Statistics
| Branch: | Revision:

root / vl.c @ 2c1794c4

History | View | Annotate | Download (93.2 kB)

1
/*
2
 * QEMU PC System Emulator
3
 * 
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <string.h>
28
#include <getopt.h>
29
#include <inttypes.h>
30
#include <unistd.h>
31
#include <sys/mman.h>
32
#include <fcntl.h>
33
#include <signal.h>
34
#include <time.h>
35
#include <sys/time.h>
36
#include <malloc.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <errno.h>
40
#include <sys/wait.h>
41

    
42
#include <sys/ioctl.h>
43
#include <sys/socket.h>
44
#include <linux/if.h>
45
#include <linux/if_tun.h>
46

    
47
#include "cpu-i386.h"
48
#include "disas.h"
49
#include "thunk.h"
50

    
51
#include "vl.h"
52

    
53
#define DEBUG_LOGFILE "/tmp/vl.log"
54
#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
55
#define BIOS_FILENAME "bios.bin"
56
#define VGABIOS_FILENAME "vgabios.bin"
57

    
58
//#define DEBUG_UNUSED_IOPORT
59

    
60
//#define DEBUG_IRQ_LATENCY
61

    
62
/* output Bochs bios info messages */
63
//#define DEBUG_BIOS
64

    
65
/* debug IDE devices */
66
//#define DEBUG_IDE
67

    
68
/* debug PIC */
69
//#define DEBUG_PIC
70

    
71
/* debug NE2000 card */
72
//#define DEBUG_NE2000
73

    
74
/* debug PC keyboard */
75
//#define DEBUG_KBD
76

    
77
#define PHYS_RAM_BASE     0xac000000
78
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
79

    
80
#define KERNEL_LOAD_ADDR   0x00100000
81
#define INITRD_LOAD_ADDR   0x00400000
82
#define KERNEL_PARAMS_ADDR 0x00090000
83

    
84
#define MAX_DISKS 2
85

    
86
/* from plex86 (BSD license) */
87
struct  __attribute__ ((packed)) linux_params {
88
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
89
  // I just padded out the VESA parts, rather than define them.
90

    
91
  /* 0x000 */ uint8_t   orig_x;
92
  /* 0x001 */ uint8_t   orig_y;
93
  /* 0x002 */ uint16_t  ext_mem_k;
94
  /* 0x004 */ uint16_t  orig_video_page;
95
  /* 0x006 */ uint8_t   orig_video_mode;
96
  /* 0x007 */ uint8_t   orig_video_cols;
97
  /* 0x008 */ uint16_t  unused1;
98
  /* 0x00a */ uint16_t  orig_video_ega_bx;
99
  /* 0x00c */ uint16_t  unused2;
100
  /* 0x00e */ uint8_t   orig_video_lines;
101
  /* 0x00f */ uint8_t   orig_video_isVGA;
102
  /* 0x010 */ uint16_t  orig_video_points;
103
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
104
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
105
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
106
                                 // is calculated as 0x90000 + cl_offset, bu
107
                                 // only if cl_magic == 0xA33F.
108
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.
109

    
110
  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
111
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];
112

    
113
  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
114
  // Might be truncated?
115
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
116
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46
117

    
118
  // System description table truncated to 16 bytes
119
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
120
  /* 0x0a0 */ uint16_t  sys_description_len;
121
  /* 0x0a2 */ uint8_t   sys_description_table[14];
122
                        // [0] machine id
123
                        // [1] machine submodel id
124
                        // [2] BIOS revision
125
                        // [3] bit1: MCA bus
126

    
127
  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
128
  /* 0x1e0 */ uint32_t  alt_mem_k;
129
  /* 0x1e4 */ uint8_t   pad4[4];
130
  /* 0x1e8 */ uint8_t   e820map_entries;
131
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
132
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
133
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
134
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
135
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
136
                                // (b)zImage-file (in 16 byte units, rounded up)
137
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
138
  /* 0x1f8 */ uint16_t  ramdisk_flags;
139
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
140
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
141
  /* 0x1fe */ uint8_t   pad6[1];
142
  /* 0x1ff */ uint8_t   aux_device_info;
143
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
144
                                  // aka "reserved" field.
145
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
146
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
147
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
148
                                        // boot loaders, look there.
149
  /* 0x210 */ uint8_t   loader_type;
150
                        // 0 for old one.
151
                        // else 0xTV:
152
                        //   T=0: LILO
153
                        //   T=1: Loadlin
154
                        //   T=2: bootsect-loader
155
                        //   T=3: SYSLINUX
156
                        //   T=4: ETHERBOOT
157
                        //   V=version
158
  /* 0x211 */ uint8_t   loadflags;
159
                        // bit0 = 1: kernel is loaded high (bzImage)
160
                        // bit7 = 1: Heap and pointer (see below) set by boot
161
                        //   loader.
162
  /* 0x212 */ uint16_t  setup_S_temp1;
163
  /* 0x214 */ uint32_t  kernel_start;
164
  /* 0x218 */ uint32_t  initrd_start;
165
  /* 0x21c */ uint32_t  initrd_size;
166
  /* 0x220 */ uint8_t   setup_S_temp2[4];
167
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
168
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];
169

    
170
  /* 0x2d0 : Int 15, ax=e820 memory map. */
171
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
172
#define E820MAX  32
173
#define E820_RAM  1
174
#define E820_RESERVED 2
175
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
176
#define E820_NVS  4
177
  struct {
178
    uint64_t addr;
179
    uint64_t size;
180
    uint32_t type;
181
    } e820map[E820MAX];
182

    
183
  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];
184

    
185
  // BIOS Enhanced Disk Drive Services.
186
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
187
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
188
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];
189

    
190
  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
191
  /* 0x800 */ uint8_t   commandline[0x800];
192

    
193
  /* 0x1000 */
194
  uint64_t gdt_table[256];
195
  uint64_t idt_table[48];
196
};
197

    
198
#define KERNEL_CS     0x10
199
#define KERNEL_DS     0x18
200

    
201
typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
202
typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
203

    
204
#define MAX_IOPORTS 4096
205

    
206
static const char *interp_prefix = CONFIG_QEMU_PREFIX;
207
char phys_ram_file[1024];
208
CPUX86State *global_env;
209
CPUX86State *cpu_single_env;
210
FILE *logfile = NULL;
211
int loglevel;
212
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
213
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
214
BlockDriverState *bs_table[MAX_DISKS];
215

    
216
/***********************************************************/
217
/* x86 io ports */
218

    
219
uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
220
{
221
#ifdef DEBUG_UNUSED_IOPORT
222
    fprintf(stderr, "inb: port=0x%04x\n", address);
223
#endif
224
    return 0xff;
225
}
226

    
227
void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
228
{
229
#ifdef DEBUG_UNUSED_IOPORT
230
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
231
#endif
232
}
233

    
234
/* default is to make two byte accesses */
235
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
236
{
237
    uint32_t data;
238
    data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
239
    data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
240
    return data;
241
}
242

    
243
void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
244
{
245
    ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
246
    ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
247
}
248

    
249
uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
250
{
251
#ifdef DEBUG_UNUSED_IOPORT
252
    fprintf(stderr, "inl: port=0x%04x\n", address);
253
#endif
254
    return 0xffffffff;
255
}
256

    
257
void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
258
{
259
#ifdef DEBUG_UNUSED_IOPORT
260
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
261
#endif
262
}
263

    
264
void init_ioports(void)
265
{
266
    int i;
267

    
268
    for(i = 0; i < MAX_IOPORTS; i++) {
269
        ioport_read_table[0][i] = default_ioport_readb;
270
        ioport_write_table[0][i] = default_ioport_writeb;
271
        ioport_read_table[1][i] = default_ioport_readw;
272
        ioport_write_table[1][i] = default_ioport_writew;
273
        ioport_read_table[2][i] = default_ioport_readl;
274
        ioport_write_table[2][i] = default_ioport_writel;
275
    }
276
}
277

    
278
/* size is the word size in byte */
279
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
280
{
281
    int i, bsize;
282

    
283
    if (size == 1)
284
        bsize = 0;
285
    else if (size == 2)
286
        bsize = 1;
287
    else if (size == 4)
288
        bsize = 2;
289
    else
290
        return -1;
291
    for(i = start; i < start + length; i += size)
292
        ioport_read_table[bsize][i] = func;
293
    return 0;
294
}
295

    
296
/* size is the word size in byte */
297
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
298
{
299
    int i, bsize;
300

    
301
    if (size == 1)
302
        bsize = 0;
303
    else if (size == 2)
304
        bsize = 1;
305
    else if (size == 4)
306
        bsize = 2;
307
    else
308
        return -1;
309
    for(i = start; i < start + length; i += size)
310
        ioport_write_table[bsize][i] = func;
311
    return 0;
312
}
313

    
314
void pstrcpy(char *buf, int buf_size, const char *str)
315
{
316
    int c;
317
    char *q = buf;
318

    
319
    if (buf_size <= 0)
320
        return;
321

    
322
    for(;;) {
323
        c = *str++;
324
        if (c == 0 || q >= buf + buf_size - 1)
325
            break;
326
        *q++ = c;
327
    }
328
    *q = '\0';
329
}
330

    
331
/* strcat and truncate. */
332
char *pstrcat(char *buf, int buf_size, const char *s)
333
{
334
    int len;
335
    len = strlen(buf);
336
    if (len < buf_size) 
337
        pstrcpy(buf + len, buf_size - len, s);
338
    return buf;
339
}
340

    
341
int load_kernel(const char *filename, uint8_t *addr)
342
{
343
    int fd, size, setup_sects;
344
    uint8_t bootsect[512];
345

    
346
    fd = open(filename, O_RDONLY);
347
    if (fd < 0)
348
        return -1;
349
    if (read(fd, bootsect, 512) != 512)
350
        goto fail;
351
    setup_sects = bootsect[0x1F1];
352
    if (!setup_sects)
353
        setup_sects = 4;
354
    /* skip 16 bit setup code */
355
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
356
    size = read(fd, addr, 16 * 1024 * 1024);
357
    if (size < 0)
358
        goto fail;
359
    close(fd);
360
    return size;
361
 fail:
362
    close(fd);
363
    return -1;
364
}
365

    
366
/* return the size or -1 if error */
367
int load_image(const char *filename, uint8_t *addr)
368
{
369
    int fd, size;
370
    fd = open(filename, O_RDONLY);
371
    if (fd < 0)
372
        return -1;
373
    size = lseek(fd, 0, SEEK_END);
374
    lseek(fd, 0, SEEK_SET);
375
    if (read(fd, addr, size) != size) {
376
        close(fd);
377
        return -1;
378
    }
379
    close(fd);
380
    return size;
381
}
382

    
383
void cpu_x86_outb(CPUX86State *env, int addr, int val)
384
{
385
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
386
}
387

    
388
void cpu_x86_outw(CPUX86State *env, int addr, int val)
389
{
390
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
391
}
392

    
393
void cpu_x86_outl(CPUX86State *env, int addr, int val)
394
{
395
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
396
}
397

    
398
int cpu_x86_inb(CPUX86State *env, int addr)
399
{
400
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
401
}
402

    
403
int cpu_x86_inw(CPUX86State *env, int addr)
404
{
405
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
406
}
407

    
408
int cpu_x86_inl(CPUX86State *env, int addr)
409
{
410
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
411
}
412

    
413
/***********************************************************/
414
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
415
{
416
}
417

    
418
void hw_error(const char *fmt, ...)
419
{
420
    va_list ap;
421

    
422
    va_start(ap, fmt);
423
    fprintf(stderr, "qemu: hardware error: ");
424
    vfprintf(stderr, fmt, ap);
425
    fprintf(stderr, "\n");
426
#ifdef TARGET_I386
427
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
428
#endif
429
    va_end(ap);
430
    abort();
431
}
432

    
433
/***********************************************************/
434
/* vga emulation */
435
static uint8_t vga_index;
436
static uint8_t vga_regs[256];
437
static int last_cursor_pos;
438

    
439
void update_console_messages(void)
440
{
441
    int c, i, cursor_pos, eol;
442

    
443
    cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
444
    eol = 0;
445
    for(i = last_cursor_pos; i < cursor_pos; i++) {
446
        c = phys_ram_base[0xb8000 + (i) * 2];
447
        if (c >= ' ') {
448
            putchar(c);
449
            eol = 0;
450
        } else {
451
            if (!eol)
452
                putchar('\n');
453
            eol = 1;
454
        }
455
    }
456
    fflush(stdout);
457
    last_cursor_pos = cursor_pos;
458
}
459

    
460
/* just to see first Linux console messages, we intercept cursor position */
461
void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
462
{
463
    switch(addr) {
464
    case 0x3d4:
465
        vga_index = data;
466
        break;
467
    case 0x3d5:
468
        vga_regs[vga_index] = data;
469
        if (vga_index == 0x0f)
470
            update_console_messages();
471
        break;
472
    }
473
            
474
}
475

    
476
/***********************************************************/
477
/* cmos emulation */
478

    
479
#define RTC_SECONDS             0
480
#define RTC_SECONDS_ALARM       1
481
#define RTC_MINUTES             2
482
#define RTC_MINUTES_ALARM       3
483
#define RTC_HOURS               4
484
#define RTC_HOURS_ALARM         5
485
#define RTC_ALARM_DONT_CARE    0xC0
486

    
487
#define RTC_DAY_OF_WEEK         6
488
#define RTC_DAY_OF_MONTH        7
489
#define RTC_MONTH               8
490
#define RTC_YEAR                9
491

    
492
#define RTC_REG_A               10
493
#define RTC_REG_B               11
494
#define RTC_REG_C               12
495
#define RTC_REG_D               13
496

    
497
/* PC cmos mappings */
498
#define REG_EQUIPMENT_BYTE          0x14
499

    
500
uint8_t cmos_data[128];
501
uint8_t cmos_index;
502

    
503
void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
504
{
505
    if (addr == 0x70) {
506
        cmos_index = data & 0x7f;
507
    }
508
}
509

    
510
uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
511
{
512
    int ret;
513

    
514
    if (addr == 0x70) {
515
        return 0xff;
516
    } else {
517
        /* toggle update-in-progress bit for Linux (same hack as
518
           plex86) */
519
        ret = cmos_data[cmos_index];
520
        if (cmos_index == RTC_REG_A)
521
            cmos_data[RTC_REG_A] ^= 0x80; 
522
        else if (cmos_index == RTC_REG_C)
523
            cmos_data[RTC_REG_C] = 0x00; 
524
        return ret;
525
    }
526
}
527

    
528

    
529
static inline int to_bcd(int a)
530
{
531
    return ((a / 10) << 4) | (a % 10);
532
}
533

    
534
void cmos_init(void)
535
{
536
    struct tm *tm;
537
    time_t ti;
538
    int val;
539

    
540
    ti = time(NULL);
541
    tm = gmtime(&ti);
542
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
543
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
544
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
545
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
546
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
547
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
548
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
549

    
550
    cmos_data[RTC_REG_A] = 0x26;
551
    cmos_data[RTC_REG_B] = 0x02;
552
    cmos_data[RTC_REG_C] = 0x00;
553
    cmos_data[RTC_REG_D] = 0x80;
554

    
555
    /* various important CMOS locations needed by PC/Bochs bios */
556

    
557
    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
558

    
559
    /* memory size */
560
    val = (phys_ram_size / 1024) - 1024;
561
    if (val > 65535)
562
        val = 65535;
563
    cmos_data[0x17] = val;
564
    cmos_data[0x18] = val >> 8;
565
    cmos_data[0x30] = val;
566
    cmos_data[0x31] = val >> 8;
567

    
568
    val = (phys_ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
569
    if (val > 65535)
570
        val = 65535;
571
    cmos_data[0x34] = val;
572
    cmos_data[0x35] = val >> 8;
573
    
574
    cmos_data[0x3d] = 0x02; /* hard drive boot */
575
    
576
    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
577
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
578
}
579

    
580
/***********************************************************/
581
/* 8259 pic emulation */
582

    
583
typedef struct PicState {
584
    uint8_t last_irr; /* edge detection */
585
    uint8_t irr; /* interrupt request register */
586
    uint8_t imr; /* interrupt mask register */
587
    uint8_t isr; /* interrupt service register */
588
    uint8_t priority_add; /* used to compute irq priority */
589
    uint8_t irq_base;
590
    uint8_t read_reg_select;
591
    uint8_t special_mask;
592
    uint8_t init_state;
593
    uint8_t auto_eoi;
594
    uint8_t rotate_on_autoeoi;
595
    uint8_t init4; /* true if 4 byte init */
596
} PicState;
597

    
598
/* 0 is master pic, 1 is slave pic */
599
PicState pics[2];
600
int pic_irq_requested;
601

    
602
/* set irq level. If an edge is detected, then the IRR is set to 1 */
603
static inline void pic_set_irq1(PicState *s, int irq, int level)
604
{
605
    int mask;
606
    mask = 1 << irq;
607
    if (level) {
608
        if ((s->last_irr & mask) == 0)
609
            s->irr |= mask;
610
        s->last_irr |= mask;
611
    } else {
612
        s->last_irr &= ~mask;
613
    }
614
}
615

    
616
static inline int get_priority(PicState *s, int mask)
617
{
618
    int priority;
619
    if (mask == 0)
620
        return -1;
621
    priority = 7;
622
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
623
        priority--;
624
    return priority;
625
}
626

    
627
/* return the pic wanted interrupt. return -1 if none */
628
static int pic_get_irq(PicState *s)
629
{
630
    int mask, cur_priority, priority;
631

    
632
    mask = s->irr & ~s->imr;
633
    priority = get_priority(s, mask);
634
    if (priority < 0)
635
        return -1;
636
    /* compute current priority */
637
    cur_priority = get_priority(s, s->isr);
638
    if (priority > cur_priority) {
639
        /* higher priority found: an irq should be generated */
640
        return priority;
641
    } else {
642
        return -1;
643
    }
644
}
645

    
646
/* raise irq to CPU if necessary. must be called every time the active
647
   irq may change */
648
static void pic_update_irq(void)
649
{
650
    int irq2, irq;
651

    
652
    /* first look at slave pic */
653
    irq2 = pic_get_irq(&pics[1]);
654
    if (irq2 >= 0) {
655
        /* if irq request by slave pic, signal master PIC */
656
        pic_set_irq1(&pics[0], 2, 1);
657
        pic_set_irq1(&pics[0], 2, 0);
658
    }
659
    /* look at requested irq */
660
    irq = pic_get_irq(&pics[0]);
661
    if (irq >= 0) {
662
        if (irq == 2) {
663
            /* from slave pic */
664
            pic_irq_requested = 8 + irq2;
665
        } else {
666
            /* from master pic */
667
            pic_irq_requested = irq;
668
        }
669
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
670
    }
671
}
672

    
673
#ifdef DEBUG_IRQ_LATENCY
674
int64_t irq_time[16];
675
int64_t cpu_get_ticks(void);
676
#endif
677
#ifdef DEBUG_PIC
678
int irq_level[16];
679
#endif
680

    
681
void pic_set_irq(int irq, int level)
682
{
683
#ifdef DEBUG_PIC
684
    if (level != irq_level[irq]) {
685
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
686
        irq_level[irq] = level;
687
    }
688
#endif
689
#ifdef DEBUG_IRQ_LATENCY
690
    if (level) {
691
        irq_time[irq] = cpu_get_ticks();
692
    }
693
#endif
694
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
695
    pic_update_irq();
696
}
697

    
698
int cpu_x86_get_pic_interrupt(CPUX86State *env)
699
{
700
    int irq, irq2, intno;
701

    
702
    /* signal the pic that the irq was acked by the CPU */
703
    irq = pic_irq_requested;
704
#ifdef DEBUG_IRQ_LATENCY
705
    printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
706
#endif
707
#ifdef DEBUG_PIC
708
    printf("pic_interrupt: irq=%d\n", irq);
709
#endif
710

    
711
    if (irq >= 8) {
712
        irq2 = irq & 7;
713
        pics[1].isr |= (1 << irq2);
714
        pics[1].irr &= ~(1 << irq2);
715
        irq = 2;
716
        intno = pics[1].irq_base + irq2;
717
    } else {
718
        intno = pics[0].irq_base + irq;
719
    }
720
    pics[0].isr |= (1 << irq);
721
    pics[0].irr &= ~(1 << irq);
722
    return intno;
723
}
724

    
725
void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
726
{
727
    PicState *s;
728
    int priority;
729

    
730
#ifdef DEBUG_PIC
731
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
732
#endif
733
    s = &pics[addr >> 7];
734
    addr &= 1;
735
    if (addr == 0) {
736
        if (val & 0x10) {
737
            /* init */
738
            memset(s, 0, sizeof(PicState));
739
            s->init_state = 1;
740
            s->init4 = val & 1;
741
            if (val & 0x02)
742
                hw_error("single mode not supported");
743
            if (val & 0x08)
744
                hw_error("level sensitive irq not supported");
745
        } else if (val & 0x08) {
746
            if (val & 0x02)
747
                s->read_reg_select = val & 1;
748
            if (val & 0x40)
749
                s->special_mask = (val >> 5) & 1;
750
        } else {
751
            switch(val) {
752
            case 0x00:
753
            case 0x80:
754
                s->rotate_on_autoeoi = val >> 7;
755
                break;
756
            case 0x20: /* end of interrupt */
757
            case 0xa0:
758
                priority = get_priority(s, s->isr);
759
                if (priority >= 0) {
760
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
761
                }
762
                if (val == 0xa0)
763
                    s->priority_add = (s->priority_add + 1) & 7;
764
                break;
765
            case 0x60 ... 0x67:
766
                priority = val & 7;
767
                s->isr &= ~(1 << priority);
768
                break;
769
            case 0xc0 ... 0xc7:
770
                s->priority_add = (val + 1) & 7;
771
                break;
772
            case 0xe0 ... 0xe7:
773
                priority = val & 7;
774
                s->isr &= ~(1 << priority);
775
                s->priority_add = (priority + 1) & 7;
776
                break;
777
            }
778
        }
779
    } else {
780
        switch(s->init_state) {
781
        case 0:
782
            /* normal mode */
783
            s->imr = val;
784
            pic_update_irq();
785
            break;
786
        case 1:
787
            s->irq_base = val & 0xf8;
788
            s->init_state = 2;
789
            break;
790
        case 2:
791
            if (s->init4) {
792
                s->init_state = 3;
793
            } else {
794
                s->init_state = 0;
795
            }
796
            break;
797
        case 3:
798
            s->auto_eoi = (val >> 1) & 1;
799
            s->init_state = 0;
800
            break;
801
        }
802
    }
803
}
804

    
805
uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
806
{
807
    PicState *s;
808
    unsigned int addr;
809
    int ret;
810

    
811
    addr = addr1;
812
    s = &pics[addr >> 7];
813
    addr &= 1;
814
    if (addr == 0) {
815
        if (s->read_reg_select)
816
            ret = s->isr;
817
        else
818
            ret = s->irr;
819
    } else {
820
        ret = s->imr;
821
    }
822
#ifdef DEBUG_PIC
823
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
824
#endif
825
    return ret;
826
}
827

    
828
void pic_init(void)
829
{
830
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
831
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
832
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
833
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
834
}
835

    
836
/***********************************************************/
837
/* 8253 PIT emulation */
838

    
839
#define PIT_FREQ 1193182
840

    
841
#define RW_STATE_LSB 0
842
#define RW_STATE_MSB 1
843
#define RW_STATE_WORD0 2
844
#define RW_STATE_WORD1 3
845
#define RW_STATE_LATCHED_WORD0 4
846
#define RW_STATE_LATCHED_WORD1 5
847

    
848
typedef struct PITChannelState {
849
    int count; /* can be 65536 */
850
    uint16_t latched_count;
851
    uint8_t rw_state;
852
    uint8_t mode;
853
    uint8_t bcd; /* not supported */
854
    uint8_t gate; /* timer start */
855
    int64_t count_load_time;
856
    int64_t count_last_edge_check_time;
857
} PITChannelState;
858

    
859
PITChannelState pit_channels[3];
860
int speaker_data_on;
861
int pit_min_timer_count = 0;
862

    
863
int64_t ticks_per_sec;
864

    
865
int64_t get_clock(void)
866
{
867
    struct timeval tv;
868
    gettimeofday(&tv, NULL);
869
    return tv.tv_sec * 1000000LL + tv.tv_usec;
870
}
871

    
872
int64_t cpu_get_ticks(void)
873
{
874
    int64_t val;
875
    asm("rdtsc" : "=A" (val));
876
    return val;
877
}
878

    
879
void cpu_calibrate_ticks(void)
880
{
881
    int64_t usec, ticks;
882

    
883
    usec = get_clock();
884
    ticks = cpu_get_ticks();
885
    usleep(50 * 1000);
886
    usec = get_clock() - usec;
887
    ticks = cpu_get_ticks() - ticks;
888
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
889
}
890

    
891
/* compute with 96 bit intermediate result: (a*b)/c */
892
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
893
{
894
    union {
895
        uint64_t ll;
896
        struct {
897
#ifdef WORDS_BIGENDIAN
898
            uint32_t high, low;
899
#else
900
            uint32_t low, high;
901
#endif            
902
        } l;
903
    } u, res;
904
    uint64_t rl, rh;
905

    
906
    u.ll = a;
907
    rl = (uint64_t)u.l.low * (uint64_t)b;
908
    rh = (uint64_t)u.l.high * (uint64_t)b;
909
    rh += (rl >> 32);
910
    res.l.high = rh / c;
911
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
912
    return res.ll;
913
}
914

    
915
static int pit_get_count(PITChannelState *s)
916
{
917
    uint64_t d;
918
    int counter;
919

    
920
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
921
    switch(s->mode) {
922
    case 0:
923
    case 1:
924
    case 4:
925
    case 5:
926
        counter = (s->count - d) & 0xffff;
927
        break;
928
    default:
929
        counter = s->count - (d % s->count);
930
        break;
931
    }
932
    return counter;
933
}
934

    
935
/* get pit output bit */
936
static int pit_get_out(PITChannelState *s)
937
{
938
    uint64_t d;
939
    int out;
940

    
941
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
942
    switch(s->mode) {
943
    default:
944
    case 0:
945
        out = (d >= s->count);
946
        break;
947
    case 1:
948
        out = (d < s->count);
949
        break;
950
    case 2:
951
        if ((d % s->count) == 0 && d != 0)
952
            out = 1;
953
        else
954
            out = 0;
955
        break;
956
    case 3:
957
        out = (d % s->count) < (s->count >> 1);
958
        break;
959
    case 4:
960
    case 5:
961
        out = (d == s->count);
962
        break;
963
    }
964
    return out;
965
}
966

    
967
/* get the number of 0 to 1 transitions we had since we call this
968
   function */
969
/* XXX: maybe better to use ticks precision to avoid getting edges
970
   twice if checks are done at very small intervals */
971
static int pit_get_out_edges(PITChannelState *s)
972
{
973
    uint64_t d1, d2;
974
    int64_t ticks;
975
    int ret, v;
976

    
977
    ticks = cpu_get_ticks();
978
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
979
                 PIT_FREQ, ticks_per_sec);
980
    d2 = muldiv64(ticks - s->count_load_time, 
981
                  PIT_FREQ, ticks_per_sec);
982
    s->count_last_edge_check_time = ticks;
983
    switch(s->mode) {
984
    default:
985
    case 0:
986
        if (d1 < s->count && d2 >= s->count)
987
            ret = 1;
988
        else
989
            ret = 0;
990
        break;
991
    case 1:
992
        ret = 0;
993
        break;
994
    case 2:
995
        d1 /= s->count;
996
        d2 /= s->count;
997
        ret = d2 - d1;
998
        break;
999
    case 3:
1000
        v = s->count - (s->count >> 1);
1001
        d1 = (d1 + v) / s->count;
1002
        d2 = (d2 + v) / s->count;
1003
        ret = d2 - d1;
1004
        break;
1005
    case 4:
1006
    case 5:
1007
        if (d1 < s->count && d2 >= s->count)
1008
            ret = 1;
1009
        else
1010
            ret = 0;
1011
        break;
1012
    }
1013
    return ret;
1014
}
1015

    
1016
static inline void pit_load_count(PITChannelState *s, int val)
1017
{
1018
    if (val == 0)
1019
        val = 0x10000;
1020
    s->count_load_time = cpu_get_ticks();
1021
    s->count_last_edge_check_time = s->count_load_time;
1022
    s->count = val;
1023
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
1024
        fprintf(stderr, 
1025
                "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
1026
                PIT_FREQ / pit_min_timer_count);
1027
    }
1028
}
1029

    
1030
void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1031
{
1032
    int channel, access;
1033
    PITChannelState *s;
1034

    
1035
    addr &= 3;
1036
    if (addr == 3) {
1037
        channel = val >> 6;
1038
        if (channel == 3)
1039
            return;
1040
        s = &pit_channels[channel];
1041
        access = (val >> 4) & 3;
1042
        switch(access) {
1043
        case 0:
1044
            s->latched_count = pit_get_count(s);
1045
            s->rw_state = RW_STATE_LATCHED_WORD0;
1046
            break;
1047
        default:
1048
            s->mode = (val >> 1) & 7;
1049
            s->bcd = val & 1;
1050
            s->rw_state = access - 1 +  RW_STATE_LSB;
1051
            break;
1052
        }
1053
    } else {
1054
        s = &pit_channels[addr];
1055
        switch(s->rw_state) {
1056
        case RW_STATE_LSB:
1057
            pit_load_count(s, val);
1058
            break;
1059
        case RW_STATE_MSB:
1060
            pit_load_count(s, val << 8);
1061
            break;
1062
        case RW_STATE_WORD0:
1063
        case RW_STATE_WORD1:
1064
            if (s->rw_state & 1) {
1065
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1066
            } else {
1067
                s->latched_count = val;
1068
            }
1069
            s->rw_state ^= 1;
1070
            break;
1071
        }
1072
    }
1073
}
1074

    
1075
uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1076
{
1077
    int ret, count;
1078
    PITChannelState *s;
1079
    
1080
    addr &= 3;
1081
    s = &pit_channels[addr];
1082
    switch(s->rw_state) {
1083
    case RW_STATE_LSB:
1084
    case RW_STATE_MSB:
1085
    case RW_STATE_WORD0:
1086
    case RW_STATE_WORD1:
1087
        count = pit_get_count(s);
1088
        if (s->rw_state & 1)
1089
            ret = (count >> 8) & 0xff;
1090
        else
1091
            ret = count & 0xff;
1092
        if (s->rw_state & 2)
1093
            s->rw_state ^= 1;
1094
        break;
1095
    default:
1096
    case RW_STATE_LATCHED_WORD0:
1097
    case RW_STATE_LATCHED_WORD1:
1098
        if (s->rw_state & 1)
1099
            ret = s->latched_count >> 8;
1100
        else
1101
            ret = s->latched_count & 0xff;
1102
        s->rw_state ^= 1;
1103
        break;
1104
    }
1105
    return ret;
1106
}
1107

    
1108
void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1109
{
1110
    speaker_data_on = (val >> 1) & 1;
1111
    pit_channels[2].gate = val & 1;
1112
}
1113

    
1114
uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1115
{
1116
    int out;
1117
    out = pit_get_out(&pit_channels[2]);
1118
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
1119
}
1120

    
1121
void pit_init(void)
1122
{
1123
    PITChannelState *s;
1124
    int i;
1125

    
1126
    cpu_calibrate_ticks();
1127

    
1128
    for(i = 0;i < 3; i++) {
1129
        s = &pit_channels[i];
1130
        s->mode = 3;
1131
        s->gate = (i != 2);
1132
        pit_load_count(s, 0);
1133
    }
1134

    
1135
    register_ioport_write(0x40, 4, pit_ioport_write, 1);
1136
    register_ioport_read(0x40, 3, pit_ioport_read, 1);
1137

    
1138
    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1139
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1140
}
1141

    
1142
/***********************************************************/
1143
/* serial port emulation */
1144

    
1145
#define UART_IRQ        4
1146

    
1147
#define UART_LCR_DLAB        0x80        /* Divisor latch access bit */
1148

    
1149
#define UART_IER_MSI        0x08        /* Enable Modem status interrupt */
1150
#define UART_IER_RLSI        0x04        /* Enable receiver line status interrupt */
1151
#define UART_IER_THRI        0x02        /* Enable Transmitter holding register int. */
1152
#define UART_IER_RDI        0x01        /* Enable receiver data interrupt */
1153

    
1154
#define UART_IIR_NO_INT        0x01        /* No interrupts pending */
1155
#define UART_IIR_ID        0x06        /* Mask for the interrupt ID */
1156

    
1157
#define UART_IIR_MSI        0x00        /* Modem status interrupt */
1158
#define UART_IIR_THRI        0x02        /* Transmitter holding register empty */
1159
#define UART_IIR_RDI        0x04        /* Receiver data interrupt */
1160
#define UART_IIR_RLSI        0x06        /* Receiver line status interrupt */
1161

    
1162
#define UART_LSR_TEMT        0x40        /* Transmitter empty */
1163
#define UART_LSR_THRE        0x20        /* Transmit-hold-register empty */
1164
#define UART_LSR_BI        0x10        /* Break interrupt indicator */
1165
#define UART_LSR_FE        0x08        /* Frame error indicator */
1166
#define UART_LSR_PE        0x04        /* Parity error indicator */
1167
#define UART_LSR_OE        0x02        /* Overrun error indicator */
1168
#define UART_LSR_DR        0x01        /* Receiver data ready */
1169

    
1170
typedef struct SerialState {
1171
    uint8_t divider;
1172
    uint8_t rbr; /* receive register */
1173
    uint8_t ier;
1174
    uint8_t iir; /* read only */
1175
    uint8_t lcr;
1176
    uint8_t mcr;
1177
    uint8_t lsr; /* read only */
1178
    uint8_t msr;
1179
    uint8_t scr;
1180
} SerialState;
1181

    
1182
SerialState serial_ports[1];
1183

    
1184
void serial_update_irq(void)
1185
{
1186
    SerialState *s = &serial_ports[0];
1187

    
1188
    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1189
        s->iir = UART_IIR_RDI;
1190
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1191
        s->iir = UART_IIR_THRI;
1192
    } else {
1193
        s->iir = UART_IIR_NO_INT;
1194
    }
1195
    if (s->iir != UART_IIR_NO_INT) {
1196
        pic_set_irq(UART_IRQ, 1);
1197
    } else {
1198
        pic_set_irq(UART_IRQ, 0);
1199
    }
1200
}
1201

    
1202
void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1203
{
1204
    SerialState *s = &serial_ports[0];
1205
    unsigned char ch;
1206
    int ret;
1207
    
1208
    addr &= 7;
1209
    switch(addr) {
1210
    default:
1211
    case 0:
1212
        if (s->lcr & UART_LCR_DLAB) {
1213
            s->divider = (s->divider & 0xff00) | val;
1214
        } else {
1215
            s->lsr &= ~UART_LSR_THRE;
1216
            serial_update_irq();
1217

    
1218
            ch = val;
1219
            do {
1220
                ret = write(1, &ch, 1);
1221
            } while (ret != 1);
1222
            s->lsr |= UART_LSR_THRE;
1223
            s->lsr |= UART_LSR_TEMT;
1224
            serial_update_irq();
1225
        }
1226
        break;
1227
    case 1:
1228
        if (s->lcr & UART_LCR_DLAB) {
1229
            s->divider = (s->divider & 0x00ff) | (val << 8);
1230
        } else {
1231
            s->ier = val;
1232
            serial_update_irq();
1233
        }
1234
        break;
1235
    case 2:
1236
        break;
1237
    case 3:
1238
        s->lcr = val;
1239
        break;
1240
    case 4:
1241
        s->mcr = val;
1242
        break;
1243
    case 5:
1244
        break;
1245
    case 6:
1246
        s->msr = val;
1247
        break;
1248
    case 7:
1249
        s->scr = val;
1250
        break;
1251
    }
1252
}
1253

    
1254
uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1255
{
1256
    SerialState *s = &serial_ports[0];
1257
    uint32_t ret;
1258

    
1259
    addr &= 7;
1260
    switch(addr) {
1261
    default:
1262
    case 0:
1263
        if (s->lcr & UART_LCR_DLAB) {
1264
            ret = s->divider & 0xff; 
1265
        } else {
1266
            ret = s->rbr;
1267
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1268
            serial_update_irq();
1269
        }
1270
        break;
1271
    case 1:
1272
        if (s->lcr & UART_LCR_DLAB) {
1273
            ret = (s->divider >> 8) & 0xff;
1274
        } else {
1275
            ret = s->ier;
1276
        }
1277
        break;
1278
    case 2:
1279
        ret = s->iir;
1280
        break;
1281
    case 3:
1282
        ret = s->lcr;
1283
        break;
1284
    case 4:
1285
        ret = s->mcr;
1286
        break;
1287
    case 5:
1288
        ret = s->lsr;
1289
        break;
1290
    case 6:
1291
        ret = s->msr;
1292
        break;
1293
    case 7:
1294
        ret = s->scr;
1295
        break;
1296
    }
1297
    return ret;
1298
}
1299

    
1300
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1301
static int term_got_escape;
1302

    
1303
void term_print_help(void)
1304
{
1305
    printf("\n"
1306
           "C-a h    print this help\n"
1307
           "C-a x    exit emulatior\n"
1308
           "C-a s    save disk data back to file (if -snapshot)\n"
1309
           "C-a b    send break (magic sysrq)\n"
1310
           "C-a C-a  send C-a\n"
1311
           );
1312
}
1313

    
1314
/* called when a char is received */
1315
void serial_received_byte(SerialState *s, int ch)
1316
{
1317
    if (term_got_escape) {
1318
        term_got_escape = 0;
1319
        switch(ch) {
1320
        case 'h':
1321
            term_print_help();
1322
            break;
1323
        case 'x':
1324
            exit(0);
1325
            break;
1326
        case 's': 
1327
            {
1328
                int i;
1329
                for (i = 0; i < MAX_DISKS; i++) {
1330
                    if (bs_table[i])
1331
                        bdrv_commit(bs_table[i]);
1332
                }
1333
            }
1334
            break;
1335
        case 'b':
1336
            /* send break */
1337
            s->rbr = 0;
1338
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
1339
            serial_update_irq();
1340
            break;
1341
        case TERM_ESCAPE:
1342
            goto send_char;
1343
        }
1344
    } else if (ch == TERM_ESCAPE) {
1345
        term_got_escape = 1;
1346
    } else {
1347
    send_char:
1348
        s->rbr = ch;
1349
        s->lsr |= UART_LSR_DR;
1350
        serial_update_irq();
1351
    }
1352
}
1353

    
1354
/* init terminal so that we can grab keys */
1355
static struct termios oldtty;
1356

    
1357
static void term_exit(void)
1358
{
1359
    tcsetattr (0, TCSANOW, &oldtty);
1360
}
1361

    
1362
static void term_init(void)
1363
{
1364
    struct termios tty;
1365

    
1366
    tcgetattr (0, &tty);
1367
    oldtty = tty;
1368

    
1369
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1370
                          |INLCR|IGNCR|ICRNL|IXON);
1371
    tty.c_oflag |= OPOST;
1372
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1373
    tty.c_cflag &= ~(CSIZE|PARENB);
1374
    tty.c_cflag |= CS8;
1375
    tty.c_cc[VMIN] = 1;
1376
    tty.c_cc[VTIME] = 0;
1377
    
1378
    tcsetattr (0, TCSANOW, &tty);
1379

    
1380
    atexit(term_exit);
1381

    
1382
    fcntl(0, F_SETFL, O_NONBLOCK);
1383
}
1384

    
1385
void serial_init(void)
1386
{
1387
    SerialState *s = &serial_ports[0];
1388

    
1389
    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1390

    
1391
    register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1392
    register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1393

    
1394
    term_init();
1395
}
1396

    
1397
/***********************************************************/
1398
/* ne2000 emulation */
1399

    
1400
#define NE2000_IOPORT   0x300
1401
#define NE2000_IRQ      9
1402

    
1403
#define MAX_ETH_FRAME_SIZE 1514
1404

    
1405
#define E8390_CMD        0x00  /* The command register (for all pages) */
1406
/* Page 0 register offsets. */
1407
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
1408
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
1409
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
1410
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
1411
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
1412
#define EN0_TSR                0x04        /* Transmit status reg RD */
1413
#define EN0_TPSR        0x04        /* Transmit starting page WR */
1414
#define EN0_NCR                0x05        /* Number of collision reg RD */
1415
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
1416
#define EN0_FIFO        0x06        /* FIFO RD */
1417
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
1418
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
1419
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
1420
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
1421
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
1422
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
1423
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
1424
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
1425
#define EN0_RSR                0x0c        /* rx status reg RD */
1426
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
1427
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
1428
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
1429
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
1430
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
1431
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
1432
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
1433

    
1434
#define EN1_PHYS        0x11
1435
#define EN1_CURPAG      0x17
1436
#define EN1_MULT        0x18
1437

    
1438
/*  Register accessed at EN_CMD, the 8390 base addr.  */
1439
#define E8390_STOP        0x01        /* Stop and reset the chip */
1440
#define E8390_START        0x02        /* Start the chip, clear reset */
1441
#define E8390_TRANS        0x04        /* Transmit a frame */
1442
#define E8390_RREAD        0x08        /* Remote read */
1443
#define E8390_RWRITE        0x10        /* Remote write  */
1444
#define E8390_NODMA        0x20        /* Remote DMA */
1445
#define E8390_PAGE0        0x00        /* Select page chip registers */
1446
#define E8390_PAGE1        0x40        /* using the two high-order bits */
1447
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
1448

    
1449
/* Bits in EN0_ISR - Interrupt status register */
1450
#define ENISR_RX        0x01        /* Receiver, no error */
1451
#define ENISR_TX        0x02        /* Transmitter, no error */
1452
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
1453
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
1454
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
1455
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
1456
#define ENISR_RDC        0x40        /* remote dma complete */
1457
#define ENISR_RESET        0x80        /* Reset completed */
1458
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
1459

    
1460
/* Bits in received packet status byte and EN0_RSR*/
1461
#define ENRSR_RXOK        0x01        /* Received a good packet */
1462
#define ENRSR_CRC        0x02        /* CRC error */
1463
#define ENRSR_FAE        0x04        /* frame alignment error */
1464
#define ENRSR_FO        0x08        /* FIFO overrun */
1465
#define ENRSR_MPA        0x10        /* missed pkt */
1466
#define ENRSR_PHY        0x20        /* physical/multicast address */
1467
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
1468
#define ENRSR_DEF        0x80        /* deferring */
1469

    
1470
/* Transmitted packet status, EN0_TSR. */
1471
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
1472
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
1473
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
1474
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
1475
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
1476
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
1477
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
1478
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
1479

    
1480
#define NE2000_MEM_SIZE 32768
1481

    
1482
typedef struct NE2000State {
1483
    uint8_t cmd;
1484
    uint32_t start;
1485
    uint32_t stop;
1486
    uint8_t boundary;
1487
    uint8_t tsr;
1488
    uint8_t tpsr;
1489
    uint16_t tcnt;
1490
    uint16_t rcnt;
1491
    uint32_t rsar;
1492
    uint8_t isr;
1493
    uint8_t dcfg;
1494
    uint8_t imr;
1495
    uint8_t phys[6]; /* mac address */
1496
    uint8_t curpag;
1497
    uint8_t mult[8]; /* multicast mask array */
1498
    uint8_t mem[NE2000_MEM_SIZE];
1499
} NE2000State;
1500

    
1501
NE2000State ne2000_state;
1502
int net_fd = -1;
1503
char network_script[1024];
1504

    
1505
void ne2000_reset(void)
1506
{
1507
    NE2000State *s = &ne2000_state;
1508
    int i;
1509

    
1510
    s->isr = ENISR_RESET;
1511
    s->mem[0] = 0x52;
1512
    s->mem[1] = 0x54;
1513
    s->mem[2] = 0x00;
1514
    s->mem[3] = 0x12;
1515
    s->mem[4] = 0x34;
1516
    s->mem[5] = 0x56;
1517
    s->mem[14] = 0x57;
1518
    s->mem[15] = 0x57;
1519

    
1520
    /* duplicate prom data */
1521
    for(i = 15;i >= 0; i--) {
1522
        s->mem[2 * i] = s->mem[i];
1523
        s->mem[2 * i + 1] = s->mem[i];
1524
    }
1525
}
1526

    
1527
void ne2000_update_irq(NE2000State *s)
1528
{
1529
    int isr;
1530
    isr = s->isr & s->imr;
1531
    if (isr)
1532
        pic_set_irq(NE2000_IRQ, 1);
1533
    else
1534
        pic_set_irq(NE2000_IRQ, 0);
1535
}
1536

    
1537
int net_init(void)
1538
{
1539
    struct ifreq ifr;
1540
    int fd, ret, pid, status;
1541
    
1542
    fd = open("/dev/net/tun", O_RDWR);
1543
    if (fd < 0) {
1544
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1545
        return -1;
1546
    }
1547
    memset(&ifr, 0, sizeof(ifr));
1548
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1549
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1550
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1551
    if (ret != 0) {
1552
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1553
        close(fd);
1554
        return -1;
1555
    }
1556
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
1557
    fcntl(fd, F_SETFL, O_NONBLOCK);
1558
    net_fd = fd;
1559

    
1560
    /* try to launch network init script */
1561
    pid = fork();
1562
    if (pid >= 0) {
1563
        if (pid == 0) {
1564
            execl(network_script, network_script, ifr.ifr_name, NULL);
1565
            exit(1);
1566
        }
1567
        while (waitpid(pid, &status, 0) != pid);
1568
        if (!WIFEXITED(status) ||
1569
            WEXITSTATUS(status) != 0) {
1570
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
1571
                    network_script, ifr.ifr_name);
1572
        }
1573
    }
1574
    return 0;
1575
}
1576

    
1577
void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1578
{
1579
#ifdef DEBUG_NE2000
1580
    printf("NE2000: sending packet size=%d\n", size);
1581
#endif
1582
    write(net_fd, buf, size);
1583
}
1584

    
1585
/* return true if the NE2000 can receive more data */
1586
int ne2000_can_receive(NE2000State *s)
1587
{
1588
    int avail, index, boundary;
1589
    
1590
    if (s->cmd & E8390_STOP)
1591
        return 0;
1592
    index = s->curpag << 8;
1593
    boundary = s->boundary << 8;
1594
    if (index < boundary)
1595
        avail = boundary - index;
1596
    else
1597
        avail = (s->stop - s->start) - (index - boundary);
1598
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
1599
        return 0;
1600
    return 1;
1601
}
1602

    
1603
void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1604
{
1605
    uint8_t *p;
1606
    int total_len, next, avail, len, index;
1607

    
1608
#if defined(DEBUG_NE2000)
1609
    printf("NE2000: received len=%d\n", size);
1610
#endif
1611

    
1612
    index = s->curpag << 8;
1613
    /* 4 bytes for header */
1614
    total_len = size + 4;
1615
    /* address for next packet (4 bytes for CRC) */
1616
    next = index + ((total_len + 4 + 255) & ~0xff);
1617
    if (next >= s->stop)
1618
        next -= (s->stop - s->start);
1619
    /* prepare packet header */
1620
    p = s->mem + index;
1621
    p[0] = ENRSR_RXOK; /* receive status */
1622
    p[1] = next >> 8;
1623
    p[2] = total_len;
1624
    p[3] = total_len >> 8;
1625
    index += 4;
1626

    
1627
    /* write packet data */
1628
    while (size > 0) {
1629
        avail = s->stop - index;
1630
        len = size;
1631
        if (len > avail)
1632
            len = avail;
1633
        memcpy(s->mem + index, buf, len);
1634
        buf += len;
1635
        index += len;
1636
        if (index == s->stop)
1637
            index = s->start;
1638
        size -= len;
1639
    }
1640
    s->curpag = next >> 8;
1641
    
1642
    /* now we can signal we have receive something */
1643
    s->isr |= ENISR_RX;
1644
    ne2000_update_irq(s);
1645
}
1646

    
1647
void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1648
{
1649
    NE2000State *s = &ne2000_state;
1650
    int offset, page;
1651

    
1652
    addr &= 0xf;
1653
#ifdef DEBUG_NE2000
1654
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1655
#endif
1656
    if (addr == E8390_CMD) {
1657
        /* control register */
1658
        s->cmd = val;
1659
        if (val & E8390_START) {
1660
            /* test specific case: zero length transfert */
1661
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1662
                s->rcnt == 0) {
1663
                s->isr |= ENISR_RDC;
1664
                ne2000_update_irq(s);
1665
            }
1666
            if (val & E8390_TRANS) {
1667
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1668
                /* signal end of transfert */
1669
                s->tsr = ENTSR_PTX;
1670
                s->isr |= ENISR_TX;
1671
                ne2000_update_irq(s);
1672
            }
1673
        }
1674
    } else {
1675
        page = s->cmd >> 6;
1676
        offset = addr | (page << 4);
1677
        switch(offset) {
1678
        case EN0_STARTPG:
1679
            s->start = val << 8;
1680
            break;
1681
        case EN0_STOPPG:
1682
            s->stop = val << 8;
1683
            break;
1684
        case EN0_BOUNDARY:
1685
            s->boundary = val;
1686
            break;
1687
        case EN0_IMR:
1688
            s->imr = val;
1689
            ne2000_update_irq(s);
1690
            break;
1691
        case EN0_TPSR:
1692
            s->tpsr = val;
1693
            break;
1694
        case EN0_TCNTLO:
1695
            s->tcnt = (s->tcnt & 0xff00) | val;
1696
            break;
1697
        case EN0_TCNTHI:
1698
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1699
            break;
1700
        case EN0_RSARLO:
1701
            s->rsar = (s->rsar & 0xff00) | val;
1702
            break;
1703
        case EN0_RSARHI:
1704
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
1705
            break;
1706
        case EN0_RCNTLO:
1707
            s->rcnt = (s->rcnt & 0xff00) | val;
1708
            break;
1709
        case EN0_RCNTHI:
1710
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1711
            break;
1712
        case EN0_DCFG:
1713
            s->dcfg = val;
1714
            break;
1715
        case EN0_ISR:
1716
            s->isr &= ~val;
1717
            ne2000_update_irq(s);
1718
            break;
1719
        case EN1_PHYS ... EN1_PHYS + 5:
1720
            s->phys[offset - EN1_PHYS] = val;
1721
            break;
1722
        case EN1_CURPAG:
1723
            s->curpag = val;
1724
            break;
1725
        case EN1_MULT ... EN1_MULT + 7:
1726
            s->mult[offset - EN1_MULT] = val;
1727
            break;
1728
        }
1729
    }
1730
}
1731

    
1732
uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1733
{
1734
    NE2000State *s = &ne2000_state;
1735
    int offset, page, ret;
1736

    
1737
    addr &= 0xf;
1738
    if (addr == E8390_CMD) {
1739
        ret = s->cmd;
1740
    } else {
1741
        page = s->cmd >> 6;
1742
        offset = addr | (page << 4);
1743
        switch(offset) {
1744
        case EN0_TSR:
1745
            ret = s->tsr;
1746
            break;
1747
        case EN0_BOUNDARY:
1748
            ret = s->boundary;
1749
            break;
1750
        case EN0_ISR:
1751
            ret = s->isr;
1752
            break;
1753
        case EN1_PHYS ... EN1_PHYS + 5:
1754
            ret = s->phys[offset - EN1_PHYS];
1755
            break;
1756
        case EN1_CURPAG:
1757
            ret = s->curpag;
1758
            break;
1759
        case EN1_MULT ... EN1_MULT + 7:
1760
            ret = s->mult[offset - EN1_MULT];
1761
            break;
1762
        default:
1763
            ret = 0x00;
1764
            break;
1765
        }
1766
    }
1767
#ifdef DEBUG_NE2000
1768
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1769
#endif
1770
    return ret;
1771
}
1772

    
1773
void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1774
{
1775
    NE2000State *s = &ne2000_state;
1776
    uint8_t *p;
1777

    
1778
#ifdef DEBUG_NE2000
1779
    printf("NE2000: asic write val=0x%04x\n", val);
1780
#endif
1781
    p = s->mem + s->rsar;
1782
    if (s->dcfg & 0x01) {
1783
        /* 16 bit access */
1784
        p[0] = val;
1785
        p[1] = val >> 8;
1786
        s->rsar += 2;
1787
        s->rcnt -= 2;
1788
    } else {
1789
        /* 8 bit access */
1790
        p[0] = val;
1791
        s->rsar++;
1792
        s->rcnt--;
1793
    }
1794
    /* wrap */
1795
    if (s->rsar == s->stop)
1796
        s->rsar = s->start;
1797
    if (s->rcnt == 0) {
1798
        /* signal end of transfert */
1799
        s->isr |= ENISR_RDC;
1800
        ne2000_update_irq(s);
1801
    }
1802
}
1803

    
1804
uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1805
{
1806
    NE2000State *s = &ne2000_state;
1807
    uint8_t *p;
1808
    int ret;
1809

    
1810
    p = s->mem + s->rsar;
1811
    if (s->dcfg & 0x01) {
1812
        /* 16 bit access */
1813
        ret = p[0] | (p[1] << 8);
1814
        s->rsar += 2;
1815
        s->rcnt -= 2;
1816
    } else {
1817
        /* 8 bit access */
1818
        ret = p[0];
1819
        s->rsar++;
1820
        s->rcnt--;
1821
    }
1822
    /* wrap */
1823
    if (s->rsar == s->stop)
1824
        s->rsar = s->start;
1825
    if (s->rcnt == 0) {
1826
        /* signal end of transfert */
1827
        s->isr |= ENISR_RDC;
1828
        ne2000_update_irq(s);
1829
    }
1830
#ifdef DEBUG_NE2000
1831
    printf("NE2000: asic read val=0x%04x\n", ret);
1832
#endif
1833
    return ret;
1834
}
1835

    
1836
void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1837
{
1838
    /* nothing to do (end of reset pulse) */
1839
}
1840

    
1841
uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1842
{
1843
    ne2000_reset();
1844
    return 0;
1845
}
1846

    
1847
void ne2000_init(void)
1848
{
1849
    register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1850
    register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1851

    
1852
    register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1853
    register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1854
    register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1855
    register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1856

    
1857
    register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1858
    register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1859
    ne2000_reset();
1860
}
1861

    
1862
/***********************************************************/
1863
/* ide emulation */
1864

    
1865
/* Bits of HD_STATUS */
1866
#define ERR_STAT                0x01
1867
#define INDEX_STAT                0x02
1868
#define ECC_STAT                0x04        /* Corrected error */
1869
#define DRQ_STAT                0x08
1870
#define SEEK_STAT                0x10
1871
#define SRV_STAT                0x10
1872
#define WRERR_STAT                0x20
1873
#define READY_STAT                0x40
1874
#define BUSY_STAT                0x80
1875

    
1876
/* Bits for HD_ERROR */
1877
#define MARK_ERR                0x01        /* Bad address mark */
1878
#define TRK0_ERR                0x02        /* couldn't find track 0 */
1879
#define ABRT_ERR                0x04        /* Command aborted */
1880
#define MCR_ERR                        0x08        /* media change request */
1881
#define ID_ERR                        0x10        /* ID field not found */
1882
#define MC_ERR                        0x20        /* media changed */
1883
#define ECC_ERR                        0x40        /* Uncorrectable ECC error */
1884
#define BBD_ERR                        0x80        /* pre-EIDE meaning:  block marked bad */
1885
#define ICRC_ERR                0x80        /* new meaning:  CRC error during transfer */
1886

    
1887
/* Bits of HD_NSECTOR */
1888
#define CD                        0x01
1889
#define IO                        0x02
1890
#define REL                        0x04
1891
#define TAG_MASK                0xf8
1892

    
1893
#define IDE_CMD_RESET           0x04
1894
#define IDE_CMD_DISABLE_IRQ     0x02
1895

    
1896
/* ATA/ATAPI Commands pre T13 Spec */
1897
#define WIN_NOP                                0x00
1898
/*
1899
 *        0x01->0x02 Reserved
1900
 */
1901
#define CFA_REQ_EXT_ERROR_CODE                0x03 /* CFA Request Extended Error Code */
1902
/*
1903
 *        0x04->0x07 Reserved
1904
 */
1905
#define WIN_SRST                        0x08 /* ATAPI soft reset command */
1906
#define WIN_DEVICE_RESET                0x08
1907
/*
1908
 *        0x09->0x0F Reserved
1909
 */
1910
#define WIN_RECAL                        0x10
1911
#define WIN_RESTORE                        WIN_RECAL
1912
/*
1913
 *        0x10->0x1F Reserved
1914
 */
1915
#define WIN_READ                        0x20 /* 28-Bit */
1916
#define WIN_READ_ONCE                        0x21 /* 28-Bit without retries */
1917
#define WIN_READ_LONG                        0x22 /* 28-Bit */
1918
#define WIN_READ_LONG_ONCE                0x23 /* 28-Bit without retries */
1919
#define WIN_READ_EXT                        0x24 /* 48-Bit */
1920
#define WIN_READDMA_EXT                        0x25 /* 48-Bit */
1921
#define WIN_READDMA_QUEUED_EXT                0x26 /* 48-Bit */
1922
#define WIN_READ_NATIVE_MAX_EXT                0x27 /* 48-Bit */
1923
/*
1924
 *        0x28
1925
 */
1926
#define WIN_MULTREAD_EXT                0x29 /* 48-Bit */
1927
/*
1928
 *        0x2A->0x2F Reserved
1929
 */
1930
#define WIN_WRITE                        0x30 /* 28-Bit */
1931
#define WIN_WRITE_ONCE                        0x31 /* 28-Bit without retries */
1932
#define WIN_WRITE_LONG                        0x32 /* 28-Bit */
1933
#define WIN_WRITE_LONG_ONCE                0x33 /* 28-Bit without retries */
1934
#define WIN_WRITE_EXT                        0x34 /* 48-Bit */
1935
#define WIN_WRITEDMA_EXT                0x35 /* 48-Bit */
1936
#define WIN_WRITEDMA_QUEUED_EXT                0x36 /* 48-Bit */
1937
#define WIN_SET_MAX_EXT                        0x37 /* 48-Bit */
1938
#define CFA_WRITE_SECT_WO_ERASE                0x38 /* CFA Write Sectors without erase */
1939
#define WIN_MULTWRITE_EXT                0x39 /* 48-Bit */
1940
/*
1941
 *        0x3A->0x3B Reserved
1942
 */
1943
#define WIN_WRITE_VERIFY                0x3C /* 28-Bit */
1944
/*
1945
 *        0x3D->0x3F Reserved
1946
 */
1947
#define WIN_VERIFY                        0x40 /* 28-Bit - Read Verify Sectors */
1948
#define WIN_VERIFY_ONCE                        0x41 /* 28-Bit - without retries */
1949
#define WIN_VERIFY_EXT                        0x42 /* 48-Bit */
1950
/*
1951
 *        0x43->0x4F Reserved
1952
 */
1953
#define WIN_FORMAT                        0x50
1954
/*
1955
 *        0x51->0x5F Reserved
1956
 */
1957
#define WIN_INIT                        0x60
1958
/*
1959
 *        0x61->0x5F Reserved
1960
 */
1961
#define WIN_SEEK                        0x70 /* 0x70-0x7F Reserved */
1962
#define CFA_TRANSLATE_SECTOR                0x87 /* CFA Translate Sector */
1963
#define WIN_DIAGNOSE                        0x90
1964
#define WIN_SPECIFY                        0x91 /* set drive geometry translation */
1965
#define WIN_DOWNLOAD_MICROCODE                0x92
1966
#define WIN_STANDBYNOW2                        0x94
1967
#define WIN_STANDBY2                        0x96
1968
#define WIN_SETIDLE2                        0x97
1969
#define WIN_CHECKPOWERMODE2                0x98
1970
#define WIN_SLEEPNOW2                        0x99
1971
/*
1972
 *        0x9A VENDOR
1973
 */
1974
#define WIN_PACKETCMD                        0xA0 /* Send a packet command. */
1975
#define WIN_PIDENTIFY                        0xA1 /* identify ATAPI device        */
1976
#define WIN_QUEUED_SERVICE                0xA2
1977
#define WIN_SMART                        0xB0 /* self-monitoring and reporting */
1978
#define CFA_ERASE_SECTORS               0xC0
1979
#define WIN_MULTREAD                        0xC4 /* read sectors using multiple mode*/
1980
#define WIN_MULTWRITE                        0xC5 /* write sectors using multiple mode */
1981
#define WIN_SETMULT                        0xC6 /* enable/disable multiple mode */
1982
#define WIN_READDMA_QUEUED                0xC7 /* read sectors using Queued DMA transfers */
1983
#define WIN_READDMA                        0xC8 /* read sectors using DMA transfers */
1984
#define WIN_READDMA_ONCE                0xC9 /* 28-Bit - without retries */
1985
#define WIN_WRITEDMA                        0xCA /* write sectors using DMA transfers */
1986
#define WIN_WRITEDMA_ONCE                0xCB /* 28-Bit - without retries */
1987
#define WIN_WRITEDMA_QUEUED                0xCC /* write sectors using Queued DMA transfers */
1988
#define CFA_WRITE_MULTI_WO_ERASE        0xCD /* CFA Write multiple without erase */
1989
#define WIN_GETMEDIASTATUS                0xDA        
1990
#define WIN_ACKMEDIACHANGE                0xDB /* ATA-1, ATA-2 vendor */
1991
#define WIN_POSTBOOT                        0xDC
1992
#define WIN_PREBOOT                        0xDD
1993
#define WIN_DOORLOCK                        0xDE /* lock door on removable drives */
1994
#define WIN_DOORUNLOCK                        0xDF /* unlock door on removable drives */
1995
#define WIN_STANDBYNOW1                        0xE0
1996
#define WIN_IDLEIMMEDIATE                0xE1 /* force drive to become "ready" */
1997
#define WIN_STANDBY                     0xE2 /* Set device in Standby Mode */
1998
#define WIN_SETIDLE1                        0xE3
1999
#define WIN_READ_BUFFER                        0xE4 /* force read only 1 sector */
2000
#define WIN_CHECKPOWERMODE1                0xE5
2001
#define WIN_SLEEPNOW1                        0xE6
2002
#define WIN_FLUSH_CACHE                        0xE7
2003
#define WIN_WRITE_BUFFER                0xE8 /* force write only 1 sector */
2004
#define WIN_WRITE_SAME                        0xE9 /* read ata-2 to use */
2005
        /* SET_FEATURES 0x22 or 0xDD */
2006
#define WIN_FLUSH_CACHE_EXT                0xEA /* 48-Bit */
2007
#define WIN_IDENTIFY                        0xEC /* ask drive to identify itself        */
2008
#define WIN_MEDIAEJECT                        0xED
2009
#define WIN_IDENTIFY_DMA                0xEE /* same as WIN_IDENTIFY, but DMA */
2010
#define WIN_SETFEATURES                        0xEF /* set special drive features */
2011
#define EXABYTE_ENABLE_NEST                0xF0
2012
#define WIN_SECURITY_SET_PASS                0xF1
2013
#define WIN_SECURITY_UNLOCK                0xF2
2014
#define WIN_SECURITY_ERASE_PREPARE        0xF3
2015
#define WIN_SECURITY_ERASE_UNIT                0xF4
2016
#define WIN_SECURITY_FREEZE_LOCK        0xF5
2017
#define WIN_SECURITY_DISABLE                0xF6
2018
#define WIN_READ_NATIVE_MAX                0xF8 /* return the native maximum address */
2019
#define WIN_SET_MAX                        0xF9
2020
#define DISABLE_SEAGATE                        0xFB
2021

    
2022
/* set to 1 set disable mult support */
2023
#define MAX_MULT_SECTORS 8
2024

    
2025
struct IDEState;
2026

    
2027
typedef void EndTransferFunc(struct IDEState *);
2028

    
2029
typedef struct IDEState {
2030
    /* ide config */
2031
    int cylinders, heads, sectors;
2032
    int64_t nb_sectors;
2033
    int mult_sectors;
2034
    int irq;
2035
    /* ide regs */
2036
    uint8_t feature;
2037
    uint8_t error;
2038
    uint16_t nsector; /* 0 is 256 to ease computations */
2039
    uint8_t sector;
2040
    uint8_t lcyl;
2041
    uint8_t hcyl;
2042
    uint8_t select;
2043
    uint8_t status;
2044
    /* 0x3f6 command, only meaningful for drive 0 */
2045
    uint8_t cmd;
2046
    /* depends on bit 4 in select, only meaningful for drive 0 */
2047
    struct IDEState *cur_drive; 
2048
    BlockDriverState *bs;
2049
    int req_nb_sectors; /* number of sectors per interrupt */
2050
    EndTransferFunc *end_transfer_func;
2051
    uint8_t *data_ptr;
2052
    uint8_t *data_end;
2053
    uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
2054
} IDEState;
2055

    
2056
IDEState ide_state[MAX_DISKS];
2057

    
2058
static void padstr(char *str, const char *src, int len)
2059
{
2060
    int i, v;
2061
    for(i = 0; i < len; i++) {
2062
        if (*src)
2063
            v = *src++;
2064
        else
2065
            v = ' ';
2066
        *(char *)((long)str ^ 1) = v;
2067
        str++;
2068
    }
2069
}
2070

    
2071
static void ide_identify(IDEState *s)
2072
{
2073
    uint16_t *p;
2074
    unsigned int oldsize;
2075

    
2076
    memset(s->io_buffer, 0, 512);
2077
    p = (uint16_t *)s->io_buffer;
2078
    stw(p + 0, 0x0040);
2079
    stw(p + 1, s->cylinders); 
2080
    stw(p + 3, s->heads);
2081
    stw(p + 4, 512 * s->sectors); /* sectors */
2082
    stw(p + 5, 512); /* sector size */
2083
    stw(p + 6, s->sectors); 
2084
    stw(p + 20, 3); /* buffer type */
2085
    stw(p + 21, 512); /* cache size in sectors */
2086
    stw(p + 22, 4); /* ecc bytes */
2087
    padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
2088
#if MAX_MULT_SECTORS > 1    
2089
    stw(p + 47, MAX_MULT_SECTORS);
2090
#endif
2091
    stw(p + 48, 1); /* dword I/O */
2092
    stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2093
    stw(p + 51, 0x200); /* PIO transfer cycle */
2094
    stw(p + 52, 0x200); /* DMA transfer cycle */
2095
    stw(p + 54, s->cylinders);
2096
    stw(p + 55, s->heads);
2097
    stw(p + 56, s->sectors);
2098
    oldsize = s->cylinders * s->heads * s->sectors;
2099
    stw(p + 57, oldsize);
2100
    stw(p + 58, oldsize >> 16);
2101
    if (s->mult_sectors)
2102
        stw(p + 59, 0x100 | s->mult_sectors);
2103
    stw(p + 60, s->nb_sectors);
2104
    stw(p + 61, s->nb_sectors >> 16);
2105
    stw(p + 80, (1 << 1) | (1 << 2));
2106
    stw(p + 82, (1 << 14));
2107
    stw(p + 83, (1 << 14));
2108
    stw(p + 84, (1 << 14));
2109
    stw(p + 85, (1 << 14));
2110
    stw(p + 86, 0);
2111
    stw(p + 87, (1 << 14));
2112
}
2113

    
2114
static inline void ide_abort_command(IDEState *s)
2115
{
2116
    s->status = READY_STAT | ERR_STAT;
2117
    s->error = ABRT_ERR;
2118
}
2119

    
2120
static inline void ide_set_irq(IDEState *s)
2121
{
2122
    if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2123
        pic_set_irq(s->irq, 1);
2124
    }
2125
}
2126

    
2127
/* prepare data transfer and tell what to do after */
2128
static void ide_transfer_start(IDEState *s, int size, 
2129
                               EndTransferFunc *end_transfer_func)
2130
{
2131
    s->end_transfer_func = end_transfer_func;
2132
    s->data_ptr = s->io_buffer;
2133
    s->data_end = s->io_buffer + size;
2134
    s->status |= DRQ_STAT;
2135
}
2136

    
2137
static void ide_transfer_stop(IDEState *s)
2138
{
2139
    s->end_transfer_func = ide_transfer_stop;
2140
    s->data_ptr = s->io_buffer;
2141
    s->data_end = s->io_buffer;
2142
    s->status &= ~DRQ_STAT;
2143
}
2144

    
2145
static int64_t ide_get_sector(IDEState *s)
2146
{
2147
    int64_t sector_num;
2148
    if (s->select & 0x40) {
2149
        /* lba */
2150
        sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) | 
2151
            (s->lcyl << 8) | s->sector;
2152
    } else {
2153
        sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2154
            (s->select & 0x0f) * s->sectors + 
2155
            (s->sector - 1);
2156
    }
2157
    return sector_num;
2158
}
2159

    
2160
static void ide_set_sector(IDEState *s, int64_t sector_num)
2161
{
2162
    unsigned int cyl, r;
2163
    if (s->select & 0x40) {
2164
        s->select = (s->select & 0xf0) | (sector_num >> 24);
2165
        s->hcyl = (sector_num >> 16);
2166
        s->lcyl = (sector_num >> 8);
2167
        s->sector = (sector_num);
2168
    } else {
2169
        cyl = sector_num / (s->heads * s->sectors);
2170
        r = sector_num % (s->heads * s->sectors);
2171
        s->hcyl = cyl >> 8;
2172
        s->lcyl = cyl;
2173
        s->select = (s->select & 0xf0) | (r / s->sectors);
2174
        s->sector = (r % s->sectors) + 1;
2175
    }
2176
}
2177

    
2178
static void ide_sector_read(IDEState *s)
2179
{
2180
    int64_t sector_num;
2181
    int ret, n;
2182

    
2183
    s->status = READY_STAT | SEEK_STAT;
2184
    sector_num = ide_get_sector(s);
2185
    n = s->nsector;
2186
    if (n == 0) {
2187
        /* no more sector to read from disk */
2188
        ide_transfer_stop(s);
2189
    } else {
2190
#if defined(DEBUG_IDE)
2191
        printf("read sector=%Ld\n", sector_num);
2192
#endif
2193
        if (n > s->req_nb_sectors)
2194
            n = s->req_nb_sectors;
2195
        ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2196
        ide_transfer_start(s, 512 * n, ide_sector_read);
2197
        ide_set_irq(s);
2198
        ide_set_sector(s, sector_num + n);
2199
        s->nsector -= n;
2200
    }
2201
}
2202

    
2203
static void ide_sector_write(IDEState *s)
2204
{
2205
    int64_t sector_num;
2206
    int ret, n, n1;
2207

    
2208
    s->status = READY_STAT | SEEK_STAT;
2209
    sector_num = ide_get_sector(s);
2210
#if defined(DEBUG_IDE)
2211
    printf("write sector=%Ld\n", sector_num);
2212
#endif
2213
    n = s->nsector;
2214
    if (n > s->req_nb_sectors)
2215
        n = s->req_nb_sectors;
2216
    ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2217
    s->nsector -= n;
2218
    if (s->nsector == 0) {
2219
        /* no more sector to write */
2220
        ide_transfer_stop(s);
2221
    } else {
2222
        n1 = s->nsector;
2223
        if (n1 > s->req_nb_sectors)
2224
            n1 = s->req_nb_sectors;
2225
        ide_transfer_start(s, 512 * n1, ide_sector_write);
2226
    }
2227
    ide_set_sector(s, sector_num + n);
2228
    ide_set_irq(s);
2229
}
2230

    
2231
void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2232
{
2233
    IDEState *s = ide_state[0].cur_drive;
2234
    int unit, n;
2235

    
2236
    addr &= 7;
2237
#ifdef DEBUG_IDE
2238
    printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2239
#endif
2240
    switch(addr) {
2241
    case 0:
2242
        break;
2243
    case 1:
2244
        s->feature = val;
2245
        break;
2246
    case 2:
2247
        if (val == 0)
2248
            val = 256;
2249
        s->nsector = val;
2250
        break;
2251
    case 3:
2252
        s->sector = val;
2253
        break;
2254
    case 4:
2255
        s->lcyl = val;
2256
        break;
2257
    case 5:
2258
        s->hcyl = val;
2259
        break;
2260
    case 6:
2261
        /* select drive */
2262
        unit = (val >> 4) & 1;
2263
        s = &ide_state[unit];
2264
        ide_state[0].cur_drive = s;
2265
        s->select = val;
2266
        break;
2267
    default:
2268
    case 7:
2269
        /* command */
2270
#if defined(DEBUG_IDE)
2271
        printf("ide: CMD=%02x\n", val);
2272
#endif
2273
        switch(val) {
2274
        case WIN_PIDENTIFY:
2275
        case WIN_IDENTIFY:
2276
            if (s->bs) {
2277
                ide_identify(s);
2278
                s->status = READY_STAT;
2279
                ide_transfer_start(s, 512, ide_transfer_stop);
2280
            } else {
2281
                ide_abort_command(s);
2282
            }
2283
            ide_set_irq(s);
2284
            break;
2285
        case WIN_SPECIFY:
2286
        case WIN_RECAL:
2287
            s->status = READY_STAT;
2288
            ide_set_irq(s);
2289
            break;
2290
        case WIN_SETMULT:
2291
            if (s->nsector > MAX_MULT_SECTORS || 
2292
                s->nsector == 0 ||
2293
                (s->nsector & (s->nsector - 1)) != 0) {
2294
                ide_abort_command(s);
2295
            } else {
2296
                s->mult_sectors = s->nsector;
2297
                s->status = READY_STAT;
2298
            }
2299
            ide_set_irq(s);
2300
            break;
2301
        case WIN_READ:
2302
        case WIN_READ_ONCE:
2303
            s->req_nb_sectors = 1;
2304
            ide_sector_read(s);
2305
            break;
2306
        case WIN_WRITE:
2307
        case WIN_WRITE_ONCE:
2308
            s->status = SEEK_STAT;
2309
            s->req_nb_sectors = 1;
2310
            ide_transfer_start(s, 512, ide_sector_write);
2311
            break;
2312
        case WIN_MULTREAD:
2313
            if (!s->mult_sectors)
2314
                goto abort_cmd;
2315
            s->req_nb_sectors = s->mult_sectors;
2316
            ide_sector_read(s);
2317
            break;
2318
        case WIN_MULTWRITE:
2319
            if (!s->mult_sectors)
2320
                goto abort_cmd;
2321
            s->status = SEEK_STAT;
2322
            s->req_nb_sectors = s->mult_sectors;
2323
            n = s->nsector;
2324
            if (n > s->req_nb_sectors)
2325
                n = s->req_nb_sectors;
2326
            ide_transfer_start(s, 512 * n, ide_sector_write);
2327
            break;
2328
        case WIN_READ_NATIVE_MAX:
2329
            ide_set_sector(s, s->nb_sectors - 1);
2330
            s->status = READY_STAT;
2331
            ide_set_irq(s);
2332
            break;
2333
        default:
2334
        abort_cmd:
2335
            ide_abort_command(s);
2336
            ide_set_irq(s);
2337
            break;
2338
        }
2339
    }
2340
}
2341

    
2342
uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2343
{
2344
    IDEState *s = ide_state[0].cur_drive;
2345
    int ret;
2346

    
2347
    addr &= 7;
2348
    switch(addr) {
2349
    case 0:
2350
        ret = 0xff;
2351
        break;
2352
    case 1:
2353
        ret = s->error;
2354
        break;
2355
    case 2:
2356
        ret = s->nsector & 0xff;
2357
        break;
2358
    case 3:
2359
        ret = s->sector;
2360
        break;
2361
    case 4:
2362
        ret = s->lcyl;
2363
        break;
2364
    case 5:
2365
        ret = s->hcyl;
2366
        break;
2367
    case 6:
2368
        ret = s->select;
2369
        break;
2370
    default:
2371
    case 7:
2372
        ret = s->status;
2373
        pic_set_irq(s->irq, 0);
2374
        break;
2375
    }
2376
#ifdef DEBUG_IDE
2377
    printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2378
#endif
2379
    return ret;
2380
}
2381

    
2382
uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2383
{
2384
    IDEState *s = ide_state[0].cur_drive;
2385
    int ret;
2386
    ret = s->status;
2387
#ifdef DEBUG_IDE
2388
    printf("ide: read status val=%02x\n", ret);
2389
#endif
2390
    return ret;
2391
}
2392

    
2393
void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2394
{
2395
    IDEState *s;
2396
    int i;
2397

    
2398
#ifdef DEBUG_IDE
2399
    printf("ide: write control val=%02x\n", val);
2400
#endif
2401
    /* common for both drives */
2402
    if (!(ide_state[0].cmd & IDE_CMD_RESET) &&
2403
        (val & IDE_CMD_RESET)) {
2404
        /* reset low to high */
2405
        for(i = 0;i < 2; i++) {
2406
            s = &ide_state[i];
2407
            s->status = BUSY_STAT | SEEK_STAT;
2408
            s->error = 0x01;
2409
        }
2410
    } else if ((ide_state[0].cmd & IDE_CMD_RESET) &&
2411
               !(val & IDE_CMD_RESET)) {
2412
        /* high to low */
2413
        for(i = 0;i < 2; i++) {
2414
            s = &ide_state[i];
2415
            s->status = READY_STAT;
2416
            /* set hard disk drive ID */
2417
            s->select &= 0xf0; /* clear head */
2418
            s->nsector = 1;
2419
            s->sector = 1;
2420
            if (s->nb_sectors == 0) {
2421
                /* no disk present */
2422
                s->lcyl = 0x12;
2423
                s->hcyl = 0x34;
2424
            } else {
2425
                s->lcyl = 0;
2426
                s->hcyl = 0;
2427
            }
2428
        }
2429
    }
2430

    
2431
    ide_state[0].cmd = val;
2432
}
2433

    
2434
void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2435
{
2436
    IDEState *s = ide_state[0].cur_drive;
2437
    uint8_t *p;
2438

    
2439
    p = s->data_ptr;
2440
    *(uint16_t *)p = tswap16(val);
2441
    p += 2;
2442
    s->data_ptr = p;
2443
    if (p >= s->data_end)
2444
        s->end_transfer_func(s);
2445
}
2446

    
2447
uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2448
{
2449
    IDEState *s = ide_state[0].cur_drive;
2450
    uint8_t *p;
2451
    int ret;
2452
    
2453
    p = s->data_ptr;
2454
    ret = tswap16(*(uint16_t *)p);
2455
    p += 2;
2456
    s->data_ptr = p;
2457
    if (p >= s->data_end)
2458
        s->end_transfer_func(s);
2459
    return ret;
2460
}
2461

    
2462
void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2463
{
2464
    IDEState *s = ide_state[0].cur_drive;
2465
    uint8_t *p;
2466

    
2467
    p = s->data_ptr;
2468
    *(uint32_t *)p = tswap32(val);
2469
    p += 4;
2470
    s->data_ptr = p;
2471
    if (p >= s->data_end)
2472
        s->end_transfer_func(s);
2473
}
2474

    
2475
uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2476
{
2477
    IDEState *s = ide_state[0].cur_drive;
2478
    uint8_t *p;
2479
    int ret;
2480
    
2481
    p = s->data_ptr;
2482
    ret = tswap32(*(uint32_t *)p);
2483
    p += 4;
2484
    s->data_ptr = p;
2485
    if (p >= s->data_end)
2486
        s->end_transfer_func(s);
2487
    return ret;
2488
}
2489

    
2490
void ide_reset(IDEState *s)
2491
{
2492
    s->mult_sectors = MAX_MULT_SECTORS;
2493
    s->status = READY_STAT;
2494
    s->cur_drive = s;
2495
    s->select = 0xa0;
2496
}
2497

    
2498
void ide_init(void)
2499
{
2500
    IDEState *s;
2501
    int i, cylinders;
2502
    int64_t nb_sectors;
2503

    
2504
    for(i = 0; i < MAX_DISKS; i++) {
2505
        s = &ide_state[i];
2506
        s->bs = bs_table[i];
2507
        if (s->bs) {
2508
            bdrv_get_geometry(s->bs, &nb_sectors);
2509
            if (s->cylinders == 0) {
2510
                /* if no geometry, use a LBA compatible one */
2511
                cylinders = nb_sectors / (16 * 63);
2512
                if (cylinders > 16383)
2513
                    cylinders = 16383;
2514
                else if (cylinders < 2)
2515
                    cylinders = 2;
2516
                s->cylinders = cylinders;
2517
                s->heads = 16;
2518
                s->sectors = 63;
2519
            }
2520
            s->nb_sectors = nb_sectors;
2521
        }
2522
        s->irq = 14;
2523
        ide_reset(s);
2524
    }
2525
    register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2526
    register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2527
    register_ioport_read(0x3f6, 1, ide_status_read, 1);
2528
    register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2529

    
2530
    /* data ports */
2531
    register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2532
    register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2533
    register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2534
    register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2535
}
2536

    
2537
/***********************************************************/
2538
/* keyboard emulation */
2539

    
2540
/*        Keyboard Controller Commands */
2541
#define KBD_CCMD_READ_MODE        0x20        /* Read mode bits */
2542
#define KBD_CCMD_WRITE_MODE        0x60        /* Write mode bits */
2543
#define KBD_CCMD_GET_VERSION        0xA1        /* Get controller version */
2544
#define KBD_CCMD_MOUSE_DISABLE        0xA7        /* Disable mouse interface */
2545
#define KBD_CCMD_MOUSE_ENABLE        0xA8        /* Enable mouse interface */
2546
#define KBD_CCMD_TEST_MOUSE        0xA9        /* Mouse interface test */
2547
#define KBD_CCMD_SELF_TEST        0xAA        /* Controller self test */
2548
#define KBD_CCMD_KBD_TEST        0xAB        /* Keyboard interface test */
2549
#define KBD_CCMD_KBD_DISABLE        0xAD        /* Keyboard interface disable */
2550
#define KBD_CCMD_KBD_ENABLE        0xAE        /* Keyboard interface enable */
2551
#define KBD_CCMD_READ_INPORT    0xC0    /* read input port */
2552
#define KBD_CCMD_READ_OUTPORT        0xD0    /* read output port */
2553
#define KBD_CCMD_WRITE_OUTPORT        0xD1    /* write output port */
2554
#define KBD_CCMD_WRITE_OBUF        0xD2
2555
#define KBD_CCMD_WRITE_AUX_OBUF        0xD3    /* Write to output buffer as if
2556
                                           initiated by the auxiliary device */
2557
#define KBD_CCMD_WRITE_MOUSE        0xD4        /* Write the following byte to the mouse */
2558
#define KBD_CCMD_ENABLE_A20     0xDD
2559
#define KBD_CCMD_DISABLE_A20    0xDF
2560
#define KBD_CCMD_RESET                0xFE
2561

    
2562
/* Keyboard Commands */
2563
#define KBD_CMD_SET_LEDS        0xED        /* Set keyboard leds */
2564
#define KBD_CMD_ECHO             0xEE
2565
#define KBD_CMD_SET_RATE        0xF3        /* Set typematic rate */
2566
#define KBD_CMD_ENABLE                0xF4        /* Enable scanning */
2567
#define KBD_CMD_RESET_DISABLE        0xF5        /* reset and disable scanning */
2568
#define KBD_CMD_RESET_ENABLE           0xF6    /* reset and enable scanning */
2569
#define KBD_CMD_RESET                0xFF        /* Reset */
2570

    
2571
/* Keyboard Replies */
2572
#define KBD_REPLY_POR                0xAA        /* Power on reset */
2573
#define KBD_REPLY_ACK                0xFA        /* Command ACK */
2574
#define KBD_REPLY_RESEND        0xFE        /* Command NACK, send the cmd again */
2575

    
2576
/* Status Register Bits */
2577
#define KBD_STAT_OBF                 0x01        /* Keyboard output buffer full */
2578
#define KBD_STAT_IBF                 0x02        /* Keyboard input buffer full */
2579
#define KBD_STAT_SELFTEST        0x04        /* Self test successful */
2580
#define KBD_STAT_CMD                0x08        /* Last write was a command write (0=data) */
2581
#define KBD_STAT_UNLOCKED        0x10        /* Zero if keyboard locked */
2582
#define KBD_STAT_MOUSE_OBF        0x20        /* Mouse output buffer full */
2583
#define KBD_STAT_GTO                 0x40        /* General receive/xmit timeout */
2584
#define KBD_STAT_PERR                 0x80        /* Parity error */
2585

    
2586
/* Controller Mode Register Bits */
2587
#define KBD_MODE_KBD_INT        0x01        /* Keyboard data generate IRQ1 */
2588
#define KBD_MODE_MOUSE_INT        0x02        /* Mouse data generate IRQ12 */
2589
#define KBD_MODE_SYS                 0x04        /* The system flag (?) */
2590
#define KBD_MODE_NO_KEYLOCK        0x08        /* The keylock doesn't affect the keyboard if set */
2591
#define KBD_MODE_DISABLE_KBD        0x10        /* Disable keyboard interface */
2592
#define KBD_MODE_DISABLE_MOUSE        0x20        /* Disable mouse interface */
2593
#define KBD_MODE_KCC                 0x40        /* Scan code conversion to PC format */
2594
#define KBD_MODE_RFU                0x80
2595

    
2596
/* Mouse Commands */
2597
#define AUX_SET_RES                0xE8        /* Set resolution */
2598
#define AUX_SET_SCALE11                0xE6        /* Set 1:1 scaling */
2599
#define AUX_SET_SCALE21                0xE7        /* Set 2:1 scaling */
2600
#define AUX_GET_SCALE                0xE9        /* Get scaling factor */
2601
#define AUX_SET_STREAM                0xEA        /* Set stream mode */
2602
#define AUX_SET_SAMPLE                0xF3        /* Set sample rate */
2603
#define AUX_ENABLE_DEV                0xF4        /* Enable aux device */
2604
#define AUX_DISABLE_DEV                0xF5        /* Disable aux device */
2605
#define AUX_RESET                0xFF        /* Reset aux device */
2606
#define AUX_ACK                        0xFA        /* Command byte ACK. */
2607

    
2608
#define KBD_QUEUE_SIZE 64
2609

    
2610
typedef struct {
2611
    uint8_t data[KBD_QUEUE_SIZE];
2612
    int rptr, wptr, count;
2613
} KBDQueue;
2614

    
2615
enum KBDWriteState {
2616
    KBD_STATE_CMD = 0,
2617
    KBD_STATE_LED,
2618
};
2619

    
2620
typedef struct KBDState {
2621
    KBDQueue queues[2];
2622
    uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
2623
    uint8_t status;
2624
    uint8_t mode;
2625
    int kbd_write_cmd;
2626
    int scan_enabled;
2627
} KBDState;
2628

    
2629
KBDState kbd_state;
2630
int reset_requested;
2631
int a20_enabled;
2632

    
2633
static void kbd_update_irq(KBDState *s)
2634
{
2635
    int level;
2636
    
2637
    level = ((s->status & KBD_STAT_OBF) && (s->mode & KBD_MODE_KBD_INT));
2638
    pic_set_irq(1, level);
2639
    
2640
    level = ((s->status & KBD_STAT_MOUSE_OBF) && (s->mode & KBD_MODE_MOUSE_INT));
2641
    pic_set_irq(12, level);
2642
}
2643

    
2644
static void kbd_queue(KBDState *s, int b, int aux)
2645
{
2646
    KBDQueue *q = &kbd_state.queues[aux];
2647

    
2648
    if (q->count >= KBD_QUEUE_SIZE)
2649
        return;
2650
    q->data[q->wptr] = b;
2651
    if (++q->wptr == KBD_QUEUE_SIZE)
2652
        q->wptr = 0;
2653
    q->count++;
2654
    s->status |= KBD_STAT_OBF;
2655
    if (aux)
2656
        s->status |= KBD_STAT_MOUSE_OBF;
2657
    kbd_update_irq(s);
2658
}
2659

    
2660
uint32_t kbd_read_status(CPUX86State *env, uint32_t addr)
2661
{
2662
    KBDState *s = &kbd_state;
2663
    int val;
2664
    val = s->status;
2665
#if defined(DEBUG_KBD) && 0
2666
    printf("kbd: read status=0x%02x\n", val);
2667
#endif
2668
    return val;
2669
}
2670

    
2671
void kbd_write_command(CPUX86State *env, uint32_t addr, uint32_t val)
2672
{
2673
    KBDState *s = &kbd_state;
2674

    
2675
#ifdef DEBUG_KBD
2676
    printf("kbd: write cmd=0x%02x\n", val);
2677
#endif
2678
    switch(val) {
2679
    case KBD_CCMD_READ_MODE:
2680
        kbd_queue(s, s->mode, 0);
2681
        break;
2682
    case KBD_CCMD_WRITE_MODE:
2683
    case KBD_CCMD_WRITE_OBUF:
2684
    case KBD_CCMD_WRITE_AUX_OBUF:
2685
    case KBD_CCMD_WRITE_MOUSE:
2686
    case KBD_CCMD_WRITE_OUTPORT:
2687
        s->write_cmd = val;
2688
        break;
2689
    case KBD_CCMD_MOUSE_DISABLE:
2690
        s->mode |= KBD_MODE_DISABLE_MOUSE;
2691
        break;
2692
    case KBD_CCMD_MOUSE_ENABLE:
2693
        s->mode &= ~KBD_MODE_DISABLE_MOUSE;
2694
        break;
2695
    case KBD_CCMD_TEST_MOUSE:
2696
        kbd_queue(s, 0x00, 0);
2697
        break;
2698
    case KBD_CCMD_SELF_TEST:
2699
        s->status |= KBD_STAT_SELFTEST;
2700
        kbd_queue(s, 0x55, 0);
2701
        break;
2702
    case KBD_CCMD_KBD_TEST:
2703
        kbd_queue(s, 0x00, 0);
2704
        break;
2705
    case KBD_CCMD_KBD_DISABLE:
2706
        s->mode |= KBD_MODE_DISABLE_KBD;
2707
        break;
2708
    case KBD_CCMD_KBD_ENABLE:
2709
        s->mode &= ~KBD_MODE_DISABLE_KBD;
2710
        break;
2711
    case KBD_CCMD_READ_INPORT:
2712
        kbd_queue(s, 0x00, 0);
2713
        break;
2714
    case KBD_CCMD_READ_OUTPORT:
2715
        /* XXX: check that */
2716
        val = 0x01 | (a20_enabled << 1);
2717
        if (s->status & KBD_STAT_OBF)
2718
            val |= 0x10;
2719
        if (s->status & KBD_STAT_MOUSE_OBF)
2720
            val |= 0x20;
2721
        kbd_queue(s, val, 0);
2722
        break;
2723
    case KBD_CCMD_ENABLE_A20:
2724
        a20_enabled = 1;
2725
        break;
2726
    case KBD_CCMD_DISABLE_A20:
2727
        a20_enabled = 0;
2728
        break;
2729
    case KBD_CCMD_RESET:
2730
        reset_requested = 1;
2731
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2732
        break;
2733
    default:
2734
        fprintf(stderr, "vl: unsupported keyboard cmd=0x%02x\n", val);
2735
        break;
2736
    }
2737
}
2738

    
2739
uint32_t kbd_read_data(CPUX86State *env, uint32_t addr)
2740
{
2741
    KBDState *s = &kbd_state;
2742
    KBDQueue *q;
2743
    int val;
2744
    
2745
    q = &s->queues[1]; /* first check AUX data */
2746
    if (q->count == 0)
2747
        q = &s->queues[0]; /* then check KBD data */
2748
    if (q->count == 0) {
2749
        /* XXX: return something else ? */
2750
        val = 0;
2751
    } else {
2752
        val = q->data[q->rptr];
2753
        if (++q->rptr == KBD_QUEUE_SIZE)
2754
            q->rptr = 0;
2755
        q->count--;
2756
    }
2757
    if (s->queues[1].count == 0) {
2758
        s->status &= ~KBD_STAT_MOUSE_OBF;
2759
        if (s->queues[0].count == 0)
2760
            s->status &= ~KBD_STAT_OBF;
2761
        kbd_update_irq(s);
2762
    }
2763

    
2764
#ifdef DEBUG_KBD
2765
    printf("kbd: read data=0x%02x\n", val);
2766
#endif
2767
    return val;
2768
}
2769

    
2770
static void kbd_reset_keyboard(KBDState *s)
2771
{
2772
    s->scan_enabled = 1;
2773
}
2774

    
2775
static void kbd_write_keyboard(KBDState *s, int val)
2776
{
2777
    switch(s->kbd_write_cmd) {
2778
    default:
2779
    case -1:
2780
        switch(val) {
2781
        case 0x00:
2782
            kbd_queue(s, KBD_REPLY_ACK, 0);
2783
            break;
2784
        case 0x05:
2785
            kbd_queue(s, KBD_REPLY_RESEND, 0);
2786
            break;
2787
        case KBD_CMD_ECHO:
2788
            kbd_queue(s, KBD_CMD_ECHO, 0);
2789
            break;
2790
        case KBD_CMD_ENABLE:
2791
            s->scan_enabled = 1;
2792
            kbd_queue(s, KBD_REPLY_ACK, 0);
2793
            break;
2794
        case KBD_CMD_SET_LEDS:
2795
        case KBD_CMD_SET_RATE:
2796
            s->kbd_write_cmd = val;
2797
            break;
2798
        case KBD_CMD_RESET_DISABLE:
2799
            kbd_reset_keyboard(s);
2800
            s->scan_enabled = 0;
2801
            kbd_queue(s, KBD_REPLY_ACK, 0);
2802
            break;
2803
        case KBD_CMD_RESET_ENABLE:
2804
            kbd_reset_keyboard(s);
2805
            s->scan_enabled = 1;
2806
            kbd_queue(s, KBD_REPLY_ACK, 0);
2807
            break;
2808
        case KBD_CMD_RESET:
2809
            kbd_reset_keyboard(s);
2810
            kbd_queue(s, KBD_REPLY_ACK, 0);
2811
            kbd_queue(s, KBD_REPLY_POR, 0);
2812
            break;
2813
        default:
2814
            kbd_queue(s, KBD_REPLY_ACK, 0);
2815
            break;
2816
        }
2817
        break;
2818
    case KBD_CMD_SET_LEDS:
2819
        kbd_queue(s, KBD_REPLY_ACK, 0);
2820
        break;
2821
    case KBD_CMD_SET_RATE:
2822
        kbd_queue(s, KBD_REPLY_ACK, 0);
2823
        break;
2824
    }
2825
    s->kbd_write_cmd = -1;
2826
}
2827

    
2828
void kbd_write_data(CPUX86State *env, uint32_t addr, uint32_t val)
2829
{
2830
    KBDState *s = &kbd_state;
2831

    
2832
#ifdef DEBUG_KBD
2833
    printf("kbd: write data=0x%02x\n", val);
2834
#endif
2835

    
2836
    switch(s->write_cmd) {
2837
    case 0:
2838
        kbd_write_keyboard(s, val);
2839
        break;
2840
    case KBD_CCMD_WRITE_MODE:
2841
        s->mode = val;
2842
        kbd_update_irq(s);
2843
        break;
2844
    case KBD_CCMD_WRITE_OBUF:
2845
        kbd_queue(s, val, 0);
2846
        break;
2847
    case KBD_CCMD_WRITE_AUX_OBUF:
2848
        kbd_queue(s, val, 1);
2849
        break;
2850
    case KBD_CCMD_WRITE_OUTPORT:
2851
        a20_enabled = (val >> 1) & 1;
2852
        if (!(val & 1)) {
2853
            reset_requested = 1;
2854
            cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2855
        }
2856
        break;
2857
    default:
2858
        break;
2859
    }
2860
    s->write_cmd = 0;
2861
}
2862

    
2863
void kbd_reset(KBDState *s)
2864
{
2865
    KBDQueue *q;
2866
    int i;
2867

    
2868
    s->kbd_write_cmd = -1;
2869
    s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
2870
    s->status = KBD_MODE_SYS | KBD_MODE_NO_KEYLOCK;
2871
    for(i = 0; i < 2; i++) {
2872
        q = &s->queues[i];
2873
        q->rptr = 0;
2874
        q->wptr = 0;
2875
        q->count = 0;
2876
    }
2877
}
2878

    
2879
void kbd_init(void)
2880
{
2881
    kbd_reset(&kbd_state);
2882
    register_ioport_read(0x60, 1, kbd_read_data, 1);
2883
    register_ioport_write(0x60, 1, kbd_write_data, 1);
2884
    register_ioport_read(0x64, 1, kbd_read_status, 1);
2885
    register_ioport_write(0x64, 1, kbd_write_command, 1);
2886
}
2887

    
2888
/***********************************************************/
2889
/* Bochs BIOS debug ports */
2890

    
2891
void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
2892
{
2893
    switch(addr) {
2894
        /* Bochs BIOS messages */
2895
    case 0x400:
2896
    case 0x401:
2897
        fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
2898
        exit(1);
2899
    case 0x402:
2900
    case 0x403:
2901
#ifdef DEBUG_BIOS
2902
        fprintf(stderr, "%c", val);
2903
#endif
2904
        break;
2905

    
2906
        /* LGPL'ed VGA BIOS messages */
2907
    case 0x501:
2908
    case 0x502:
2909
        fprintf(stderr, "VGA BIOS panic, line %d\n", val);
2910
        exit(1);
2911
    case 0x500:
2912
    case 0x503:
2913
#ifdef DEBUG_BIOS
2914
        fprintf(stderr, "%c", val);
2915
#endif
2916
        break;
2917
    }
2918
}
2919

    
2920
void bochs_bios_init(void)
2921
{
2922
    register_ioport_write(0x400, 1, bochs_bios_write, 2);
2923
    register_ioport_write(0x401, 1, bochs_bios_write, 2);
2924
    register_ioport_write(0x402, 1, bochs_bios_write, 1);
2925
    register_ioport_write(0x403, 1, bochs_bios_write, 1);
2926

    
2927
    register_ioport_write(0x501, 1, bochs_bios_write, 2);
2928
    register_ioport_write(0x502, 1, bochs_bios_write, 2);
2929
    register_ioport_write(0x500, 1, bochs_bios_write, 1);
2930
    register_ioport_write(0x503, 1, bochs_bios_write, 1);
2931
}
2932

    
2933
/***********************************************************/
2934
/* cpu signal handler */
2935
static void host_segv_handler(int host_signum, siginfo_t *info, 
2936
                              void *puc)
2937
{
2938
    if (cpu_signal_handler(host_signum, info, puc))
2939
        return;
2940
    term_exit();
2941
    abort();
2942
}
2943

    
2944
static int timer_irq_pending;
2945
static int timer_irq_count;
2946

    
2947
static void host_alarm_handler(int host_signum, siginfo_t *info, 
2948
                               void *puc)
2949
{
2950
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2951
       some drift between cpu_get_ticks() and the interrupt time. So
2952
       we queue some interrupts to avoid missing some */
2953
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2954
    if (timer_irq_count) {
2955
        if (timer_irq_count > 2)
2956
            timer_irq_count = 2;
2957
        timer_irq_count--;
2958
        /* just exit from the cpu to have a chance to handle timers */
2959
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2960
        timer_irq_pending = 1;
2961
    }
2962
}
2963

    
2964
unsigned long mmap_addr = PHYS_RAM_BASE;
2965

    
2966
void *get_mmap_addr(unsigned long size)
2967
{
2968
    unsigned long addr;
2969
    addr = mmap_addr;
2970
    mmap_addr += ((size + 4095) & ~4095) + 4096;
2971
    return (void *)addr;
2972
}
2973

    
2974
/* main execution loop */
2975

    
2976
CPUState *cpu_gdbstub_get_env(void *opaque)
2977
{
2978
    return global_env;
2979
}
2980

    
2981
int main_loop(void *opaque)
2982
{
2983
    struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2984
    int ret, n, timeout;
2985
    uint8_t ch;
2986
    CPUState *env = global_env;
2987

    
2988
    for(;;) {
2989

    
2990
        ret = cpu_x86_exec(env);
2991
        if (reset_requested)
2992
            break;
2993
        if (ret == EXCP_DEBUG)
2994
            return EXCP_DEBUG;
2995
        /* if hlt instruction, we wait until the next IRQ */
2996
        if (ret == EXCP_HLT) 
2997
            timeout = 10;
2998
        else
2999
            timeout = 0;
3000
        /* poll any events */
3001
        serial_ufd = NULL;
3002
        pf = ufds;
3003
        if (!(serial_ports[0].lsr & UART_LSR_DR)) {
3004
            serial_ufd = pf;
3005
            pf->fd = 0;
3006
            pf->events = POLLIN;
3007
            pf++;
3008
        }
3009
        net_ufd = NULL;
3010
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
3011
            net_ufd = pf;
3012
            pf->fd = net_fd;
3013
            pf->events = POLLIN;
3014
            pf++;
3015
        }
3016
        gdb_ufd = NULL;
3017
        if (gdbstub_fd > 0) {
3018
            gdb_ufd = pf;
3019
            pf->fd = gdbstub_fd;
3020
            pf->events = POLLIN;
3021
            pf++;
3022
        }
3023

    
3024
        ret = poll(ufds, pf - ufds, timeout);
3025
        if (ret > 0) {
3026
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
3027
                n = read(0, &ch, 1);
3028
                if (n == 1) {
3029
                    serial_received_byte(&serial_ports[0], ch);
3030
                }
3031
            }
3032
            if (net_ufd && (net_ufd->revents & POLLIN)) {
3033
                uint8_t buf[MAX_ETH_FRAME_SIZE];
3034

    
3035
                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
3036
                if (n > 0) {
3037
                    if (n < 60) {
3038
                        memset(buf + n, 0, 60 - n);
3039
                        n = 60;
3040
                    }
3041
                    ne2000_receive(&ne2000_state, buf, n);
3042
                }
3043
            }
3044
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
3045
                uint8_t buf[1];
3046
                /* stop emulation if requested by gdb */
3047
                n = read(gdbstub_fd, buf, 1);
3048
                if (n == 1)
3049
                    break;
3050
            }
3051
        }
3052

    
3053
        /* timer IRQ */
3054
        if (timer_irq_pending) {
3055
            pic_set_irq(0, 1);
3056
            pic_set_irq(0, 0);
3057
            timer_irq_pending = 0;
3058
        }
3059
    }
3060
    return EXCP_INTERRUPT;
3061
}
3062

    
3063
void help(void)
3064
{
3065
    printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
3066
           "usage: vl [options] [bzImage [kernel parameters...]]\n"
3067
           "\n"
3068
           "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
3069
           "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
3070
           "\n"
3071
           "General options:\n"
3072
           "-initrd file   use 'file' as initial ram disk\n"
3073
           "-hda file      use 'file' as hard disk 0 image\n"
3074
           "-hdb file      use 'file' as hard disk 1 image\n"
3075
           "-snapshot      write to temporary files instead of disk image files\n"
3076
           "-m megs        set virtual RAM size to megs MB\n"
3077
           "-n script      set network init script [default=%s]\n"
3078
           "\n"
3079
           "Debug/Expert options:\n"
3080
           "-s             wait gdb connection to port %d\n"
3081
           "-p port        change gdb connection port\n"
3082
           "-d             output log in /tmp/vl.log\n"
3083
           "-hdachs c,h,s  force hard disk 0 geometry for non LBA disk images\n"
3084
           "-L path        set the directory for the BIOS and VGA BIOS\n"
3085
           "\n"
3086
           "During emulation, use C-a h to get terminal commands:\n",
3087
           DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
3088
    term_print_help();
3089
    exit(1);
3090
}
3091

    
3092
struct option long_options[] = {
3093
    { "initrd", 1, NULL, 0, },
3094
    { "hda", 1, NULL, 0, },
3095
    { "hdb", 1, NULL, 0, },
3096
    { "snapshot", 0, NULL, 0, },
3097
    { "hdachs", 1, NULL, 0, },
3098
    { NULL, 0, NULL, 0 },
3099
};
3100

    
3101
int main(int argc, char **argv)
3102
{
3103
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
3104
    int snapshot, linux_boot;
3105
    struct linux_params *params;
3106
    struct sigaction act;
3107
    struct itimerval itv;
3108
    CPUX86State *env;
3109
    const char *tmpdir, *initrd_filename;
3110
    const char *hd_filename[MAX_DISKS];
3111
    
3112
    /* we never want that malloc() uses mmap() */
3113
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
3114
    initrd_filename = NULL;
3115
    for(i = 0; i < MAX_DISKS; i++)
3116
        hd_filename[i] = NULL;
3117
    phys_ram_size = 32 * 1024 * 1024;
3118
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
3119
    use_gdbstub = 0;
3120
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
3121
    snapshot = 0;
3122
    linux_boot = 0;
3123
    for(;;) {
3124
        c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
3125
        if (c == -1)
3126
            break;
3127
        switch(c) {
3128
        case 0:
3129
            switch(long_index) {
3130
            case 0:
3131
                initrd_filename = optarg;
3132
                break;
3133
            case 1:
3134
                hd_filename[0] = optarg;
3135
                break;
3136
            case 2:
3137
                hd_filename[1] = optarg;
3138
                break;
3139
            case 3:
3140
                snapshot = 1;
3141
                break;
3142
            case 4:
3143
                {
3144
                    int cyls, heads, secs;
3145
                    const char *p;
3146
                    p = optarg;
3147
                    cyls = strtol(p, (char **)&p, 0);
3148
                    if (*p != ',')
3149
                        goto chs_fail;
3150
                    p++;
3151
                    heads = strtol(p, (char **)&p, 0);
3152
                    if (*p != ',')
3153
                        goto chs_fail;
3154
                    p++;
3155
                    secs = strtol(p, (char **)&p, 0);
3156
                    if (*p != '\0')
3157
                        goto chs_fail;
3158
                    ide_state[0].cylinders = cyls;
3159
                    ide_state[0].heads = heads;
3160
                    ide_state[0].sectors = secs;
3161
                chs_fail: ;
3162
                }
3163
                break;
3164
            }
3165
            break;
3166
        case 'h':
3167
            help();
3168
            break;
3169
        case 'm':
3170
            phys_ram_size = atoi(optarg) * 1024 * 1024;
3171
            if (phys_ram_size <= 0)
3172
                help();
3173
            if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
3174
                fprintf(stderr, "vl: at most %d MB RAM can be simulated\n",
3175
                        PHYS_RAM_MAX_SIZE / (1024 * 1024));
3176
                exit(1);
3177
            }
3178
            break;
3179
        case 'd':
3180
            loglevel = 1;
3181
            break;
3182
        case 'n':
3183
            pstrcpy(network_script, sizeof(network_script), optarg);
3184
            break;
3185
        case 's':
3186
            use_gdbstub = 1;
3187
            break;
3188
        case 'p':
3189
            gdbstub_port = atoi(optarg);
3190
            break;
3191
        case 'L':
3192
            interp_prefix = optarg;
3193
            break;
3194
        }
3195
    }
3196

    
3197
    linux_boot = (optind < argc);
3198
        
3199
    if (!linux_boot && hd_filename[0] == '\0')
3200
        help();
3201

    
3202
    /* init debug */
3203
    setvbuf(stdout, NULL, _IOLBF, 0);
3204
    if (loglevel) {
3205
        logfile = fopen(DEBUG_LOGFILE, "w");
3206
        if (!logfile) {
3207
            perror(DEBUG_LOGFILE);
3208
            _exit(1);
3209
        }
3210
        setvbuf(logfile, NULL, _IOLBF, 0);
3211
    }
3212

    
3213
    /* init network tun interface */
3214
    net_init();
3215

    
3216
    /* init the memory */
3217
    tmpdir = getenv("VLTMPDIR");
3218
    if (!tmpdir)
3219
        tmpdir = "/tmp";
3220
    snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
3221
    if (mkstemp(phys_ram_file) < 0) {
3222
        fprintf(stderr, "Could not create temporary memory file '%s'\n", 
3223
                phys_ram_file);
3224
        exit(1);
3225
    }
3226
    phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
3227
    if (phys_ram_fd < 0) {
3228
        fprintf(stderr, "Could not open temporary memory file '%s'\n", 
3229
                phys_ram_file);
3230
        exit(1);
3231
    }
3232
    ftruncate(phys_ram_fd, phys_ram_size);
3233
    unlink(phys_ram_file);
3234
    phys_ram_base = mmap(get_mmap_addr(phys_ram_size), phys_ram_size, 
3235
                         PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
3236
                         phys_ram_fd, 0);
3237
    if (phys_ram_base == MAP_FAILED) {
3238
        fprintf(stderr, "Could not map physical memory\n");
3239
        exit(1);
3240
    }
3241

    
3242
    /* open the virtual block devices */
3243
    for(i = 0; i < MAX_DISKS; i++) {
3244
        if (hd_filename[i]) {
3245
            bs_table[i] = bdrv_open(hd_filename[i], snapshot);
3246
            if (!bs_table[i]) {
3247
                fprintf(stderr, "vl: could not open hard disk image '%s\n",
3248
                        hd_filename[i]);
3249
                exit(1);
3250
            }
3251
        }
3252
    }
3253

    
3254
    /* init CPU state */
3255
    env = cpu_init();
3256
    global_env = env;
3257
    cpu_single_env = env;
3258

    
3259
    init_ioports();
3260

    
3261
    if (linux_boot) {
3262
        /* now we can load the kernel */
3263
        ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
3264
        if (ret < 0) {
3265
            fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
3266
            exit(1);
3267
        }
3268
        
3269
        /* load initrd */
3270
        initrd_size = 0;
3271
        if (initrd_filename) {
3272
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
3273
            if (initrd_size < 0) {
3274
                fprintf(stderr, "vl: could not load initial ram disk '%s'\n", 
3275
                        initrd_filename);
3276
                exit(1);
3277
            }
3278
        }
3279
        
3280
        /* init kernel params */
3281
        params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
3282
        memset(params, 0, sizeof(struct linux_params));
3283
        params->mount_root_rdonly = 0;
3284
        params->cl_magic = 0xA33F;
3285
        params->cl_offset = params->commandline - (uint8_t *)params;
3286
        params->alt_mem_k = (phys_ram_size / 1024) - 1024;
3287
        for(i = optind + 1; i < argc; i++) {
3288
            if (i != optind + 1)
3289
                pstrcat(params->commandline, sizeof(params->commandline), " ");
3290
            pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
3291
        }
3292
        params->loader_type = 0x01;
3293
        if (initrd_size > 0) {
3294
            params->initrd_start = INITRD_LOAD_ADDR;
3295
            params->initrd_size = initrd_size;
3296
        }
3297
        params->orig_video_lines = 25;
3298
        params->orig_video_cols = 80;
3299

    
3300
        /* setup basic memory access */
3301
        env->cr[0] = 0x00000033;
3302
        cpu_x86_init_mmu(env);
3303
        
3304
        memset(params->idt_table, 0, sizeof(params->idt_table));
3305
        
3306
        params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
3307
        params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
3308
        
3309
        env->idt.base = (void *)params->idt_table;
3310
        env->idt.limit = sizeof(params->idt_table) - 1;
3311
        env->gdt.base = (void *)params->gdt_table;
3312
        env->gdt.limit = sizeof(params->gdt_table) - 1;
3313
        
3314
        cpu_x86_load_seg(env, R_CS, KERNEL_CS);
3315
        cpu_x86_load_seg(env, R_DS, KERNEL_DS);
3316
        cpu_x86_load_seg(env, R_ES, KERNEL_DS);
3317
        cpu_x86_load_seg(env, R_SS, KERNEL_DS);
3318
        cpu_x86_load_seg(env, R_FS, KERNEL_DS);
3319
        cpu_x86_load_seg(env, R_GS, KERNEL_DS);
3320
        
3321
        env->eip = KERNEL_LOAD_ADDR;
3322
        env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
3323
        env->eflags = 0x2;
3324

    
3325
    } else {
3326
        char buf[1024];
3327
        
3328
        /* RAW PC boot */
3329

    
3330
        /* BIOS load */
3331
        snprintf(buf, sizeof(buf), "%s/%s", interp_prefix, BIOS_FILENAME);
3332
        ret = load_image(buf, phys_ram_base + 0x000f0000);
3333
        if (ret != 0x10000) {
3334
            fprintf(stderr, "vl: could not load PC bios '%s'\n", BIOS_FILENAME);
3335
            exit(1);
3336
        }
3337

    
3338
        /* VGA BIOS load */
3339
        snprintf(buf, sizeof(buf), "%s/%s", interp_prefix, VGABIOS_FILENAME);
3340
        ret = load_image(buf, phys_ram_base + 0x000c0000);
3341

    
3342
        /* setup basic memory access */
3343
        env->cr[0] = 0x60000010;
3344
        cpu_x86_init_mmu(env);
3345
        
3346
        env->idt.limit = 0xffff;
3347
        env->gdt.limit = 0xffff;
3348
        env->ldt.limit = 0xffff;
3349

    
3350
        /* not correct (CS base=0xffff0000) */
3351
        cpu_x86_load_seg(env, R_CS, 0xf000); 
3352
        cpu_x86_load_seg(env, R_DS, 0);
3353
        cpu_x86_load_seg(env, R_ES, 0);
3354
        cpu_x86_load_seg(env, R_SS, 0);
3355
        cpu_x86_load_seg(env, R_FS, 0);
3356
        cpu_x86_load_seg(env, R_GS, 0);
3357

    
3358
        env->eip = 0xfff0;
3359
        env->regs[R_EDX] = 0x600; /* indicate P6 processor */
3360

    
3361
        env->eflags = 0x2;
3362

    
3363
        bochs_bios_init();
3364
    }
3365

    
3366
    /* init basic PC hardware */
3367
    register_ioport_write(0x80, 1, ioport80_write, 1);
3368

    
3369
    register_ioport_write(0x3d4, 2, vga_ioport_write, 1);
3370

    
3371
    cmos_init();
3372
    pic_init();
3373
    pit_init();
3374
    serial_init();
3375
    ne2000_init();
3376
    ide_init();
3377
    kbd_init();
3378

    
3379
    /* setup cpu signal handlers for MMU / self modifying code handling */
3380
    sigfillset(&act.sa_mask);
3381
    act.sa_flags = SA_SIGINFO;
3382
    act.sa_sigaction = host_segv_handler;
3383
    sigaction(SIGSEGV, &act, NULL);
3384
    sigaction(SIGBUS, &act, NULL);
3385

    
3386
    act.sa_sigaction = host_alarm_handler;
3387
    sigaction(SIGALRM, &act, NULL);
3388

    
3389
    itv.it_interval.tv_sec = 0;
3390
    itv.it_interval.tv_usec = 1000;
3391
    itv.it_value.tv_sec = 0;
3392
    itv.it_value.tv_usec = 10 * 1000;
3393
    setitimer(ITIMER_REAL, &itv, NULL);
3394
    /* we probe the tick duration of the kernel to inform the user if
3395
       the emulated kernel requested a too high timer frequency */
3396
    getitimer(ITIMER_REAL, &itv);
3397
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
3398
        1000000;
3399
    
3400
    if (use_gdbstub) {
3401
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
3402
    } else {
3403
        main_loop(NULL);
3404
    }
3405
    return 0;
3406
}