item
1954
SMC 91c111 Ethernet adapter
1955
@item
1956
PL110 LCD controller
1957
@item
1958
PL050 KMI with PS/2 keyboard and mouse.
1959
@item
1960
PL181 MultiMedia Card Interface with SD card.
1961
@end itemize
1962

    
1963
The ARM Versatile baseboard is emulated with the following devices:
1964

    
1965
@itemize @minus
1966
@item
1967
ARM926E, ARM1136 or Cortex-A8 CPU
1968
@item
1969
PL190 Vectored Interrupt Controller
1970
@item
1971
Four PL011 UARTs
1972
@item
1973
SMC 91c111 Ethernet adapter
1974
@item
1975
PL110 LCD controller
1976
@item
1977
PL050 KMI with PS/2 keyboard and mouse.
1978
@item
1979
PCI host bridge.  Note the emulated PCI bridge only provides access to
1980
PCI memory space.  It does not provide access to PCI IO space.
1981
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1982
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1983
mapped control registers.
1984
@item
1985
PCI OHCI USB controller.
1986
@item
1987
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1988
@item
1989
PL181 MultiMedia Card Interface with SD card.
1990
@end itemize
1991

    
1992
The ARM RealView Emulation baseboard is emulated with the following devices:
1993

    
1994
@itemize @minus
1995
@item
1996
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
1997
@item
1998
ARM AMBA Generic/Distributed Interrupt Controller
1999
@item
2000
Four PL011 UARTs
2001
@item
2002
SMC 91c111 Ethernet adapter
2003
@item
2004
PL110 LCD controller
2005
@item
2006
PL050 KMI with PS/2 keyboard and mouse
2007
@item
2008
PCI host bridge
2009
@item
2010
PCI OHCI USB controller
2011
@item
2012
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2013
@item
2014
PL181 MultiMedia Card Interface with SD card.
2015
@end itemize
2016

    
2017
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2018
and "Terrier") emulation includes the following peripherals:
2019

    
2020
@itemize @minus
2021
@item
2022
Intel PXA270 System-on-chip (ARM V5TE core)
2023
@item
2024
NAND Flash memory
2025
@item
2026
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2027
@item
2028
On-chip OHCI USB controller
2029
@item
2030
On-chip LCD controller
2031
@item
2032
On-chip Real Time Clock
2033
@item
2034
TI ADS7846 touchscreen controller on SSP bus
2035
@item
2036
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2037
@item
2038
GPIO-connected keyboard controller and LEDs
2039
@item
2040
Secure Digital card connected to PXA MMC/SD host
2041
@item
2042
Three on-chip UARTs
2043
@item
2044
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2045
@end itemize
2046

    
2047
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2048
following elements:
2049

    
2050
@itemize @minus
2051
@item
2052
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2053
@item
2054
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2055
@item
2056
On-chip LCD controller
2057
@item
2058
On-chip Real Time Clock
2059
@item
2060
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2061
CODEC, connected through MicroWire and I@math{^2}S busses
2062
@item
2063
GPIO-connected matrix keypad
2064
@item
2065
Secure Digital card connected to OMAP MMC/SD host
2066
@item
2067
Three on-chip UARTs
2068
@end itemize
2069

    
2070
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2071
emulation supports the following elements:
2072

    
2073
@itemize @minus
2074
@item
2075
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2076
@item
2077
RAM and non-volatile OneNAND Flash memories
2078
@item
2079
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2080
display controller and a LS041y3 MIPI DBI-C controller
2081
@item
2082
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2083
driven through SPI bus
2084
@item
2085
National Semiconductor LM8323-controlled qwerty keyboard driven
2086
through I@math{^2}C bus
2087
@item
2088
Secure Digital card connected to OMAP MMC/SD host
2089
@item
2090
Three OMAP on-chip UARTs and on-chip STI debugging console
2091
@item
2092
A Bluetooth(R) transciever and HCI connected to an UART
2093
@item
2094
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2095
TUSB6010 chip - only USB host mode is supported
2096
@item
2097
TI TMP105 temperature sensor driven through I@math{^2}C bus
2098
@item
2099
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2100
@item
2101
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2102
through CBUS
2103
@end itemize
2104

    
2105
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2106
devices:
2107

    
2108
@itemize @minus
2109
@item
2110
Cortex-M3 CPU core.
2111
@item
2112
64k Flash and 8k SRAM.
2113
@item
2114
Timers, UARTs, ADC and I@math{^2}C interface.
2115
@item
2116
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2117
@end itemize
2118

    
2119
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2120
devices:
2121

    
2122
@itemize @minus
2123
@item
2124
Cortex-M3 CPU core.
2125
@item
2126
256k Flash and 64k SRAM.
2127
@item
2128
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2129
@item
2130
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2131
@end itemize
2132

    
2133
The Freecom MusicPal internet radio emulation includes the following
2134
elements:
2135

    
2136
@itemize @minus
2137
@item
2138
Marvell MV88W8618 ARM core.
2139
@item
2140
32 MB RAM, 256 KB SRAM, 8 MB flash.
2141
@item
2142
Up to 2 16550 UARTs
2143
@item
2144
MV88W8xx8 Ethernet controller
2145
@item
2146
MV88W8618 audio controller, WM8750 CODEC and mixer
2147
@item
2148
128?64 display with brightness control
2149
@item
2150
2 buttons, 2 navigation wheels with button function
2151
@end itemize
2152

    
2153
The Siemens SX1 models v1 and v2 (default) basic emulation.
2154
The emulaton includes the following elements:
2155

    
2156
@itemize @minus
2157
@item
2158
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2159
@item
2160
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2161
V1
2162
1 Flash of 16MB and 1 Flash of 8MB
2163
V2
2164
1 Flash of 32MB
2165
@item
2166
On-chip LCD controller
2167
@item
2168
On-chip Real Time Clock
2169
@item
2170
Secure Digital card connected to OMAP MMC/SD host
2171
@item
2172
Three on-chip UARTs
2173
@end itemize
2174

    
2175
A Linux 2.6 test image is available on the QEMU web site. More
2176
information is available in the QEMU mailing-list archive.
2177

    
2178
@c man begin OPTIONS
2179

    
2180
The following options are specific to the ARM emulation:
2181

    
2182
@table @option
2183

    
2184
@item -semihosting
2185
Enable semihosting syscall emulation.
2186

    
2187
On ARM this implements the "Angel" interface.
2188

    
2189
Note that this allows guest direct access to the host filesystem,
2190
so should only be used with trusted guest OS.
2191

    
2192
@end table
2193

    
2194
@node ColdFire System emulator
2195
@section ColdFire System emulator
2196

    
2197
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2198
The emulator is able to boot a uClinux kernel.
2199

    
2200
The M5208EVB emulation includes the following devices:
2201

    
2202
@itemize @minus
2203
@item
2204
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2205
@item
2206
Three Two on-chip UARTs.
2207
@item
2208
Fast Ethernet Controller (FEC)
2209
@end itemize
2210

    
2211
The AN5206 emulation includes the following devices:
2212

    
2213
@itemize @minus
2214
@item
2215
MCF5206 ColdFire V2 Microprocessor.
2216
@item
2217
Two on-chip UARTs.
2218
@end itemize
2219

    
2220
@c man begin OPTIONS
2221

    
2222
The following options are specific to the ARM emulation:
2223

    
2224
@table @option
2225

    
2226
@item -semihosting
2227
Enable semihosting syscall emulation.
2228

    
2229
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2230

    
2231
Note that this allows guest direct access to the host filesystem,
2232
so should only be used with trusted guest OS.
2233

    
2234
@end table
2235

    
2236
@node QEMU User space emulator
2237
@chapter QEMU User space emulator
2238

    
2239
@menu
2240
* Supported Operating Systems ::
2241
* Linux User space emulator::
2242
* Mac OS X/Darwin User space emulator ::
2243
* BSD User space emulator ::
2244
@end menu
2245

    
2246
@node Supported Operating Systems
2247
@section Supported Operating Systems
2248

    
2249
The following OS are supported in user space emulation:
2250

    
2251
@itemize @minus
2252
@item
2253
Linux (referred as qemu-linux-user)
2254
@item
2255
Mac OS X/Darwin (referred as qemu-darwin-user)
2256
@item
2257
BSD (referred as qemu-bsd-user)
2258
@end itemize
2259

    
2260
@node Linux User space emulator
2261
@section Linux User space emulator
2262

    
2263
@menu
2264
* Quick Start::
2265
* Wine launch::
2266
* Command line options::
2267
* Other binaries::
2268
@end menu
2269

    
2270
@node Quick Start
2271
@subsection Quick Start
2272

    
2273
In order to launch a Linux process, QEMU needs the process executable
2274
itself and all the target (x86) dynamic libraries used by it.
2275

    
2276
@itemize
2277

    
2278
@item On x86, you can just try to launch any process by using the native
2279
libraries:
2280

    
2281
@example
2282
qemu-i386 -L / /bin/ls
2283
@end example
2284

    
2285
@code{-L /} tells that the x86 dynamic linker must be searched with a
2286
@file{/} prefix.
2287

    
2288
@item Since QEMU is also a linux process, you can launch qemu with
2289
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2290

    
2291
@example
2292
qemu-i386 -L / qemu-i386 -L / /bin/ls
2293
@end example
2294

    
2295
@item On non x86 CPUs, you need first to download at least an x86 glibc
2296
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2297
@code{LD_LIBRARY_PATH} is not set:
2298

    
2299
@example
2300
unset LD_LIBRARY_PATH
2301
@end example
2302

    
2303
Then you can launch the precompiled @file{ls} x86 executable:
2304

    
2305
@example
2306
qemu-i386 tests/i386/ls
2307
@end example
2308
You can look at @file{qemu-binfmt-conf.sh} so that
2309
QEMU is automatically launched by the Linux kernel when you try to
2310
launch x86 executables. It requires the @code{binfmt_misc} module in the
2311
Linux kernel.
2312

    
2313
@item The x86 version of QEMU is also included. You can try weird things such as:
2314
@example
2315
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2316
          /usr/local/qemu-i386/bin/ls-i386
2317
@end example
2318

    
2319
@end itemize
2320

    
2321
@node Wine launch
2322
@subsection Wine launch
2323

    
2324
@itemize
2325

    
2326
@item Ensure that you have a working QEMU with the x86 glibc
2327
distribution (see previous section). In order to verify it, you must be
2328
able to do:
2329

    
2330
@example
2331
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2332
@end example
2333

    
2334
@item Download the binary x86 Wine install
2335
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2336

    
2337
@item Configure Wine on your account. Look at the provided script
2338
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2339
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2340

    
2341
@item Then you can try the example @file{putty.exe}:
2342

    
2343
@example
2344
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2345
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2346
@end example
2347

    
2348
@end itemize
2349

    
2350
@node Command line options
2351
@subsection Command line options
2352

    
2353
@example
2354
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2355
@end example
2356

    
2357
@table @option
2358
@item -h
2359
Print the help
2360
@item -L path
2361
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2362
@item -s size
2363
Set the x86 stack size in bytes (default=524288)
2364
@item -cpu model
2365
Select CPU model (-cpu ? for list and additional feature selection)
2366
@end table
2367

    
2368
Debug options:
2369

    
2370
@table @option
2371
@item -d
2372
Activate log (logfile=/tmp/qemu.log)
2373
@item -p pagesize
2374
Act as if the host page size was 'pagesize' bytes
2375
@item -g port
2376
Wait gdb connection to port
2377
@item -singlestep
2378
Run the emulation in single step mode.
2379
@end table
2380

    
2381
Environment variables:
2382

    
2383
@table @env
2384
@item QEMU_STRACE
2385
Print system calls and arguments similar to the 'strace' program
2386
(NOTE: the actual 'strace' program will not work because the user
2387
space emulator hasn't implemented ptrace).  At the moment this is
2388
incomplete.  All system calls that don't have a specific argument
2389
format are printed with information for six arguments.  Many
2390
flag-style arguments don't have decoders and will show up as numbers.
2391
@end table
2392

    
2393
@node Other binaries
2394
@subsection Other binaries
2395

    
2396
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2397
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2398
configurations), and arm-uclinux bFLT format binaries.
2399

    
2400
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2401
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2402
coldfire uClinux bFLT format binaries.
2403

    
2404
The binary format is detected automatically.
2405

    
2406
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2407

    
2408
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2409
(Sparc64 CPU, 32 bit ABI).
2410

    
2411
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2412
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2413

    
2414
@node Mac OS X/Darwin User space emulator
2415
@section Mac OS X/Darwin User space emulator
2416

    
2417
@menu
2418
* Mac OS X/Darwin Status::
2419
* Mac OS X/Darwin Quick Start::
2420
* Mac OS X/Darwin Command line options::
2421
@end menu
2422

    
2423
@node Mac OS X/Darwin Status
2424
@subsection Mac OS X/Darwin Status
2425

    
2426
@itemize @minus
2427
@item
2428
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2429
@item
2430
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2431
@item
2432
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2433
@item
2434
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2435
@end itemize
2436

    
2437
[1] If you're host commpage can be executed by qemu.
2438

    
2439
@node Mac OS X/Darwin Quick Start
2440
@subsection Quick Start
2441

    
2442
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2443
itself and all the target dynamic libraries used by it. If you don't have the FAT
2444
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2445
CD or compile them by hand.
2446

    
2447
@itemize
2448

    
2449
@item On x86, you can just try to launch any process by using the native
2450
libraries:
2451

    
2452
@example
2453
qemu-i386 /bin/ls
2454
@end example
2455

    
2456
or to run the ppc version of the executable:
2457

    
2458
@example
2459
qemu-ppc /bin/ls
2460
@end example
2461

    
2462
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2463
are installed:
2464

    
2465
@example
2466
qemu-i386 -L /opt/x86_root/ /bin/ls
2467
@end example
2468

    
2469
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2470
@file{/opt/x86_root/usr/bin/dyld}.
2471

    
2472
@end itemize
2473

    
2474
@node Mac OS X/Darwin Command line options
2475
@subsection Command line options
2476

    
2477
@example
2478
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2479
@end example
2480

    
2481
@table @option
2482
@item -h
2483
Print the help
2484
@item -L path
2485
Set the library root path (default=/)
2486
@item -s size
2487
Set the stack size in bytes (default=524288)
2488
@end table
2489

    
2490
Debug options:
2491

    
2492
@table @option
2493
@item -d
2494
Activate log (logfile=/tmp/qemu.log)
2495
@item -p pagesize
2496
Act as if the host page size was 'pagesize' bytes
2497
@item -singlestep
2498
Run the emulation in single step mode.
2499
@end table
2500

    
2501
@node BSD User space emulator
2502
@section BSD User space emulator
2503

    
2504
@menu
2505
* BSD Status::
2506
* BSD Quick Start::
2507
* BSD Command line options::
2508
@end menu
2509

    
2510
@node BSD Status
2511
@subsection BSD Status
2512

    
2513
@itemize @minus
2514
@item
2515
target Sparc64 on Sparc64: Some trivial programs work.
2516
@end itemize
2517

    
2518
@node BSD Quick Start
2519
@subsection Quick Start
2520

    
2521
In order to launch a BSD process, QEMU needs the process executable
2522
itself and all the target dynamic libraries used by it.
2523

    
2524
@itemize
2525

    
2526
@item On Sparc64, you can just try to launch any process by using the native
2527
libraries:
2528

    
2529
@example
2530
qemu-sparc64 /bin/ls
2531
@end example
2532

    
2533
@end itemize
2534

    
2535
@node BSD Command line options
2536
@subsection Command line options
2537

    
2538
@example
2539
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2540
@end example
2541

    
2542
@table @option
2543
@item -h
2544
Print the help
2545
@item -L path
2546
Set the library root path (default=/)
2547
@item -s size
2548
Set the stack size in bytes (default=524288)
2549
@item -bsd type
2550
Set the type of the emulated BSD Operating system. Valid values are
2551
FreeBSD, NetBSD and OpenBSD (default).
2552
@end table
2553

    
2554
Debug options:
2555

    
2556
@table @option
2557
@item -d
2558
Activate log (logfile=/tmp/qemu.log)
2559
@item -p pagesize
2560
Act as if the host page size was 'pagesize' bytes
2561
@item -singlestep
2562
Run the emulation in single step mode.
2563
@end table
2564

    
2565
@node compilation
2566
@chapter Compilation from the sources
2567

    
2568
@menu
2569
* Linux/Unix::
2570
* Windows::
2571
* Cross compilation for Windows with Linux::
2572
* Mac OS X::
2573
@end menu
2574

    
2575
@node Linux/Unix
2576
@section Linux/Unix
2577

    
2578
@subsection Compilation
2579

    
2580
First you must decompress the sources:
2581
@example
2582
cd /tmp
2583
tar zxvf qemu-x.y.z.tar.gz
2584
cd qemu-x.y.z
2585
@end example
2586

    
2587
Then you configure QEMU and build it (usually no options are needed):
2588
@example
2589
./configure
2590
make
2591
@end example
2592

    
2593
Then type as root user:
2594
@example
2595
make install
2596
@end example
2597
to install QEMU in @file{/usr/local}.
2598

    
2599
@subsection GCC version
2600

    
2601
In order to compile QEMU successfully, it is very important that you
2602
have the right tools. The most important one is gcc. On most hosts and
2603
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2604
Linux distribution includes a gcc 4.x compiler, you can usually
2605
install an older version (it is invoked by @code{gcc32} or
2606
@code{gcc34}). The QEMU configure script automatically probes for
2607
these older versions so that usually you don't have to do anything.
2608

    
2609
@node Windows
2610
@section Windows
2611

    
2612
@itemize
2613
@item Install the current versions of MSYS and MinGW from
2614
@url{http://www.mingw.org/}. You can find detailed installation
2615
instructions in the download section and the FAQ.
2616

    
2617
@item Download
2618
the MinGW development library of SDL 1.2.x
2619
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2620
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2621
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2622
directory. Edit the @file{sdl-config} script so that it gives the
2623
correct SDL directory when invoked.
2624

    
2625
@item Extract the current version of QEMU.
2626

    
2627
@item Start the MSYS shell (file @file{msys.bat}).
2628

    
2629
@item Change to the QEMU directory. Launch @file{./configure} and
2630
@file{make}.  If you have problems using SDL, verify that
2631
@file{sdl-config} can be launched from the MSYS command line.
2632

    
2633
@item You can install QEMU in @file{Program Files/Qemu} by typing
2634
@file{make install}. Don't forget to copy @file{SDL.dll} in
2635
@file{Program Files/Qemu}.
2636

    
2637
@end itemize
2638

    
2639
@node Cross compilation for Windows with Linux
2640
@section Cross compilation for Windows with Linux
2641

    
2642
@itemize
2643
@item
2644
Install the MinGW cross compilation tools available at
2645
@url{http://www.mingw.org/}.
2646

    
2647
@item
2648
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2649
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2650
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2651
the QEMU configuration script.
2652

    
2653
@item
2654
Configure QEMU for Windows cross compilation:
2655
@example
2656
./configure --enable-mingw32
2657
@end example
2658
If necessary, you can change the cross-prefix according to the prefix
2659
chosen for the MinGW tools with --cross-prefix. You can also use
2660
--prefix to set the Win32 install path.
2661

    
2662
@item You can install QEMU in the installation directory by typing
2663
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2664
installation directory.
2665

    
2666
@end itemize
2667

    
2668
Note: Currently, Wine does not seem able to launch
2669
QEMU for Win32.
2670

    
2671
@node Mac OS X
2672
@section Mac OS X
2673

    
2674
The Mac OS X patches are not fully merged in QEMU, so you should look
2675
at the QEMU mailing list archive to have all the necessary
2676
information.
2677

    
2678
@node Index
2679
@chapter Index
2680
@printindex cp
2681

    
2682
@bye