Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 2fe80192

History | View | Annotate | Download (67.5 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 */
24

    
25
#include "hw.h"
26
#include "qemu-timer.h"
27
#include "usb.h"
28
#include "pci.h"
29
#include "monitor.h"
30
#include "trace.h"
31
#include "dma.h"
32

    
33
#define EHCI_DEBUG   0
34

    
35
#if EHCI_DEBUG
36
#define DPRINTF printf
37
#else
38
#define DPRINTF(...)
39
#endif
40

    
41
/* internal processing - reset HC to try and recover */
42
#define USB_RET_PROCERR   (-99)
43

    
44
#define MMIO_SIZE        0x1000
45

    
46
/* Capability Registers Base Address - section 2.2 */
47
#define CAPREGBASE       0x0000
48
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
49
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
50
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
51
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
52
#define EECP             HCCPARAMS + 1
53
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
54
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
55

    
56
#define OPREGBASE        0x0020        // Operational Registers Base Address
57

    
58
#define USBCMD           OPREGBASE + 0x0000
59
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
60
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
61
#define USBCMD_FLS       (3 << 2)      // Frame List Size
62
#define USBCMD_FLS_SH    2             // Frame List Size Shift
63
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
64
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
65
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
66
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
67
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
68
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
69
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
70
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
71

    
72
#define USBSTS           OPREGBASE + 0x0004
73
#define USBSTS_RO_MASK   0x0000003f
74
#define USBSTS_INT       (1 << 0)      // USB Interrupt
75
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
76
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
77
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
78
#define USBSTS_HSE       (1 << 4)      // Host System Error
79
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
80
#define USBSTS_HALT      (1 << 12)     // HC Halted
81
#define USBSTS_REC       (1 << 13)     // Reclamation
82
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
83
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
84

    
85
/*
86
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
87
 *  so no need to redefine here.
88
 */
89
#define USBINTR              OPREGBASE + 0x0008
90
#define USBINTR_MASK         0x0000003f
91

    
92
#define FRINDEX              OPREGBASE + 0x000c
93
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
94
#define PERIODICLISTBASE     OPREGBASE + 0x0014
95
#define ASYNCLISTADDR        OPREGBASE + 0x0018
96
#define ASYNCLISTADDR_MASK   0xffffffe0
97

    
98
#define CONFIGFLAG           OPREGBASE + 0x0040
99

    
100
#define PORTSC               (OPREGBASE + 0x0044)
101
#define PORTSC_BEGIN         PORTSC
102
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
103
/*
104
 * Bits that are reserved or are read-only are masked out of values
105
 * written to us by software
106
 */
107
#define PORTSC_RO_MASK       0x007001c0
108
#define PORTSC_RWC_MASK      0x0000002a
109
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
110
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
111
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
112
#define PORTSC_PTC           (15 << 16)   // Port Test Control
113
#define PORTSC_PTC_SH        16           // Port Test Control shift
114
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
115
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
116
#define PORTSC_POWNER        (1 << 13)    // Port Owner
117
#define PORTSC_PPOWER        (1 << 12)    // Port Power
118
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
119
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
120
#define PORTSC_PRESET        (1 << 8)     // Port Reset
121
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
122
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
123
#define PORTSC_OCC           (1 << 5)     // Over Current Change
124
#define PORTSC_OCA           (1 << 4)     // Over Current Active
125
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
126
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
127
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
128
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
129

    
130
#define FRAME_TIMER_FREQ 1000
131
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
132

    
133
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
134
#define NB_PORTS         6        // Number of downstream ports
135
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
136
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
137
#define MAX_QH           100      // Max allowable queue heads in a chain
138

    
139
/*  Internal periodic / asynchronous schedule state machine states
140
 */
141
typedef enum {
142
    EST_INACTIVE = 1000,
143
    EST_ACTIVE,
144
    EST_EXECUTING,
145
    EST_SLEEPING,
146
    /*  The following states are internal to the state machine function
147
    */
148
    EST_WAITLISTHEAD,
149
    EST_FETCHENTRY,
150
    EST_FETCHQH,
151
    EST_FETCHITD,
152
    EST_FETCHSITD,
153
    EST_ADVANCEQUEUE,
154
    EST_FETCHQTD,
155
    EST_EXECUTE,
156
    EST_WRITEBACK,
157
    EST_HORIZONTALQH
158
} EHCI_STATES;
159

    
160
/* macros for accessing fields within next link pointer entry */
161
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
162
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
163
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
164

    
165
/* link pointer types */
166
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
167
#define NLPTR_TYPE_QH            1     // queue head
168
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
169
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
170

    
171

    
172
/*  EHCI spec version 1.0 Section 3.3
173
 */
174
typedef struct EHCIitd {
175
    uint32_t next;
176

    
177
    uint32_t transact[8];
178
#define ITD_XACT_ACTIVE          (1 << 31)
179
#define ITD_XACT_DBERROR         (1 << 30)
180
#define ITD_XACT_BABBLE          (1 << 29)
181
#define ITD_XACT_XACTERR         (1 << 28)
182
#define ITD_XACT_LENGTH_MASK     0x0fff0000
183
#define ITD_XACT_LENGTH_SH       16
184
#define ITD_XACT_IOC             (1 << 15)
185
#define ITD_XACT_PGSEL_MASK      0x00007000
186
#define ITD_XACT_PGSEL_SH        12
187
#define ITD_XACT_OFFSET_MASK     0x00000fff
188

    
189
    uint32_t bufptr[7];
190
#define ITD_BUFPTR_MASK          0xfffff000
191
#define ITD_BUFPTR_SH            12
192
#define ITD_BUFPTR_EP_MASK       0x00000f00
193
#define ITD_BUFPTR_EP_SH         8
194
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
195
#define ITD_BUFPTR_DEVADDR_SH    0
196
#define ITD_BUFPTR_DIRECTION     (1 << 11)
197
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
198
#define ITD_BUFPTR_MAXPKT_SH     0
199
#define ITD_BUFPTR_MULT_MASK     0x00000003
200
#define ITD_BUFPTR_MULT_SH       0
201
} EHCIitd;
202

    
203
/*  EHCI spec version 1.0 Section 3.4
204
 */
205
typedef struct EHCIsitd {
206
    uint32_t next;                  // Standard next link pointer
207
    uint32_t epchar;
208
#define SITD_EPCHAR_IO              (1 << 31)
209
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
210
#define SITD_EPCHAR_PORTNUM_SH      24
211
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
212
#define SITD_EPCHAR_HUBADDR_SH      16
213
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
214
#define SITD_EPCHAR_EPNUM_SH        8
215
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
216

    
217
    uint32_t uframe;
218
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
219
#define SITD_UFRAME_CMASK_SH        8
220
#define SITD_UFRAME_SMASK_MASK      0x000000ff
221

    
222
    uint32_t results;
223
#define SITD_RESULTS_IOC              (1 << 31)
224
#define SITD_RESULTS_PGSEL            (1 << 30)
225
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
226
#define SITD_RESULTS_TYBYTES_SH       16
227
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
228
#define SITD_RESULTS_CPROGMASK_SH     8
229
#define SITD_RESULTS_ACTIVE           (1 << 7)
230
#define SITD_RESULTS_ERR              (1 << 6)
231
#define SITD_RESULTS_DBERR            (1 << 5)
232
#define SITD_RESULTS_BABBLE           (1 << 4)
233
#define SITD_RESULTS_XACTERR          (1 << 3)
234
#define SITD_RESULTS_MISSEDUF         (1 << 2)
235
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
236

    
237
    uint32_t bufptr[2];
238
#define SITD_BUFPTR_MASK              0xfffff000
239
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
240
#define SITD_BUFPTR_TPOS_MASK         0x00000018
241
#define SITD_BUFPTR_TPOS_SH           3
242
#define SITD_BUFPTR_TCNT_MASK         0x00000007
243

    
244
    uint32_t backptr;                 // Standard next link pointer
245
} EHCIsitd;
246

    
247
/*  EHCI spec version 1.0 Section 3.5
248
 */
249
typedef struct EHCIqtd {
250
    uint32_t next;                    // Standard next link pointer
251
    uint32_t altnext;                 // Standard next link pointer
252
    uint32_t token;
253
#define QTD_TOKEN_DTOGGLE             (1 << 31)
254
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
255
#define QTD_TOKEN_TBYTES_SH           16
256
#define QTD_TOKEN_IOC                 (1 << 15)
257
#define QTD_TOKEN_CPAGE_MASK          0x00007000
258
#define QTD_TOKEN_CPAGE_SH            12
259
#define QTD_TOKEN_CERR_MASK           0x00000c00
260
#define QTD_TOKEN_CERR_SH             10
261
#define QTD_TOKEN_PID_MASK            0x00000300
262
#define QTD_TOKEN_PID_SH              8
263
#define QTD_TOKEN_ACTIVE              (1 << 7)
264
#define QTD_TOKEN_HALT                (1 << 6)
265
#define QTD_TOKEN_DBERR               (1 << 5)
266
#define QTD_TOKEN_BABBLE              (1 << 4)
267
#define QTD_TOKEN_XACTERR             (1 << 3)
268
#define QTD_TOKEN_MISSEDUF            (1 << 2)
269
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
270
#define QTD_TOKEN_PING                (1 << 0)
271

    
272
    uint32_t bufptr[5];               // Standard buffer pointer
273
#define QTD_BUFPTR_MASK               0xfffff000
274
#define QTD_BUFPTR_SH                 12
275
} EHCIqtd;
276

    
277
/*  EHCI spec version 1.0 Section 3.6
278
 */
279
typedef struct EHCIqh {
280
    uint32_t next;                    // Standard next link pointer
281

    
282
    /* endpoint characteristics */
283
    uint32_t epchar;
284
#define QH_EPCHAR_RL_MASK             0xf0000000
285
#define QH_EPCHAR_RL_SH               28
286
#define QH_EPCHAR_C                   (1 << 27)
287
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
288
#define QH_EPCHAR_MPLEN_SH            16
289
#define QH_EPCHAR_H                   (1 << 15)
290
#define QH_EPCHAR_DTC                 (1 << 14)
291
#define QH_EPCHAR_EPS_MASK            0x00003000
292
#define QH_EPCHAR_EPS_SH              12
293
#define EHCI_QH_EPS_FULL              0
294
#define EHCI_QH_EPS_LOW               1
295
#define EHCI_QH_EPS_HIGH              2
296
#define EHCI_QH_EPS_RESERVED          3
297

    
298
#define QH_EPCHAR_EP_MASK             0x00000f00
299
#define QH_EPCHAR_EP_SH               8
300
#define QH_EPCHAR_I                   (1 << 7)
301
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
302
#define QH_EPCHAR_DEVADDR_SH          0
303

    
304
    /* endpoint capabilities */
305
    uint32_t epcap;
306
#define QH_EPCAP_MULT_MASK            0xc0000000
307
#define QH_EPCAP_MULT_SH              30
308
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
309
#define QH_EPCAP_PORTNUM_SH           23
310
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
311
#define QH_EPCAP_HUBADDR_SH           16
312
#define QH_EPCAP_CMASK_MASK           0x0000ff00
313
#define QH_EPCAP_CMASK_SH             8
314
#define QH_EPCAP_SMASK_MASK           0x000000ff
315
#define QH_EPCAP_SMASK_SH             0
316

    
317
    uint32_t current_qtd;             // Standard next link pointer
318
    uint32_t next_qtd;                // Standard next link pointer
319
    uint32_t altnext_qtd;
320
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
321
#define QH_ALTNEXT_NAKCNT_SH          1
322

    
323
    uint32_t token;                   // Same as QTD token
324
    uint32_t bufptr[5];               // Standard buffer pointer
325
#define BUFPTR_CPROGMASK_MASK         0x000000ff
326
#define BUFPTR_FRAMETAG_MASK          0x0000001f
327
#define BUFPTR_SBYTES_MASK            0x00000fe0
328
#define BUFPTR_SBYTES_SH              5
329
} EHCIqh;
330

    
331
/*  EHCI spec version 1.0 Section 3.7
332
 */
333
typedef struct EHCIfstn {
334
    uint32_t next;                    // Standard next link pointer
335
    uint32_t backptr;                 // Standard next link pointer
336
} EHCIfstn;
337

    
338
typedef struct EHCIQueue EHCIQueue;
339
typedef struct EHCIState EHCIState;
340

    
341
enum async_state {
342
    EHCI_ASYNC_NONE = 0,
343
    EHCI_ASYNC_INFLIGHT,
344
    EHCI_ASYNC_FINISHED,
345
};
346

    
347
struct EHCIQueue {
348
    EHCIState *ehci;
349
    QTAILQ_ENTRY(EHCIQueue) next;
350
    bool async_schedule;
351
    uint32_t seen;
352
    uint64_t ts;
353

    
354
    /* cached data from guest - needs to be flushed
355
     * when guest removes an entry (doorbell, handshake sequence)
356
     */
357
    EHCIqh qh;             // copy of current QH (being worked on)
358
    uint32_t qhaddr;       // address QH read from
359
    EHCIqtd qtd;           // copy of current QTD (being worked on)
360
    uint32_t qtdaddr;      // address QTD read from
361

    
362
    USBPacket packet;
363
    QEMUSGList sgl;
364
    int pid;
365
    uint32_t tbytes;
366
    enum async_state async;
367
    int usb_status;
368
};
369

    
370
struct EHCIState {
371
    PCIDevice dev;
372
    USBBus bus;
373
    qemu_irq irq;
374
    MemoryRegion mem;
375
    int companion_count;
376

    
377
    /* properties */
378
    uint32_t freq;
379
    uint32_t maxframes;
380

    
381
    /*
382
     *  EHCI spec version 1.0 Section 2.3
383
     *  Host Controller Operational Registers
384
     */
385
    union {
386
        uint8_t mmio[MMIO_SIZE];
387
        struct {
388
            uint8_t cap[OPREGBASE];
389
            uint32_t usbcmd;
390
            uint32_t usbsts;
391
            uint32_t usbintr;
392
            uint32_t frindex;
393
            uint32_t ctrldssegment;
394
            uint32_t periodiclistbase;
395
            uint32_t asynclistaddr;
396
            uint32_t notused[9];
397
            uint32_t configflag;
398
            uint32_t portsc[NB_PORTS];
399
        };
400
    };
401

    
402
    /*
403
     *  Internal states, shadow registers, etc
404
     */
405
    uint32_t sofv;
406
    QEMUTimer *frame_timer;
407
    int attach_poll_counter;
408
    int astate;                        // Current state in asynchronous schedule
409
    int pstate;                        // Current state in periodic schedule
410
    USBPort ports[NB_PORTS];
411
    USBPort *companion_ports[NB_PORTS];
412
    uint32_t usbsts_pending;
413
    QTAILQ_HEAD(, EHCIQueue) queues;
414

    
415
    uint32_t a_fetch_addr;   // which address to look at next
416
    uint32_t p_fetch_addr;   // which address to look at next
417

    
418
    USBPacket ipacket;
419
    QEMUSGList isgl;
420
    int isoch_pause;
421

    
422
    uint64_t last_run_ns;
423
};
424

    
425
#define SET_LAST_RUN_CLOCK(s) \
426
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427

    
428
/* nifty macros from Arnon's EHCI version  */
429
#define get_field(data, field) \
430
    (((data) & field##_MASK) >> field##_SH)
431

    
432
#define set_field(data, newval, field) do { \
433
    uint32_t val = *data; \
434
    val &= ~ field##_MASK; \
435
    val |= ((newval) << field##_SH) & field##_MASK; \
436
    *data = val; \
437
    } while(0)
438

    
439
static const char *ehci_state_names[] = {
440
    [ EST_INACTIVE ]     = "INACTIVE",
441
    [ EST_ACTIVE ]       = "ACTIVE",
442
    [ EST_EXECUTING ]    = "EXECUTING",
443
    [ EST_SLEEPING ]     = "SLEEPING",
444
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
445
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
446
    [ EST_FETCHQH ]      = "FETCH QH",
447
    [ EST_FETCHITD ]     = "FETCH ITD",
448
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
449
    [ EST_FETCHQTD ]     = "FETCH QTD",
450
    [ EST_EXECUTE ]      = "EXECUTE",
451
    [ EST_WRITEBACK ]    = "WRITEBACK",
452
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
453
};
454

    
455
static const char *ehci_mmio_names[] = {
456
    [ CAPLENGTH ]        = "CAPLENGTH",
457
    [ HCIVERSION ]       = "HCIVERSION",
458
    [ HCSPARAMS ]        = "HCSPARAMS",
459
    [ HCCPARAMS ]        = "HCCPARAMS",
460
    [ USBCMD ]           = "USBCMD",
461
    [ USBSTS ]           = "USBSTS",
462
    [ USBINTR ]          = "USBINTR",
463
    [ FRINDEX ]          = "FRINDEX",
464
    [ PERIODICLISTBASE ] = "P-LIST BASE",
465
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
466
    [ PORTSC_BEGIN ]     = "PORTSC #0",
467
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
468
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
469
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
470
    [ CONFIGFLAG ]       = "CONFIGFLAG",
471
};
472

    
473
static const char *nr2str(const char **n, size_t len, uint32_t nr)
474
{
475
    if (nr < len && n[nr] != NULL) {
476
        return n[nr];
477
    } else {
478
        return "unknown";
479
    }
480
}
481

    
482
static const char *state2str(uint32_t state)
483
{
484
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
485
}
486

    
487
static const char *addr2str(target_phys_addr_t addr)
488
{
489
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
490
}
491

    
492
static void ehci_trace_usbsts(uint32_t mask, int state)
493
{
494
    /* interrupts */
495
    if (mask & USBSTS_INT) {
496
        trace_usb_ehci_usbsts("INT", state);
497
    }
498
    if (mask & USBSTS_ERRINT) {
499
        trace_usb_ehci_usbsts("ERRINT", state);
500
    }
501
    if (mask & USBSTS_PCD) {
502
        trace_usb_ehci_usbsts("PCD", state);
503
    }
504
    if (mask & USBSTS_FLR) {
505
        trace_usb_ehci_usbsts("FLR", state);
506
    }
507
    if (mask & USBSTS_HSE) {
508
        trace_usb_ehci_usbsts("HSE", state);
509
    }
510
    if (mask & USBSTS_IAA) {
511
        trace_usb_ehci_usbsts("IAA", state);
512
    }
513

    
514
    /* status */
515
    if (mask & USBSTS_HALT) {
516
        trace_usb_ehci_usbsts("HALT", state);
517
    }
518
    if (mask & USBSTS_REC) {
519
        trace_usb_ehci_usbsts("REC", state);
520
    }
521
    if (mask & USBSTS_PSS) {
522
        trace_usb_ehci_usbsts("PSS", state);
523
    }
524
    if (mask & USBSTS_ASS) {
525
        trace_usb_ehci_usbsts("ASS", state);
526
    }
527
}
528

    
529
static inline void ehci_set_usbsts(EHCIState *s, int mask)
530
{
531
    if ((s->usbsts & mask) == mask) {
532
        return;
533
    }
534
    ehci_trace_usbsts(mask, 1);
535
    s->usbsts |= mask;
536
}
537

    
538
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
539
{
540
    if ((s->usbsts & mask) == 0) {
541
        return;
542
    }
543
    ehci_trace_usbsts(mask, 0);
544
    s->usbsts &= ~mask;
545
}
546

    
547
static inline void ehci_set_interrupt(EHCIState *s, int intr)
548
{
549
    int level = 0;
550

    
551
    // TODO honour interrupt threshold requests
552

    
553
    ehci_set_usbsts(s, intr);
554

    
555
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
556
        level = 1;
557
    }
558

    
559
    qemu_set_irq(s->irq, level);
560
}
561

    
562
static inline void ehci_record_interrupt(EHCIState *s, int intr)
563
{
564
    s->usbsts_pending |= intr;
565
}
566

    
567
static inline void ehci_commit_interrupt(EHCIState *s)
568
{
569
    if (!s->usbsts_pending) {
570
        return;
571
    }
572
    ehci_set_interrupt(s, s->usbsts_pending);
573
    s->usbsts_pending = 0;
574
}
575

    
576
static void ehci_set_state(EHCIState *s, int async, int state)
577
{
578
    if (async) {
579
        trace_usb_ehci_state("async", state2str(state));
580
        s->astate = state;
581
    } else {
582
        trace_usb_ehci_state("periodic", state2str(state));
583
        s->pstate = state;
584
    }
585
}
586

    
587
static int ehci_get_state(EHCIState *s, int async)
588
{
589
    return async ? s->astate : s->pstate;
590
}
591

    
592
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
593
{
594
    if (async) {
595
        s->a_fetch_addr = addr;
596
    } else {
597
        s->p_fetch_addr = addr;
598
    }
599
}
600

    
601
static int ehci_get_fetch_addr(EHCIState *s, int async)
602
{
603
    return async ? s->a_fetch_addr : s->p_fetch_addr;
604
}
605

    
606
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
607
{
608
    /* need three here due to argument count limits */
609
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
610
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
611
    trace_usb_ehci_qh_fields(addr,
612
                             get_field(qh->epchar, QH_EPCHAR_RL),
613
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
614
                             get_field(qh->epchar, QH_EPCHAR_EPS),
615
                             get_field(qh->epchar, QH_EPCHAR_EP),
616
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
617
    trace_usb_ehci_qh_bits(addr,
618
                           (bool)(qh->epchar & QH_EPCHAR_C),
619
                           (bool)(qh->epchar & QH_EPCHAR_H),
620
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
621
                           (bool)(qh->epchar & QH_EPCHAR_I));
622
}
623

    
624
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
625
{
626
    /* need three here due to argument count limits */
627
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
628
    trace_usb_ehci_qtd_fields(addr,
629
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
630
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
631
                              get_field(qtd->token, QTD_TOKEN_CERR),
632
                              get_field(qtd->token, QTD_TOKEN_PID));
633
    trace_usb_ehci_qtd_bits(addr,
634
                            (bool)(qtd->token & QTD_TOKEN_IOC),
635
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
636
                            (bool)(qtd->token & QTD_TOKEN_HALT),
637
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
638
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
639
}
640

    
641
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
642
{
643
    trace_usb_ehci_itd(addr, itd->next,
644
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
645
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
646
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
647
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
648
}
649

    
650
static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
651
                            EHCIsitd *sitd)
652
{
653
    trace_usb_ehci_sitd(addr, sitd->next,
654
                        (bool)(sitd->results & SITD_RESULTS_ACTIVE));
655
}
656

    
657
/* queue management */
658

    
659
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
660
{
661
    EHCIQueue *q;
662

    
663
    q = g_malloc0(sizeof(*q));
664
    q->ehci = ehci;
665
    q->async_schedule = async;
666
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
667
    trace_usb_ehci_queue_action(q, "alloc");
668
    return q;
669
}
670

    
671
static void ehci_free_queue(EHCIQueue *q)
672
{
673
    trace_usb_ehci_queue_action(q, "free");
674
    if (q->async == EHCI_ASYNC_INFLIGHT) {
675
        usb_cancel_packet(&q->packet);
676
    }
677
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
678
    g_free(q);
679
}
680

    
681
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
682
{
683
    EHCIQueue *q;
684

    
685
    QTAILQ_FOREACH(q, &ehci->queues, next) {
686
        if (addr == q->qhaddr) {
687
            return q;
688
        }
689
    }
690
    return NULL;
691
}
692

    
693
static void ehci_queues_rip_unused(EHCIState *ehci)
694
{
695
    EHCIQueue *q, *tmp;
696

    
697
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
698
        if (q->seen) {
699
            q->seen = 0;
700
            q->ts = ehci->last_run_ns;
701
            continue;
702
        }
703
        if (ehci->last_run_ns < q->ts + 250000000) {
704
            /* allow 0.25 sec idle */
705
            continue;
706
        }
707
        ehci_free_queue(q);
708
    }
709
}
710

    
711
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
712
{
713
    EHCIQueue *q, *tmp;
714

    
715
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
716
        if (q->packet.owner != dev) {
717
            continue;
718
        }
719
        ehci_free_queue(q);
720
    }
721
}
722

    
723
static void ehci_queues_rip_all(EHCIState *ehci)
724
{
725
    EHCIQueue *q, *tmp;
726

    
727
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
728
        ehci_free_queue(q);
729
    }
730
}
731

    
732
/* Attach or detach a device on root hub */
733

    
734
static void ehci_attach(USBPort *port)
735
{
736
    EHCIState *s = port->opaque;
737
    uint32_t *portsc = &s->portsc[port->index];
738

    
739
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
740

    
741
    if (*portsc & PORTSC_POWNER) {
742
        USBPort *companion = s->companion_ports[port->index];
743
        companion->dev = port->dev;
744
        companion->ops->attach(companion);
745
        return;
746
    }
747

    
748
    *portsc |= PORTSC_CONNECT;
749
    *portsc |= PORTSC_CSC;
750

    
751
    ehci_set_interrupt(s, USBSTS_PCD);
752
}
753

    
754
static void ehci_detach(USBPort *port)
755
{
756
    EHCIState *s = port->opaque;
757
    uint32_t *portsc = &s->portsc[port->index];
758

    
759
    trace_usb_ehci_port_detach(port->index);
760

    
761
    if (*portsc & PORTSC_POWNER) {
762
        USBPort *companion = s->companion_ports[port->index];
763
        companion->ops->detach(companion);
764
        companion->dev = NULL;
765
        return;
766
    }
767

    
768
    ehci_queues_rip_device(s, port->dev);
769

    
770
    *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
771
    *portsc |= PORTSC_CSC;
772

    
773
    ehci_set_interrupt(s, USBSTS_PCD);
774
}
775

    
776
static void ehci_child_detach(USBPort *port, USBDevice *child)
777
{
778
    EHCIState *s = port->opaque;
779
    uint32_t portsc = s->portsc[port->index];
780

    
781
    if (portsc & PORTSC_POWNER) {
782
        USBPort *companion = s->companion_ports[port->index];
783
        companion->ops->child_detach(companion, child);
784
        companion->dev = NULL;
785
        return;
786
    }
787

    
788
    ehci_queues_rip_device(s, child);
789
}
790

    
791
static void ehci_wakeup(USBPort *port)
792
{
793
    EHCIState *s = port->opaque;
794
    uint32_t portsc = s->portsc[port->index];
795

    
796
    if (portsc & PORTSC_POWNER) {
797
        USBPort *companion = s->companion_ports[port->index];
798
        if (companion->ops->wakeup) {
799
            companion->ops->wakeup(companion);
800
        }
801
    }
802
}
803

    
804
static int ehci_register_companion(USBBus *bus, USBPort *ports[],
805
                                   uint32_t portcount, uint32_t firstport)
806
{
807
    EHCIState *s = container_of(bus, EHCIState, bus);
808
    uint32_t i;
809

    
810
    if (firstport + portcount > NB_PORTS) {
811
        qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
812
                      "firstport on masterbus");
813
        error_printf_unless_qmp(
814
            "firstport value of %u makes companion take ports %u - %u, which "
815
            "is outside of the valid range of 0 - %u\n", firstport, firstport,
816
            firstport + portcount - 1, NB_PORTS - 1);
817
        return -1;
818
    }
819

    
820
    for (i = 0; i < portcount; i++) {
821
        if (s->companion_ports[firstport + i]) {
822
            qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
823
                          "an USB masterbus");
824
            error_printf_unless_qmp(
825
                "port %u on masterbus %s already has a companion assigned\n",
826
                firstport + i, bus->qbus.name);
827
            return -1;
828
        }
829
    }
830

    
831
    for (i = 0; i < portcount; i++) {
832
        s->companion_ports[firstport + i] = ports[i];
833
        s->ports[firstport + i].speedmask |=
834
            USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
835
        /* Ensure devs attached before the initial reset go to the companion */
836
        s->portsc[firstport + i] = PORTSC_POWNER;
837
    }
838

    
839
    s->companion_count++;
840
    s->mmio[0x05] = (s->companion_count << 4) | portcount;
841

    
842
    return 0;
843
}
844

    
845
/* 4.1 host controller initialization */
846
static void ehci_reset(void *opaque)
847
{
848
    EHCIState *s = opaque;
849
    int i;
850
    USBDevice *devs[NB_PORTS];
851

    
852
    trace_usb_ehci_reset();
853

    
854
    /*
855
     * Do the detach before touching portsc, so that it correctly gets send to
856
     * us or to our companion based on PORTSC_POWNER before the reset.
857
     */
858
    for(i = 0; i < NB_PORTS; i++) {
859
        devs[i] = s->ports[i].dev;
860
        if (devs[i]) {
861
            usb_attach(&s->ports[i], NULL);
862
        }
863
    }
864

    
865
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
866

    
867
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
868
    s->usbsts = USBSTS_HALT;
869

    
870
    s->astate = EST_INACTIVE;
871
    s->pstate = EST_INACTIVE;
872
    s->isoch_pause = -1;
873
    s->attach_poll_counter = 0;
874

    
875
    for(i = 0; i < NB_PORTS; i++) {
876
        if (s->companion_ports[i]) {
877
            s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
878
        } else {
879
            s->portsc[i] = PORTSC_PPOWER;
880
        }
881
        if (devs[i]) {
882
            usb_attach(&s->ports[i], devs[i]);
883
        }
884
    }
885
    ehci_queues_rip_all(s);
886
}
887

    
888
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
889
{
890
    EHCIState *s = ptr;
891
    uint32_t val;
892

    
893
    val = s->mmio[addr];
894

    
895
    return val;
896
}
897

    
898
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
899
{
900
    EHCIState *s = ptr;
901
    uint32_t val;
902

    
903
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
904

    
905
    return val;
906
}
907

    
908
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
909
{
910
    EHCIState *s = ptr;
911
    uint32_t val;
912

    
913
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
914
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
915

    
916
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
917
    return val;
918
}
919

    
920
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
921
{
922
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
923
    exit(1);
924
}
925

    
926
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
927
{
928
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
929
    exit(1);
930
}
931

    
932
static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
933
{
934
    USBDevice *dev = s->ports[port].dev;
935
    uint32_t *portsc = &s->portsc[port];
936
    uint32_t orig;
937

    
938
    if (s->companion_ports[port] == NULL)
939
        return;
940

    
941
    owner = owner & PORTSC_POWNER;
942
    orig  = *portsc & PORTSC_POWNER;
943

    
944
    if (!(owner ^ orig)) {
945
        return;
946
    }
947

    
948
    if (dev) {
949
        usb_attach(&s->ports[port], NULL);
950
    }
951

    
952
    *portsc &= ~PORTSC_POWNER;
953
    *portsc |= owner;
954

    
955
    if (dev) {
956
        usb_attach(&s->ports[port], dev);
957
    }
958
}
959

    
960
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
961
{
962
    uint32_t *portsc = &s->portsc[port];
963
    USBDevice *dev = s->ports[port].dev;
964

    
965
    /* Clear rwc bits */
966
    *portsc &= ~(val & PORTSC_RWC_MASK);
967
    /* The guest may clear, but not set the PED bit */
968
    *portsc &= val | ~PORTSC_PED;
969
    /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
970
    handle_port_owner_write(s, port, val);
971
    /* And finally apply RO_MASK */
972
    val &= PORTSC_RO_MASK;
973

    
974
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
975
        trace_usb_ehci_port_reset(port, 1);
976
    }
977

    
978
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
979
        trace_usb_ehci_port_reset(port, 0);
980
        if (dev) {
981
            usb_attach(&s->ports[port], dev);
982
            usb_send_msg(dev, USB_MSG_RESET);
983
            *portsc &= ~PORTSC_CSC;
984
        }
985

    
986
        /*
987
         *  Table 2.16 Set the enable bit(and enable bit change) to indicate
988
         *  to SW that this port has a high speed device attached
989
         */
990
        if (dev && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
991
            val |= PORTSC_PED;
992
        }
993
    }
994

    
995
    *portsc &= ~PORTSC_RO_MASK;
996
    *portsc |= val;
997
}
998

    
999
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1000
{
1001
    EHCIState *s = ptr;
1002
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1003
    uint32_t old = *mmio;
1004
    int i;
1005

    
1006
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1007

    
1008
    /* Only aligned reads are allowed on OHCI */
1009
    if (addr & 3) {
1010
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1011
                TARGET_FMT_plx "\n", addr);
1012
        return;
1013
    }
1014

    
1015
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1016
        handle_port_status_write(s, (addr-PORTSC)/4, val);
1017
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1018
        return;
1019
    }
1020

    
1021
    if (addr < OPREGBASE) {
1022
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
1023
                TARGET_FMT_plx "\n", addr);
1024
        return;
1025
    }
1026

    
1027

    
1028
    /* Do any register specific pre-write processing here.  */
1029
    switch(addr) {
1030
    case USBCMD:
1031
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1032
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1033
            SET_LAST_RUN_CLOCK(s);
1034
            ehci_clear_usbsts(s, USBSTS_HALT);
1035
        }
1036

    
1037
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1038
            qemu_del_timer(s->frame_timer);
1039
            // TODO - should finish out some stuff before setting halt
1040
            ehci_set_usbsts(s, USBSTS_HALT);
1041
        }
1042

    
1043
        if (val & USBCMD_HCRESET) {
1044
            ehci_reset(s);
1045
            val &= ~USBCMD_HCRESET;
1046
        }
1047

    
1048
        /* not supporting dynamic frame list size at the moment */
1049
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1050
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
1051
                    val & USBCMD_FLS);
1052
            val &= ~USBCMD_FLS;
1053
        }
1054
        break;
1055

    
1056
    case USBSTS:
1057
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
1058
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
1059
        val = s->usbsts;
1060
        ehci_set_interrupt(s, 0);
1061
        break;
1062

    
1063
    case USBINTR:
1064
        val &= USBINTR_MASK;
1065
        break;
1066

    
1067
    case FRINDEX:
1068
        s->sofv = val >> 3;
1069
        break;
1070

    
1071
    case CONFIGFLAG:
1072
        val &= 0x1;
1073
        if (val) {
1074
            for(i = 0; i < NB_PORTS; i++)
1075
                handle_port_owner_write(s, i, 0);
1076
        }
1077
        break;
1078

    
1079
    case PERIODICLISTBASE:
1080
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1081
            fprintf(stderr,
1082
              "ehci: PERIODIC list base register set while periodic schedule\n"
1083
              "      is enabled and HC is enabled\n");
1084
        }
1085
        break;
1086

    
1087
    case ASYNCLISTADDR:
1088
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1089
            fprintf(stderr,
1090
              "ehci: ASYNC list address register set while async schedule\n"
1091
              "      is enabled and HC is enabled\n");
1092
        }
1093
        break;
1094
    }
1095

    
1096
    *mmio = val;
1097
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1098
}
1099

    
1100

    
1101
// TODO : Put in common header file, duplication from usb-ohci.c
1102

    
1103
/* Get an array of dwords from main memory */
1104
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
1105
{
1106
    int i;
1107

    
1108
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1109
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
1110
        *buf = le32_to_cpu(*buf);
1111
    }
1112

    
1113
    return 1;
1114
}
1115

    
1116
/* Put an array of dwords in to main memory */
1117
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1118
{
1119
    int i;
1120

    
1121
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1122
        uint32_t tmp = cpu_to_le32(*buf);
1123
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1124
    }
1125

    
1126
    return 1;
1127
}
1128

    
1129
// 4.10.2
1130

    
1131
static int ehci_qh_do_overlay(EHCIQueue *q)
1132
{
1133
    int i;
1134
    int dtoggle;
1135
    int ping;
1136
    int eps;
1137
    int reload;
1138

    
1139
    // remember values in fields to preserve in qh after overlay
1140

    
1141
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1142
    ping    = q->qh.token & QTD_TOKEN_PING;
1143

    
1144
    q->qh.current_qtd = q->qtdaddr;
1145
    q->qh.next_qtd    = q->qtd.next;
1146
    q->qh.altnext_qtd = q->qtd.altnext;
1147
    q->qh.token       = q->qtd.token;
1148

    
1149

    
1150
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1151
    if (eps == EHCI_QH_EPS_HIGH) {
1152
        q->qh.token &= ~QTD_TOKEN_PING;
1153
        q->qh.token |= ping;
1154
    }
1155

    
1156
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1157
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1158

    
1159
    for (i = 0; i < 5; i++) {
1160
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1161
    }
1162

    
1163
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1164
        // preserve QH DT bit
1165
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1166
        q->qh.token |= dtoggle;
1167
    }
1168

    
1169
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1170
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1171

    
1172
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1173

    
1174
    return 0;
1175
}
1176

    
1177
static int ehci_init_transfer(EHCIQueue *q)
1178
{
1179
    uint32_t cpage, offset, bytes, plen;
1180
    target_phys_addr_t page;
1181

    
1182
    cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1183
    bytes  = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1184
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1185
    qemu_sglist_init(&q->sgl, 5);
1186

    
1187
    while (bytes > 0) {
1188
        if (cpage > 4) {
1189
            fprintf(stderr, "cpage out of range (%d)\n", cpage);
1190
            return USB_RET_PROCERR;
1191
        }
1192

    
1193
        page  = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1194
        page += offset;
1195
        plen  = bytes;
1196
        if (plen > 4096 - offset) {
1197
            plen = 4096 - offset;
1198
            offset = 0;
1199
            cpage++;
1200
        }
1201

    
1202
        qemu_sglist_add(&q->sgl, page, plen);
1203
        bytes -= plen;
1204
    }
1205
    return 0;
1206
}
1207

    
1208
static void ehci_finish_transfer(EHCIQueue *q, int status)
1209
{
1210
    uint32_t cpage, offset;
1211

    
1212
    qemu_sglist_destroy(&q->sgl);
1213

    
1214
    if (status > 0) {
1215
        /* update cpage & offset */
1216
        cpage  = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1217
        offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1218

    
1219
        offset += status;
1220
        cpage  += offset >> QTD_BUFPTR_SH;
1221
        offset &= ~QTD_BUFPTR_MASK;
1222

    
1223
        set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1224
        q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1225
        q->qh.bufptr[0] |= offset;
1226
    }
1227
}
1228

    
1229
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1230
{
1231
    EHCIQueue *q;
1232
    EHCIState *s = port->opaque;
1233
    uint32_t portsc = s->portsc[port->index];
1234

    
1235
    if (portsc & PORTSC_POWNER) {
1236
        USBPort *companion = s->companion_ports[port->index];
1237
        companion->ops->complete(companion, packet);
1238
        return;
1239
    }
1240

    
1241
    q = container_of(packet, EHCIQueue, packet);
1242
    trace_usb_ehci_queue_action(q, "wakeup");
1243
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1244
    q->async = EHCI_ASYNC_FINISHED;
1245
    q->usb_status = packet->result;
1246
}
1247

    
1248
static void ehci_execute_complete(EHCIQueue *q)
1249
{
1250
    int c_err, reload;
1251

    
1252
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1253
    q->async = EHCI_ASYNC_NONE;
1254

    
1255
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1256
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1257

    
1258
    if (q->usb_status < 0) {
1259
err:
1260
        /* TO-DO: put this is in a function that can be invoked below as well */
1261
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1262
        c_err--;
1263
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1264

    
1265
        switch(q->usb_status) {
1266
        case USB_RET_NODEV:
1267
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1268
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1269
            break;
1270
        case USB_RET_STALL:
1271
            q->qh.token |= QTD_TOKEN_HALT;
1272
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1273
            break;
1274
        case USB_RET_NAK:
1275
            /* 4.10.3 */
1276
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1277
            if ((q->pid == USB_TOKEN_IN) && reload) {
1278
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1279
                nakcnt--;
1280
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1281
            } else if (!reload) {
1282
                return;
1283
            }
1284
            break;
1285
        case USB_RET_BABBLE:
1286
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1287
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1288
            break;
1289
        default:
1290
            /* should not be triggerable */
1291
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1292
            assert(0);
1293
            break;
1294
        }
1295
    } else {
1296
        // DPRINTF("Short packet condition\n");
1297
        // TODO check 4.12 for splits
1298

    
1299
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1300
            q->usb_status = USB_RET_BABBLE;
1301
            goto err;
1302
        }
1303

    
1304
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1305
            q->tbytes -= q->usb_status;
1306
        } else {
1307
            q->tbytes = 0;
1308
        }
1309

    
1310
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1311
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1312
    }
1313
    ehci_finish_transfer(q, q->usb_status);
1314
    usb_packet_unmap(&q->packet);
1315

    
1316
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1317
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1318

    
1319
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1320
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1321
    }
1322
}
1323

    
1324
// 4.10.3
1325

    
1326
static int ehci_execute(EHCIQueue *q)
1327
{
1328
    USBPort *port;
1329
    USBDevice *dev;
1330
    int ret;
1331
    int i;
1332
    int endp;
1333
    int devadr;
1334

    
1335
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1336
        fprintf(stderr, "Attempting to execute inactive QH\n");
1337
        return USB_RET_PROCERR;
1338
    }
1339

    
1340
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1341
    if (q->tbytes > BUFF_SIZE) {
1342
        fprintf(stderr, "Request for more bytes than allowed\n");
1343
        return USB_RET_PROCERR;
1344
    }
1345

    
1346
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1347
    switch(q->pid) {
1348
        case 0: q->pid = USB_TOKEN_OUT; break;
1349
        case 1: q->pid = USB_TOKEN_IN; break;
1350
        case 2: q->pid = USB_TOKEN_SETUP; break;
1351
        default: fprintf(stderr, "bad token\n"); break;
1352
    }
1353

    
1354
    if (ehci_init_transfer(q) != 0) {
1355
        return USB_RET_PROCERR;
1356
    }
1357

    
1358
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1359
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1360

    
1361
    ret = USB_RET_NODEV;
1362

    
1363
    usb_packet_setup(&q->packet, q->pid, devadr, endp);
1364
    usb_packet_map(&q->packet, &q->sgl);
1365

    
1366
    // TO-DO: associating device with ehci port
1367
    for(i = 0; i < NB_PORTS; i++) {
1368
        port = &q->ehci->ports[i];
1369
        dev = port->dev;
1370

    
1371
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1372
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1373
                    i, q->ehci->portsc[i]);
1374
            continue;
1375
        }
1376

    
1377
        ret = usb_handle_packet(dev, &q->packet);
1378

    
1379
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1380
                "(total %d) endp %x ret %d\n",
1381
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1382
                q->packet.iov.size, q->tbytes, endp, ret);
1383

    
1384
        if (ret != USB_RET_NODEV) {
1385
            break;
1386
        }
1387
    }
1388

    
1389
    if (ret > BUFF_SIZE) {
1390
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1391
        return USB_RET_PROCERR;
1392
    }
1393

    
1394
    return ret;
1395
}
1396

    
1397
/*  4.7.2
1398
 */
1399

    
1400
static int ehci_process_itd(EHCIState *ehci,
1401
                            EHCIitd *itd)
1402
{
1403
    USBPort *port;
1404
    USBDevice *dev;
1405
    int ret;
1406
    uint32_t i, j, len, pid, dir, devaddr, endp;
1407
    uint32_t pg, off, ptr1, ptr2, max, mult;
1408

    
1409
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1410
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1411
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1412
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1413
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1414

    
1415
    for(i = 0; i < 8; i++) {
1416
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1417
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1418
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1419
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1420
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1421
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1422

    
1423
            if (len > max * mult) {
1424
                len = max * mult;
1425
            }
1426

    
1427
            if (len > BUFF_SIZE) {
1428
                return USB_RET_PROCERR;
1429
            }
1430

    
1431
            qemu_sglist_init(&ehci->isgl, 2);
1432
            if (off + len > 4096) {
1433
                /* transfer crosses page border */
1434
                uint32_t len2 = off + len - 4096;
1435
                uint32_t len1 = len - len2;
1436
                qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1437
                qemu_sglist_add(&ehci->isgl, ptr2, len2);
1438
            } else {
1439
                qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1440
            }
1441

    
1442
            pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1443

    
1444
            usb_packet_setup(&ehci->ipacket, pid, devaddr, endp);
1445
            usb_packet_map(&ehci->ipacket, &ehci->isgl);
1446

    
1447
            ret = USB_RET_NODEV;
1448
            for (j = 0; j < NB_PORTS; j++) {
1449
                port = &ehci->ports[j];
1450
                dev = port->dev;
1451

    
1452
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1453
                    continue;
1454
                }
1455

    
1456
                ret = usb_handle_packet(dev, &ehci->ipacket);
1457

    
1458
                if (ret != USB_RET_NODEV) {
1459
                    break;
1460
                }
1461
            }
1462

    
1463
            usb_packet_unmap(&ehci->ipacket);
1464
            qemu_sglist_destroy(&ehci->isgl);
1465

    
1466
#if 0
1467
            /*  In isoch, there is no facility to indicate a NAK so let's
1468
             *  instead just complete a zero-byte transaction.  Setting
1469
             *  DBERR seems too draconian.
1470
             */
1471

1472
            if (ret == USB_RET_NAK) {
1473
                if (ehci->isoch_pause > 0) {
1474
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1475
                    ehci->isoch_pause--;
1476
                    return 0;
1477
                } else if (ehci->isoch_pause == -1) {
1478
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1479
                    // Pause frindex for up to 50 msec waiting for data from
1480
                    // remote
1481
                    ehci->isoch_pause = 50;
1482
                    return 0;
1483
                } else {
1484
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1485
                    ret = 0;
1486
                }
1487
            } else {
1488
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1489
                ehci->isoch_pause = -1;
1490
            }
1491
#else
1492
            if (ret == USB_RET_NAK) {
1493
                ret = 0;
1494
            }
1495
#endif
1496

    
1497
            if (ret >= 0) {
1498
                if (!dir) {
1499
                    /* OUT */
1500
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1501
                } else {
1502
                    /* IN */
1503
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1504
                }
1505

    
1506
                if (itd->transact[i] & ITD_XACT_IOC) {
1507
                    ehci_record_interrupt(ehci, USBSTS_INT);
1508
                }
1509
            }
1510
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1511
        }
1512
    }
1513
    return 0;
1514
}
1515

    
1516
/*  This state is the entry point for asynchronous schedule
1517
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1518
 */
1519
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1520
{
1521
    EHCIqh qh;
1522
    int i = 0;
1523
    int again = 0;
1524
    uint32_t entry = ehci->asynclistaddr;
1525

    
1526
    /* set reclamation flag at start event (4.8.6) */
1527
    if (async) {
1528
        ehci_set_usbsts(ehci, USBSTS_REC);
1529
    }
1530

    
1531
    ehci_queues_rip_unused(ehci);
1532

    
1533
    /*  Find the head of the list (4.9.1.1) */
1534
    for(i = 0; i < MAX_QH; i++) {
1535
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1536
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1537

    
1538
        if (qh.epchar & QH_EPCHAR_H) {
1539
            if (async) {
1540
                entry |= (NLPTR_TYPE_QH << 1);
1541
            }
1542

    
1543
            ehci_set_fetch_addr(ehci, async, entry);
1544
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1545
            again = 1;
1546
            goto out;
1547
        }
1548

    
1549
        entry = qh.next;
1550
        if (entry == ehci->asynclistaddr) {
1551
            break;
1552
        }
1553
    }
1554

    
1555
    /* no head found for list. */
1556

    
1557
    ehci_set_state(ehci, async, EST_ACTIVE);
1558

    
1559
out:
1560
    return again;
1561
}
1562

    
1563

    
1564
/*  This state is the entry point for periodic schedule processing as
1565
 *  well as being a continuation state for async processing.
1566
 */
1567
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1568
{
1569
    int again = 0;
1570
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1571

    
1572
    if (entry < 0x1000) {
1573
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1574
        ehci_set_state(ehci, async, EST_ACTIVE);
1575
        goto out;
1576
    }
1577

    
1578
    /* section 4.8, only QH in async schedule */
1579
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1580
        fprintf(stderr, "non queue head request in async schedule\n");
1581
        return -1;
1582
    }
1583

    
1584
    switch (NLPTR_TYPE_GET(entry)) {
1585
    case NLPTR_TYPE_QH:
1586
        ehci_set_state(ehci, async, EST_FETCHQH);
1587
        again = 1;
1588
        break;
1589

    
1590
    case NLPTR_TYPE_ITD:
1591
        ehci_set_state(ehci, async, EST_FETCHITD);
1592
        again = 1;
1593
        break;
1594

    
1595
    case NLPTR_TYPE_STITD:
1596
        ehci_set_state(ehci, async, EST_FETCHSITD);
1597
        again = 1;
1598
        break;
1599

    
1600
    default:
1601
        /* TODO: handle FSTN type */
1602
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1603
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1604
        return -1;
1605
    }
1606

    
1607
out:
1608
    return again;
1609
}
1610

    
1611
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1612
{
1613
    uint32_t entry;
1614
    EHCIQueue *q;
1615
    int reload;
1616

    
1617
    entry = ehci_get_fetch_addr(ehci, async);
1618
    q = ehci_find_queue_by_qh(ehci, entry);
1619
    if (NULL == q) {
1620
        q = ehci_alloc_queue(ehci, async);
1621
    }
1622
    q->qhaddr = entry;
1623
    q->seen++;
1624

    
1625
    if (q->seen > 1) {
1626
        /* we are going in circles -- stop processing */
1627
        ehci_set_state(ehci, async, EST_ACTIVE);
1628
        q = NULL;
1629
        goto out;
1630
    }
1631

    
1632
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1633
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1634

    
1635
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1636
        /* I/O still in progress -- skip queue */
1637
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1638
        goto out;
1639
    }
1640
    if (q->async == EHCI_ASYNC_FINISHED) {
1641
        /* I/O finished -- continue processing queue */
1642
        trace_usb_ehci_queue_action(q, "resume");
1643
        ehci_set_state(ehci, async, EST_EXECUTING);
1644
        goto out;
1645
    }
1646

    
1647
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1648

    
1649
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1650
        if (ehci->usbsts & USBSTS_REC) {
1651
            ehci_clear_usbsts(ehci, USBSTS_REC);
1652
        } else {
1653
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1654
                       " - done processing\n", q->qhaddr);
1655
            ehci_set_state(ehci, async, EST_ACTIVE);
1656
            q = NULL;
1657
            goto out;
1658
        }
1659
    }
1660

    
1661
#if EHCI_DEBUG
1662
    if (q->qhaddr != q->qh.next) {
1663
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1664
               q->qhaddr,
1665
               q->qh.epchar & QH_EPCHAR_H,
1666
               q->qh.token & QTD_TOKEN_HALT,
1667
               q->qh.token & QTD_TOKEN_ACTIVE,
1668
               q->qh.next);
1669
    }
1670
#endif
1671

    
1672
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1673
    if (reload) {
1674
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1675
    }
1676

    
1677
    if (q->qh.token & QTD_TOKEN_HALT) {
1678
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1679

    
1680
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1681
        q->qtdaddr = q->qh.current_qtd;
1682
        ehci_set_state(ehci, async, EST_FETCHQTD);
1683

    
1684
    } else {
1685
        /*  EHCI spec version 1.0 Section 4.10.2 */
1686
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1687
    }
1688

    
1689
out:
1690
    return q;
1691
}
1692

    
1693
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1694
{
1695
    uint32_t entry;
1696
    EHCIitd itd;
1697

    
1698
    assert(!async);
1699
    entry = ehci_get_fetch_addr(ehci, async);
1700

    
1701
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1702
               sizeof(EHCIitd) >> 2);
1703
    ehci_trace_itd(ehci, entry, &itd);
1704

    
1705
    if (ehci_process_itd(ehci, &itd) != 0) {
1706
        return -1;
1707
    }
1708

    
1709
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1710
                sizeof(EHCIitd) >> 2);
1711
    ehci_set_fetch_addr(ehci, async, itd.next);
1712
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1713

    
1714
    return 1;
1715
}
1716

    
1717
static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1718
{
1719
    uint32_t entry;
1720
    EHCIsitd sitd;
1721

    
1722
    assert(!async);
1723
    entry = ehci_get_fetch_addr(ehci, async);
1724

    
1725
    get_dwords(NLPTR_GET(entry), (uint32_t *)&sitd,
1726
               sizeof(EHCIsitd) >> 2);
1727
    ehci_trace_sitd(ehci, entry, &sitd);
1728

    
1729
    if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1730
        /* siTD is not active, nothing to do */;
1731
    } else {
1732
        /* TODO: split transfers are not implemented */
1733
        fprintf(stderr, "WARNING: Skipping active siTD\n");
1734
    }
1735

    
1736
    ehci_set_fetch_addr(ehci, async, sitd.next);
1737
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1738
    return 1;
1739
}
1740

    
1741
/* Section 4.10.2 - paragraph 3 */
1742
static int ehci_state_advqueue(EHCIQueue *q, int async)
1743
{
1744
#if 0
1745
    /* TO-DO: 4.10.2 - paragraph 2
1746
     * if I-bit is set to 1 and QH is not active
1747
     * go to horizontal QH
1748
     */
1749
    if (I-bit set) {
1750
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1751
        goto out;
1752
    }
1753
#endif
1754

    
1755
    /*
1756
     * want data and alt-next qTD is valid
1757
     */
1758
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1759
        (q->qh.altnext_qtd > 0x1000) &&
1760
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1761
        q->qtdaddr = q->qh.altnext_qtd;
1762
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1763

    
1764
    /*
1765
     *  next qTD is valid
1766
     */
1767
    } else if ((q->qh.next_qtd > 0x1000) &&
1768
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1769
        q->qtdaddr = q->qh.next_qtd;
1770
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1771

    
1772
    /*
1773
     *  no valid qTD, try next QH
1774
     */
1775
    } else {
1776
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1777
    }
1778

    
1779
    return 1;
1780
}
1781

    
1782
/* Section 4.10.2 - paragraph 4 */
1783
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1784
{
1785
    int again = 0;
1786

    
1787
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1788
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1789

    
1790
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1791
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1792
        again = 1;
1793
    } else {
1794
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1795
        again = 1;
1796
    }
1797

    
1798
    return again;
1799
}
1800

    
1801
static int ehci_state_horizqh(EHCIQueue *q, int async)
1802
{
1803
    int again = 0;
1804

    
1805
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1806
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1807
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1808
        again = 1;
1809
    } else {
1810
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1811
    }
1812

    
1813
    return again;
1814
}
1815

    
1816
/*
1817
 *  Write the qh back to guest physical memory.  This step isn't
1818
 *  in the EHCI spec but we need to do it since we don't share
1819
 *  physical memory with our guest VM.
1820
 *
1821
 *  The first three dwords are read-only for the EHCI, so skip them
1822
 *  when writing back the qh.
1823
 */
1824
static void ehci_flush_qh(EHCIQueue *q)
1825
{
1826
    uint32_t *qh = (uint32_t *) &q->qh;
1827
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1828
    uint32_t addr = NLPTR_GET(q->qhaddr);
1829

    
1830
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1831
}
1832

    
1833
static int ehci_state_execute(EHCIQueue *q, int async)
1834
{
1835
    int again = 0;
1836
    int reload, nakcnt;
1837
    int smask;
1838

    
1839
    if (ehci_qh_do_overlay(q) != 0) {
1840
        return -1;
1841
    }
1842

    
1843
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1844

    
1845
    if (!smask) {
1846
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1847
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1848
        if (reload && !nakcnt) {
1849
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1850
            again = 1;
1851
            goto out;
1852
        }
1853
    }
1854

    
1855
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1856
    // TODO write back ptr to async list when done or out of time
1857
    // TODO Windows does not seem to ever set the MULT field
1858

    
1859
    if (!async) {
1860
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1861
        if (!transactCtr) {
1862
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1863
            again = 1;
1864
            goto out;
1865
        }
1866
    }
1867

    
1868
    if (async) {
1869
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1870
    }
1871

    
1872
    q->usb_status = ehci_execute(q);
1873
    if (q->usb_status == USB_RET_PROCERR) {
1874
        again = -1;
1875
        goto out;
1876
    }
1877
    if (q->usb_status == USB_RET_ASYNC) {
1878
        ehci_flush_qh(q);
1879
        trace_usb_ehci_queue_action(q, "suspend");
1880
        q->async = EHCI_ASYNC_INFLIGHT;
1881
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1882
        again = 1;
1883
        goto out;
1884
    }
1885

    
1886
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1887
    again = 1;
1888

    
1889
out:
1890
    return again;
1891
}
1892

    
1893
static int ehci_state_executing(EHCIQueue *q, int async)
1894
{
1895
    int again = 0;
1896
    int reload, nakcnt;
1897

    
1898
    ehci_execute_complete(q);
1899
    if (q->usb_status == USB_RET_ASYNC) {
1900
        goto out;
1901
    }
1902
    if (q->usb_status == USB_RET_PROCERR) {
1903
        again = -1;
1904
        goto out;
1905
    }
1906

    
1907
    // 4.10.3
1908
    if (!async) {
1909
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1910
        transactCtr--;
1911
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1912
        // 4.10.3, bottom of page 82, should exit this state when transaction
1913
        // counter decrements to 0
1914
    }
1915

    
1916
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1917
    if (reload) {
1918
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1919
        if (q->usb_status == USB_RET_NAK) {
1920
            if (nakcnt) {
1921
                nakcnt--;
1922
            }
1923
        } else {
1924
            nakcnt = reload;
1925
        }
1926
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1927
    }
1928

    
1929
    /* 4.10.5 */
1930
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1931
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1932
    } else {
1933
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1934
    }
1935

    
1936
    again = 1;
1937

    
1938
out:
1939
    ehci_flush_qh(q);
1940
    return again;
1941
}
1942

    
1943

    
1944
static int ehci_state_writeback(EHCIQueue *q, int async)
1945
{
1946
    int again = 0;
1947

    
1948
    /*  Write back the QTD from the QH area */
1949
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1950
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1951
                sizeof(EHCIqtd) >> 2);
1952

    
1953
    /*
1954
     * EHCI specs say go horizontal here.
1955
     *
1956
     * We can also advance the queue here for performance reasons.  We
1957
     * need to take care to only take that shortcut in case we've
1958
     * processed the qtd just written back without errors, i.e. halt
1959
     * bit is clear.
1960
     */
1961
    if (q->qh.token & QTD_TOKEN_HALT) {
1962
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1963
        again = 1;
1964
    } else {
1965
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1966
        again = 1;
1967
    }
1968
    return again;
1969
}
1970

    
1971
/*
1972
 * This is the state machine that is common to both async and periodic
1973
 */
1974

    
1975
static void ehci_advance_state(EHCIState *ehci,
1976
                               int async)
1977
{
1978
    EHCIQueue *q = NULL;
1979
    int again;
1980
    int iter = 0;
1981

    
1982
    do {
1983
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1984
            iter++;
1985
            /* if we are roaming a lot of QH without executing a qTD
1986
             * something is wrong with the linked list. TO-DO: why is
1987
             * this hack needed?
1988
             */
1989
            assert(iter < MAX_ITERATIONS);
1990
#if 0
1991
            if (iter > MAX_ITERATIONS) {
1992
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1993
                ehci_set_state(ehci, async, EST_ACTIVE);
1994
                break;
1995
            }
1996
#endif
1997
        }
1998
        switch(ehci_get_state(ehci, async)) {
1999
        case EST_WAITLISTHEAD:
2000
            again = ehci_state_waitlisthead(ehci, async);
2001
            break;
2002

    
2003
        case EST_FETCHENTRY:
2004
            again = ehci_state_fetchentry(ehci, async);
2005
            break;
2006

    
2007
        case EST_FETCHQH:
2008
            q = ehci_state_fetchqh(ehci, async);
2009
            again = q ? 1 : 0;
2010
            break;
2011

    
2012
        case EST_FETCHITD:
2013
            again = ehci_state_fetchitd(ehci, async);
2014
            break;
2015

    
2016
        case EST_FETCHSITD:
2017
            again = ehci_state_fetchsitd(ehci, async);
2018
            break;
2019

    
2020
        case EST_ADVANCEQUEUE:
2021
            again = ehci_state_advqueue(q, async);
2022
            break;
2023

    
2024
        case EST_FETCHQTD:
2025
            again = ehci_state_fetchqtd(q, async);
2026
            break;
2027

    
2028
        case EST_HORIZONTALQH:
2029
            again = ehci_state_horizqh(q, async);
2030
            break;
2031

    
2032
        case EST_EXECUTE:
2033
            iter = 0;
2034
            again = ehci_state_execute(q, async);
2035
            break;
2036

    
2037
        case EST_EXECUTING:
2038
            assert(q != NULL);
2039
            again = ehci_state_executing(q, async);
2040
            break;
2041

    
2042
        case EST_WRITEBACK:
2043
            again = ehci_state_writeback(q, async);
2044
            break;
2045

    
2046
        default:
2047
            fprintf(stderr, "Bad state!\n");
2048
            again = -1;
2049
            assert(0);
2050
            break;
2051
        }
2052

    
2053
        if (again < 0) {
2054
            fprintf(stderr, "processing error - resetting ehci HC\n");
2055
            ehci_reset(ehci);
2056
            again = 0;
2057
            assert(0);
2058
        }
2059
    }
2060
    while (again);
2061

    
2062
    ehci_commit_interrupt(ehci);
2063
}
2064

    
2065
static void ehci_advance_async_state(EHCIState *ehci)
2066
{
2067
    int async = 1;
2068

    
2069
    switch(ehci_get_state(ehci, async)) {
2070
    case EST_INACTIVE:
2071
        if (!(ehci->usbcmd & USBCMD_ASE)) {
2072
            break;
2073
        }
2074
        ehci_set_usbsts(ehci, USBSTS_ASS);
2075
        ehci_set_state(ehci, async, EST_ACTIVE);
2076
        // No break, fall through to ACTIVE
2077

    
2078
    case EST_ACTIVE:
2079
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
2080
            ehci_clear_usbsts(ehci, USBSTS_ASS);
2081
            ehci_set_state(ehci, async, EST_INACTIVE);
2082
            break;
2083
        }
2084

    
2085
        /* If the doorbell is set, the guest wants to make a change to the
2086
         * schedule. The host controller needs to release cached data.
2087
         * (section 4.8.2)
2088
         */
2089
        if (ehci->usbcmd & USBCMD_IAAD) {
2090
            DPRINTF("ASYNC: doorbell request acknowledged\n");
2091
            ehci->usbcmd &= ~USBCMD_IAAD;
2092
            ehci_set_interrupt(ehci, USBSTS_IAA);
2093
            break;
2094
        }
2095

    
2096
        /* make sure guest has acknowledged */
2097
        /* TO-DO: is this really needed? */
2098
        if (ehci->usbsts & USBSTS_IAA) {
2099
            DPRINTF("IAA status bit still set.\n");
2100
            break;
2101
        }
2102

    
2103
        /* check that address register has been set */
2104
        if (ehci->asynclistaddr == 0) {
2105
            break;
2106
        }
2107

    
2108
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2109
        ehci_advance_state(ehci, async);
2110
        break;
2111

    
2112
    default:
2113
        /* this should only be due to a developer mistake */
2114
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
2115
                "Resetting to active\n", ehci->astate);
2116
        assert(0);
2117
    }
2118
}
2119

    
2120
static void ehci_advance_periodic_state(EHCIState *ehci)
2121
{
2122
    uint32_t entry;
2123
    uint32_t list;
2124
    int async = 0;
2125

    
2126
    // 4.6
2127

    
2128
    switch(ehci_get_state(ehci, async)) {
2129
    case EST_INACTIVE:
2130
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2131
            ehci_set_usbsts(ehci, USBSTS_PSS);
2132
            ehci_set_state(ehci, async, EST_ACTIVE);
2133
            // No break, fall through to ACTIVE
2134
        } else
2135
            break;
2136

    
2137
    case EST_ACTIVE:
2138
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2139
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2140
            ehci_set_state(ehci, async, EST_INACTIVE);
2141
            break;
2142
        }
2143

    
2144
        list = ehci->periodiclistbase & 0xfffff000;
2145
        /* check that register has been set */
2146
        if (list == 0) {
2147
            break;
2148
        }
2149
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2150

    
2151
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2152
        entry = le32_to_cpu(entry);
2153

    
2154
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2155
                ehci->frindex / 8, list, entry);
2156
        ehci_set_fetch_addr(ehci, async,entry);
2157
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2158
        ehci_advance_state(ehci, async);
2159
        break;
2160

    
2161
    default:
2162
        /* this should only be due to a developer mistake */
2163
        fprintf(stderr, "ehci: Bad periodic state %d. "
2164
                "Resetting to active\n", ehci->pstate);
2165
        assert(0);
2166
    }
2167
}
2168

    
2169
static void ehci_frame_timer(void *opaque)
2170
{
2171
    EHCIState *ehci = opaque;
2172
    int64_t expire_time, t_now;
2173
    uint64_t ns_elapsed;
2174
    int frames;
2175
    int i;
2176
    int skipped_frames = 0;
2177

    
2178
    t_now = qemu_get_clock_ns(vm_clock);
2179
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2180

    
2181
    ns_elapsed = t_now - ehci->last_run_ns;
2182
    frames = ns_elapsed / FRAME_TIMER_NS;
2183

    
2184
    for (i = 0; i < frames; i++) {
2185
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2186
            if (ehci->isoch_pause <= 0) {
2187
                ehci->frindex += 8;
2188
            }
2189

    
2190
            if (ehci->frindex > 0x00001fff) {
2191
                ehci->frindex = 0;
2192
                ehci_set_interrupt(ehci, USBSTS_FLR);
2193
            }
2194

    
2195
            ehci->sofv = (ehci->frindex - 1) >> 3;
2196
            ehci->sofv &= 0x000003ff;
2197
        }
2198

    
2199
        if (frames - i > ehci->maxframes) {
2200
            skipped_frames++;
2201
        } else {
2202
            ehci_advance_periodic_state(ehci);
2203
        }
2204

    
2205
        ehci->last_run_ns += FRAME_TIMER_NS;
2206
    }
2207

    
2208
#if 0
2209
    if (skipped_frames) {
2210
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2211
    }
2212
#endif
2213

    
2214
    /*  Async is not inside loop since it executes everything it can once
2215
     *  called
2216
     */
2217
    ehci_advance_async_state(ehci);
2218

    
2219
    qemu_mod_timer(ehci->frame_timer, expire_time);
2220
}
2221

    
2222

    
2223
static const MemoryRegionOps ehci_mem_ops = {
2224
    .old_mmio = {
2225
        .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2226
        .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2227
    },
2228
    .endianness = DEVICE_LITTLE_ENDIAN,
2229
};
2230

    
2231
static int usb_ehci_initfn(PCIDevice *dev);
2232

    
2233
static USBPortOps ehci_port_ops = {
2234
    .attach = ehci_attach,
2235
    .detach = ehci_detach,
2236
    .child_detach = ehci_child_detach,
2237
    .wakeup = ehci_wakeup,
2238
    .complete = ehci_async_complete_packet,
2239
};
2240

    
2241
static USBBusOps ehci_bus_ops = {
2242
    .register_companion = ehci_register_companion,
2243
};
2244

    
2245
static const VMStateDescription vmstate_ehci = {
2246
    .name = "ehci",
2247
    .unmigratable = 1,
2248
};
2249

    
2250
static Property ehci_properties[] = {
2251
    DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2252
    DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2253
    DEFINE_PROP_END_OF_LIST(),
2254
};
2255

    
2256
static PCIDeviceInfo ehci_info[] = {
2257
    {
2258
        .qdev.name    = "usb-ehci",
2259
        .qdev.size    = sizeof(EHCIState),
2260
        .qdev.vmsd    = &vmstate_ehci,
2261
        .init         = usb_ehci_initfn,
2262
        .vendor_id    = PCI_VENDOR_ID_INTEL,
2263
        .device_id    = PCI_DEVICE_ID_INTEL_82801D, /* ich4 */
2264
        .revision     = 0x10,
2265
        .class_id     = PCI_CLASS_SERIAL_USB,
2266
        .qdev.props   = ehci_properties,
2267
    },{
2268
        .qdev.name    = "ich9-usb-ehci1",
2269
        .qdev.size    = sizeof(EHCIState),
2270
        .qdev.vmsd    = &vmstate_ehci,
2271
        .init         = usb_ehci_initfn,
2272
        .vendor_id    = PCI_VENDOR_ID_INTEL,
2273
        .device_id    = PCI_DEVICE_ID_INTEL_82801I_EHCI1,
2274
        .revision     = 0x03,
2275
        .class_id     = PCI_CLASS_SERIAL_USB,
2276
        .qdev.props   = ehci_properties,
2277
    },{
2278
        /* end of list */
2279
    }
2280
};
2281

    
2282
static int usb_ehci_initfn(PCIDevice *dev)
2283
{
2284
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2285
    uint8_t *pci_conf = s->dev.config;
2286
    int i;
2287

    
2288
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2289

    
2290
    /* capabilities pointer */
2291
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2292
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2293

    
2294
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2295
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2296
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2297

    
2298
    // pci_conf[0x50] = 0x01; // power management caps
2299

    
2300
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2301
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2302
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2303

    
2304
    pci_conf[0x64] = 0x00;
2305
    pci_conf[0x65] = 0x00;
2306
    pci_conf[0x66] = 0x00;
2307
    pci_conf[0x67] = 0x00;
2308
    pci_conf[0x68] = 0x01;
2309
    pci_conf[0x69] = 0x00;
2310
    pci_conf[0x6a] = 0x00;
2311
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2312
    pci_conf[0x6c] = 0x00;
2313
    pci_conf[0x6d] = 0x00;
2314
    pci_conf[0x6e] = 0x00;
2315
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2316

    
2317
    // 2.2 host controller interface version
2318
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2319
    s->mmio[0x01] = 0x00;
2320
    s->mmio[0x02] = 0x00;
2321
    s->mmio[0x03] = 0x01;        // HC version
2322
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2323
    s->mmio[0x05] = 0x00;        // No companion ports at present
2324
    s->mmio[0x06] = 0x00;
2325
    s->mmio[0x07] = 0x00;
2326
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2327
    s->mmio[0x09] = 0x68;        // EECP
2328
    s->mmio[0x0a] = 0x00;
2329
    s->mmio[0x0b] = 0x00;
2330

    
2331
    s->irq = s->dev.irq[3];
2332

    
2333
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2334
    for(i = 0; i < NB_PORTS; i++) {
2335
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2336
                          USB_SPEED_MASK_HIGH);
2337
        s->ports[i].dev = 0;
2338
    }
2339

    
2340
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2341
    QTAILQ_INIT(&s->queues);
2342

    
2343
    qemu_register_reset(ehci_reset, s);
2344

    
2345
    memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2346
    pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2347

    
2348
    fprintf(stderr, "*** EHCI support is under development ***\n");
2349

    
2350
    return 0;
2351
}
2352

    
2353
static void ehci_register(void)
2354
{
2355
    pci_qdev_register_many(ehci_info);
2356
}
2357
device_init(ehci_register);
2358

    
2359
/*
2360
 * vim: expandtab ts=4
2361
 */