Statistics
| Branch: | Revision:

root / hw / ne2000.c @ 2b7a050a

History | View | Annotate | Download (24.3 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "pc.h"
27
#include "net.h"
28

    
29
/* debug NE2000 card */
30
//#define DEBUG_NE2000
31

    
32
#define MAX_ETH_FRAME_SIZE 1514
33

    
34
#define E8390_CMD        0x00  /* The command register (for all pages) */
35
/* Page 0 register offsets. */
36
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
37
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
38
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
39
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
40
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
41
#define EN0_TSR                0x04        /* Transmit status reg RD */
42
#define EN0_TPSR        0x04        /* Transmit starting page WR */
43
#define EN0_NCR                0x05        /* Number of collision reg RD */
44
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
45
#define EN0_FIFO        0x06        /* FIFO RD */
46
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
47
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
48
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
49
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
50
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
51
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
52
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
53
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
54
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
55
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
56
#define EN0_RSR                0x0c        /* rx status reg RD */
57
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
58
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
59
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
60
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
61
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
62
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
63
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
64

    
65
#define EN1_PHYS        0x11
66
#define EN1_CURPAG      0x17
67
#define EN1_MULT        0x18
68

    
69
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
70
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
71

    
72
#define EN3_CONFIG0        0x33
73
#define EN3_CONFIG1        0x34
74
#define EN3_CONFIG2        0x35
75
#define EN3_CONFIG3        0x36
76

    
77
/*  Register accessed at EN_CMD, the 8390 base addr.  */
78
#define E8390_STOP        0x01        /* Stop and reset the chip */
79
#define E8390_START        0x02        /* Start the chip, clear reset */
80
#define E8390_TRANS        0x04        /* Transmit a frame */
81
#define E8390_RREAD        0x08        /* Remote read */
82
#define E8390_RWRITE        0x10        /* Remote write  */
83
#define E8390_NODMA        0x20        /* Remote DMA */
84
#define E8390_PAGE0        0x00        /* Select page chip registers */
85
#define E8390_PAGE1        0x40        /* using the two high-order bits */
86
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
87

    
88
/* Bits in EN0_ISR - Interrupt status register */
89
#define ENISR_RX        0x01        /* Receiver, no error */
90
#define ENISR_TX        0x02        /* Transmitter, no error */
91
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
92
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
93
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
94
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
95
#define ENISR_RDC        0x40        /* remote dma complete */
96
#define ENISR_RESET        0x80        /* Reset completed */
97
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
98

    
99
/* Bits in received packet status byte and EN0_RSR*/
100
#define ENRSR_RXOK        0x01        /* Received a good packet */
101
#define ENRSR_CRC        0x02        /* CRC error */
102
#define ENRSR_FAE        0x04        /* frame alignment error */
103
#define ENRSR_FO        0x08        /* FIFO overrun */
104
#define ENRSR_MPA        0x10        /* missed pkt */
105
#define ENRSR_PHY        0x20        /* physical/multicast address */
106
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
107
#define ENRSR_DEF        0x80        /* deferring */
108

    
109
/* Transmitted packet status, EN0_TSR. */
110
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
111
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
112
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
113
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
114
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
115
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
116
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
117
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
118

    
119
#define NE2000_PMEM_SIZE    (32*1024)
120
#define NE2000_PMEM_START   (16*1024)
121
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122
#define NE2000_MEM_SIZE     NE2000_PMEM_END
123

    
124
typedef struct NE2000State {
125
    uint8_t cmd;
126
    uint32_t start;
127
    uint32_t stop;
128
    uint8_t boundary;
129
    uint8_t tsr;
130
    uint8_t tpsr;
131
    uint16_t tcnt;
132
    uint16_t rcnt;
133
    uint32_t rsar;
134
    uint8_t rsr;
135
    uint8_t rxcr;
136
    uint8_t isr;
137
    uint8_t dcfg;
138
    uint8_t imr;
139
    uint8_t phys[6]; /* mac address */
140
    uint8_t curpag;
141
    uint8_t mult[8]; /* multicast mask array */
142
    qemu_irq irq;
143
    int isa_io_base;
144
    PCIDevice *pci_dev;
145
    VLANClientState *vc;
146
    uint8_t macaddr[6];
147
    uint8_t mem[NE2000_MEM_SIZE];
148
} NE2000State;
149

    
150
typedef struct PCINE2000State {
151
    PCIDevice dev;
152
    NE2000State ne2000;
153
} PCINE2000State;
154

    
155
static void ne2000_reset(NE2000State *s)
156
{
157
    int i;
158

    
159
    s->isr = ENISR_RESET;
160
    memcpy(s->mem, s->macaddr, 6);
161
    s->mem[14] = 0x57;
162
    s->mem[15] = 0x57;
163

    
164
    /* duplicate prom data */
165
    for(i = 15;i >= 0; i--) {
166
        s->mem[2 * i] = s->mem[i];
167
        s->mem[2 * i + 1] = s->mem[i];
168
    }
169
}
170

    
171
static void ne2000_update_irq(NE2000State *s)
172
{
173
    int isr;
174
    isr = (s->isr & s->imr) & 0x7f;
175
#if defined(DEBUG_NE2000)
176
    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
177
           isr ? 1 : 0, s->isr, s->imr);
178
#endif
179
    qemu_set_irq(s->irq, (isr != 0));
180
}
181

    
182
#define POLYNOMIAL 0x04c11db6
183

    
184
/* From FreeBSD */
185
/* XXX: optimize */
186
static int compute_mcast_idx(const uint8_t *ep)
187
{
188
    uint32_t crc;
189
    int carry, i, j;
190
    uint8_t b;
191

    
192
    crc = 0xffffffff;
193
    for (i = 0; i < 6; i++) {
194
        b = *ep++;
195
        for (j = 0; j < 8; j++) {
196
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
197
            crc <<= 1;
198
            b >>= 1;
199
            if (carry)
200
                crc = ((crc ^ POLYNOMIAL) | carry);
201
        }
202
    }
203
    return (crc >> 26);
204
}
205

    
206
static int ne2000_buffer_full(NE2000State *s)
207
{
208
    int avail, index, boundary;
209

    
210
    index = s->curpag << 8;
211
    boundary = s->boundary << 8;
212
    if (index < boundary)
213
        avail = boundary - index;
214
    else
215
        avail = (s->stop - s->start) - (index - boundary);
216
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
217
        return 1;
218
    return 0;
219
}
220

    
221
static int ne2000_can_receive(VLANClientState *vc)
222
{
223
    NE2000State *s = vc->opaque;
224

    
225
    if (s->cmd & E8390_STOP)
226
        return 1;
227
    return !ne2000_buffer_full(s);
228
}
229

    
230
#define MIN_BUF_SIZE 60
231

    
232
static ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_)
233
{
234
    NE2000State *s = vc->opaque;
235
    int size = size_;
236
    uint8_t *p;
237
    unsigned int total_len, next, avail, len, index, mcast_idx;
238
    uint8_t buf1[60];
239
    static const uint8_t broadcast_macaddr[6] =
240
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
241

    
242
#if defined(DEBUG_NE2000)
243
    printf("NE2000: received len=%d\n", size);
244
#endif
245

    
246
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
247
        return -1;
248

    
249
    /* XXX: check this */
250
    if (s->rxcr & 0x10) {
251
        /* promiscuous: receive all */
252
    } else {
253
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
254
            /* broadcast address */
255
            if (!(s->rxcr & 0x04))
256
                return size;
257
        } else if (buf[0] & 0x01) {
258
            /* multicast */
259
            if (!(s->rxcr & 0x08))
260
                return size;
261
            mcast_idx = compute_mcast_idx(buf);
262
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
263
                return size;
264
        } else if (s->mem[0] == buf[0] &&
265
                   s->mem[2] == buf[1] &&
266
                   s->mem[4] == buf[2] &&
267
                   s->mem[6] == buf[3] &&
268
                   s->mem[8] == buf[4] &&
269
                   s->mem[10] == buf[5]) {
270
            /* match */
271
        } else {
272
            return size;
273
        }
274
    }
275

    
276

    
277
    /* if too small buffer, then expand it */
278
    if (size < MIN_BUF_SIZE) {
279
        memcpy(buf1, buf, size);
280
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
281
        buf = buf1;
282
        size = MIN_BUF_SIZE;
283
    }
284

    
285
    index = s->curpag << 8;
286
    /* 4 bytes for header */
287
    total_len = size + 4;
288
    /* address for next packet (4 bytes for CRC) */
289
    next = index + ((total_len + 4 + 255) & ~0xff);
290
    if (next >= s->stop)
291
        next -= (s->stop - s->start);
292
    /* prepare packet header */
293
    p = s->mem + index;
294
    s->rsr = ENRSR_RXOK; /* receive status */
295
    /* XXX: check this */
296
    if (buf[0] & 0x01)
297
        s->rsr |= ENRSR_PHY;
298
    p[0] = s->rsr;
299
    p[1] = next >> 8;
300
    p[2] = total_len;
301
    p[3] = total_len >> 8;
302
    index += 4;
303

    
304
    /* write packet data */
305
    while (size > 0) {
306
        if (index <= s->stop)
307
            avail = s->stop - index;
308
        else
309
            avail = 0;
310
        len = size;
311
        if (len > avail)
312
            len = avail;
313
        memcpy(s->mem + index, buf, len);
314
        buf += len;
315
        index += len;
316
        if (index == s->stop)
317
            index = s->start;
318
        size -= len;
319
    }
320
    s->curpag = next >> 8;
321

    
322
    /* now we can signal we have received something */
323
    s->isr |= ENISR_RX;
324
    ne2000_update_irq(s);
325

    
326
    return size_;
327
}
328

    
329
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
330
{
331
    NE2000State *s = opaque;
332
    int offset, page, index;
333

    
334
    addr &= 0xf;
335
#ifdef DEBUG_NE2000
336
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
337
#endif
338
    if (addr == E8390_CMD) {
339
        /* control register */
340
        s->cmd = val;
341
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
342
            s->isr &= ~ENISR_RESET;
343
            /* test specific case: zero length transfer */
344
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
345
                s->rcnt == 0) {
346
                s->isr |= ENISR_RDC;
347
                ne2000_update_irq(s);
348
            }
349
            if (val & E8390_TRANS) {
350
                index = (s->tpsr << 8);
351
                /* XXX: next 2 lines are a hack to make netware 3.11 work */
352
                if (index >= NE2000_PMEM_END)
353
                    index -= NE2000_PMEM_SIZE;
354
                /* fail safe: check range on the transmitted length  */
355
                if (index + s->tcnt <= NE2000_PMEM_END) {
356
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
357
                }
358
                /* signal end of transfer */
359
                s->tsr = ENTSR_PTX;
360
                s->isr |= ENISR_TX;
361
                s->cmd &= ~E8390_TRANS;
362
                ne2000_update_irq(s);
363
            }
364
        }
365
    } else {
366
        page = s->cmd >> 6;
367
        offset = addr | (page << 4);
368
        switch(offset) {
369
        case EN0_STARTPG:
370
            s->start = val << 8;
371
            break;
372
        case EN0_STOPPG:
373
            s->stop = val << 8;
374
            break;
375
        case EN0_BOUNDARY:
376
            s->boundary = val;
377
            break;
378
        case EN0_IMR:
379
            s->imr = val;
380
            ne2000_update_irq(s);
381
            break;
382
        case EN0_TPSR:
383
            s->tpsr = val;
384
            break;
385
        case EN0_TCNTLO:
386
            s->tcnt = (s->tcnt & 0xff00) | val;
387
            break;
388
        case EN0_TCNTHI:
389
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
390
            break;
391
        case EN0_RSARLO:
392
            s->rsar = (s->rsar & 0xff00) | val;
393
            break;
394
        case EN0_RSARHI:
395
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
396
            break;
397
        case EN0_RCNTLO:
398
            s->rcnt = (s->rcnt & 0xff00) | val;
399
            break;
400
        case EN0_RCNTHI:
401
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
402
            break;
403
        case EN0_RXCR:
404
            s->rxcr = val;
405
            break;
406
        case EN0_DCFG:
407
            s->dcfg = val;
408
            break;
409
        case EN0_ISR:
410
            s->isr &= ~(val & 0x7f);
411
            ne2000_update_irq(s);
412
            break;
413
        case EN1_PHYS ... EN1_PHYS + 5:
414
            s->phys[offset - EN1_PHYS] = val;
415
            break;
416
        case EN1_CURPAG:
417
            s->curpag = val;
418
            break;
419
        case EN1_MULT ... EN1_MULT + 7:
420
            s->mult[offset - EN1_MULT] = val;
421
            break;
422
        }
423
    }
424
}
425

    
426
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
427
{
428
    NE2000State *s = opaque;
429
    int offset, page, ret;
430

    
431
    addr &= 0xf;
432
    if (addr == E8390_CMD) {
433
        ret = s->cmd;
434
    } else {
435
        page = s->cmd >> 6;
436
        offset = addr | (page << 4);
437
        switch(offset) {
438
        case EN0_TSR:
439
            ret = s->tsr;
440
            break;
441
        case EN0_BOUNDARY:
442
            ret = s->boundary;
443
            break;
444
        case EN0_ISR:
445
            ret = s->isr;
446
            break;
447
        case EN0_RSARLO:
448
            ret = s->rsar & 0x00ff;
449
            break;
450
        case EN0_RSARHI:
451
            ret = s->rsar >> 8;
452
            break;
453
        case EN1_PHYS ... EN1_PHYS + 5:
454
            ret = s->phys[offset - EN1_PHYS];
455
            break;
456
        case EN1_CURPAG:
457
            ret = s->curpag;
458
            break;
459
        case EN1_MULT ... EN1_MULT + 7:
460
            ret = s->mult[offset - EN1_MULT];
461
            break;
462
        case EN0_RSR:
463
            ret = s->rsr;
464
            break;
465
        case EN2_STARTPG:
466
            ret = s->start >> 8;
467
            break;
468
        case EN2_STOPPG:
469
            ret = s->stop >> 8;
470
            break;
471
        case EN0_RTL8029ID0:
472
            ret = 0x50;
473
            break;
474
        case EN0_RTL8029ID1:
475
            ret = 0x43;
476
            break;
477
        case EN3_CONFIG0:
478
            ret = 0;                /* 10baseT media */
479
            break;
480
        case EN3_CONFIG2:
481
            ret = 0x40;                /* 10baseT active */
482
            break;
483
        case EN3_CONFIG3:
484
            ret = 0x40;                /* Full duplex */
485
            break;
486
        default:
487
            ret = 0x00;
488
            break;
489
        }
490
    }
491
#ifdef DEBUG_NE2000
492
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
493
#endif
494
    return ret;
495
}
496

    
497
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
498
                                     uint32_t val)
499
{
500
    if (addr < 32 ||
501
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
502
        s->mem[addr] = val;
503
    }
504
}
505

    
506
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
507
                                     uint32_t val)
508
{
509
    addr &= ~1; /* XXX: check exact behaviour if not even */
510
    if (addr < 32 ||
511
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
512
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
513
    }
514
}
515

    
516
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
517
                                     uint32_t val)
518
{
519
    addr &= ~1; /* XXX: check exact behaviour if not even */
520
    if (addr < 32 ||
521
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
522
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
523
    }
524
}
525

    
526
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
527
{
528
    if (addr < 32 ||
529
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
530
        return s->mem[addr];
531
    } else {
532
        return 0xff;
533
    }
534
}
535

    
536
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
537
{
538
    addr &= ~1; /* XXX: check exact behaviour if not even */
539
    if (addr < 32 ||
540
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
541
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
542
    } else {
543
        return 0xffff;
544
    }
545
}
546

    
547
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
548
{
549
    addr &= ~1; /* XXX: check exact behaviour if not even */
550
    if (addr < 32 ||
551
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
552
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
553
    } else {
554
        return 0xffffffff;
555
    }
556
}
557

    
558
static inline void ne2000_dma_update(NE2000State *s, int len)
559
{
560
    s->rsar += len;
561
    /* wrap */
562
    /* XXX: check what to do if rsar > stop */
563
    if (s->rsar == s->stop)
564
        s->rsar = s->start;
565

    
566
    if (s->rcnt <= len) {
567
        s->rcnt = 0;
568
        /* signal end of transfer */
569
        s->isr |= ENISR_RDC;
570
        ne2000_update_irq(s);
571
    } else {
572
        s->rcnt -= len;
573
    }
574
}
575

    
576
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
577
{
578
    NE2000State *s = opaque;
579

    
580
#ifdef DEBUG_NE2000
581
    printf("NE2000: asic write val=0x%04x\n", val);
582
#endif
583
    if (s->rcnt == 0)
584
        return;
585
    if (s->dcfg & 0x01) {
586
        /* 16 bit access */
587
        ne2000_mem_writew(s, s->rsar, val);
588
        ne2000_dma_update(s, 2);
589
    } else {
590
        /* 8 bit access */
591
        ne2000_mem_writeb(s, s->rsar, val);
592
        ne2000_dma_update(s, 1);
593
    }
594
}
595

    
596
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
597
{
598
    NE2000State *s = opaque;
599
    int ret;
600

    
601
    if (s->dcfg & 0x01) {
602
        /* 16 bit access */
603
        ret = ne2000_mem_readw(s, s->rsar);
604
        ne2000_dma_update(s, 2);
605
    } else {
606
        /* 8 bit access */
607
        ret = ne2000_mem_readb(s, s->rsar);
608
        ne2000_dma_update(s, 1);
609
    }
610
#ifdef DEBUG_NE2000
611
    printf("NE2000: asic read val=0x%04x\n", ret);
612
#endif
613
    return ret;
614
}
615

    
616
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
617
{
618
    NE2000State *s = opaque;
619

    
620
#ifdef DEBUG_NE2000
621
    printf("NE2000: asic writel val=0x%04x\n", val);
622
#endif
623
    if (s->rcnt == 0)
624
        return;
625
    /* 32 bit access */
626
    ne2000_mem_writel(s, s->rsar, val);
627
    ne2000_dma_update(s, 4);
628
}
629

    
630
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
631
{
632
    NE2000State *s = opaque;
633
    int ret;
634

    
635
    /* 32 bit access */
636
    ret = ne2000_mem_readl(s, s->rsar);
637
    ne2000_dma_update(s, 4);
638
#ifdef DEBUG_NE2000
639
    printf("NE2000: asic readl val=0x%04x\n", ret);
640
#endif
641
    return ret;
642
}
643

    
644
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
645
{
646
    /* nothing to do (end of reset pulse) */
647
}
648

    
649
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
650
{
651
    NE2000State *s = opaque;
652
    ne2000_reset(s);
653
    return 0;
654
}
655

    
656
static void ne2000_save(QEMUFile* f,void* opaque)
657
{
658
        NE2000State* s = opaque;
659
        uint32_t tmp;
660

    
661
        if (s->pci_dev)
662
            pci_device_save(s->pci_dev, f);
663

    
664
        qemu_put_8s(f, &s->rxcr);
665

    
666
        qemu_put_8s(f, &s->cmd);
667
        qemu_put_be32s(f, &s->start);
668
        qemu_put_be32s(f, &s->stop);
669
        qemu_put_8s(f, &s->boundary);
670
        qemu_put_8s(f, &s->tsr);
671
        qemu_put_8s(f, &s->tpsr);
672
        qemu_put_be16s(f, &s->tcnt);
673
        qemu_put_be16s(f, &s->rcnt);
674
        qemu_put_be32s(f, &s->rsar);
675
        qemu_put_8s(f, &s->rsr);
676
        qemu_put_8s(f, &s->isr);
677
        qemu_put_8s(f, &s->dcfg);
678
        qemu_put_8s(f, &s->imr);
679
        qemu_put_buffer(f, s->phys, 6);
680
        qemu_put_8s(f, &s->curpag);
681
        qemu_put_buffer(f, s->mult, 8);
682
        tmp = 0;
683
        qemu_put_be32s(f, &tmp); /* ignored, was irq */
684
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
685
}
686

    
687
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
688
{
689
        NE2000State* s = opaque;
690
        int ret;
691
        uint32_t tmp;
692

    
693
        if (version_id > 3)
694
            return -EINVAL;
695

    
696
        if (s->pci_dev && version_id >= 3) {
697
            ret = pci_device_load(s->pci_dev, f);
698
            if (ret < 0)
699
                return ret;
700
        }
701

    
702
        if (version_id >= 2) {
703
            qemu_get_8s(f, &s->rxcr);
704
        } else {
705
            s->rxcr = 0x0c;
706
        }
707

    
708
        qemu_get_8s(f, &s->cmd);
709
        qemu_get_be32s(f, &s->start);
710
        qemu_get_be32s(f, &s->stop);
711
        qemu_get_8s(f, &s->boundary);
712
        qemu_get_8s(f, &s->tsr);
713
        qemu_get_8s(f, &s->tpsr);
714
        qemu_get_be16s(f, &s->tcnt);
715
        qemu_get_be16s(f, &s->rcnt);
716
        qemu_get_be32s(f, &s->rsar);
717
        qemu_get_8s(f, &s->rsr);
718
        qemu_get_8s(f, &s->isr);
719
        qemu_get_8s(f, &s->dcfg);
720
        qemu_get_8s(f, &s->imr);
721
        qemu_get_buffer(f, s->phys, 6);
722
        qemu_get_8s(f, &s->curpag);
723
        qemu_get_buffer(f, s->mult, 8);
724
        qemu_get_be32s(f, &tmp); /* ignored */
725
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
726

    
727
        return 0;
728
}
729

    
730
static void isa_ne2000_cleanup(VLANClientState *vc)
731
{
732
    NE2000State *s = vc->opaque;
733

    
734
    unregister_savevm("ne2000", s);
735

    
736
    isa_unassign_ioport(s->isa_io_base, 16);
737
    isa_unassign_ioport(s->isa_io_base + 0x10, 2);
738
    isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
739

    
740
    qemu_free(s);
741
}
742

    
743
void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
744
{
745
    NE2000State *s;
746

    
747
    qemu_check_nic_model(nd, "ne2k_isa");
748

    
749
    s = qemu_mallocz(sizeof(NE2000State));
750

    
751
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
752
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
753

    
754
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
755
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
756
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
757
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
758

    
759
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
760
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
761
    s->isa_io_base = base;
762
    s->irq = irq;
763
    memcpy(s->macaddr, nd->macaddr, 6);
764

    
765
    ne2000_reset(s);
766

    
767
    s->vc = nd->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
768
                                          ne2000_can_receive, ne2000_receive,
769
                                          NULL, isa_ne2000_cleanup, s);
770

    
771
    qemu_format_nic_info_str(s->vc, s->macaddr);
772

    
773
    register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
774
}
775

    
776
/***********************************************************/
777
/* PCI NE2000 definitions */
778

    
779
static void ne2000_map(PCIDevice *pci_dev, int region_num,
780
                       uint32_t addr, uint32_t size, int type)
781
{
782
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
783
    NE2000State *s = &d->ne2000;
784

    
785
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
786
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
787

    
788
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
789
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
790
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
791
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
792
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
793
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
794

    
795
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
796
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
797
}
798

    
799
static void ne2000_cleanup(VLANClientState *vc)
800
{
801
    NE2000State *s = vc->opaque;
802

    
803
    unregister_savevm("ne2000", s);
804
}
805

    
806
static int pci_ne2000_init(PCIDevice *pci_dev)
807
{
808
    PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
809
    NE2000State *s;
810
    uint8_t *pci_conf;
811

    
812
    pci_conf = d->dev.config;
813
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
814
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
815
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
816
    pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
817
    pci_conf[0x3d] = 1; // interrupt pin 0
818

    
819
    pci_register_bar(&d->dev, 0, 0x100,
820
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
821
    s = &d->ne2000;
822
    s->irq = d->dev.irq[0];
823
    s->pci_dev = pci_dev;
824
    qdev_get_macaddr(&d->dev.qdev, s->macaddr);
825
    ne2000_reset(s);
826
    s->vc = qdev_get_vlan_client(&d->dev.qdev,
827
                                 ne2000_can_receive, ne2000_receive, NULL,
828
                                 ne2000_cleanup, s);
829

    
830
    qemu_format_nic_info_str(s->vc, s->macaddr);
831

    
832
    register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
833
    return 0;
834
}
835

    
836
static PCIDeviceInfo ne2000_info = {
837
    .qdev.name = "ne2k_pci",
838
    .qdev.size = sizeof(PCINE2000State),
839
    .init      = pci_ne2000_init,
840
};
841

    
842
static void ne2000_register_devices(void)
843
{
844
    pci_qdev_register(&ne2000_info);
845
}
846

    
847
device_init(ne2000_register_devices)