Statistics
| Branch: | Revision:

root / hw / timer / arm_mptimer.c @ 2c9b15ca

History | View | Annotate | Download (8.5 kB)

1
/*
2
 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3
 *
4
 * Copyright (c) 2006-2007 CodeSourcery.
5
 * Copyright (c) 2011 Linaro Limited
6
 * Written by Paul Brook, Peter Maydell
7
 *
8
 * This program is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU General Public License
10
 * as published by the Free Software Foundation; either version
11
 * 2 of the License, or (at your option) any later version.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License along
19
 * with this program; if not, see <http://www.gnu.org/licenses/>.
20
 */
21

    
22
#include "hw/sysbus.h"
23
#include "qemu/timer.h"
24

    
25
/* This device implements the per-cpu private timer and watchdog block
26
 * which is used in both the ARM11MPCore and Cortex-A9MP.
27
 */
28

    
29
#define MAX_CPUS 4
30

    
31
/* State of a single timer or watchdog block */
32
typedef struct {
33
    uint32_t count;
34
    uint32_t load;
35
    uint32_t control;
36
    uint32_t status;
37
    int64_t tick;
38
    QEMUTimer *timer;
39
    qemu_irq irq;
40
    MemoryRegion iomem;
41
} TimerBlock;
42

    
43
typedef struct {
44
    SysBusDevice busdev;
45
    uint32_t num_cpu;
46
    TimerBlock timerblock[MAX_CPUS];
47
    MemoryRegion iomem;
48
} ARMMPTimerState;
49

    
50
static inline int get_current_cpu(ARMMPTimerState *s)
51
{
52
    CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
53

    
54
    if (cpu_single_cpu->cpu_index >= s->num_cpu) {
55
        hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
56
                 s->num_cpu, cpu_single_cpu->cpu_index);
57
    }
58
    return cpu_single_cpu->cpu_index;
59
}
60

    
61
static inline void timerblock_update_irq(TimerBlock *tb)
62
{
63
    qemu_set_irq(tb->irq, tb->status);
64
}
65

    
66
/* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
67
static inline uint32_t timerblock_scale(TimerBlock *tb)
68
{
69
    return (((tb->control >> 8) & 0xff) + 1) * 10;
70
}
71

    
72
static void timerblock_reload(TimerBlock *tb, int restart)
73
{
74
    if (tb->count == 0) {
75
        return;
76
    }
77
    if (restart) {
78
        tb->tick = qemu_get_clock_ns(vm_clock);
79
    }
80
    tb->tick += (int64_t)tb->count * timerblock_scale(tb);
81
    qemu_mod_timer(tb->timer, tb->tick);
82
}
83

    
84
static void timerblock_tick(void *opaque)
85
{
86
    TimerBlock *tb = (TimerBlock *)opaque;
87
    tb->status = 1;
88
    if (tb->control & 2) {
89
        tb->count = tb->load;
90
        timerblock_reload(tb, 0);
91
    } else {
92
        tb->count = 0;
93
    }
94
    timerblock_update_irq(tb);
95
}
96

    
97
static uint64_t timerblock_read(void *opaque, hwaddr addr,
98
                                unsigned size)
99
{
100
    TimerBlock *tb = (TimerBlock *)opaque;
101
    int64_t val;
102
    switch (addr) {
103
    case 0: /* Load */
104
        return tb->load;
105
    case 4: /* Counter.  */
106
        if (((tb->control & 1) == 0) || (tb->count == 0)) {
107
            return 0;
108
        }
109
        /* Slow and ugly, but hopefully won't happen too often.  */
110
        val = tb->tick - qemu_get_clock_ns(vm_clock);
111
        val /= timerblock_scale(tb);
112
        if (val < 0) {
113
            val = 0;
114
        }
115
        return val;
116
    case 8: /* Control.  */
117
        return tb->control;
118
    case 12: /* Interrupt status.  */
119
        return tb->status;
120
    default:
121
        return 0;
122
    }
123
}
124

    
125
static void timerblock_write(void *opaque, hwaddr addr,
126
                             uint64_t value, unsigned size)
127
{
128
    TimerBlock *tb = (TimerBlock *)opaque;
129
    int64_t old;
130
    switch (addr) {
131
    case 0: /* Load */
132
        tb->load = value;
133
        /* Fall through.  */
134
    case 4: /* Counter.  */
135
        if ((tb->control & 1) && tb->count) {
136
            /* Cancel the previous timer.  */
137
            qemu_del_timer(tb->timer);
138
        }
139
        tb->count = value;
140
        if (tb->control & 1) {
141
            timerblock_reload(tb, 1);
142
        }
143
        break;
144
    case 8: /* Control.  */
145
        old = tb->control;
146
        tb->control = value;
147
        if (((old & 1) == 0) && (value & 1)) {
148
            if (tb->count == 0 && (tb->control & 2)) {
149
                tb->count = tb->load;
150
            }
151
            timerblock_reload(tb, 1);
152
        }
153
        break;
154
    case 12: /* Interrupt status.  */
155
        tb->status &= ~value;
156
        timerblock_update_irq(tb);
157
        break;
158
    }
159
}
160

    
161
/* Wrapper functions to implement the "read timer/watchdog for
162
 * the current CPU" memory regions.
163
 */
164
static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
165
                                   unsigned size)
166
{
167
    ARMMPTimerState *s = (ARMMPTimerState *)opaque;
168
    int id = get_current_cpu(s);
169
    return timerblock_read(&s->timerblock[id], addr, size);
170
}
171

    
172
static void arm_thistimer_write(void *opaque, hwaddr addr,
173
                                uint64_t value, unsigned size)
174
{
175
    ARMMPTimerState *s = (ARMMPTimerState *)opaque;
176
    int id = get_current_cpu(s);
177
    timerblock_write(&s->timerblock[id], addr, value, size);
178
}
179

    
180
static const MemoryRegionOps arm_thistimer_ops = {
181
    .read = arm_thistimer_read,
182
    .write = arm_thistimer_write,
183
    .valid = {
184
        .min_access_size = 4,
185
        .max_access_size = 4,
186
    },
187
    .endianness = DEVICE_NATIVE_ENDIAN,
188
};
189

    
190
static const MemoryRegionOps timerblock_ops = {
191
    .read = timerblock_read,
192
    .write = timerblock_write,
193
    .valid = {
194
        .min_access_size = 4,
195
        .max_access_size = 4,
196
    },
197
    .endianness = DEVICE_NATIVE_ENDIAN,
198
};
199

    
200
static void timerblock_reset(TimerBlock *tb)
201
{
202
    tb->count = 0;
203
    tb->load = 0;
204
    tb->control = 0;
205
    tb->status = 0;
206
    tb->tick = 0;
207
    if (tb->timer) {
208
        qemu_del_timer(tb->timer);
209
    }
210
}
211

    
212
static void arm_mptimer_reset(DeviceState *dev)
213
{
214
    ARMMPTimerState *s =
215
        FROM_SYSBUS(ARMMPTimerState, SYS_BUS_DEVICE(dev));
216
    int i;
217
    for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
218
        timerblock_reset(&s->timerblock[i]);
219
    }
220
}
221

    
222
static int arm_mptimer_init(SysBusDevice *dev)
223
{
224
    ARMMPTimerState *s = FROM_SYSBUS(ARMMPTimerState, dev);
225
    int i;
226
    if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
227
        hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
228
    }
229
    /* We implement one timer block per CPU, and expose multiple MMIO regions:
230
     *  * region 0 is "timer for this core"
231
     *  * region 1 is "timer for core 0"
232
     *  * region 2 is "timer for core 1"
233
     * and so on.
234
     * The outgoing interrupt lines are
235
     *  * timer for core 0
236
     *  * timer for core 1
237
     * and so on.
238
     */
239
    memory_region_init_io(&s->iomem, NULL, &arm_thistimer_ops, s,
240
                          "arm_mptimer_timer", 0x20);
241
    sysbus_init_mmio(dev, &s->iomem);
242
    for (i = 0; i < s->num_cpu; i++) {
243
        TimerBlock *tb = &s->timerblock[i];
244
        tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
245
        sysbus_init_irq(dev, &tb->irq);
246
        memory_region_init_io(&tb->iomem, NULL, &timerblock_ops, tb,
247
                              "arm_mptimer_timerblock", 0x20);
248
        sysbus_init_mmio(dev, &tb->iomem);
249
    }
250

    
251
    return 0;
252
}
253

    
254
static const VMStateDescription vmstate_timerblock = {
255
    .name = "arm_mptimer_timerblock",
256
    .version_id = 2,
257
    .minimum_version_id = 2,
258
    .fields = (VMStateField[]) {
259
        VMSTATE_UINT32(count, TimerBlock),
260
        VMSTATE_UINT32(load, TimerBlock),
261
        VMSTATE_UINT32(control, TimerBlock),
262
        VMSTATE_UINT32(status, TimerBlock),
263
        VMSTATE_INT64(tick, TimerBlock),
264
        VMSTATE_TIMER(timer, TimerBlock),
265
        VMSTATE_END_OF_LIST()
266
    }
267
};
268

    
269
static const VMStateDescription vmstate_arm_mptimer = {
270
    .name = "arm_mptimer",
271
    .version_id = 2,
272
    .minimum_version_id = 2,
273
    .fields = (VMStateField[]) {
274
        VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
275
                                     2, vmstate_timerblock, TimerBlock),
276
        VMSTATE_END_OF_LIST()
277
    }
278
};
279

    
280
static Property arm_mptimer_properties[] = {
281
    DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
282
    DEFINE_PROP_END_OF_LIST()
283
};
284

    
285
static void arm_mptimer_class_init(ObjectClass *klass, void *data)
286
{
287
    DeviceClass *dc = DEVICE_CLASS(klass);
288
    SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
289

    
290
    sbc->init = arm_mptimer_init;
291
    dc->vmsd = &vmstate_arm_mptimer;
292
    dc->reset = arm_mptimer_reset;
293
    dc->no_user = 1;
294
    dc->props = arm_mptimer_properties;
295
}
296

    
297
static const TypeInfo arm_mptimer_info = {
298
    .name          = "arm_mptimer",
299
    .parent        = TYPE_SYS_BUS_DEVICE,
300
    .instance_size = sizeof(ARMMPTimerState),
301
    .class_init    = arm_mptimer_class_init,
302
};
303

    
304
static void arm_mptimer_register_types(void)
305
{
306
    type_register_static(&arm_mptimer_info);
307
}
308

    
309
type_init(arm_mptimer_register_types)