Statistics
| Branch: | Revision:

root / hw / ppc / spapr.c @ 2cf3eb6d

History | View | Annotate | Download (30.6 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "elf.h"
30
#include "net/net.h"
31
#include "sysemu/blockdev.h"
32
#include "sysemu/cpus.h"
33
#include "sysemu/kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/ppc/spapr.h"
41
#include "hw/ppc/spapr_vio.h"
42
#include "hw/pci-host/spapr.h"
43
#include "hw/ppc/xics.h"
44
#include "hw/pci/msi.h"
45

    
46
#include "sysemu/kvm.h"
47
#include "kvm_ppc.h"
48
#include "hw/pci/pci.h"
49

    
50
#include "exec/address-spaces.h"
51
#include "hw/usb.h"
52
#include "qemu/config-file.h"
53

    
54
#include <libfdt.h>
55

    
56
/* SLOF memory layout:
57
 *
58
 * SLOF raw image loaded at 0, copies its romfs right below the flat
59
 * device-tree, then position SLOF itself 31M below that
60
 *
61
 * So we set FW_OVERHEAD to 40MB which should account for all of that
62
 * and more
63
 *
64
 * We load our kernel at 4M, leaving space for SLOF initial image
65
 */
66
#define FDT_MAX_SIZE            0x10000
67
#define RTAS_MAX_SIZE           0x10000
68
#define FW_MAX_SIZE             0x400000
69
#define FW_FILE_NAME            "slof.bin"
70
#define FW_OVERHEAD             0x2800000
71
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
72

    
73
#define MIN_RMA_SLOF            128UL
74

    
75
#define TIMEBASE_FREQ           512000000ULL
76

    
77
#define MAX_CPUS                256
78
#define XICS_IRQS               1024
79

    
80
#define PHANDLE_XICP            0x00001111
81

    
82
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
83

    
84
sPAPREnvironment *spapr;
85

    
86
int spapr_allocate_irq(int hint, bool lsi)
87
{
88
    int irq;
89

    
90
    if (hint) {
91
        irq = hint;
92
        /* FIXME: we should probably check for collisions somehow */
93
    } else {
94
        irq = spapr->next_irq++;
95
    }
96

    
97
    /* Configure irq type */
98
    if (!xics_get_qirq(spapr->icp, irq)) {
99
        return 0;
100
    }
101

    
102
    xics_set_irq_type(spapr->icp, irq, lsi);
103

    
104
    return irq;
105
}
106

    
107
/* Allocate block of consequtive IRQs, returns a number of the first */
108
int spapr_allocate_irq_block(int num, bool lsi)
109
{
110
    int first = -1;
111
    int i;
112

    
113
    for (i = 0; i < num; ++i) {
114
        int irq;
115

    
116
        irq = spapr_allocate_irq(0, lsi);
117
        if (!irq) {
118
            return -1;
119
        }
120

    
121
        if (0 == i) {
122
            first = irq;
123
        }
124

    
125
        /* If the above doesn't create a consecutive block then that's
126
         * an internal bug */
127
        assert(irq == (first + i));
128
    }
129

    
130
    return first;
131
}
132

    
133
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
134
{
135
    int ret = 0, offset;
136
    CPUPPCState *env;
137
    CPUState *cpu;
138
    char cpu_model[32];
139
    int smt = kvmppc_smt_threads();
140
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
141

    
142
    assert(spapr->cpu_model);
143

    
144
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
145
        cpu = CPU(ppc_env_get_cpu(env));
146
        uint32_t associativity[] = {cpu_to_be32(0x5),
147
                                    cpu_to_be32(0x0),
148
                                    cpu_to_be32(0x0),
149
                                    cpu_to_be32(0x0),
150
                                    cpu_to_be32(cpu->numa_node),
151
                                    cpu_to_be32(cpu->cpu_index)};
152

    
153
        if ((cpu->cpu_index % smt) != 0) {
154
            continue;
155
        }
156

    
157
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
158
                 cpu->cpu_index);
159

    
160
        offset = fdt_path_offset(fdt, cpu_model);
161
        if (offset < 0) {
162
            return offset;
163
        }
164

    
165
        if (nb_numa_nodes > 1) {
166
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
167
                              sizeof(associativity));
168
            if (ret < 0) {
169
                return ret;
170
            }
171
        }
172

    
173
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
174
                          pft_size_prop, sizeof(pft_size_prop));
175
        if (ret < 0) {
176
            return ret;
177
        }
178
    }
179
    return ret;
180
}
181

    
182

    
183
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
184
                                     size_t maxsize)
185
{
186
    size_t maxcells = maxsize / sizeof(uint32_t);
187
    int i, j, count;
188
    uint32_t *p = prop;
189

    
190
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
191
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
192

    
193
        if (!sps->page_shift) {
194
            break;
195
        }
196
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
197
            if (sps->enc[count].page_shift == 0) {
198
                break;
199
            }
200
        }
201
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
202
            break;
203
        }
204
        *(p++) = cpu_to_be32(sps->page_shift);
205
        *(p++) = cpu_to_be32(sps->slb_enc);
206
        *(p++) = cpu_to_be32(count);
207
        for (j = 0; j < count; j++) {
208
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
209
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
210
        }
211
    }
212

    
213
    return (p - prop) * sizeof(uint32_t);
214
}
215

    
216
#define _FDT(exp) \
217
    do { \
218
        int ret = (exp);                                           \
219
        if (ret < 0) {                                             \
220
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
221
                    #exp, fdt_strerror(ret));                      \
222
            exit(1);                                               \
223
        }                                                          \
224
    } while (0)
225

    
226

    
227
static void *spapr_create_fdt_skel(const char *cpu_model,
228
                                   hwaddr initrd_base,
229
                                   hwaddr initrd_size,
230
                                   hwaddr kernel_size,
231
                                   const char *boot_device,
232
                                   const char *kernel_cmdline,
233
                                   uint32_t epow_irq)
234
{
235
    void *fdt;
236
    CPUPPCState *env;
237
    uint32_t start_prop = cpu_to_be32(initrd_base);
238
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
239
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
240
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
241
    char qemu_hypertas_prop[] = "hcall-memop1";
242
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
243
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
244
    char *modelname;
245
    int i, smt = kvmppc_smt_threads();
246
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
247

    
248
    fdt = g_malloc0(FDT_MAX_SIZE);
249
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
250

    
251
    if (kernel_size) {
252
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
253
    }
254
    if (initrd_size) {
255
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
256
    }
257
    _FDT((fdt_finish_reservemap(fdt)));
258

    
259
    /* Root node */
260
    _FDT((fdt_begin_node(fdt, "")));
261
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
262
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
263
    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
264

    
265
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
266
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
267

    
268
    /* /chosen */
269
    _FDT((fdt_begin_node(fdt, "chosen")));
270

    
271
    /* Set Form1_affinity */
272
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
273

    
274
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
275
    _FDT((fdt_property(fdt, "linux,initrd-start",
276
                       &start_prop, sizeof(start_prop))));
277
    _FDT((fdt_property(fdt, "linux,initrd-end",
278
                       &end_prop, sizeof(end_prop))));
279
    if (kernel_size) {
280
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
281
                              cpu_to_be64(kernel_size) };
282

    
283
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
284
    }
285
    if (boot_device) {
286
        _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
287
    }
288
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
289
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
290
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
291

    
292
    _FDT((fdt_end_node(fdt)));
293

    
294
    /* cpus */
295
    _FDT((fdt_begin_node(fdt, "cpus")));
296

    
297
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
298
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
299

    
300
    modelname = g_strdup(cpu_model);
301

    
302
    for (i = 0; i < strlen(modelname); i++) {
303
        modelname[i] = toupper(modelname[i]);
304
    }
305

    
306
    /* This is needed during FDT finalization */
307
    spapr->cpu_model = g_strdup(modelname);
308

    
309
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
310
        CPUState *cpu = CPU(ppc_env_get_cpu(env));
311
        int index = cpu->cpu_index;
312
        uint32_t servers_prop[smp_threads];
313
        uint32_t gservers_prop[smp_threads * 2];
314
        char *nodename;
315
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
316
                           0xffffffff, 0xffffffff};
317
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
318
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
319
        uint32_t page_sizes_prop[64];
320
        size_t page_sizes_prop_size;
321

    
322
        if ((index % smt) != 0) {
323
            continue;
324
        }
325

    
326
        nodename = g_strdup_printf("%s@%x", modelname, index);
327

    
328
        _FDT((fdt_begin_node(fdt, nodename)));
329

    
330
        g_free(nodename);
331

    
332
        _FDT((fdt_property_cell(fdt, "reg", index)));
333
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
334

    
335
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
336
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
337
                                env->dcache_line_size)));
338
        _FDT((fdt_property_cell(fdt, "icache-block-size",
339
                                env->icache_line_size)));
340
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
341
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
342
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
343
        _FDT((fdt_property_string(fdt, "status", "okay")));
344
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
345

    
346
        /* Build interrupt servers and gservers properties */
347
        for (i = 0; i < smp_threads; i++) {
348
            servers_prop[i] = cpu_to_be32(index + i);
349
            /* Hack, direct the group queues back to cpu 0 */
350
            gservers_prop[i*2] = cpu_to_be32(index + i);
351
            gservers_prop[i*2 + 1] = 0;
352
        }
353
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
354
                           servers_prop, sizeof(servers_prop))));
355
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
356
                           gservers_prop, sizeof(gservers_prop))));
357

    
358
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
359
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
360
                               segs, sizeof(segs))));
361
        }
362

    
363
        /* Advertise VMX/VSX (vector extensions) if available
364
         *   0 / no property == no vector extensions
365
         *   1               == VMX / Altivec available
366
         *   2               == VSX available */
367
        if (env->insns_flags & PPC_ALTIVEC) {
368
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
369

    
370
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
371
        }
372

    
373
        /* Advertise DFP (Decimal Floating Point) if available
374
         *   0 / no property == no DFP
375
         *   1               == DFP available */
376
        if (env->insns_flags2 & PPC2_DFP) {
377
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
378
        }
379

    
380
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
381
                                                      sizeof(page_sizes_prop));
382
        if (page_sizes_prop_size) {
383
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
384
                               page_sizes_prop, page_sizes_prop_size)));
385
        }
386

    
387
        _FDT((fdt_end_node(fdt)));
388
    }
389

    
390
    g_free(modelname);
391

    
392
    _FDT((fdt_end_node(fdt)));
393

    
394
    /* RTAS */
395
    _FDT((fdt_begin_node(fdt, "rtas")));
396

    
397
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
398
                       sizeof(hypertas_prop))));
399
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
400
                       sizeof(qemu_hypertas_prop))));
401

    
402
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
403
        refpoints, sizeof(refpoints))));
404

    
405
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
406

    
407
    _FDT((fdt_end_node(fdt)));
408

    
409
    /* interrupt controller */
410
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
411

    
412
    _FDT((fdt_property_string(fdt, "device_type",
413
                              "PowerPC-External-Interrupt-Presentation")));
414
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
415
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
416
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
417
                       interrupt_server_ranges_prop,
418
                       sizeof(interrupt_server_ranges_prop))));
419
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
420
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
421
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
422

    
423
    _FDT((fdt_end_node(fdt)));
424

    
425
    /* vdevice */
426
    _FDT((fdt_begin_node(fdt, "vdevice")));
427

    
428
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
429
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
430
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
431
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
432
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
433
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
434

    
435
    _FDT((fdt_end_node(fdt)));
436

    
437
    /* event-sources */
438
    spapr_events_fdt_skel(fdt, epow_irq);
439

    
440
    _FDT((fdt_end_node(fdt))); /* close root node */
441
    _FDT((fdt_finish(fdt)));
442

    
443
    return fdt;
444
}
445

    
446
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
447
{
448
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
449
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
450
                                cpu_to_be32(0x0)};
451
    char mem_name[32];
452
    hwaddr node0_size, mem_start;
453
    uint64_t mem_reg_property[2];
454
    int i, off;
455

    
456
    /* memory node(s) */
457
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
458
    if (spapr->rma_size > node0_size) {
459
        spapr->rma_size = node0_size;
460
    }
461

    
462
    /* RMA */
463
    mem_reg_property[0] = 0;
464
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
465
    off = fdt_add_subnode(fdt, 0, "memory@0");
466
    _FDT(off);
467
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
468
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
469
                      sizeof(mem_reg_property))));
470
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
471
                      sizeof(associativity))));
472

    
473
    /* RAM: Node 0 */
474
    if (node0_size > spapr->rma_size) {
475
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
476
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
477

    
478
        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
479
        off = fdt_add_subnode(fdt, 0, mem_name);
480
        _FDT(off);
481
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
482
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
483
                          sizeof(mem_reg_property))));
484
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
485
                          sizeof(associativity))));
486
    }
487

    
488
    /* RAM: Node 1 and beyond */
489
    mem_start = node0_size;
490
    for (i = 1; i < nb_numa_nodes; i++) {
491
        mem_reg_property[0] = cpu_to_be64(mem_start);
492
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
493
        associativity[3] = associativity[4] = cpu_to_be32(i);
494
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
495
        off = fdt_add_subnode(fdt, 0, mem_name);
496
        _FDT(off);
497
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
498
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
499
                          sizeof(mem_reg_property))));
500
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
501
                          sizeof(associativity))));
502
        mem_start += node_mem[i];
503
    }
504

    
505
    return 0;
506
}
507

    
508
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
509
                               hwaddr fdt_addr,
510
                               hwaddr rtas_addr,
511
                               hwaddr rtas_size)
512
{
513
    int ret;
514
    void *fdt;
515
    sPAPRPHBState *phb;
516

    
517
    fdt = g_malloc(FDT_MAX_SIZE);
518

    
519
    /* open out the base tree into a temp buffer for the final tweaks */
520
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
521

    
522
    ret = spapr_populate_memory(spapr, fdt);
523
    if (ret < 0) {
524
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
525
        exit(1);
526
    }
527

    
528
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
529
    if (ret < 0) {
530
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
531
        exit(1);
532
    }
533

    
534
    QLIST_FOREACH(phb, &spapr->phbs, list) {
535
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
536
    }
537

    
538
    if (ret < 0) {
539
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
540
        exit(1);
541
    }
542

    
543
    /* RTAS */
544
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
545
    if (ret < 0) {
546
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
547
    }
548

    
549
    /* Advertise NUMA via ibm,associativity */
550
    ret = spapr_fixup_cpu_dt(fdt, spapr);
551
    if (ret < 0) {
552
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
553
    }
554

    
555
    if (!spapr->has_graphics) {
556
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
557
    }
558

    
559
    _FDT((fdt_pack(fdt)));
560

    
561
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
562
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
563
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
564
        exit(1);
565
    }
566

    
567
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
568

    
569
    g_free(fdt);
570
}
571

    
572
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
573
{
574
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
575
}
576

    
577
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
578
{
579
    CPUPPCState *env = &cpu->env;
580

    
581
    if (msr_pr) {
582
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
583
        env->gpr[3] = H_PRIVILEGE;
584
    } else {
585
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
586
    }
587
}
588

    
589
static void spapr_reset_htab(sPAPREnvironment *spapr)
590
{
591
    long shift;
592

    
593
    /* allocate hash page table.  For now we always make this 16mb,
594
     * later we should probably make it scale to the size of guest
595
     * RAM */
596

    
597
    shift = kvmppc_reset_htab(spapr->htab_shift);
598

    
599
    if (shift > 0) {
600
        /* Kernel handles htab, we don't need to allocate one */
601
        spapr->htab_shift = shift;
602
    } else {
603
        if (!spapr->htab) {
604
            /* Allocate an htab if we don't yet have one */
605
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
606
        }
607

    
608
        /* And clear it */
609
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
610
    }
611

    
612
    /* Update the RMA size if necessary */
613
    if (spapr->vrma_adjust) {
614
        spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
615
    }
616
}
617

    
618
static void ppc_spapr_reset(void)
619
{
620
    CPUState *first_cpu_cpu;
621

    
622
    /* Reset the hash table & recalc the RMA */
623
    spapr_reset_htab(spapr);
624

    
625
    qemu_devices_reset();
626

    
627
    /* Load the fdt */
628
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
629
                       spapr->rtas_size);
630

    
631
    /* Set up the entry state */
632
    first_cpu_cpu = ENV_GET_CPU(first_cpu);
633
    first_cpu->gpr[3] = spapr->fdt_addr;
634
    first_cpu->gpr[5] = 0;
635
    first_cpu_cpu->halted = 0;
636
    first_cpu->nip = spapr->entry_point;
637

    
638
}
639

    
640
static void spapr_cpu_reset(void *opaque)
641
{
642
    PowerPCCPU *cpu = opaque;
643
    CPUState *cs = CPU(cpu);
644
    CPUPPCState *env = &cpu->env;
645

    
646
    cpu_reset(cs);
647

    
648
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
649
     * reset code and the rest are explicitly started up by the guest
650
     * using an RTAS call */
651
    cs->halted = 1;
652

    
653
    env->spr[SPR_HIOR] = 0;
654

    
655
    env->external_htab = spapr->htab;
656
    env->htab_base = -1;
657
    env->htab_mask = HTAB_SIZE(spapr) - 1;
658
    env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
659
        (spapr->htab_shift - 18);
660
}
661

    
662
static void spapr_create_nvram(sPAPREnvironment *spapr)
663
{
664
    QemuOpts *machine_opts;
665
    DeviceState *dev;
666

    
667
    dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
668

    
669
    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
670
    if (machine_opts) {
671
        const char *drivename;
672

    
673
        drivename = qemu_opt_get(machine_opts, "nvram");
674
        if (drivename) {
675
            BlockDriverState *bs;
676

    
677
            bs = bdrv_find(drivename);
678
            if (!bs) {
679
                fprintf(stderr, "No such block device \"%s\" for nvram\n",
680
                        drivename);
681
                exit(1);
682
            }
683
            qdev_prop_set_drive_nofail(dev, "drive", bs);
684
        }
685
    }
686

    
687
    qdev_init_nofail(dev);
688

    
689
    spapr->nvram = (struct sPAPRNVRAM *)dev;
690
}
691

    
692
/* Returns whether we want to use VGA or not */
693
static int spapr_vga_init(PCIBus *pci_bus)
694
{
695
    switch (vga_interface_type) {
696
    case VGA_NONE:
697
    case VGA_STD:
698
        return pci_vga_init(pci_bus) != NULL;
699
    default:
700
        fprintf(stderr, "This vga model is not supported,"
701
                "currently it only supports -vga std\n");
702
        exit(0);
703
        break;
704
    }
705
}
706

    
707
/* pSeries LPAR / sPAPR hardware init */
708
static void ppc_spapr_init(QEMUMachineInitArgs *args)
709
{
710
    ram_addr_t ram_size = args->ram_size;
711
    const char *cpu_model = args->cpu_model;
712
    const char *kernel_filename = args->kernel_filename;
713
    const char *kernel_cmdline = args->kernel_cmdline;
714
    const char *initrd_filename = args->initrd_filename;
715
    const char *boot_device = args->boot_device;
716
    PowerPCCPU *cpu;
717
    CPUPPCState *env;
718
    PCIHostState *phb;
719
    int i;
720
    MemoryRegion *sysmem = get_system_memory();
721
    MemoryRegion *ram = g_new(MemoryRegion, 1);
722
    hwaddr rma_alloc_size;
723
    uint32_t initrd_base = 0;
724
    long kernel_size = 0, initrd_size = 0;
725
    long load_limit, rtas_limit, fw_size;
726
    char *filename;
727

    
728
    msi_supported = true;
729

    
730
    spapr = g_malloc0(sizeof(*spapr));
731
    QLIST_INIT(&spapr->phbs);
732

    
733
    cpu_ppc_hypercall = emulate_spapr_hypercall;
734

    
735
    /* Allocate RMA if necessary */
736
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
737

    
738
    if (rma_alloc_size == -1) {
739
        hw_error("qemu: Unable to create RMA\n");
740
        exit(1);
741
    }
742

    
743
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
744
        spapr->rma_size = rma_alloc_size;
745
    } else {
746
        spapr->rma_size = ram_size;
747

    
748
        /* With KVM, we don't actually know whether KVM supports an
749
         * unbounded RMA (PR KVM) or is limited by the hash table size
750
         * (HV KVM using VRMA), so we always assume the latter
751
         *
752
         * In that case, we also limit the initial allocations for RTAS
753
         * etc... to 256M since we have no way to know what the VRMA size
754
         * is going to be as it depends on the size of the hash table
755
         * isn't determined yet.
756
         */
757
        if (kvm_enabled()) {
758
            spapr->vrma_adjust = 1;
759
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
760
        }
761
    }
762

    
763
    /* We place the device tree and RTAS just below either the top of the RMA,
764
     * or just below 2GB, whichever is lowere, so that it can be
765
     * processed with 32-bit real mode code if necessary */
766
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
767
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
768
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
769
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
770

    
771
    /* We aim for a hash table of size 1/128 the size of RAM.  The
772
     * normal rule of thumb is 1/64 the size of RAM, but that's much
773
     * more than needed for the Linux guests we support. */
774
    spapr->htab_shift = 18; /* Minimum architected size */
775
    while (spapr->htab_shift <= 46) {
776
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
777
            break;
778
        }
779
        spapr->htab_shift++;
780
    }
781

    
782
    /* Set up Interrupt Controller before we create the VCPUs */
783
    spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
784
                                  XICS_IRQS);
785
    spapr->next_irq = XICS_IRQ_BASE;
786

    
787
    /* init CPUs */
788
    if (cpu_model == NULL) {
789
        cpu_model = kvm_enabled() ? "host" : "POWER7";
790
    }
791
    for (i = 0; i < smp_cpus; i++) {
792
        cpu = cpu_ppc_init(cpu_model);
793
        if (cpu == NULL) {
794
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
795
            exit(1);
796
        }
797
        env = &cpu->env;
798

    
799
        xics_cpu_setup(spapr->icp, cpu);
800

    
801
        /* Set time-base frequency to 512 MHz */
802
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
803

    
804
        /* PAPR always has exception vectors in RAM not ROM. To ensure this,
805
         * MSR[IP] should never be set.
806
         */
807
        env->msr_mask &= ~(1 << 6);
808

    
809
        /* Tell KVM that we're in PAPR mode */
810
        if (kvm_enabled()) {
811
            kvmppc_set_papr(cpu);
812
        }
813

    
814
        qemu_register_reset(spapr_cpu_reset, cpu);
815
    }
816

    
817
    /* allocate RAM */
818
    spapr->ram_limit = ram_size;
819
    if (spapr->ram_limit > rma_alloc_size) {
820
        ram_addr_t nonrma_base = rma_alloc_size;
821
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
822

    
823
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
824
        vmstate_register_ram_global(ram);
825
        memory_region_add_subregion(sysmem, nonrma_base, ram);
826
    }
827

    
828
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
829
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
830
                                           rtas_limit - spapr->rtas_addr);
831
    if (spapr->rtas_size < 0) {
832
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
833
        exit(1);
834
    }
835
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
836
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
837
                 spapr->rtas_size, RTAS_MAX_SIZE);
838
        exit(1);
839
    }
840
    g_free(filename);
841

    
842
    /* Set up EPOW events infrastructure */
843
    spapr_events_init(spapr);
844

    
845
    /* Set up IOMMU */
846
    spapr_iommu_init();
847

    
848
    /* Set up VIO bus */
849
    spapr->vio_bus = spapr_vio_bus_init();
850

    
851
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
852
        if (serial_hds[i]) {
853
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
854
        }
855
    }
856

    
857
    /* We always have at least the nvram device on VIO */
858
    spapr_create_nvram(spapr);
859

    
860
    /* Set up PCI */
861
    spapr_pci_rtas_init();
862

    
863
    phb = spapr_create_phb(spapr, 0);
864

    
865
    for (i = 0; i < nb_nics; i++) {
866
        NICInfo *nd = &nd_table[i];
867

    
868
        if (!nd->model) {
869
            nd->model = g_strdup("ibmveth");
870
        }
871

    
872
        if (strcmp(nd->model, "ibmveth") == 0) {
873
            spapr_vlan_create(spapr->vio_bus, nd);
874
        } else {
875
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
876
        }
877
    }
878

    
879
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
880
        spapr_vscsi_create(spapr->vio_bus);
881
    }
882

    
883
    /* Graphics */
884
    if (spapr_vga_init(phb->bus)) {
885
        spapr->has_graphics = true;
886
    }
887

    
888
    if (usb_enabled(spapr->has_graphics)) {
889
        pci_create_simple(phb->bus, -1, "pci-ohci");
890
        if (spapr->has_graphics) {
891
            usbdevice_create("keyboard");
892
            usbdevice_create("mouse");
893
        }
894
    }
895

    
896
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
897
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
898
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
899
        exit(1);
900
    }
901

    
902
    if (kernel_filename) {
903
        uint64_t lowaddr = 0;
904

    
905
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
906
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
907
        if (kernel_size < 0) {
908
            kernel_size = load_image_targphys(kernel_filename,
909
                                              KERNEL_LOAD_ADDR,
910
                                              load_limit - KERNEL_LOAD_ADDR);
911
        }
912
        if (kernel_size < 0) {
913
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
914
                    kernel_filename);
915
            exit(1);
916
        }
917

    
918
        /* load initrd */
919
        if (initrd_filename) {
920
            /* Try to locate the initrd in the gap between the kernel
921
             * and the firmware. Add a bit of space just in case
922
             */
923
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
924
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
925
                                              load_limit - initrd_base);
926
            if (initrd_size < 0) {
927
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
928
                        initrd_filename);
929
                exit(1);
930
            }
931
        } else {
932
            initrd_base = 0;
933
            initrd_size = 0;
934
        }
935
    }
936

    
937
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
938
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
939
    if (fw_size < 0) {
940
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
941
        exit(1);
942
    }
943
    g_free(filename);
944

    
945
    spapr->entry_point = 0x100;
946

    
947
    /* Prepare the device tree */
948
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
949
                                            initrd_base, initrd_size,
950
                                            kernel_size,
951
                                            boot_device, kernel_cmdline,
952
                                            spapr->epow_irq);
953
    assert(spapr->fdt_skel != NULL);
954
}
955

    
956
static QEMUMachine spapr_machine = {
957
    .name = "pseries",
958
    .desc = "pSeries Logical Partition (PAPR compliant)",
959
    .init = ppc_spapr_init,
960
    .reset = ppc_spapr_reset,
961
    .block_default_type = IF_SCSI,
962
    .max_cpus = MAX_CPUS,
963
    .no_parallel = 1,
964
    .boot_order = NULL,
965
};
966

    
967
static void spapr_machine_init(void)
968
{
969
    qemu_register_machine(&spapr_machine);
970
}
971

    
972
machine_init(spapr_machine_init);