Statistics
| Branch: | Revision:

root / hw / sun4u.c @ 2ff0c7c3

History | View | Annotate | Download (26.7 kB)

1
/*
2
 * QEMU Sun4u/Sun4v System Emulator
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "apb_pci.h"
27
#include "pc.h"
28
#include "nvram.h"
29
#include "fdc.h"
30
#include "net.h"
31
#include "qemu-timer.h"
32
#include "sysemu.h"
33
#include "boards.h"
34
#include "firmware_abi.h"
35
#include "fw_cfg.h"
36
#include "sysbus.h"
37
#include "ide.h"
38
#include "loader.h"
39
#include "elf.h"
40
#include "blockdev.h"
41

    
42
//#define DEBUG_IRQ
43
//#define DEBUG_EBUS
44
//#define DEBUG_TIMER
45

    
46
#ifdef DEBUG_IRQ
47
#define CPUIRQ_DPRINTF(fmt, ...)                                \
48
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
49
#else
50
#define CPUIRQ_DPRINTF(fmt, ...)
51
#endif
52

    
53
#ifdef DEBUG_EBUS
54
#define EBUS_DPRINTF(fmt, ...)                                  \
55
    do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
56
#else
57
#define EBUS_DPRINTF(fmt, ...)
58
#endif
59

    
60
#ifdef DEBUG_TIMER
61
#define TIMER_DPRINTF(fmt, ...)                                  \
62
    do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
63
#else
64
#define TIMER_DPRINTF(fmt, ...)
65
#endif
66

    
67
#define KERNEL_LOAD_ADDR     0x00404000
68
#define CMDLINE_ADDR         0x003ff000
69
#define INITRD_LOAD_ADDR     0x00300000
70
#define PROM_SIZE_MAX        (4 * 1024 * 1024)
71
#define PROM_VADDR           0x000ffd00000ULL
72
#define APB_SPECIAL_BASE     0x1fe00000000ULL
73
#define APB_MEM_BASE         0x1ff00000000ULL
74
#define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
75
#define PROM_FILENAME        "openbios-sparc64"
76
#define NVRAM_SIZE           0x2000
77
#define MAX_IDE_BUS          2
78
#define BIOS_CFG_IOPORT      0x510
79
#define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
80
#define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
81
#define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
82

    
83
#define MAX_PILS 16
84

    
85
#define TICK_MAX             0x7fffffffffffffffULL
86

    
87
struct hwdef {
88
    const char * const default_cpu_model;
89
    uint16_t machine_id;
90
    uint64_t prom_addr;
91
    uint64_t console_serial_base;
92
};
93

    
94
typedef struct EbusState {
95
    PCIDevice pci_dev;
96
    MemoryRegion bar0;
97
    MemoryRegion bar1;
98
} EbusState;
99

    
100
int DMA_get_channel_mode (int nchan)
101
{
102
    return 0;
103
}
104
int DMA_read_memory (int nchan, void *buf, int pos, int size)
105
{
106
    return 0;
107
}
108
int DMA_write_memory (int nchan, void *buf, int pos, int size)
109
{
110
    return 0;
111
}
112
void DMA_hold_DREQ (int nchan) {}
113
void DMA_release_DREQ (int nchan) {}
114
void DMA_schedule(int nchan) {}
115

    
116
void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
117
{
118
}
119

    
120
void DMA_register_channel (int nchan,
121
                           DMA_transfer_handler transfer_handler,
122
                           void *opaque)
123
{
124
}
125

    
126
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
127
{
128
    fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
129
    return 0;
130
}
131

    
132
static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size,
133
                                  const char *arch, ram_addr_t RAM_size,
134
                                  const char *boot_devices,
135
                                  uint32_t kernel_image, uint32_t kernel_size,
136
                                  const char *cmdline,
137
                                  uint32_t initrd_image, uint32_t initrd_size,
138
                                  uint32_t NVRAM_image,
139
                                  int width, int height, int depth,
140
                                  const uint8_t *macaddr)
141
{
142
    unsigned int i;
143
    uint32_t start, end;
144
    uint8_t image[0x1ff0];
145
    struct OpenBIOS_nvpart_v1 *part_header;
146

    
147
    memset(image, '\0', sizeof(image));
148

    
149
    start = 0;
150

    
151
    // OpenBIOS nvram variables
152
    // Variable partition
153
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
154
    part_header->signature = OPENBIOS_PART_SYSTEM;
155
    pstrcpy(part_header->name, sizeof(part_header->name), "system");
156

    
157
    end = start + sizeof(struct OpenBIOS_nvpart_v1);
158
    for (i = 0; i < nb_prom_envs; i++)
159
        end = OpenBIOS_set_var(image, end, prom_envs[i]);
160

    
161
    // End marker
162
    image[end++] = '\0';
163

    
164
    end = start + ((end - start + 15) & ~15);
165
    OpenBIOS_finish_partition(part_header, end - start);
166

    
167
    // free partition
168
    start = end;
169
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
170
    part_header->signature = OPENBIOS_PART_FREE;
171
    pstrcpy(part_header->name, sizeof(part_header->name), "free");
172

    
173
    end = 0x1fd0;
174
    OpenBIOS_finish_partition(part_header, end - start);
175

    
176
    Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
177

    
178
    for (i = 0; i < sizeof(image); i++)
179
        m48t59_write(nvram, i, image[i]);
180

    
181
    return 0;
182
}
183
static unsigned long sun4u_load_kernel(const char *kernel_filename,
184
                                       const char *initrd_filename,
185
                                       ram_addr_t RAM_size, long *initrd_size)
186
{
187
    int linux_boot;
188
    unsigned int i;
189
    long kernel_size;
190
    uint8_t *ptr;
191

    
192
    linux_boot = (kernel_filename != NULL);
193

    
194
    kernel_size = 0;
195
    if (linux_boot) {
196
        int bswap_needed;
197

    
198
#ifdef BSWAP_NEEDED
199
        bswap_needed = 1;
200
#else
201
        bswap_needed = 0;
202
#endif
203
        kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
204
                               NULL, NULL, 1, ELF_MACHINE, 0);
205
        if (kernel_size < 0)
206
            kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
207
                                    RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
208
                                    TARGET_PAGE_SIZE);
209
        if (kernel_size < 0)
210
            kernel_size = load_image_targphys(kernel_filename,
211
                                              KERNEL_LOAD_ADDR,
212
                                              RAM_size - KERNEL_LOAD_ADDR);
213
        if (kernel_size < 0) {
214
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
215
                    kernel_filename);
216
            exit(1);
217
        }
218

    
219
        /* load initrd */
220
        *initrd_size = 0;
221
        if (initrd_filename) {
222
            *initrd_size = load_image_targphys(initrd_filename,
223
                                               INITRD_LOAD_ADDR,
224
                                               RAM_size - INITRD_LOAD_ADDR);
225
            if (*initrd_size < 0) {
226
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
227
                        initrd_filename);
228
                exit(1);
229
            }
230
        }
231
        if (*initrd_size > 0) {
232
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
233
                ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
234
                if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
235
                    stl_p(ptr + 24, INITRD_LOAD_ADDR + KERNEL_LOAD_ADDR - 0x4000);
236
                    stl_p(ptr + 28, *initrd_size);
237
                    break;
238
                }
239
            }
240
        }
241
    }
242
    return kernel_size;
243
}
244

    
245
void pic_info(Monitor *mon)
246
{
247
}
248

    
249
void irq_info(Monitor *mon)
250
{
251
}
252

    
253
void cpu_check_irqs(CPUState *env)
254
{
255
    uint32_t pil = env->pil_in |
256
                  (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
257

    
258
    /* check if TM or SM in SOFTINT are set
259
       setting these also causes interrupt 14 */
260
    if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
261
        pil |= 1 << 14;
262
    }
263

    
264
    /* The bit corresponding to psrpil is (1<< psrpil), the next bit
265
       is (2 << psrpil). */
266
    if (pil < (2 << env->psrpil)){
267
        if (env->interrupt_request & CPU_INTERRUPT_HARD) {
268
            CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
269
                           env->interrupt_index);
270
            env->interrupt_index = 0;
271
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
272
        }
273
        return;
274
    }
275

    
276
    if (cpu_interrupts_enabled(env)) {
277

    
278
        unsigned int i;
279

    
280
        for (i = 15; i > env->psrpil; i--) {
281
            if (pil & (1 << i)) {
282
                int old_interrupt = env->interrupt_index;
283
                int new_interrupt = TT_EXTINT | i;
284

    
285
                if (env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt) {
286
                    CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
287
                                   "current %x >= pending %x\n",
288
                                   env->tl, cpu_tsptr(env)->tt, new_interrupt);
289
                } else if (old_interrupt != new_interrupt) {
290
                    env->interrupt_index = new_interrupt;
291
                    CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
292
                                   old_interrupt, new_interrupt);
293
                    cpu_interrupt(env, CPU_INTERRUPT_HARD);
294
                }
295
                break;
296
            }
297
        }
298
    } else if (env->interrupt_request & CPU_INTERRUPT_HARD) {
299
        CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
300
                       "current interrupt %x\n",
301
                       pil, env->pil_in, env->softint, env->interrupt_index);
302
        env->interrupt_index = 0;
303
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
304
    }
305
}
306

    
307
static void cpu_kick_irq(CPUState *env)
308
{
309
    env->halted = 0;
310
    cpu_check_irqs(env);
311
    qemu_cpu_kick(env);
312
}
313

    
314
static void cpu_set_irq(void *opaque, int irq, int level)
315
{
316
    CPUState *env = opaque;
317

    
318
    if (level) {
319
        CPUIRQ_DPRINTF("Raise CPU IRQ %d\n", irq);
320
        env->pil_in |= 1 << irq;
321
        cpu_kick_irq(env);
322
    } else {
323
        CPUIRQ_DPRINTF("Lower CPU IRQ %d\n", irq);
324
        env->pil_in &= ~(1 << irq);
325
        cpu_check_irqs(env);
326
    }
327
}
328

    
329
typedef struct ResetData {
330
    CPUState *env;
331
    uint64_t prom_addr;
332
} ResetData;
333

    
334
void cpu_put_timer(QEMUFile *f, CPUTimer *s)
335
{
336
    qemu_put_be32s(f, &s->frequency);
337
    qemu_put_be32s(f, &s->disabled);
338
    qemu_put_be64s(f, &s->disabled_mask);
339
    qemu_put_sbe64s(f, &s->clock_offset);
340

    
341
    qemu_put_timer(f, s->qtimer);
342
}
343

    
344
void cpu_get_timer(QEMUFile *f, CPUTimer *s)
345
{
346
    qemu_get_be32s(f, &s->frequency);
347
    qemu_get_be32s(f, &s->disabled);
348
    qemu_get_be64s(f, &s->disabled_mask);
349
    qemu_get_sbe64s(f, &s->clock_offset);
350

    
351
    qemu_get_timer(f, s->qtimer);
352
}
353

    
354
static CPUTimer* cpu_timer_create(const char* name, CPUState *env,
355
                                  QEMUBHFunc *cb, uint32_t frequency,
356
                                  uint64_t disabled_mask)
357
{
358
    CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
359

    
360
    timer->name = name;
361
    timer->frequency = frequency;
362
    timer->disabled_mask = disabled_mask;
363

    
364
    timer->disabled = 1;
365
    timer->clock_offset = qemu_get_clock_ns(vm_clock);
366

    
367
    timer->qtimer = qemu_new_timer_ns(vm_clock, cb, env);
368

    
369
    return timer;
370
}
371

    
372
static void cpu_timer_reset(CPUTimer *timer)
373
{
374
    timer->disabled = 1;
375
    timer->clock_offset = qemu_get_clock_ns(vm_clock);
376

    
377
    qemu_del_timer(timer->qtimer);
378
}
379

    
380
static void main_cpu_reset(void *opaque)
381
{
382
    ResetData *s = (ResetData *)opaque;
383
    CPUState *env = s->env;
384
    static unsigned int nr_resets;
385

    
386
    cpu_reset(env);
387

    
388
    cpu_timer_reset(env->tick);
389
    cpu_timer_reset(env->stick);
390
    cpu_timer_reset(env->hstick);
391

    
392
    env->gregs[1] = 0; // Memory start
393
    env->gregs[2] = ram_size; // Memory size
394
    env->gregs[3] = 0; // Machine description XXX
395
    if (nr_resets++ == 0) {
396
        /* Power on reset */
397
        env->pc = s->prom_addr + 0x20ULL;
398
    } else {
399
        env->pc = s->prom_addr + 0x40ULL;
400
    }
401
    env->npc = env->pc + 4;
402
}
403

    
404
static void tick_irq(void *opaque)
405
{
406
    CPUState *env = opaque;
407

    
408
    CPUTimer* timer = env->tick;
409

    
410
    if (timer->disabled) {
411
        CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
412
        return;
413
    } else {
414
        CPUIRQ_DPRINTF("tick: fire\n");
415
    }
416

    
417
    env->softint |= SOFTINT_TIMER;
418
    cpu_kick_irq(env);
419
}
420

    
421
static void stick_irq(void *opaque)
422
{
423
    CPUState *env = opaque;
424

    
425
    CPUTimer* timer = env->stick;
426

    
427
    if (timer->disabled) {
428
        CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
429
        return;
430
    } else {
431
        CPUIRQ_DPRINTF("stick: fire\n");
432
    }
433

    
434
    env->softint |= SOFTINT_STIMER;
435
    cpu_kick_irq(env);
436
}
437

    
438
static void hstick_irq(void *opaque)
439
{
440
    CPUState *env = opaque;
441

    
442
    CPUTimer* timer = env->hstick;
443

    
444
    if (timer->disabled) {
445
        CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
446
        return;
447
    } else {
448
        CPUIRQ_DPRINTF("hstick: fire\n");
449
    }
450

    
451
    env->softint |= SOFTINT_STIMER;
452
    cpu_kick_irq(env);
453
}
454

    
455
static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
456
{
457
    return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
458
}
459

    
460
static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
461
{
462
    return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
463
}
464

    
465
void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
466
{
467
    uint64_t real_count = count & ~timer->disabled_mask;
468
    uint64_t disabled_bit = count & timer->disabled_mask;
469

    
470
    int64_t vm_clock_offset = qemu_get_clock_ns(vm_clock) -
471
                    cpu_to_timer_ticks(real_count, timer->frequency);
472

    
473
    TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
474
                  timer->name, real_count,
475
                  timer->disabled?"disabled":"enabled", timer);
476

    
477
    timer->disabled = disabled_bit ? 1 : 0;
478
    timer->clock_offset = vm_clock_offset;
479
}
480

    
481
uint64_t cpu_tick_get_count(CPUTimer *timer)
482
{
483
    uint64_t real_count = timer_to_cpu_ticks(
484
                    qemu_get_clock_ns(vm_clock) - timer->clock_offset,
485
                    timer->frequency);
486

    
487
    TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
488
           timer->name, real_count,
489
           timer->disabled?"disabled":"enabled", timer);
490

    
491
    if (timer->disabled)
492
        real_count |= timer->disabled_mask;
493

    
494
    return real_count;
495
}
496

    
497
void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
498
{
499
    int64_t now = qemu_get_clock_ns(vm_clock);
500

    
501
    uint64_t real_limit = limit & ~timer->disabled_mask;
502
    timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
503

    
504
    int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
505
                    timer->clock_offset;
506

    
507
    if (expires < now) {
508
        expires = now + 1;
509
    }
510

    
511
    TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
512
                  "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
513
                  timer->name, real_limit,
514
                  timer->disabled?"disabled":"enabled",
515
                  timer, limit,
516
                  timer_to_cpu_ticks(now - timer->clock_offset,
517
                                     timer->frequency),
518
                  timer_to_cpu_ticks(expires - now, timer->frequency));
519

    
520
    if (!real_limit) {
521
        TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
522
                timer->name);
523
        qemu_del_timer(timer->qtimer);
524
    } else if (timer->disabled) {
525
        qemu_del_timer(timer->qtimer);
526
    } else {
527
        qemu_mod_timer(timer->qtimer, expires);
528
    }
529
}
530

    
531
static void dummy_isa_irq_handler(void *opaque, int n, int level)
532
{
533
}
534

    
535
/* EBUS (Eight bit bus) bridge */
536
static void
537
pci_ebus_init(PCIBus *bus, int devfn)
538
{
539
    qemu_irq *isa_irq;
540

    
541
    pci_create_simple(bus, devfn, "ebus");
542
    isa_irq = qemu_allocate_irqs(dummy_isa_irq_handler, NULL, 16);
543
    isa_bus_irqs(isa_irq);
544
}
545

    
546
static int
547
pci_ebus_init1(PCIDevice *pci_dev)
548
{
549
    EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
550

    
551
    isa_bus_new(&pci_dev->qdev, pci_address_space_io(pci_dev));
552

    
553
    pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
554
    pci_dev->config[0x05] = 0x00;
555
    pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
556
    pci_dev->config[0x07] = 0x03; // status = medium devsel
557
    pci_dev->config[0x09] = 0x00; // programming i/f
558
    pci_dev->config[0x0D] = 0x0a; // latency_timer
559

    
560
    isa_mmio_setup(&s->bar0, 0x1000000);
561
    pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
562
    isa_mmio_setup(&s->bar1, 0x800000);
563
    pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1);
564
    return 0;
565
}
566

    
567
static PCIDeviceInfo ebus_info = {
568
    .qdev.name = "ebus",
569
    .qdev.size = sizeof(EbusState),
570
    .init = pci_ebus_init1,
571
    .vendor_id = PCI_VENDOR_ID_SUN,
572
    .device_id = PCI_DEVICE_ID_SUN_EBUS,
573
    .revision = 0x01,
574
    .class_id = PCI_CLASS_BRIDGE_OTHER,
575
};
576

    
577
static void pci_ebus_register(void)
578
{
579
    pci_qdev_register(&ebus_info);
580
}
581

    
582
device_init(pci_ebus_register);
583

    
584
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
585
{
586
    target_phys_addr_t *base_addr = (target_phys_addr_t *)opaque;
587
    return addr + *base_addr - PROM_VADDR;
588
}
589

    
590
/* Boot PROM (OpenBIOS) */
591
static void prom_init(target_phys_addr_t addr, const char *bios_name)
592
{
593
    DeviceState *dev;
594
    SysBusDevice *s;
595
    char *filename;
596
    int ret;
597

    
598
    dev = qdev_create(NULL, "openprom");
599
    qdev_init_nofail(dev);
600
    s = sysbus_from_qdev(dev);
601

    
602
    sysbus_mmio_map(s, 0, addr);
603

    
604
    /* load boot prom */
605
    if (bios_name == NULL) {
606
        bios_name = PROM_FILENAME;
607
    }
608
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
609
    if (filename) {
610
        ret = load_elf(filename, translate_prom_address, &addr,
611
                       NULL, NULL, NULL, 1, ELF_MACHINE, 0);
612
        if (ret < 0 || ret > PROM_SIZE_MAX) {
613
            ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
614
        }
615
        g_free(filename);
616
    } else {
617
        ret = -1;
618
    }
619
    if (ret < 0 || ret > PROM_SIZE_MAX) {
620
        fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
621
        exit(1);
622
    }
623
}
624

    
625
static int prom_init1(SysBusDevice *dev)
626
{
627
    ram_addr_t prom_offset;
628

    
629
    prom_offset = qemu_ram_alloc(NULL, "sun4u.prom", PROM_SIZE_MAX);
630
    sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
631
    return 0;
632
}
633

    
634
static SysBusDeviceInfo prom_info = {
635
    .init = prom_init1,
636
    .qdev.name  = "openprom",
637
    .qdev.size  = sizeof(SysBusDevice),
638
    .qdev.props = (Property[]) {
639
        {/* end of property list */}
640
    }
641
};
642

    
643
static void prom_register_devices(void)
644
{
645
    sysbus_register_withprop(&prom_info);
646
}
647

    
648
device_init(prom_register_devices);
649

    
650

    
651
typedef struct RamDevice
652
{
653
    SysBusDevice busdev;
654
    uint64_t size;
655
} RamDevice;
656

    
657
/* System RAM */
658
static int ram_init1(SysBusDevice *dev)
659
{
660
    ram_addr_t RAM_size, ram_offset;
661
    RamDevice *d = FROM_SYSBUS(RamDevice, dev);
662

    
663
    RAM_size = d->size;
664

    
665
    ram_offset = qemu_ram_alloc(NULL, "sun4u.ram", RAM_size);
666
    sysbus_init_mmio(dev, RAM_size, ram_offset);
667
    return 0;
668
}
669

    
670
static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size)
671
{
672
    DeviceState *dev;
673
    SysBusDevice *s;
674
    RamDevice *d;
675

    
676
    /* allocate RAM */
677
    dev = qdev_create(NULL, "memory");
678
    s = sysbus_from_qdev(dev);
679

    
680
    d = FROM_SYSBUS(RamDevice, s);
681
    d->size = RAM_size;
682
    qdev_init_nofail(dev);
683

    
684
    sysbus_mmio_map(s, 0, addr);
685
}
686

    
687
static SysBusDeviceInfo ram_info = {
688
    .init = ram_init1,
689
    .qdev.name  = "memory",
690
    .qdev.size  = sizeof(RamDevice),
691
    .qdev.props = (Property[]) {
692
        DEFINE_PROP_UINT64("size", RamDevice, size, 0),
693
        DEFINE_PROP_END_OF_LIST(),
694
    }
695
};
696

    
697
static void ram_register_devices(void)
698
{
699
    sysbus_register_withprop(&ram_info);
700
}
701

    
702
device_init(ram_register_devices);
703

    
704
static CPUState *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
705
{
706
    CPUState *env;
707
    ResetData *reset_info;
708

    
709
    uint32_t   tick_frequency = 100*1000000;
710
    uint32_t  stick_frequency = 100*1000000;
711
    uint32_t hstick_frequency = 100*1000000;
712

    
713
    if (!cpu_model)
714
        cpu_model = hwdef->default_cpu_model;
715
    env = cpu_init(cpu_model);
716
    if (!env) {
717
        fprintf(stderr, "Unable to find Sparc CPU definition\n");
718
        exit(1);
719
    }
720

    
721
    env->tick = cpu_timer_create("tick", env, tick_irq,
722
                                  tick_frequency, TICK_NPT_MASK);
723

    
724
    env->stick = cpu_timer_create("stick", env, stick_irq,
725
                                   stick_frequency, TICK_INT_DIS);
726

    
727
    env->hstick = cpu_timer_create("hstick", env, hstick_irq,
728
                                    hstick_frequency, TICK_INT_DIS);
729

    
730
    reset_info = g_malloc0(sizeof(ResetData));
731
    reset_info->env = env;
732
    reset_info->prom_addr = hwdef->prom_addr;
733
    qemu_register_reset(main_cpu_reset, reset_info);
734

    
735
    return env;
736
}
737

    
738
static void sun4uv_init(ram_addr_t RAM_size,
739
                        const char *boot_devices,
740
                        const char *kernel_filename, const char *kernel_cmdline,
741
                        const char *initrd_filename, const char *cpu_model,
742
                        const struct hwdef *hwdef)
743
{
744
    CPUState *env;
745
    M48t59State *nvram;
746
    unsigned int i;
747
    long initrd_size, kernel_size;
748
    PCIBus *pci_bus, *pci_bus2, *pci_bus3;
749
    qemu_irq *irq;
750
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
751
    DriveInfo *fd[MAX_FD];
752
    void *fw_cfg;
753

    
754
    /* init CPUs */
755
    env = cpu_devinit(cpu_model, hwdef);
756

    
757
    /* set up devices */
758
    ram_init(0, RAM_size);
759

    
760
    prom_init(hwdef->prom_addr, bios_name);
761

    
762

    
763
    irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
764
    pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, irq, &pci_bus2,
765
                           &pci_bus3);
766
    pci_vga_init(pci_bus);
767

    
768
    // XXX Should be pci_bus3
769
    pci_ebus_init(pci_bus, -1);
770

    
771
    i = 0;
772
    if (hwdef->console_serial_base) {
773
        serial_mm_init(hwdef->console_serial_base, 0, NULL, 115200,
774
                       serial_hds[i], DEVICE_BIG_ENDIAN);
775
        i++;
776
    }
777
    for(; i < MAX_SERIAL_PORTS; i++) {
778
        if (serial_hds[i]) {
779
            serial_isa_init(i, serial_hds[i]);
780
        }
781
    }
782

    
783
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
784
        if (parallel_hds[i]) {
785
            parallel_init(i, parallel_hds[i]);
786
        }
787
    }
788

    
789
    for(i = 0; i < nb_nics; i++)
790
        pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);
791

    
792
    ide_drive_get(hd, MAX_IDE_BUS);
793

    
794
    pci_cmd646_ide_init(pci_bus, hd, 1);
795

    
796
    isa_create_simple("i8042");
797
    for(i = 0; i < MAX_FD; i++) {
798
        fd[i] = drive_get(IF_FLOPPY, 0, i);
799
    }
800
    fdctrl_init_isa(fd);
801
    nvram = m48t59_init_isa(0x0074, NVRAM_SIZE, 59);
802

    
803
    initrd_size = 0;
804
    kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
805
                                    ram_size, &initrd_size);
806

    
807
    sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
808
                           KERNEL_LOAD_ADDR, kernel_size,
809
                           kernel_cmdline,
810
                           INITRD_LOAD_ADDR, initrd_size,
811
                           /* XXX: need an option to load a NVRAM image */
812
                           0,
813
                           graphic_width, graphic_height, graphic_depth,
814
                           (uint8_t *)&nd_table[0].macaddr);
815

    
816
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
817
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
818
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
819
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
820
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
821
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
822
    if (kernel_cmdline) {
823
        fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
824
                       strlen(kernel_cmdline) + 1);
825
        fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
826
                         (uint8_t*)strdup(kernel_cmdline),
827
                         strlen(kernel_cmdline) + 1);
828
    } else {
829
        fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
830
    }
831
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
832
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
833
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
834

    
835
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
836
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
837
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
838

    
839
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
840
}
841

    
842
enum {
843
    sun4u_id = 0,
844
    sun4v_id = 64,
845
    niagara_id,
846
};
847

    
848
static const struct hwdef hwdefs[] = {
849
    /* Sun4u generic PC-like machine */
850
    {
851
        .default_cpu_model = "TI UltraSparc IIi",
852
        .machine_id = sun4u_id,
853
        .prom_addr = 0x1fff0000000ULL,
854
        .console_serial_base = 0,
855
    },
856
    /* Sun4v generic PC-like machine */
857
    {
858
        .default_cpu_model = "Sun UltraSparc T1",
859
        .machine_id = sun4v_id,
860
        .prom_addr = 0x1fff0000000ULL,
861
        .console_serial_base = 0,
862
    },
863
    /* Sun4v generic Niagara machine */
864
    {
865
        .default_cpu_model = "Sun UltraSparc T1",
866
        .machine_id = niagara_id,
867
        .prom_addr = 0xfff0000000ULL,
868
        .console_serial_base = 0xfff0c2c000ULL,
869
    },
870
};
871

    
872
/* Sun4u hardware initialisation */
873
static void sun4u_init(ram_addr_t RAM_size,
874
                       const char *boot_devices,
875
                       const char *kernel_filename, const char *kernel_cmdline,
876
                       const char *initrd_filename, const char *cpu_model)
877
{
878
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
879
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
880
}
881

    
882
/* Sun4v hardware initialisation */
883
static void sun4v_init(ram_addr_t RAM_size,
884
                       const char *boot_devices,
885
                       const char *kernel_filename, const char *kernel_cmdline,
886
                       const char *initrd_filename, const char *cpu_model)
887
{
888
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
889
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
890
}
891

    
892
/* Niagara hardware initialisation */
893
static void niagara_init(ram_addr_t RAM_size,
894
                         const char *boot_devices,
895
                         const char *kernel_filename, const char *kernel_cmdline,
896
                         const char *initrd_filename, const char *cpu_model)
897
{
898
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
899
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
900
}
901

    
902
static QEMUMachine sun4u_machine = {
903
    .name = "sun4u",
904
    .desc = "Sun4u platform",
905
    .init = sun4u_init,
906
    .max_cpus = 1, // XXX for now
907
    .is_default = 1,
908
};
909

    
910
static QEMUMachine sun4v_machine = {
911
    .name = "sun4v",
912
    .desc = "Sun4v platform",
913
    .init = sun4v_init,
914
    .max_cpus = 1, // XXX for now
915
};
916

    
917
static QEMUMachine niagara_machine = {
918
    .name = "Niagara",
919
    .desc = "Sun4v platform, Niagara",
920
    .init = niagara_init,
921
    .max_cpus = 1, // XXX for now
922
};
923

    
924
static void sun4u_machine_init(void)
925
{
926
    qemu_register_machine(&sun4u_machine);
927
    qemu_register_machine(&sun4v_machine);
928
    qemu_register_machine(&niagara_machine);
929
}
930

    
931
machine_init(sun4u_machine_init);