Statistics
| Branch: | Revision:

root / hw / i386 / pc.c @ 2c9b15ca

History | View | Annotate | Download (36.1 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/i386/pc.h"
26
#include "hw/char/serial.h"
27
#include "hw/i386/apic.h"
28
#include "hw/block/fdc.h"
29
#include "hw/ide.h"
30
#include "hw/pci/pci.h"
31
#include "monitor/monitor.h"
32
#include "hw/nvram/fw_cfg.h"
33
#include "hw/timer/hpet.h"
34
#include "hw/i386/smbios.h"
35
#include "hw/loader.h"
36
#include "elf.h"
37
#include "multiboot.h"
38
#include "hw/timer/mc146818rtc.h"
39
#include "hw/timer/i8254.h"
40
#include "hw/audio/pcspk.h"
41
#include "hw/pci/msi.h"
42
#include "hw/sysbus.h"
43
#include "sysemu/sysemu.h"
44
#include "sysemu/kvm.h"
45
#include "kvm_i386.h"
46
#include "hw/xen/xen.h"
47
#include "sysemu/blockdev.h"
48
#include "hw/block/block.h"
49
#include "ui/qemu-spice.h"
50
#include "exec/memory.h"
51
#include "exec/address-spaces.h"
52
#include "sysemu/arch_init.h"
53
#include "qemu/bitmap.h"
54
#include "qemu/config-file.h"
55
#include "hw/acpi/acpi.h"
56
#include "hw/cpu/icc_bus.h"
57
#include "hw/boards.h"
58

    
59
/* debug PC/ISA interrupts */
60
//#define DEBUG_IRQ
61

    
62
#ifdef DEBUG_IRQ
63
#define DPRINTF(fmt, ...)                                       \
64
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
65
#else
66
#define DPRINTF(fmt, ...)
67
#endif
68

    
69
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
70
#define ACPI_DATA_SIZE       0x10000
71
#define BIOS_CFG_IOPORT 0x510
72
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
73
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
74
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
75
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
76
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
77

    
78
#define IO_APIC_DEFAULT_ADDRESS 0xfec00000
79

    
80
#define E820_NR_ENTRIES                16
81

    
82
struct e820_entry {
83
    uint64_t address;
84
    uint64_t length;
85
    uint32_t type;
86
} QEMU_PACKED __attribute((__aligned__(4)));
87

    
88
struct e820_table {
89
    uint32_t count;
90
    struct e820_entry entry[E820_NR_ENTRIES];
91
} QEMU_PACKED __attribute((__aligned__(4)));
92

    
93
static struct e820_table e820_table;
94
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
95

    
96
void gsi_handler(void *opaque, int n, int level)
97
{
98
    GSIState *s = opaque;
99

    
100
    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
101
    if (n < ISA_NUM_IRQS) {
102
        qemu_set_irq(s->i8259_irq[n], level);
103
    }
104
    qemu_set_irq(s->ioapic_irq[n], level);
105
}
106

    
107
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
108
                           unsigned size)
109
{
110
}
111

    
112
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
113
{
114
    return 0xffffffffffffffffULL;
115
}
116

    
117
/* MSDOS compatibility mode FPU exception support */
118
static qemu_irq ferr_irq;
119

    
120
void pc_register_ferr_irq(qemu_irq irq)
121
{
122
    ferr_irq = irq;
123
}
124

    
125
/* XXX: add IGNNE support */
126
void cpu_set_ferr(CPUX86State *s)
127
{
128
    qemu_irq_raise(ferr_irq);
129
}
130

    
131
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
132
                           unsigned size)
133
{
134
    qemu_irq_lower(ferr_irq);
135
}
136

    
137
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
138
{
139
    return 0xffffffffffffffffULL;
140
}
141

    
142
/* TSC handling */
143
uint64_t cpu_get_tsc(CPUX86State *env)
144
{
145
    return cpu_get_ticks();
146
}
147

    
148
/* SMM support */
149

    
150
static cpu_set_smm_t smm_set;
151
static void *smm_arg;
152

    
153
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
154
{
155
    assert(smm_set == NULL);
156
    assert(smm_arg == NULL);
157
    smm_set = callback;
158
    smm_arg = arg;
159
}
160

    
161
void cpu_smm_update(CPUX86State *env)
162
{
163
    if (smm_set && smm_arg && env == first_cpu)
164
        smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
165
}
166

    
167

    
168
/* IRQ handling */
169
int cpu_get_pic_interrupt(CPUX86State *env)
170
{
171
    int intno;
172

    
173
    intno = apic_get_interrupt(env->apic_state);
174
    if (intno >= 0) {
175
        return intno;
176
    }
177
    /* read the irq from the PIC */
178
    if (!apic_accept_pic_intr(env->apic_state)) {
179
        return -1;
180
    }
181

    
182
    intno = pic_read_irq(isa_pic);
183
    return intno;
184
}
185

    
186
static void pic_irq_request(void *opaque, int irq, int level)
187
{
188
    CPUX86State *env = first_cpu;
189

    
190
    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191
    if (env->apic_state) {
192
        while (env) {
193
            if (apic_accept_pic_intr(env->apic_state)) {
194
                apic_deliver_pic_intr(env->apic_state, level);
195
            }
196
            env = env->next_cpu;
197
        }
198
    } else {
199
        CPUState *cs = CPU(x86_env_get_cpu(env));
200
        if (level) {
201
            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
202
        } else {
203
            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
204
        }
205
    }
206
}
207

    
208
/* PC cmos mappings */
209

    
210
#define REG_EQUIPMENT_BYTE          0x14
211

    
212
static int cmos_get_fd_drive_type(FDriveType fd0)
213
{
214
    int val;
215

    
216
    switch (fd0) {
217
    case FDRIVE_DRV_144:
218
        /* 1.44 Mb 3"5 drive */
219
        val = 4;
220
        break;
221
    case FDRIVE_DRV_288:
222
        /* 2.88 Mb 3"5 drive */
223
        val = 5;
224
        break;
225
    case FDRIVE_DRV_120:
226
        /* 1.2 Mb 5"5 drive */
227
        val = 2;
228
        break;
229
    case FDRIVE_DRV_NONE:
230
    default:
231
        val = 0;
232
        break;
233
    }
234
    return val;
235
}
236

    
237
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
238
                         int16_t cylinders, int8_t heads, int8_t sectors)
239
{
240
    rtc_set_memory(s, type_ofs, 47);
241
    rtc_set_memory(s, info_ofs, cylinders);
242
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
243
    rtc_set_memory(s, info_ofs + 2, heads);
244
    rtc_set_memory(s, info_ofs + 3, 0xff);
245
    rtc_set_memory(s, info_ofs + 4, 0xff);
246
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
247
    rtc_set_memory(s, info_ofs + 6, cylinders);
248
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
249
    rtc_set_memory(s, info_ofs + 8, sectors);
250
}
251

    
252
/* convert boot_device letter to something recognizable by the bios */
253
static int boot_device2nibble(char boot_device)
254
{
255
    switch(boot_device) {
256
    case 'a':
257
    case 'b':
258
        return 0x01; /* floppy boot */
259
    case 'c':
260
        return 0x02; /* hard drive boot */
261
    case 'd':
262
        return 0x03; /* CD-ROM boot */
263
    case 'n':
264
        return 0x04; /* Network boot */
265
    }
266
    return 0;
267
}
268

    
269
static int set_boot_dev(ISADevice *s, const char *boot_device)
270
{
271
#define PC_MAX_BOOT_DEVICES 3
272
    int nbds, bds[3] = { 0, };
273
    int i;
274

    
275
    nbds = strlen(boot_device);
276
    if (nbds > PC_MAX_BOOT_DEVICES) {
277
        error_report("Too many boot devices for PC");
278
        return(1);
279
    }
280
    for (i = 0; i < nbds; i++) {
281
        bds[i] = boot_device2nibble(boot_device[i]);
282
        if (bds[i] == 0) {
283
            error_report("Invalid boot device for PC: '%c'",
284
                         boot_device[i]);
285
            return(1);
286
        }
287
    }
288
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
289
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
290
    return(0);
291
}
292

    
293
static int pc_boot_set(void *opaque, const char *boot_device)
294
{
295
    return set_boot_dev(opaque, boot_device);
296
}
297

    
298
typedef struct pc_cmos_init_late_arg {
299
    ISADevice *rtc_state;
300
    BusState *idebus[2];
301
} pc_cmos_init_late_arg;
302

    
303
static void pc_cmos_init_late(void *opaque)
304
{
305
    pc_cmos_init_late_arg *arg = opaque;
306
    ISADevice *s = arg->rtc_state;
307
    int16_t cylinders;
308
    int8_t heads, sectors;
309
    int val;
310
    int i, trans;
311

    
312
    val = 0;
313
    if (ide_get_geometry(arg->idebus[0], 0,
314
                         &cylinders, &heads, &sectors) >= 0) {
315
        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
316
        val |= 0xf0;
317
    }
318
    if (ide_get_geometry(arg->idebus[0], 1,
319
                         &cylinders, &heads, &sectors) >= 0) {
320
        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
321
        val |= 0x0f;
322
    }
323
    rtc_set_memory(s, 0x12, val);
324

    
325
    val = 0;
326
    for (i = 0; i < 4; i++) {
327
        /* NOTE: ide_get_geometry() returns the physical
328
           geometry.  It is always such that: 1 <= sects <= 63, 1
329
           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
330
           geometry can be different if a translation is done. */
331
        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
332
                             &cylinders, &heads, &sectors) >= 0) {
333
            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
334
            assert((trans & ~3) == 0);
335
            val |= trans << (i * 2);
336
        }
337
    }
338
    rtc_set_memory(s, 0x39, val);
339

    
340
    qemu_unregister_reset(pc_cmos_init_late, opaque);
341
}
342

    
343
typedef struct RTCCPUHotplugArg {
344
    Notifier cpu_added_notifier;
345
    ISADevice *rtc_state;
346
} RTCCPUHotplugArg;
347

    
348
static void rtc_notify_cpu_added(Notifier *notifier, void *data)
349
{
350
    RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
351
                                         cpu_added_notifier);
352
    ISADevice *s = arg->rtc_state;
353

    
354
    /* increment the number of CPUs */
355
    rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
356
}
357

    
358
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
359
                  const char *boot_device,
360
                  ISADevice *floppy, BusState *idebus0, BusState *idebus1,
361
                  ISADevice *s)
362
{
363
    int val, nb, i;
364
    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
365
    static pc_cmos_init_late_arg arg;
366
    static RTCCPUHotplugArg cpu_hotplug_cb;
367

    
368
    /* various important CMOS locations needed by PC/Bochs bios */
369

    
370
    /* memory size */
371
    /* base memory (first MiB) */
372
    val = MIN(ram_size / 1024, 640);
373
    rtc_set_memory(s, 0x15, val);
374
    rtc_set_memory(s, 0x16, val >> 8);
375
    /* extended memory (next 64MiB) */
376
    if (ram_size > 1024 * 1024) {
377
        val = (ram_size - 1024 * 1024) / 1024;
378
    } else {
379
        val = 0;
380
    }
381
    if (val > 65535)
382
        val = 65535;
383
    rtc_set_memory(s, 0x17, val);
384
    rtc_set_memory(s, 0x18, val >> 8);
385
    rtc_set_memory(s, 0x30, val);
386
    rtc_set_memory(s, 0x31, val >> 8);
387
    /* memory between 16MiB and 4GiB */
388
    if (ram_size > 16 * 1024 * 1024) {
389
        val = (ram_size - 16 * 1024 * 1024) / 65536;
390
    } else {
391
        val = 0;
392
    }
393
    if (val > 65535)
394
        val = 65535;
395
    rtc_set_memory(s, 0x34, val);
396
    rtc_set_memory(s, 0x35, val >> 8);
397
    /* memory above 4GiB */
398
    val = above_4g_mem_size / 65536;
399
    rtc_set_memory(s, 0x5b, val);
400
    rtc_set_memory(s, 0x5c, val >> 8);
401
    rtc_set_memory(s, 0x5d, val >> 16);
402

    
403
    /* set the number of CPU */
404
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
405
    /* init CPU hotplug notifier */
406
    cpu_hotplug_cb.rtc_state = s;
407
    cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
408
    qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
409

    
410
    if (set_boot_dev(s, boot_device)) {
411
        exit(1);
412
    }
413

    
414
    /* floppy type */
415
    if (floppy) {
416
        for (i = 0; i < 2; i++) {
417
            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
418
        }
419
    }
420
    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
421
        cmos_get_fd_drive_type(fd_type[1]);
422
    rtc_set_memory(s, 0x10, val);
423

    
424
    val = 0;
425
    nb = 0;
426
    if (fd_type[0] < FDRIVE_DRV_NONE) {
427
        nb++;
428
    }
429
    if (fd_type[1] < FDRIVE_DRV_NONE) {
430
        nb++;
431
    }
432
    switch (nb) {
433
    case 0:
434
        break;
435
    case 1:
436
        val |= 0x01; /* 1 drive, ready for boot */
437
        break;
438
    case 2:
439
        val |= 0x41; /* 2 drives, ready for boot */
440
        break;
441
    }
442
    val |= 0x02; /* FPU is there */
443
    val |= 0x04; /* PS/2 mouse installed */
444
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
445

    
446
    /* hard drives */
447
    arg.rtc_state = s;
448
    arg.idebus[0] = idebus0;
449
    arg.idebus[1] = idebus1;
450
    qemu_register_reset(pc_cmos_init_late, &arg);
451
}
452

    
453
#define TYPE_PORT92 "port92"
454
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
455

    
456
/* port 92 stuff: could be split off */
457
typedef struct Port92State {
458
    ISADevice parent_obj;
459

    
460
    MemoryRegion io;
461
    uint8_t outport;
462
    qemu_irq *a20_out;
463
} Port92State;
464

    
465
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
466
                         unsigned size)
467
{
468
    Port92State *s = opaque;
469

    
470
    DPRINTF("port92: write 0x%02x\n", val);
471
    s->outport = val;
472
    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
473
    if (val & 1) {
474
        qemu_system_reset_request();
475
    }
476
}
477

    
478
static uint64_t port92_read(void *opaque, hwaddr addr,
479
                            unsigned size)
480
{
481
    Port92State *s = opaque;
482
    uint32_t ret;
483

    
484
    ret = s->outport;
485
    DPRINTF("port92: read 0x%02x\n", ret);
486
    return ret;
487
}
488

    
489
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
490
{
491
    Port92State *s = PORT92(dev);
492

    
493
    s->a20_out = a20_out;
494
}
495

    
496
static const VMStateDescription vmstate_port92_isa = {
497
    .name = "port92",
498
    .version_id = 1,
499
    .minimum_version_id = 1,
500
    .minimum_version_id_old = 1,
501
    .fields      = (VMStateField []) {
502
        VMSTATE_UINT8(outport, Port92State),
503
        VMSTATE_END_OF_LIST()
504
    }
505
};
506

    
507
static void port92_reset(DeviceState *d)
508
{
509
    Port92State *s = PORT92(d);
510

    
511
    s->outport &= ~1;
512
}
513

    
514
static const MemoryRegionOps port92_ops = {
515
    .read = port92_read,
516
    .write = port92_write,
517
    .impl = {
518
        .min_access_size = 1,
519
        .max_access_size = 1,
520
    },
521
    .endianness = DEVICE_LITTLE_ENDIAN,
522
};
523

    
524
static void port92_initfn(Object *obj)
525
{
526
    Port92State *s = PORT92(obj);
527

    
528
    memory_region_init_io(&s->io, NULL, &port92_ops, s, "port92", 1);
529

    
530
    s->outport = 0;
531
}
532

    
533
static void port92_realizefn(DeviceState *dev, Error **errp)
534
{
535
    ISADevice *isadev = ISA_DEVICE(dev);
536
    Port92State *s = PORT92(dev);
537

    
538
    isa_register_ioport(isadev, &s->io, 0x92);
539
}
540

    
541
static void port92_class_initfn(ObjectClass *klass, void *data)
542
{
543
    DeviceClass *dc = DEVICE_CLASS(klass);
544

    
545
    dc->no_user = 1;
546
    dc->realize = port92_realizefn;
547
    dc->reset = port92_reset;
548
    dc->vmsd = &vmstate_port92_isa;
549
}
550

    
551
static const TypeInfo port92_info = {
552
    .name          = TYPE_PORT92,
553
    .parent        = TYPE_ISA_DEVICE,
554
    .instance_size = sizeof(Port92State),
555
    .instance_init = port92_initfn,
556
    .class_init    = port92_class_initfn,
557
};
558

    
559
static void port92_register_types(void)
560
{
561
    type_register_static(&port92_info);
562
}
563

    
564
type_init(port92_register_types)
565

    
566
static void handle_a20_line_change(void *opaque, int irq, int level)
567
{
568
    X86CPU *cpu = opaque;
569

    
570
    /* XXX: send to all CPUs ? */
571
    /* XXX: add logic to handle multiple A20 line sources */
572
    x86_cpu_set_a20(cpu, level);
573
}
574

    
575
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
576
{
577
    int index = le32_to_cpu(e820_table.count);
578
    struct e820_entry *entry;
579

    
580
    if (index >= E820_NR_ENTRIES)
581
        return -EBUSY;
582
    entry = &e820_table.entry[index++];
583

    
584
    entry->address = cpu_to_le64(address);
585
    entry->length = cpu_to_le64(length);
586
    entry->type = cpu_to_le32(type);
587

    
588
    e820_table.count = cpu_to_le32(index);
589
    return index;
590
}
591

    
592
/* Calculates the limit to CPU APIC ID values
593
 *
594
 * This function returns the limit for the APIC ID value, so that all
595
 * CPU APIC IDs are < pc_apic_id_limit().
596
 *
597
 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
598
 */
599
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
600
{
601
    return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
602
}
603

    
604
static FWCfgState *bochs_bios_init(void)
605
{
606
    FWCfgState *fw_cfg;
607
    uint8_t *smbios_table;
608
    size_t smbios_len;
609
    uint64_t *numa_fw_cfg;
610
    int i, j;
611
    unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
612

    
613
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
614
    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
615
     *
616
     * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
617
     * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
618
     * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
619
     * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
620
     * may see".
621
     *
622
     * So, this means we must not use max_cpus, here, but the maximum possible
623
     * APIC ID value, plus one.
624
     *
625
     * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
626
     *     the APIC ID, not the "CPU index"
627
     */
628
    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
629
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
630
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
631
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
632
                     acpi_tables, acpi_tables_len);
633
    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
634

    
635
    smbios_table = smbios_get_table(&smbios_len);
636
    if (smbios_table)
637
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
638
                         smbios_table, smbios_len);
639
    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
640
                     &e820_table, sizeof(e820_table));
641

    
642
    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
643
    /* allocate memory for the NUMA channel: one (64bit) word for the number
644
     * of nodes, one word for each VCPU->node and one word for each node to
645
     * hold the amount of memory.
646
     */
647
    numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
648
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
649
    for (i = 0; i < max_cpus; i++) {
650
        unsigned int apic_id = x86_cpu_apic_id_from_index(i);
651
        assert(apic_id < apic_id_limit);
652
        for (j = 0; j < nb_numa_nodes; j++) {
653
            if (test_bit(i, node_cpumask[j])) {
654
                numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
655
                break;
656
            }
657
        }
658
    }
659
    for (i = 0; i < nb_numa_nodes; i++) {
660
        numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
661
    }
662
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
663
                     (1 + apic_id_limit + nb_numa_nodes) *
664
                     sizeof(*numa_fw_cfg));
665

    
666
    return fw_cfg;
667
}
668

    
669
static long get_file_size(FILE *f)
670
{
671
    long where, size;
672

    
673
    /* XXX: on Unix systems, using fstat() probably makes more sense */
674

    
675
    where = ftell(f);
676
    fseek(f, 0, SEEK_END);
677
    size = ftell(f);
678
    fseek(f, where, SEEK_SET);
679

    
680
    return size;
681
}
682

    
683
static void load_linux(FWCfgState *fw_cfg,
684
                       const char *kernel_filename,
685
                       const char *initrd_filename,
686
                       const char *kernel_cmdline,
687
                       hwaddr max_ram_size)
688
{
689
    uint16_t protocol;
690
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
691
    uint32_t initrd_max;
692
    uint8_t header[8192], *setup, *kernel, *initrd_data;
693
    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
694
    FILE *f;
695
    char *vmode;
696

    
697
    /* Align to 16 bytes as a paranoia measure */
698
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
699

    
700
    /* load the kernel header */
701
    f = fopen(kernel_filename, "rb");
702
    if (!f || !(kernel_size = get_file_size(f)) ||
703
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
704
        MIN(ARRAY_SIZE(header), kernel_size)) {
705
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
706
                kernel_filename, strerror(errno));
707
        exit(1);
708
    }
709

    
710
    /* kernel protocol version */
711
#if 0
712
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
713
#endif
714
    if (ldl_p(header+0x202) == 0x53726448) {
715
        protocol = lduw_p(header+0x206);
716
    } else {
717
        /* This looks like a multiboot kernel. If it is, let's stop
718
           treating it like a Linux kernel. */
719
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
720
                           kernel_cmdline, kernel_size, header)) {
721
            return;
722
        }
723
        protocol = 0;
724
    }
725

    
726
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
727
        /* Low kernel */
728
        real_addr    = 0x90000;
729
        cmdline_addr = 0x9a000 - cmdline_size;
730
        prot_addr    = 0x10000;
731
    } else if (protocol < 0x202) {
732
        /* High but ancient kernel */
733
        real_addr    = 0x90000;
734
        cmdline_addr = 0x9a000 - cmdline_size;
735
        prot_addr    = 0x100000;
736
    } else {
737
        /* High and recent kernel */
738
        real_addr    = 0x10000;
739
        cmdline_addr = 0x20000;
740
        prot_addr    = 0x100000;
741
    }
742

    
743
#if 0
744
    fprintf(stderr,
745
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
746
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
747
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
748
            real_addr,
749
            cmdline_addr,
750
            prot_addr);
751
#endif
752

    
753
    /* highest address for loading the initrd */
754
    if (protocol >= 0x203) {
755
        initrd_max = ldl_p(header+0x22c);
756
    } else {
757
        initrd_max = 0x37ffffff;
758
    }
759

    
760
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
761
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
762

    
763
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
764
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
765
    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
766

    
767
    if (protocol >= 0x202) {
768
        stl_p(header+0x228, cmdline_addr);
769
    } else {
770
        stw_p(header+0x20, 0xA33F);
771
        stw_p(header+0x22, cmdline_addr-real_addr);
772
    }
773

    
774
    /* handle vga= parameter */
775
    vmode = strstr(kernel_cmdline, "vga=");
776
    if (vmode) {
777
        unsigned int video_mode;
778
        /* skip "vga=" */
779
        vmode += 4;
780
        if (!strncmp(vmode, "normal", 6)) {
781
            video_mode = 0xffff;
782
        } else if (!strncmp(vmode, "ext", 3)) {
783
            video_mode = 0xfffe;
784
        } else if (!strncmp(vmode, "ask", 3)) {
785
            video_mode = 0xfffd;
786
        } else {
787
            video_mode = strtol(vmode, NULL, 0);
788
        }
789
        stw_p(header+0x1fa, video_mode);
790
    }
791

    
792
    /* loader type */
793
    /* High nybble = B reserved for QEMU; low nybble is revision number.
794
       If this code is substantially changed, you may want to consider
795
       incrementing the revision. */
796
    if (protocol >= 0x200) {
797
        header[0x210] = 0xB0;
798
    }
799
    /* heap */
800
    if (protocol >= 0x201) {
801
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
802
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
803
    }
804

    
805
    /* load initrd */
806
    if (initrd_filename) {
807
        if (protocol < 0x200) {
808
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
809
            exit(1);
810
        }
811

    
812
        initrd_size = get_image_size(initrd_filename);
813
        if (initrd_size < 0) {
814
            fprintf(stderr, "qemu: error reading initrd %s\n",
815
                    initrd_filename);
816
            exit(1);
817
        }
818

    
819
        initrd_addr = (initrd_max-initrd_size) & ~4095;
820

    
821
        initrd_data = g_malloc(initrd_size);
822
        load_image(initrd_filename, initrd_data);
823

    
824
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
825
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
826
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
827

    
828
        stl_p(header+0x218, initrd_addr);
829
        stl_p(header+0x21c, initrd_size);
830
    }
831

    
832
    /* load kernel and setup */
833
    setup_size = header[0x1f1];
834
    if (setup_size == 0) {
835
        setup_size = 4;
836
    }
837
    setup_size = (setup_size+1)*512;
838
    kernel_size -= setup_size;
839

    
840
    setup  = g_malloc(setup_size);
841
    kernel = g_malloc(kernel_size);
842
    fseek(f, 0, SEEK_SET);
843
    if (fread(setup, 1, setup_size, f) != setup_size) {
844
        fprintf(stderr, "fread() failed\n");
845
        exit(1);
846
    }
847
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
848
        fprintf(stderr, "fread() failed\n");
849
        exit(1);
850
    }
851
    fclose(f);
852
    memcpy(setup, header, MIN(sizeof(header), setup_size));
853

    
854
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
855
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
856
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
857

    
858
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
859
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
860
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
861

    
862
    option_rom[nb_option_roms].name = "linuxboot.bin";
863
    option_rom[nb_option_roms].bootindex = 0;
864
    nb_option_roms++;
865
}
866

    
867
#define NE2000_NB_MAX 6
868

    
869
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
870
                                              0x280, 0x380 };
871
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
872

    
873
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
874
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
875

    
876
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
877
{
878
    static int nb_ne2k = 0;
879

    
880
    if (nb_ne2k == NE2000_NB_MAX)
881
        return;
882
    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
883
                    ne2000_irq[nb_ne2k], nd);
884
    nb_ne2k++;
885
}
886

    
887
DeviceState *cpu_get_current_apic(void)
888
{
889
    if (cpu_single_env) {
890
        return cpu_single_env->apic_state;
891
    } else {
892
        return NULL;
893
    }
894
}
895

    
896
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
897
{
898
    X86CPU *cpu = opaque;
899

    
900
    if (level) {
901
        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
902
    }
903
}
904

    
905
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
906
                          DeviceState *icc_bridge, Error **errp)
907
{
908
    X86CPU *cpu;
909
    Error *local_err = NULL;
910

    
911
    cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
912
    if (!cpu) {
913
        return cpu;
914
    }
915

    
916
    object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
917
    object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
918

    
919
    if (local_err) {
920
        if (cpu != NULL) {
921
            object_unref(OBJECT(cpu));
922
            cpu = NULL;
923
        }
924
        error_propagate(errp, local_err);
925
    }
926
    return cpu;
927
}
928

    
929
static const char *current_cpu_model;
930

    
931
void pc_hot_add_cpu(const int64_t id, Error **errp)
932
{
933
    DeviceState *icc_bridge;
934
    int64_t apic_id = x86_cpu_apic_id_from_index(id);
935

    
936
    if (id < 0) {
937
        error_setg(errp, "Invalid CPU id: %" PRIi64, id);
938
        return;
939
    }
940

    
941
    if (cpu_exists(apic_id)) {
942
        error_setg(errp, "Unable to add CPU: %" PRIi64
943
                   ", it already exists", id);
944
        return;
945
    }
946

    
947
    if (id >= max_cpus) {
948
        error_setg(errp, "Unable to add CPU: %" PRIi64
949
                   ", max allowed: %d", id, max_cpus - 1);
950
        return;
951
    }
952

    
953
    icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
954
                                                 TYPE_ICC_BRIDGE, NULL));
955
    pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
956
}
957

    
958
void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
959
{
960
    int i;
961
    X86CPU *cpu = NULL;
962
    Error *error = NULL;
963

    
964
    /* init CPUs */
965
    if (cpu_model == NULL) {
966
#ifdef TARGET_X86_64
967
        cpu_model = "qemu64";
968
#else
969
        cpu_model = "qemu32";
970
#endif
971
    }
972
    current_cpu_model = cpu_model;
973

    
974
    for (i = 0; i < smp_cpus; i++) {
975
        cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
976
                         icc_bridge, &error);
977
        if (error) {
978
            fprintf(stderr, "%s\n", error_get_pretty(error));
979
            error_free(error);
980
            exit(1);
981
        }
982
    }
983

    
984
    /* map APIC MMIO area if CPU has APIC */
985
    if (cpu && cpu->env.apic_state) {
986
        /* XXX: what if the base changes? */
987
        sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
988
                                APIC_DEFAULT_ADDRESS, 0x1000);
989
    }
990
}
991

    
992
void pc_acpi_init(const char *default_dsdt)
993
{
994
    char *filename;
995

    
996
    if (acpi_tables != NULL) {
997
        /* manually set via -acpitable, leave it alone */
998
        return;
999
    }
1000

    
1001
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1002
    if (filename == NULL) {
1003
        fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1004
    } else {
1005
        char *arg;
1006
        QemuOpts *opts;
1007
        Error *err = NULL;
1008

    
1009
        arg = g_strdup_printf("file=%s", filename);
1010

    
1011
        /* creates a deep copy of "arg" */
1012
        opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1013
        g_assert(opts != NULL);
1014

    
1015
        acpi_table_add(opts, &err);
1016
        if (err) {
1017
            fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1018
                    error_get_pretty(err));
1019
            error_free(err);
1020
        }
1021
        g_free(arg);
1022
        g_free(filename);
1023
    }
1024
}
1025

    
1026
FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1027
                           const char *kernel_filename,
1028
                           const char *kernel_cmdline,
1029
                           const char *initrd_filename,
1030
                           ram_addr_t below_4g_mem_size,
1031
                           ram_addr_t above_4g_mem_size,
1032
                           MemoryRegion *rom_memory,
1033
                           MemoryRegion **ram_memory)
1034
{
1035
    int linux_boot, i;
1036
    MemoryRegion *ram, *option_rom_mr;
1037
    MemoryRegion *ram_below_4g, *ram_above_4g;
1038
    FWCfgState *fw_cfg;
1039

    
1040
    linux_boot = (kernel_filename != NULL);
1041

    
1042
    /* Allocate RAM.  We allocate it as a single memory region and use
1043
     * aliases to address portions of it, mostly for backwards compatibility
1044
     * with older qemus that used qemu_ram_alloc().
1045
     */
1046
    ram = g_malloc(sizeof(*ram));
1047
    memory_region_init_ram(ram, NULL, "pc.ram",
1048
                           below_4g_mem_size + above_4g_mem_size);
1049
    vmstate_register_ram_global(ram);
1050
    *ram_memory = ram;
1051
    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1052
    memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1053
                             0, below_4g_mem_size);
1054
    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1055
    if (above_4g_mem_size > 0) {
1056
        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1057
        memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1058
                                 below_4g_mem_size, above_4g_mem_size);
1059
        memory_region_add_subregion(system_memory, 0x100000000ULL,
1060
                                    ram_above_4g);
1061
    }
1062

    
1063

    
1064
    /* Initialize PC system firmware */
1065
    pc_system_firmware_init(rom_memory);
1066

    
1067
    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1068
    memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1069
    vmstate_register_ram_global(option_rom_mr);
1070
    memory_region_add_subregion_overlap(rom_memory,
1071
                                        PC_ROM_MIN_VGA,
1072
                                        option_rom_mr,
1073
                                        1);
1074

    
1075
    fw_cfg = bochs_bios_init();
1076
    rom_set_fw(fw_cfg);
1077

    
1078
    if (linux_boot) {
1079
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1080
    }
1081

    
1082
    for (i = 0; i < nb_option_roms; i++) {
1083
        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1084
    }
1085
    return fw_cfg;
1086
}
1087

    
1088
qemu_irq *pc_allocate_cpu_irq(void)
1089
{
1090
    return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1091
}
1092

    
1093
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1094
{
1095
    DeviceState *dev = NULL;
1096

    
1097
    if (pci_bus) {
1098
        PCIDevice *pcidev = pci_vga_init(pci_bus);
1099
        dev = pcidev ? &pcidev->qdev : NULL;
1100
    } else if (isa_bus) {
1101
        ISADevice *isadev = isa_vga_init(isa_bus);
1102
        dev = isadev ? DEVICE(isadev) : NULL;
1103
    }
1104
    return dev;
1105
}
1106

    
1107
static void cpu_request_exit(void *opaque, int irq, int level)
1108
{
1109
    CPUX86State *env = cpu_single_env;
1110

    
1111
    if (env && level) {
1112
        cpu_exit(CPU(x86_env_get_cpu(env)));
1113
    }
1114
}
1115

    
1116
static const MemoryRegionOps ioport80_io_ops = {
1117
    .write = ioport80_write,
1118
    .read = ioport80_read,
1119
    .endianness = DEVICE_NATIVE_ENDIAN,
1120
    .impl = {
1121
        .min_access_size = 1,
1122
        .max_access_size = 1,
1123
    },
1124
};
1125

    
1126
static const MemoryRegionOps ioportF0_io_ops = {
1127
    .write = ioportF0_write,
1128
    .read = ioportF0_read,
1129
    .endianness = DEVICE_NATIVE_ENDIAN,
1130
    .impl = {
1131
        .min_access_size = 1,
1132
        .max_access_size = 1,
1133
    },
1134
};
1135

    
1136
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1137
                          ISADevice **rtc_state,
1138
                          ISADevice **floppy,
1139
                          bool no_vmport)
1140
{
1141
    int i;
1142
    DriveInfo *fd[MAX_FD];
1143
    DeviceState *hpet = NULL;
1144
    int pit_isa_irq = 0;
1145
    qemu_irq pit_alt_irq = NULL;
1146
    qemu_irq rtc_irq = NULL;
1147
    qemu_irq *a20_line;
1148
    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1149
    qemu_irq *cpu_exit_irq;
1150
    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1151
    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1152

    
1153
    memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1154
    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1155

    
1156
    memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1157
    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1158

    
1159
    /*
1160
     * Check if an HPET shall be created.
1161
     *
1162
     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1163
     * when the HPET wants to take over. Thus we have to disable the latter.
1164
     */
1165
    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1166
        hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1167

    
1168
        if (hpet) {
1169
            for (i = 0; i < GSI_NUM_PINS; i++) {
1170
                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1171
            }
1172
            pit_isa_irq = -1;
1173
            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1174
            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1175
        }
1176
    }
1177
    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1178

    
1179
    qemu_register_boot_set(pc_boot_set, *rtc_state);
1180

    
1181
    if (!xen_enabled()) {
1182
        if (kvm_irqchip_in_kernel()) {
1183
            pit = kvm_pit_init(isa_bus, 0x40);
1184
        } else {
1185
            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1186
        }
1187
        if (hpet) {
1188
            /* connect PIT to output control line of the HPET */
1189
            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1190
        }
1191
        pcspk_init(isa_bus, pit);
1192
    }
1193

    
1194
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1195
        if (serial_hds[i]) {
1196
            serial_isa_init(isa_bus, i, serial_hds[i]);
1197
        }
1198
    }
1199

    
1200
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1201
        if (parallel_hds[i]) {
1202
            parallel_init(isa_bus, i, parallel_hds[i]);
1203
        }
1204
    }
1205

    
1206
    a20_line = qemu_allocate_irqs(handle_a20_line_change,
1207
                                  x86_env_get_cpu(first_cpu), 2);
1208
    i8042 = isa_create_simple(isa_bus, "i8042");
1209
    i8042_setup_a20_line(i8042, &a20_line[0]);
1210
    if (!no_vmport) {
1211
        vmport_init(isa_bus);
1212
        vmmouse = isa_try_create(isa_bus, "vmmouse");
1213
    } else {
1214
        vmmouse = NULL;
1215
    }
1216
    if (vmmouse) {
1217
        DeviceState *dev = DEVICE(vmmouse);
1218
        qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1219
        qdev_init_nofail(dev);
1220
    }
1221
    port92 = isa_create_simple(isa_bus, "port92");
1222
    port92_init(port92, &a20_line[1]);
1223

    
1224
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1225
    DMA_init(0, cpu_exit_irq);
1226

    
1227
    for(i = 0; i < MAX_FD; i++) {
1228
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1229
    }
1230
    *floppy = fdctrl_init_isa(isa_bus, fd);
1231
}
1232

    
1233
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1234
{
1235
    int i;
1236

    
1237
    for (i = 0; i < nb_nics; i++) {
1238
        NICInfo *nd = &nd_table[i];
1239

    
1240
        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1241
            pc_init_ne2k_isa(isa_bus, nd);
1242
        } else {
1243
            pci_nic_init_nofail(nd, "e1000", NULL);
1244
        }
1245
    }
1246
}
1247

    
1248
void pc_pci_device_init(PCIBus *pci_bus)
1249
{
1250
    int max_bus;
1251
    int bus;
1252

    
1253
    max_bus = drive_get_max_bus(IF_SCSI);
1254
    for (bus = 0; bus <= max_bus; bus++) {
1255
        pci_create_simple(pci_bus, -1, "lsi53c895a");
1256
    }
1257
}
1258

    
1259
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1260
{
1261
    DeviceState *dev;
1262
    SysBusDevice *d;
1263
    unsigned int i;
1264

    
1265
    if (kvm_irqchip_in_kernel()) {
1266
        dev = qdev_create(NULL, "kvm-ioapic");
1267
    } else {
1268
        dev = qdev_create(NULL, "ioapic");
1269
    }
1270
    if (parent_name) {
1271
        object_property_add_child(object_resolve_path(parent_name, NULL),
1272
                                  "ioapic", OBJECT(dev), NULL);
1273
    }
1274
    qdev_init_nofail(dev);
1275
    d = SYS_BUS_DEVICE(dev);
1276
    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1277

    
1278
    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1279
        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1280
    }
1281
}