Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 2ff3de68

History | View | Annotate | Download (89.7 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4

    
5
@documentlanguage en
6
@documentencoding UTF-8
7

    
8
@settitle QEMU Emulator User Documentation
9
@exampleindent 0
10
@paragraphindent 0
11
@c %**end of header
12

    
13
@ifinfo
14
@direntry
15
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16
@end direntry
17
@end ifinfo
18

    
19
@iftex
20
@titlepage
21
@sp 7
22
@center @titlefont{QEMU Emulator}
23
@sp 1
24
@center @titlefont{User Documentation}
25
@sp 3
26
@end titlepage
27
@end iftex
28

    
29
@ifnottex
30
@node Top
31
@top
32

    
33
@menu
34
* Introduction::
35
* Installation::
36
* QEMU PC System emulator::
37
* QEMU System emulator for non PC targets::
38
* QEMU User space emulator::
39
* compilation:: Compilation from the sources
40
* License::
41
* Index::
42
@end menu
43
@end ifnottex
44

    
45
@contents
46

    
47
@node Introduction
48
@chapter Introduction
49

    
50
@menu
51
* intro_features:: Features
52
@end menu
53

    
54
@node intro_features
55
@section Features
56

    
57
QEMU is a FAST! processor emulator using dynamic translation to
58
achieve good emulation speed.
59

    
60
QEMU has two operating modes:
61

    
62
@itemize
63
@cindex operating modes
64

    
65
@item
66
@cindex system emulation
67
Full system emulation. In this mode, QEMU emulates a full system (for
68
example a PC), including one or several processors and various
69
peripherals. It can be used to launch different Operating Systems
70
without rebooting the PC or to debug system code.
71

    
72
@item
73
@cindex user mode emulation
74
User mode emulation. In this mode, QEMU can launch
75
processes compiled for one CPU on another CPU. It can be used to
76
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77
to ease cross-compilation and cross-debugging.
78

    
79
@end itemize
80

    
81
QEMU can run without a host kernel driver and yet gives acceptable
82
performance.
83

    
84
For system emulation, the following hardware targets are supported:
85
@itemize
86
@cindex emulated target systems
87
@cindex supported target systems
88
@item PC (x86 or x86_64 processor)
89
@item ISA PC (old style PC without PCI bus)
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
92
@item Mac99 PowerMac (PowerPC processor, in progress)
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
97
@item ARM Integrator/CP (ARM)
98
@item ARM Versatile baseboard (ARM)
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109
@item Siemens SX1 smartphone (OMAP310 processor)
110
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112
@item Avnet LX60/LX110/LX200 boards (Xtensa)
113
@end itemize
114

    
115
@cindex supported user mode targets
116
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119

    
120
@node Installation
121
@chapter Installation
122

    
123
If you want to compile QEMU yourself, see @ref{compilation}.
124

    
125
@menu
126
* install_linux::   Linux
127
* install_windows:: Windows
128
* install_mac::     Macintosh
129
@end menu
130

    
131
@node install_linux
132
@section Linux
133
@cindex installation (Linux)
134

    
135
If a precompiled package is available for your distribution - you just
136
have to install it. Otherwise, see @ref{compilation}.
137

    
138
@node install_windows
139
@section Windows
140
@cindex installation (Windows)
141

    
142
Download the experimental binary installer at
143
@url{http://www.free.oszoo.org/@/download.html}.
144
TODO (no longer available)
145

    
146
@node install_mac
147
@section Mac OS X
148

    
149
Download the experimental binary installer at
150
@url{http://www.free.oszoo.org/@/download.html}.
151
TODO (no longer available)
152

    
153
@node QEMU PC System emulator
154
@chapter QEMU PC System emulator
155
@cindex system emulation (PC)
156

    
157
@menu
158
* pcsys_introduction:: Introduction
159
* pcsys_quickstart::   Quick Start
160
* sec_invocation::     Invocation
161
* pcsys_keys::         Keys
162
* pcsys_monitor::      QEMU Monitor
163
* disk_images::        Disk Images
164
* pcsys_network::      Network emulation
165
* pcsys_other_devs::   Other Devices
166
* direct_linux_boot::  Direct Linux Boot
167
* pcsys_usb::          USB emulation
168
* vnc_security::       VNC security
169
* gdb_usage::          GDB usage
170
* pcsys_os_specific::  Target OS specific information
171
@end menu
172

    
173
@node pcsys_introduction
174
@section Introduction
175

    
176
@c man begin DESCRIPTION
177

    
178
The QEMU PC System emulator simulates the
179
following peripherals:
180

    
181
@itemize @minus
182
@item
183
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184
@item
185
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186
extensions (hardware level, including all non standard modes).
187
@item
188
PS/2 mouse and keyboard
189
@item
190
2 PCI IDE interfaces with hard disk and CD-ROM support
191
@item
192
Floppy disk
193
@item
194
PCI and ISA network adapters
195
@item
196
Serial ports
197
@item
198
Creative SoundBlaster 16 sound card
199
@item
200
ENSONIQ AudioPCI ES1370 sound card
201
@item
202
Intel 82801AA AC97 Audio compatible sound card
203
@item
204
Intel HD Audio Controller and HDA codec
205
@item
206
Adlib (OPL2) - Yamaha YM3812 compatible chip
207
@item
208
Gravis Ultrasound GF1 sound card
209
@item
210
CS4231A compatible sound card
211
@item
212
PCI UHCI USB controller and a virtual USB hub.
213
@end itemize
214

    
215
SMP is supported with up to 255 CPUs.
216

    
217
QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
218
VGA BIOS.
219

    
220
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221

    
222
QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
223
by Tibor "TS" Schütz.
224

    
225
Note that, by default, GUS shares IRQ(7) with parallel ports and so
226
QEMU must be told to not have parallel ports to have working GUS.
227

    
228
@example
229
qemu-system-i386 dos.img -soundhw gus -parallel none
230
@end example
231

    
232
Alternatively:
233
@example
234
qemu-system-i386 dos.img -device gus,irq=5
235
@end example
236

    
237
Or some other unclaimed IRQ.
238

    
239
CS4231A is the chip used in Windows Sound System and GUSMAX products
240

    
241
@c man end
242

    
243
@node pcsys_quickstart
244
@section Quick Start
245
@cindex quick start
246

    
247
Download and uncompress the linux image (@file{linux.img}) and type:
248

    
249
@example
250
qemu-system-i386 linux.img
251
@end example
252

    
253
Linux should boot and give you a prompt.
254

    
255
@node sec_invocation
256
@section Invocation
257

    
258
@example
259
@c man begin SYNOPSIS
260
usage: qemu-system-i386 [options] [@var{disk_image}]
261
@c man end
262
@end example
263

    
264
@c man begin OPTIONS
265
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266
targets do not need a disk image.
267

    
268
@include qemu-options.texi
269

    
270
@c man end
271

    
272
@node pcsys_keys
273
@section Keys
274

    
275
@c man begin OPTIONS
276

    
277
During the graphical emulation, you can use special key combinations to change
278
modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279
then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280
@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281

    
282
@table @key
283
@item Ctrl-Alt-f
284
@kindex Ctrl-Alt-f
285
Toggle full screen
286

    
287
@item Ctrl-Alt-+
288
@kindex Ctrl-Alt-+
289
Enlarge the screen
290

    
291
@item Ctrl-Alt--
292
@kindex Ctrl-Alt--
293
Shrink the screen
294

    
295
@item Ctrl-Alt-u
296
@kindex Ctrl-Alt-u
297
Restore the screen's un-scaled dimensions
298

    
299
@item Ctrl-Alt-n
300
@kindex Ctrl-Alt-n
301
Switch to virtual console 'n'. Standard console mappings are:
302
@table @emph
303
@item 1
304
Target system display
305
@item 2
306
Monitor
307
@item 3
308
Serial port
309
@end table
310

    
311
@item Ctrl-Alt
312
@kindex Ctrl-Alt
313
Toggle mouse and keyboard grab.
314
@end table
315

    
316
@kindex Ctrl-Up
317
@kindex Ctrl-Down
318
@kindex Ctrl-PageUp
319
@kindex Ctrl-PageDown
320
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322

    
323
@kindex Ctrl-a h
324
During emulation, if you are using the @option{-nographic} option, use
325
@key{Ctrl-a h} to get terminal commands:
326

    
327
@table @key
328
@item Ctrl-a h
329
@kindex Ctrl-a h
330
@item Ctrl-a ?
331
@kindex Ctrl-a ?
332
Print this help
333
@item Ctrl-a x
334
@kindex Ctrl-a x
335
Exit emulator
336
@item Ctrl-a s
337
@kindex Ctrl-a s
338
Save disk data back to file (if -snapshot)
339
@item Ctrl-a t
340
@kindex Ctrl-a t
341
Toggle console timestamps
342
@item Ctrl-a b
343
@kindex Ctrl-a b
344
Send break (magic sysrq in Linux)
345
@item Ctrl-a c
346
@kindex Ctrl-a c
347
Switch between console and monitor
348
@item Ctrl-a Ctrl-a
349
@kindex Ctrl-a a
350
Send Ctrl-a
351
@end table
352
@c man end
353

    
354
@ignore
355

    
356
@c man begin SEEALSO
357
The HTML documentation of QEMU for more precise information and Linux
358
user mode emulator invocation.
359
@c man end
360

    
361
@c man begin AUTHOR
362
Fabrice Bellard
363
@c man end
364

    
365
@end ignore
366

    
367
@node pcsys_monitor
368
@section QEMU Monitor
369
@cindex QEMU monitor
370

    
371
The QEMU monitor is used to give complex commands to the QEMU
372
emulator. You can use it to:
373

    
374
@itemize @minus
375

    
376
@item
377
Remove or insert removable media images
378
(such as CD-ROM or floppies).
379

    
380
@item
381
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382
from a disk file.
383

    
384
@item Inspect the VM state without an external debugger.
385

    
386
@end itemize
387

    
388
@subsection Commands
389

    
390
The following commands are available:
391

    
392
@include qemu-monitor.texi
393

    
394
@subsection Integer expressions
395

    
396
The monitor understands integers expressions for every integer
397
argument. You can use register names to get the value of specifics
398
CPU registers by prefixing them with @emph{$}.
399

    
400
@node disk_images
401
@section Disk Images
402

    
403
Since version 0.6.1, QEMU supports many disk image formats, including
404
growable disk images (their size increase as non empty sectors are
405
written), compressed and encrypted disk images. Version 0.8.3 added
406
the new qcow2 disk image format which is essential to support VM
407
snapshots.
408

    
409
@menu
410
* disk_images_quickstart::    Quick start for disk image creation
411
* disk_images_snapshot_mode:: Snapshot mode
412
* vm_snapshots::              VM snapshots
413
* qemu_img_invocation::       qemu-img Invocation
414
* qemu_nbd_invocation::       qemu-nbd Invocation
415
* disk_images_formats::       Disk image file formats
416
* host_drives::               Using host drives
417
* disk_images_fat_images::    Virtual FAT disk images
418
* disk_images_nbd::           NBD access
419
* disk_images_sheepdog::      Sheepdog disk images
420
* disk_images_iscsi::         iSCSI LUNs
421
* disk_images_gluster::       GlusterFS disk images
422
* disk_images_ssh::           Secure Shell (ssh) disk images
423
@end menu
424

    
425
@node disk_images_quickstart
426
@subsection Quick start for disk image creation
427

    
428
You can create a disk image with the command:
429
@example
430
qemu-img create myimage.img mysize
431
@end example
432
where @var{myimage.img} is the disk image filename and @var{mysize} is its
433
size in kilobytes. You can add an @code{M} suffix to give the size in
434
megabytes and a @code{G} suffix for gigabytes.
435

    
436
See @ref{qemu_img_invocation} for more information.
437

    
438
@node disk_images_snapshot_mode
439
@subsection Snapshot mode
440

    
441
If you use the option @option{-snapshot}, all disk images are
442
considered as read only. When sectors in written, they are written in
443
a temporary file created in @file{/tmp}. You can however force the
444
write back to the raw disk images by using the @code{commit} monitor
445
command (or @key{C-a s} in the serial console).
446

    
447
@node vm_snapshots
448
@subsection VM snapshots
449

    
450
VM snapshots are snapshots of the complete virtual machine including
451
CPU state, RAM, device state and the content of all the writable
452
disks. In order to use VM snapshots, you must have at least one non
453
removable and writable block device using the @code{qcow2} disk image
454
format. Normally this device is the first virtual hard drive.
455

    
456
Use the monitor command @code{savevm} to create a new VM snapshot or
457
replace an existing one. A human readable name can be assigned to each
458
snapshot in addition to its numerical ID.
459

    
460
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461
a VM snapshot. @code{info snapshots} lists the available snapshots
462
with their associated information:
463

    
464
@example
465
(qemu) info snapshots
466
Snapshot devices: hda
467
Snapshot list (from hda):
468
ID        TAG                 VM SIZE                DATE       VM CLOCK
469
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
470
2                                 40M 2006-08-06 12:43:29   00:00:18.633
471
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
472
@end example
473

    
474
A VM snapshot is made of a VM state info (its size is shown in
475
@code{info snapshots}) and a snapshot of every writable disk image.
476
The VM state info is stored in the first @code{qcow2} non removable
477
and writable block device. The disk image snapshots are stored in
478
every disk image. The size of a snapshot in a disk image is difficult
479
to evaluate and is not shown by @code{info snapshots} because the
480
associated disk sectors are shared among all the snapshots to save
481
disk space (otherwise each snapshot would need a full copy of all the
482
disk images).
483

    
484
When using the (unrelated) @code{-snapshot} option
485
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486
but they are deleted as soon as you exit QEMU.
487

    
488
VM snapshots currently have the following known limitations:
489
@itemize
490
@item
491
They cannot cope with removable devices if they are removed or
492
inserted after a snapshot is done.
493
@item
494
A few device drivers still have incomplete snapshot support so their
495
state is not saved or restored properly (in particular USB).
496
@end itemize
497

    
498
@node qemu_img_invocation
499
@subsection @code{qemu-img} Invocation
500

    
501
@include qemu-img.texi
502

    
503
@node qemu_nbd_invocation
504
@subsection @code{qemu-nbd} Invocation
505

    
506
@include qemu-nbd.texi
507

    
508
@node disk_images_formats
509
@subsection Disk image file formats
510

    
511
QEMU supports many image file formats that can be used with VMs as well as with
512
any of the tools (like @code{qemu-img}). This includes the preferred formats
513
raw and qcow2 as well as formats that are supported for compatibility with
514
older QEMU versions or other hypervisors.
515

    
516
Depending on the image format, different options can be passed to
517
@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518
This section describes each format and the options that are supported for it.
519

    
520
@table @option
521
@item raw
522

    
523
Raw disk image format. This format has the advantage of
524
being simple and easily exportable to all other emulators. If your
525
file system supports @emph{holes} (for example in ext2 or ext3 on
526
Linux or NTFS on Windows), then only the written sectors will reserve
527
space. Use @code{qemu-img info} to know the real size used by the
528
image or @code{ls -ls} on Unix/Linux.
529

    
530
@item qcow2
531
QEMU image format, the most versatile format. Use it to have smaller
532
images (useful if your filesystem does not supports holes, for example
533
on Windows), optional AES encryption, zlib based compression and
534
support of multiple VM snapshots.
535

    
536
Supported options:
537
@table @code
538
@item compat
539
Determines the qcow2 version to use. @code{compat=0.10} uses the traditional
540
image format that can be read by any QEMU since 0.10 (this is the default).
541
@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
542
newer understand. Amongst others, this includes zero clusters, which allow
543
efficient copy-on-read for sparse images.
544

    
545
@item backing_file
546
File name of a base image (see @option{create} subcommand)
547
@item backing_fmt
548
Image format of the base image
549
@item encryption
550
If this option is set to @code{on}, the image is encrypted.
551

    
552
Encryption uses the AES format which is very secure (128 bit keys). Use
553
a long password (16 characters) to get maximum protection.
554

    
555
@item cluster_size
556
Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
557
sizes can improve the image file size whereas larger cluster sizes generally
558
provide better performance.
559

    
560
@item preallocation
561
Preallocation mode (allowed values: off, metadata). An image with preallocated
562
metadata is initially larger but can improve performance when the image needs
563
to grow.
564

    
565
@item lazy_refcounts
566
If this option is set to @code{on}, reference count updates are postponed with
567
the goal of avoiding metadata I/O and improving performance. This is
568
particularly interesting with @option{cache=writethrough} which doesn't batch
569
metadata updates. The tradeoff is that after a host crash, the reference count
570
tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
571
check -r all} is required, which may take some time.
572

    
573
This option can only be enabled if @code{compat=1.1} is specified.
574

    
575
@end table
576

    
577
@item qed
578
Old QEMU image format with support for backing files and compact image files
579
(when your filesystem or transport medium does not support holes).
580

    
581
When converting QED images to qcow2, you might want to consider using the
582
@code{lazy_refcounts=on} option to get a more QED-like behaviour.
583

    
584
Supported options:
585
@table @code
586
@item backing_file
587
File name of a base image (see @option{create} subcommand).
588
@item backing_fmt
589
Image file format of backing file (optional).  Useful if the format cannot be
590
autodetected because it has no header, like some vhd/vpc files.
591
@item cluster_size
592
Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
593
cluster sizes can improve the image file size whereas larger cluster sizes
594
generally provide better performance.
595
@item table_size
596
Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
597
and 16).  There is normally no need to change this value but this option can be
598
used for performance benchmarking.
599
@end table
600

    
601
@item qcow
602
Old QEMU image format with support for backing files, compact image files,
603
encryption and compression.
604

    
605
Supported options:
606
@table @code
607
@item backing_file
608
File name of a base image (see @option{create} subcommand)
609
@item encryption
610
If this option is set to @code{on}, the image is encrypted.
611
@end table
612

    
613
@item cow
614
User Mode Linux Copy On Write image format. It is supported only for
615
compatibility with previous versions.
616
Supported options:
617
@table @code
618
@item backing_file
619
File name of a base image (see @option{create} subcommand)
620
@end table
621

    
622
@item vdi
623
VirtualBox 1.1 compatible image format.
624
Supported options:
625
@table @code
626
@item static
627
If this option is set to @code{on}, the image is created with metadata
628
preallocation.
629
@end table
630

    
631
@item vmdk
632
VMware 3 and 4 compatible image format.
633

    
634
Supported options:
635
@table @code
636
@item backing_file
637
File name of a base image (see @option{create} subcommand).
638
@item compat6
639
Create a VMDK version 6 image (instead of version 4)
640
@item subformat
641
Specifies which VMDK subformat to use. Valid options are
642
@code{monolithicSparse} (default),
643
@code{monolithicFlat},
644
@code{twoGbMaxExtentSparse},
645
@code{twoGbMaxExtentFlat} and
646
@code{streamOptimized}.
647
@end table
648

    
649
@item vpc
650
VirtualPC compatible image format (VHD).
651
Supported options:
652
@table @code
653
@item subformat
654
Specifies which VHD subformat to use. Valid options are
655
@code{dynamic} (default) and @code{fixed}.
656
@end table
657
@end table
658

    
659
@subsubsection Read-only formats
660
More disk image file formats are supported in a read-only mode.
661
@table @option
662
@item bochs
663
Bochs images of @code{growing} type.
664
@item cloop
665
Linux Compressed Loop image, useful only to reuse directly compressed
666
CD-ROM images present for example in the Knoppix CD-ROMs.
667
@item dmg
668
Apple disk image.
669
@item parallels
670
Parallels disk image format.
671
@end table
672

    
673

    
674
@node host_drives
675
@subsection Using host drives
676

    
677
In addition to disk image files, QEMU can directly access host
678
devices. We describe here the usage for QEMU version >= 0.8.3.
679

    
680
@subsubsection Linux
681

    
682
On Linux, you can directly use the host device filename instead of a
683
disk image filename provided you have enough privileges to access
684
it. For example, use @file{/dev/cdrom} to access to the CDROM or
685
@file{/dev/fd0} for the floppy.
686

    
687
@table @code
688
@item CD
689
You can specify a CDROM device even if no CDROM is loaded. QEMU has
690
specific code to detect CDROM insertion or removal. CDROM ejection by
691
the guest OS is supported. Currently only data CDs are supported.
692
@item Floppy
693
You can specify a floppy device even if no floppy is loaded. Floppy
694
removal is currently not detected accurately (if you change floppy
695
without doing floppy access while the floppy is not loaded, the guest
696
OS will think that the same floppy is loaded).
697
@item Hard disks
698
Hard disks can be used. Normally you must specify the whole disk
699
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
700
see it as a partitioned disk. WARNING: unless you know what you do, it
701
is better to only make READ-ONLY accesses to the hard disk otherwise
702
you may corrupt your host data (use the @option{-snapshot} command
703
line option or modify the device permissions accordingly).
704
@end table
705

    
706
@subsubsection Windows
707

    
708
@table @code
709
@item CD
710
The preferred syntax is the drive letter (e.g. @file{d:}). The
711
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
712
supported as an alias to the first CDROM drive.
713

    
714
Currently there is no specific code to handle removable media, so it
715
is better to use the @code{change} or @code{eject} monitor commands to
716
change or eject media.
717
@item Hard disks
718
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
719
where @var{N} is the drive number (0 is the first hard disk).
720

    
721
WARNING: unless you know what you do, it is better to only make
722
READ-ONLY accesses to the hard disk otherwise you may corrupt your
723
host data (use the @option{-snapshot} command line so that the
724
modifications are written in a temporary file).
725
@end table
726

    
727

    
728
@subsubsection Mac OS X
729

    
730
@file{/dev/cdrom} is an alias to the first CDROM.
731

    
732
Currently there is no specific code to handle removable media, so it
733
is better to use the @code{change} or @code{eject} monitor commands to
734
change or eject media.
735

    
736
@node disk_images_fat_images
737
@subsection Virtual FAT disk images
738

    
739
QEMU can automatically create a virtual FAT disk image from a
740
directory tree. In order to use it, just type:
741

    
742
@example
743
qemu-system-i386 linux.img -hdb fat:/my_directory
744
@end example
745

    
746
Then you access access to all the files in the @file{/my_directory}
747
directory without having to copy them in a disk image or to export
748
them via SAMBA or NFS. The default access is @emph{read-only}.
749

    
750
Floppies can be emulated with the @code{:floppy:} option:
751

    
752
@example
753
qemu-system-i386 linux.img -fda fat:floppy:/my_directory
754
@end example
755

    
756
A read/write support is available for testing (beta stage) with the
757
@code{:rw:} option:
758

    
759
@example
760
qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
761
@end example
762

    
763
What you should @emph{never} do:
764
@itemize
765
@item use non-ASCII filenames ;
766
@item use "-snapshot" together with ":rw:" ;
767
@item expect it to work when loadvm'ing ;
768
@item write to the FAT directory on the host system while accessing it with the guest system.
769
@end itemize
770

    
771
@node disk_images_nbd
772
@subsection NBD access
773

    
774
QEMU can access directly to block device exported using the Network Block Device
775
protocol.
776

    
777
@example
778
qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
779
@end example
780

    
781
If the NBD server is located on the same host, you can use an unix socket instead
782
of an inet socket:
783

    
784
@example
785
qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
786
@end example
787

    
788
In this case, the block device must be exported using qemu-nbd:
789

    
790
@example
791
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
792
@end example
793

    
794
The use of qemu-nbd allows to share a disk between several guests:
795
@example
796
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
797
@end example
798

    
799
@noindent
800
and then you can use it with two guests:
801
@example
802
qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
803
qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
804
@end example
805

    
806
If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
807
own embedded NBD server), you must specify an export name in the URI:
808
@example
809
qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
810
qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
811
@end example
812

    
813
The URI syntax for NBD is supported since QEMU 1.3.  An alternative syntax is
814
also available.  Here are some example of the older syntax:
815
@example
816
qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
817
qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
818
qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
819
@end example
820

    
821
@node disk_images_sheepdog
822
@subsection Sheepdog disk images
823

    
824
Sheepdog is a distributed storage system for QEMU.  It provides highly
825
available block level storage volumes that can be attached to
826
QEMU-based virtual machines.
827

    
828
You can create a Sheepdog disk image with the command:
829
@example
830
qemu-img create sheepdog:///@var{image} @var{size}
831
@end example
832
where @var{image} is the Sheepdog image name and @var{size} is its
833
size.
834

    
835
To import the existing @var{filename} to Sheepdog, you can use a
836
convert command.
837
@example
838
qemu-img convert @var{filename} sheepdog:///@var{image}
839
@end example
840

    
841
You can boot from the Sheepdog disk image with the command:
842
@example
843
qemu-system-i386 sheepdog:///@var{image}
844
@end example
845

    
846
You can also create a snapshot of the Sheepdog image like qcow2.
847
@example
848
qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
849
@end example
850
where @var{tag} is a tag name of the newly created snapshot.
851

    
852
To boot from the Sheepdog snapshot, specify the tag name of the
853
snapshot.
854
@example
855
qemu-system-i386 sheepdog:///@var{image}#@var{tag}
856
@end example
857

    
858
You can create a cloned image from the existing snapshot.
859
@example
860
qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
861
@end example
862
where @var{base} is a image name of the source snapshot and @var{tag}
863
is its tag name.
864

    
865
You can use an unix socket instead of an inet socket:
866

    
867
@example
868
qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
869
@end example
870

    
871
If the Sheepdog daemon doesn't run on the local host, you need to
872
specify one of the Sheepdog servers to connect to.
873
@example
874
qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
875
qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
876
@end example
877

    
878
@node disk_images_iscsi
879
@subsection iSCSI LUNs
880

    
881
iSCSI is a popular protocol used to access SCSI devices across a computer
882
network.
883

    
884
There are two different ways iSCSI devices can be used by QEMU.
885

    
886
The first method is to mount the iSCSI LUN on the host, and make it appear as
887
any other ordinary SCSI device on the host and then to access this device as a
888
/dev/sd device from QEMU. How to do this differs between host OSes.
889

    
890
The second method involves using the iSCSI initiator that is built into
891
QEMU. This provides a mechanism that works the same way regardless of which
892
host OS you are running QEMU on. This section will describe this second method
893
of using iSCSI together with QEMU.
894

    
895
In QEMU, iSCSI devices are described using special iSCSI URLs
896

    
897
@example
898
URL syntax:
899
iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
900
@end example
901

    
902
Username and password are optional and only used if your target is set up
903
using CHAP authentication for access control.
904
Alternatively the username and password can also be set via environment
905
variables to have these not show up in the process list
906

    
907
@example
908
export LIBISCSI_CHAP_USERNAME=<username>
909
export LIBISCSI_CHAP_PASSWORD=<password>
910
iscsi://<host>/<target-iqn-name>/<lun>
911
@end example
912

    
913
Various session related parameters can be set via special options, either
914
in a configuration file provided via '-readconfig' or directly on the
915
command line.
916

    
917
If the initiator-name is not specified qemu will use a default name
918
of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
919
virtual machine.
920

    
921

    
922
@example
923
Setting a specific initiator name to use when logging in to the target
924
-iscsi initiator-name=iqn.qemu.test:my-initiator
925
@end example
926

    
927
@example
928
Controlling which type of header digest to negotiate with the target
929
-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
930
@end example
931

    
932
These can also be set via a configuration file
933
@example
934
[iscsi]
935
  user = "CHAP username"
936
  password = "CHAP password"
937
  initiator-name = "iqn.qemu.test:my-initiator"
938
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
939
  header-digest = "CRC32C"
940
@end example
941

    
942

    
943
Setting the target name allows different options for different targets
944
@example
945
[iscsi "iqn.target.name"]
946
  user = "CHAP username"
947
  password = "CHAP password"
948
  initiator-name = "iqn.qemu.test:my-initiator"
949
  # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
950
  header-digest = "CRC32C"
951
@end example
952

    
953

    
954
Howto use a configuration file to set iSCSI configuration options:
955
@example
956
cat >iscsi.conf <<EOF
957
[iscsi]
958
  user = "me"
959
  password = "my password"
960
  initiator-name = "iqn.qemu.test:my-initiator"
961
  header-digest = "CRC32C"
962
EOF
963

    
964
qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
965
    -readconfig iscsi.conf
966
@end example
967

    
968

    
969
Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
970
@example
971
This example shows how to set up an iSCSI target with one CDROM and one DISK
972
using the Linux STGT software target. This target is available on Red Hat based
973
systems as the package 'scsi-target-utils'.
974

    
975
tgtd --iscsi portal=127.0.0.1:3260
976
tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
977
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
978
    -b /IMAGES/disk.img --device-type=disk
979
tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
980
    -b /IMAGES/cd.iso --device-type=cd
981
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
982

    
983
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
984
    -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
985
    -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
986
@end example
987

    
988
@node disk_images_gluster
989
@subsection GlusterFS disk images
990

    
991
GlusterFS is an user space distributed file system.
992

    
993
You can boot from the GlusterFS disk image with the command:
994
@example
995
qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
996
@end example
997

    
998
@var{gluster} is the protocol.
999

    
1000
@var{transport} specifies the transport type used to connect to gluster
1001
management daemon (glusterd). Valid transport types are
1002
tcp, unix and rdma. If a transport type isn't specified, then tcp
1003
type is assumed.
1004

    
1005
@var{server} specifies the server where the volume file specification for
1006
the given volume resides. This can be either hostname, ipv4 address
1007
or ipv6 address. ipv6 address needs to be within square brackets [ ].
1008
If transport type is unix, then @var{server} field should not be specifed.
1009
Instead @var{socket} field needs to be populated with the path to unix domain
1010
socket.
1011

    
1012
@var{port} is the port number on which glusterd is listening. This is optional
1013
and if not specified, QEMU will send 0 which will make gluster to use the
1014
default port. If the transport type is unix, then @var{port} should not be
1015
specified.
1016

    
1017
@var{volname} is the name of the gluster volume which contains the disk image.
1018

    
1019
@var{image} is the path to the actual disk image that resides on gluster volume.
1020

    
1021
You can create a GlusterFS disk image with the command:
1022
@example
1023
qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1024
@end example
1025

    
1026
Examples
1027
@example
1028
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1029
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1030
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1031
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1032
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1033
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1034
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1035
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1036
@end example
1037

    
1038
@node disk_images_ssh
1039
@subsection Secure Shell (ssh) disk images
1040

    
1041
You can access disk images located on a remote ssh server
1042
by using the ssh protocol:
1043

    
1044
@example
1045
qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1046
@end example
1047

    
1048
Alternative syntax using properties:
1049

    
1050
@example
1051
qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1052
@end example
1053

    
1054
@var{ssh} is the protocol.
1055

    
1056
@var{user} is the remote user.  If not specified, then the local
1057
username is tried.
1058

    
1059
@var{server} specifies the remote ssh server.  Any ssh server can be
1060
used, but it must implement the sftp-server protocol.  Most Unix/Linux
1061
systems should work without requiring any extra configuration.
1062

    
1063
@var{port} is the port number on which sshd is listening.  By default
1064
the standard ssh port (22) is used.
1065

    
1066
@var{path} is the path to the disk image.
1067

    
1068
The optional @var{host_key_check} parameter controls how the remote
1069
host's key is checked.  The default is @code{yes} which means to use
1070
the local @file{.ssh/known_hosts} file.  Setting this to @code{no}
1071
turns off known-hosts checking.  Or you can check that the host key
1072
matches a specific fingerprint:
1073
@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1074
(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1075
tools only use MD5 to print fingerprints).
1076

    
1077
Currently authentication must be done using ssh-agent.  Other
1078
authentication methods may be supported in future.
1079

    
1080
Note: Many ssh servers do not support an @code{fsync}-style operation.
1081
The ssh driver cannot guarantee that disk flush requests are
1082
obeyed, and this causes a risk of disk corruption if the remote
1083
server or network goes down during writes.  The driver will
1084
print a warning when @code{fsync} is not supported:
1085

    
1086
warning: ssh server @code{ssh.example.com:22} does not support fsync
1087

    
1088
With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1089
supported.
1090

    
1091
@node pcsys_network
1092
@section Network emulation
1093

    
1094
QEMU can simulate several network cards (PCI or ISA cards on the PC
1095
target) and can connect them to an arbitrary number of Virtual Local
1096
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1097
VLAN. VLAN can be connected between separate instances of QEMU to
1098
simulate large networks. For simpler usage, a non privileged user mode
1099
network stack can replace the TAP device to have a basic network
1100
connection.
1101

    
1102
@subsection VLANs
1103

    
1104
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1105
connection between several network devices. These devices can be for
1106
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1107
(TAP devices).
1108

    
1109
@subsection Using TAP network interfaces
1110

    
1111
This is the standard way to connect QEMU to a real network. QEMU adds
1112
a virtual network device on your host (called @code{tapN}), and you
1113
can then configure it as if it was a real ethernet card.
1114

    
1115
@subsubsection Linux host
1116

    
1117
As an example, you can download the @file{linux-test-xxx.tar.gz}
1118
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1119
configure properly @code{sudo} so that the command @code{ifconfig}
1120
contained in @file{qemu-ifup} can be executed as root. You must verify
1121
that your host kernel supports the TAP network interfaces: the
1122
device @file{/dev/net/tun} must be present.
1123

    
1124
See @ref{sec_invocation} to have examples of command lines using the
1125
TAP network interfaces.
1126

    
1127
@subsubsection Windows host
1128

    
1129
There is a virtual ethernet driver for Windows 2000/XP systems, called
1130
TAP-Win32. But it is not included in standard QEMU for Windows,
1131
so you will need to get it separately. It is part of OpenVPN package,
1132
so download OpenVPN from : @url{http://openvpn.net/}.
1133

    
1134
@subsection Using the user mode network stack
1135

    
1136
By using the option @option{-net user} (default configuration if no
1137
@option{-net} option is specified), QEMU uses a completely user mode
1138
network stack (you don't need root privilege to use the virtual
1139
network). The virtual network configuration is the following:
1140

    
1141
@example
1142

    
1143
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1144
                           |          (10.0.2.2)
1145
                           |
1146
                           ---->  DNS server (10.0.2.3)
1147
                           |
1148
                           ---->  SMB server (10.0.2.4)
1149
@end example
1150

    
1151
The QEMU VM behaves as if it was behind a firewall which blocks all
1152
incoming connections. You can use a DHCP client to automatically
1153
configure the network in the QEMU VM. The DHCP server assign addresses
1154
to the hosts starting from 10.0.2.15.
1155

    
1156
In order to check that the user mode network is working, you can ping
1157
the address 10.0.2.2 and verify that you got an address in the range
1158
10.0.2.x from the QEMU virtual DHCP server.
1159

    
1160
Note that @code{ping} is not supported reliably to the internet as it
1161
would require root privileges. It means you can only ping the local
1162
router (10.0.2.2).
1163

    
1164
When using the built-in TFTP server, the router is also the TFTP
1165
server.
1166

    
1167
When using the @option{-redir} option, TCP or UDP connections can be
1168
redirected from the host to the guest. It allows for example to
1169
redirect X11, telnet or SSH connections.
1170

    
1171
@subsection Connecting VLANs between QEMU instances
1172

    
1173
Using the @option{-net socket} option, it is possible to make VLANs
1174
that span several QEMU instances. See @ref{sec_invocation} to have a
1175
basic example.
1176

    
1177
@node pcsys_other_devs
1178
@section Other Devices
1179

    
1180
@subsection Inter-VM Shared Memory device
1181

    
1182
With KVM enabled on a Linux host, a shared memory device is available.  Guests
1183
map a POSIX shared memory region into the guest as a PCI device that enables
1184
zero-copy communication to the application level of the guests.  The basic
1185
syntax is:
1186

    
1187
@example
1188
qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1189
@end example
1190

    
1191
If desired, interrupts can be sent between guest VMs accessing the same shared
1192
memory region.  Interrupt support requires using a shared memory server and
1193
using a chardev socket to connect to it.  The code for the shared memory server
1194
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
1195
memory server is:
1196

    
1197
@example
1198
qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1199
                 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1200
qemu-system-i386 -chardev socket,path=<path>,id=<id>
1201
@end example
1202

    
1203
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1204
using the same server to communicate via interrupts.  Guests can read their
1205
VM ID from a device register (see example code).  Since receiving the shared
1206
memory region from the server is asynchronous, there is a (small) chance the
1207
guest may boot before the shared memory is attached.  To allow an application
1208
to ensure shared memory is attached, the VM ID register will return -1 (an
1209
invalid VM ID) until the memory is attached.  Once the shared memory is
1210
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
1211
the guest application can check to ensure the shared memory is attached to the
1212
guest before proceeding.
1213

    
1214
The @option{role} argument can be set to either master or peer and will affect
1215
how the shared memory is migrated.  With @option{role=master}, the guest will
1216
copy the shared memory on migration to the destination host.  With
1217
@option{role=peer}, the guest will not be able to migrate with the device attached.
1218
With the @option{peer} case, the device should be detached and then reattached
1219
after migration using the PCI hotplug support.
1220

    
1221
@node direct_linux_boot
1222
@section Direct Linux Boot
1223

    
1224
This section explains how to launch a Linux kernel inside QEMU without
1225
having to make a full bootable image. It is very useful for fast Linux
1226
kernel testing.
1227

    
1228
The syntax is:
1229
@example
1230
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1231
@end example
1232

    
1233
Use @option{-kernel} to provide the Linux kernel image and
1234
@option{-append} to give the kernel command line arguments. The
1235
@option{-initrd} option can be used to provide an INITRD image.
1236

    
1237
When using the direct Linux boot, a disk image for the first hard disk
1238
@file{hda} is required because its boot sector is used to launch the
1239
Linux kernel.
1240

    
1241
If you do not need graphical output, you can disable it and redirect
1242
the virtual serial port and the QEMU monitor to the console with the
1243
@option{-nographic} option. The typical command line is:
1244
@example
1245
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1246
                 -append "root=/dev/hda console=ttyS0" -nographic
1247
@end example
1248

    
1249
Use @key{Ctrl-a c} to switch between the serial console and the
1250
monitor (@pxref{pcsys_keys}).
1251

    
1252
@node pcsys_usb
1253
@section USB emulation
1254

    
1255
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1256
virtual USB devices or real host USB devices (experimental, works only
1257
on Linux hosts).  QEMU will automatically create and connect virtual USB hubs
1258
as necessary to connect multiple USB devices.
1259

    
1260
@menu
1261
* usb_devices::
1262
* host_usb_devices::
1263
@end menu
1264
@node usb_devices
1265
@subsection Connecting USB devices
1266

    
1267
USB devices can be connected with the @option{-usbdevice} commandline option
1268
or the @code{usb_add} monitor command.  Available devices are:
1269

    
1270
@table @code
1271
@item mouse
1272
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1273
@item tablet
1274
Pointer device that uses absolute coordinates (like a touchscreen).
1275
This means QEMU is able to report the mouse position without having
1276
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1277
@item disk:@var{file}
1278
Mass storage device based on @var{file} (@pxref{disk_images})
1279
@item host:@var{bus.addr}
1280
Pass through the host device identified by @var{bus.addr}
1281
(Linux only)
1282
@item host:@var{vendor_id:product_id}
1283
Pass through the host device identified by @var{vendor_id:product_id}
1284
(Linux only)
1285
@item wacom-tablet
1286
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1287
above but it can be used with the tslib library because in addition to touch
1288
coordinates it reports touch pressure.
1289
@item keyboard
1290
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1291
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1292
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1293
device @var{dev}. The available character devices are the same as for the
1294
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1295
used to override the default 0403:6001. For instance,
1296
@example
1297
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1298
@end example
1299
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1300
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1301
@item braille
1302
Braille device.  This will use BrlAPI to display the braille output on a real
1303
or fake device.
1304
@item net:@var{options}
1305
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1306
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1307
For instance, user-mode networking can be used with
1308
@example
1309
qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1310
@end example
1311
Currently this cannot be used in machines that support PCI NICs.
1312
@item bt[:@var{hci-type}]
1313
Bluetooth dongle whose type is specified in the same format as with
1314
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1315
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1316
This USB device implements the USB Transport Layer of HCI.  Example
1317
usage:
1318
@example
1319
qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1320
@end example
1321
@end table
1322

    
1323
@node host_usb_devices
1324
@subsection Using host USB devices on a Linux host
1325

    
1326
WARNING: this is an experimental feature. QEMU will slow down when
1327
using it. USB devices requiring real time streaming (i.e. USB Video
1328
Cameras) are not supported yet.
1329

    
1330
@enumerate
1331
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1332
is actually using the USB device. A simple way to do that is simply to
1333
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1334
to @file{mydriver.o.disabled}.
1335

    
1336
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1337
@example
1338
ls /proc/bus/usb
1339
001  devices  drivers
1340
@end example
1341

    
1342
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1343
@example
1344
chown -R myuid /proc/bus/usb
1345
@end example
1346

    
1347
@item Launch QEMU and do in the monitor:
1348
@example
1349
info usbhost
1350
  Device 1.2, speed 480 Mb/s
1351
    Class 00: USB device 1234:5678, USB DISK
1352
@end example
1353
You should see the list of the devices you can use (Never try to use
1354
hubs, it won't work).
1355

    
1356
@item Add the device in QEMU by using:
1357
@example
1358
usb_add host:1234:5678
1359
@end example
1360

    
1361
Normally the guest OS should report that a new USB device is
1362
plugged. You can use the option @option{-usbdevice} to do the same.
1363

    
1364
@item Now you can try to use the host USB device in QEMU.
1365

    
1366
@end enumerate
1367

    
1368
When relaunching QEMU, you may have to unplug and plug again the USB
1369
device to make it work again (this is a bug).
1370

    
1371
@node vnc_security
1372
@section VNC security
1373

    
1374
The VNC server capability provides access to the graphical console
1375
of the guest VM across the network. This has a number of security
1376
considerations depending on the deployment scenarios.
1377

    
1378
@menu
1379
* vnc_sec_none::
1380
* vnc_sec_password::
1381
* vnc_sec_certificate::
1382
* vnc_sec_certificate_verify::
1383
* vnc_sec_certificate_pw::
1384
* vnc_sec_sasl::
1385
* vnc_sec_certificate_sasl::
1386
* vnc_generate_cert::
1387
* vnc_setup_sasl::
1388
@end menu
1389
@node vnc_sec_none
1390
@subsection Without passwords
1391

    
1392
The simplest VNC server setup does not include any form of authentication.
1393
For this setup it is recommended to restrict it to listen on a UNIX domain
1394
socket only. For example
1395

    
1396
@example
1397
qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1398
@end example
1399

    
1400
This ensures that only users on local box with read/write access to that
1401
path can access the VNC server. To securely access the VNC server from a
1402
remote machine, a combination of netcat+ssh can be used to provide a secure
1403
tunnel.
1404

    
1405
@node vnc_sec_password
1406
@subsection With passwords
1407

    
1408
The VNC protocol has limited support for password based authentication. Since
1409
the protocol limits passwords to 8 characters it should not be considered
1410
to provide high security. The password can be fairly easily brute-forced by
1411
a client making repeat connections. For this reason, a VNC server using password
1412
authentication should be restricted to only listen on the loopback interface
1413
or UNIX domain sockets. Password authentication is not supported when operating
1414
in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1415
authentication is requested with the @code{password} option, and then once QEMU
1416
is running the password is set with the monitor. Until the monitor is used to
1417
set the password all clients will be rejected.
1418

    
1419
@example
1420
qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1421
(qemu) change vnc password
1422
Password: ********
1423
(qemu)
1424
@end example
1425

    
1426
@node vnc_sec_certificate
1427
@subsection With x509 certificates
1428

    
1429
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1430
TLS for encryption of the session, and x509 certificates for authentication.
1431
The use of x509 certificates is strongly recommended, because TLS on its
1432
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1433
support provides a secure session, but no authentication. This allows any
1434
client to connect, and provides an encrypted session.
1435

    
1436
@example
1437
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1438
@end example
1439

    
1440
In the above example @code{/etc/pki/qemu} should contain at least three files,
1441
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1442
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1443
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1444
only be readable by the user owning it.
1445

    
1446
@node vnc_sec_certificate_verify
1447
@subsection With x509 certificates and client verification
1448

    
1449
Certificates can also provide a means to authenticate the client connecting.
1450
The server will request that the client provide a certificate, which it will
1451
then validate against the CA certificate. This is a good choice if deploying
1452
in an environment with a private internal certificate authority.
1453

    
1454
@example
1455
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1456
@end example
1457

    
1458

    
1459
@node vnc_sec_certificate_pw
1460
@subsection With x509 certificates, client verification and passwords
1461

    
1462
Finally, the previous method can be combined with VNC password authentication
1463
to provide two layers of authentication for clients.
1464

    
1465
@example
1466
qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1467
(qemu) change vnc password
1468
Password: ********
1469
(qemu)
1470
@end example
1471

    
1472

    
1473
@node vnc_sec_sasl
1474
@subsection With SASL authentication
1475

    
1476
The SASL authentication method is a VNC extension, that provides an
1477
easily extendable, pluggable authentication method. This allows for
1478
integration with a wide range of authentication mechanisms, such as
1479
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1480
The strength of the authentication depends on the exact mechanism
1481
configured. If the chosen mechanism also provides a SSF layer, then
1482
it will encrypt the datastream as well.
1483

    
1484
Refer to the later docs on how to choose the exact SASL mechanism
1485
used for authentication, but assuming use of one supporting SSF,
1486
then QEMU can be launched with:
1487

    
1488
@example
1489
qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1490
@end example
1491

    
1492
@node vnc_sec_certificate_sasl
1493
@subsection With x509 certificates and SASL authentication
1494

    
1495
If the desired SASL authentication mechanism does not supported
1496
SSF layers, then it is strongly advised to run it in combination
1497
with TLS and x509 certificates. This provides securely encrypted
1498
data stream, avoiding risk of compromising of the security
1499
credentials. This can be enabled, by combining the 'sasl' option
1500
with the aforementioned TLS + x509 options:
1501

    
1502
@example
1503
qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1504
@end example
1505

    
1506

    
1507
@node vnc_generate_cert
1508
@subsection Generating certificates for VNC
1509

    
1510
The GNU TLS packages provides a command called @code{certtool} which can
1511
be used to generate certificates and keys in PEM format. At a minimum it
1512
is necessary to setup a certificate authority, and issue certificates to
1513
each server. If using certificates for authentication, then each client
1514
will also need to be issued a certificate. The recommendation is for the
1515
server to keep its certificates in either @code{/etc/pki/qemu} or for
1516
unprivileged users in @code{$HOME/.pki/qemu}.
1517

    
1518
@menu
1519
* vnc_generate_ca::
1520
* vnc_generate_server::
1521
* vnc_generate_client::
1522
@end menu
1523
@node vnc_generate_ca
1524
@subsubsection Setup the Certificate Authority
1525

    
1526
This step only needs to be performed once per organization / organizational
1527
unit. First the CA needs a private key. This key must be kept VERY secret
1528
and secure. If this key is compromised the entire trust chain of the certificates
1529
issued with it is lost.
1530

    
1531
@example
1532
# certtool --generate-privkey > ca-key.pem
1533
@end example
1534

    
1535
A CA needs to have a public certificate. For simplicity it can be a self-signed
1536
certificate, or one issue by a commercial certificate issuing authority. To
1537
generate a self-signed certificate requires one core piece of information, the
1538
name of the organization.
1539

    
1540
@example
1541
# cat > ca.info <<EOF
1542
cn = Name of your organization
1543
ca
1544
cert_signing_key
1545
EOF
1546
# certtool --generate-self-signed \
1547
           --load-privkey ca-key.pem
1548
           --template ca.info \
1549
           --outfile ca-cert.pem
1550
@end example
1551

    
1552
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1553
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1554

    
1555
@node vnc_generate_server
1556
@subsubsection Issuing server certificates
1557

    
1558
Each server (or host) needs to be issued with a key and certificate. When connecting
1559
the certificate is sent to the client which validates it against the CA certificate.
1560
The core piece of information for a server certificate is the hostname. This should
1561
be the fully qualified hostname that the client will connect with, since the client
1562
will typically also verify the hostname in the certificate. On the host holding the
1563
secure CA private key:
1564

    
1565
@example
1566
# cat > server.info <<EOF
1567
organization = Name  of your organization
1568
cn = server.foo.example.com
1569
tls_www_server
1570
encryption_key
1571
signing_key
1572
EOF
1573
# certtool --generate-privkey > server-key.pem
1574
# certtool --generate-certificate \
1575
           --load-ca-certificate ca-cert.pem \
1576
           --load-ca-privkey ca-key.pem \
1577
           --load-privkey server server-key.pem \
1578
           --template server.info \
1579
           --outfile server-cert.pem
1580
@end example
1581

    
1582
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1583
to the server for which they were generated. The @code{server-key.pem} is security
1584
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1585

    
1586
@node vnc_generate_client
1587
@subsubsection Issuing client certificates
1588

    
1589
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1590
certificates as its authentication mechanism, each client also needs to be issued
1591
a certificate. The client certificate contains enough metadata to uniquely identify
1592
the client, typically organization, state, city, building, etc. On the host holding
1593
the secure CA private key:
1594

    
1595
@example
1596
# cat > client.info <<EOF
1597
country = GB
1598
state = London
1599
locality = London
1600
organiazation = Name of your organization
1601
cn = client.foo.example.com
1602
tls_www_client
1603
encryption_key
1604
signing_key
1605
EOF
1606
# certtool --generate-privkey > client-key.pem
1607
# certtool --generate-certificate \
1608
           --load-ca-certificate ca-cert.pem \
1609
           --load-ca-privkey ca-key.pem \
1610
           --load-privkey client-key.pem \
1611
           --template client.info \
1612
           --outfile client-cert.pem
1613
@end example
1614

    
1615
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1616
copied to the client for which they were generated.
1617

    
1618

    
1619
@node vnc_setup_sasl
1620

    
1621
@subsection Configuring SASL mechanisms
1622

    
1623
The following documentation assumes use of the Cyrus SASL implementation on a
1624
Linux host, but the principals should apply to any other SASL impl. When SASL
1625
is enabled, the mechanism configuration will be loaded from system default
1626
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1627
unprivileged user, an environment variable SASL_CONF_PATH can be used
1628
to make it search alternate locations for the service config.
1629

    
1630
The default configuration might contain
1631

    
1632
@example
1633
mech_list: digest-md5
1634
sasldb_path: /etc/qemu/passwd.db
1635
@end example
1636

    
1637
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1638
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1639
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1640
command. While this mechanism is easy to configure and use, it is not
1641
considered secure by modern standards, so only suitable for developers /
1642
ad-hoc testing.
1643

    
1644
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1645
mechanism
1646

    
1647
@example
1648
mech_list: gssapi
1649
keytab: /etc/qemu/krb5.tab
1650
@end example
1651

    
1652
For this to work the administrator of your KDC must generate a Kerberos
1653
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1654
replacing 'somehost.example.com' with the fully qualified host name of the
1655
machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1656

    
1657
Other configurations will be left as an exercise for the reader. It should
1658
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1659
encryption. For all other mechanisms, VNC should always be configured to
1660
use TLS and x509 certificates to protect security credentials from snooping.
1661

    
1662
@node gdb_usage
1663
@section GDB usage
1664

    
1665
QEMU has a primitive support to work with gdb, so that you can do
1666
'Ctrl-C' while the virtual machine is running and inspect its state.
1667

    
1668
In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1669
gdb connection:
1670
@example
1671
qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1672
                    -append "root=/dev/hda"
1673
Connected to host network interface: tun0
1674
Waiting gdb connection on port 1234
1675
@end example
1676

    
1677
Then launch gdb on the 'vmlinux' executable:
1678
@example
1679
> gdb vmlinux
1680
@end example
1681

    
1682
In gdb, connect to QEMU:
1683
@example
1684
(gdb) target remote localhost:1234
1685
@end example
1686

    
1687
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1688
@example
1689
(gdb) c
1690
@end example
1691

    
1692
Here are some useful tips in order to use gdb on system code:
1693

    
1694
@enumerate
1695
@item
1696
Use @code{info reg} to display all the CPU registers.
1697
@item
1698
Use @code{x/10i $eip} to display the code at the PC position.
1699
@item
1700
Use @code{set architecture i8086} to dump 16 bit code. Then use
1701
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1702
@end enumerate
1703

    
1704
Advanced debugging options:
1705

    
1706
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1707
@table @code
1708
@item maintenance packet qqemu.sstepbits
1709

    
1710
This will display the MASK bits used to control the single stepping IE:
1711
@example
1712
(gdb) maintenance packet qqemu.sstepbits
1713
sending: "qqemu.sstepbits"
1714
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1715
@end example
1716
@item maintenance packet qqemu.sstep
1717

    
1718
This will display the current value of the mask used when single stepping IE:
1719
@example
1720
(gdb) maintenance packet qqemu.sstep
1721
sending: "qqemu.sstep"
1722
received: "0x7"
1723
@end example
1724
@item maintenance packet Qqemu.sstep=HEX_VALUE
1725

    
1726
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1727
@example
1728
(gdb) maintenance packet Qqemu.sstep=0x5
1729
sending: "qemu.sstep=0x5"
1730
received: "OK"
1731
@end example
1732
@end table
1733

    
1734
@node pcsys_os_specific
1735
@section Target OS specific information
1736

    
1737
@subsection Linux
1738

    
1739
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1740
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1741
color depth in the guest and the host OS.
1742

    
1743
When using a 2.6 guest Linux kernel, you should add the option
1744
@code{clock=pit} on the kernel command line because the 2.6 Linux
1745
kernels make very strict real time clock checks by default that QEMU
1746
cannot simulate exactly.
1747

    
1748
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1749
not activated because QEMU is slower with this patch. The QEMU
1750
Accelerator Module is also much slower in this case. Earlier Fedora
1751
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1752
patch by default. Newer kernels don't have it.
1753

    
1754
@subsection Windows
1755

    
1756
If you have a slow host, using Windows 95 is better as it gives the
1757
best speed. Windows 2000 is also a good choice.
1758

    
1759
@subsubsection SVGA graphic modes support
1760

    
1761
QEMU emulates a Cirrus Logic GD5446 Video
1762
card. All Windows versions starting from Windows 95 should recognize
1763
and use this graphic card. For optimal performances, use 16 bit color
1764
depth in the guest and the host OS.
1765

    
1766
If you are using Windows XP as guest OS and if you want to use high
1767
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1768
1280x1024x16), then you should use the VESA VBE virtual graphic card
1769
(option @option{-std-vga}).
1770

    
1771
@subsubsection CPU usage reduction
1772

    
1773
Windows 9x does not correctly use the CPU HLT
1774
instruction. The result is that it takes host CPU cycles even when
1775
idle. You can install the utility from
1776
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1777
problem. Note that no such tool is needed for NT, 2000 or XP.
1778

    
1779
@subsubsection Windows 2000 disk full problem
1780

    
1781
Windows 2000 has a bug which gives a disk full problem during its
1782
installation. When installing it, use the @option{-win2k-hack} QEMU
1783
option to enable a specific workaround. After Windows 2000 is
1784
installed, you no longer need this option (this option slows down the
1785
IDE transfers).
1786

    
1787
@subsubsection Windows 2000 shutdown
1788

    
1789
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1790
can. It comes from the fact that Windows 2000 does not automatically
1791
use the APM driver provided by the BIOS.
1792

    
1793
In order to correct that, do the following (thanks to Struan
1794
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1795
Add/Troubleshoot a device => Add a new device & Next => No, select the
1796
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1797
(again) a few times. Now the driver is installed and Windows 2000 now
1798
correctly instructs QEMU to shutdown at the appropriate moment.
1799

    
1800
@subsubsection Share a directory between Unix and Windows
1801

    
1802
See @ref{sec_invocation} about the help of the option @option{-smb}.
1803

    
1804
@subsubsection Windows XP security problem
1805

    
1806
Some releases of Windows XP install correctly but give a security
1807
error when booting:
1808
@example
1809
A problem is preventing Windows from accurately checking the
1810
license for this computer. Error code: 0x800703e6.
1811
@end example
1812

    
1813
The workaround is to install a service pack for XP after a boot in safe
1814
mode. Then reboot, and the problem should go away. Since there is no
1815
network while in safe mode, its recommended to download the full
1816
installation of SP1 or SP2 and transfer that via an ISO or using the
1817
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1818

    
1819
@subsection MS-DOS and FreeDOS
1820

    
1821
@subsubsection CPU usage reduction
1822

    
1823
DOS does not correctly use the CPU HLT instruction. The result is that
1824
it takes host CPU cycles even when idle. You can install the utility
1825
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1826
problem.
1827

    
1828
@node QEMU System emulator for non PC targets
1829
@chapter QEMU System emulator for non PC targets
1830

    
1831
QEMU is a generic emulator and it emulates many non PC
1832
machines. Most of the options are similar to the PC emulator. The
1833
differences are mentioned in the following sections.
1834

    
1835
@menu
1836
* PowerPC System emulator::
1837
* Sparc32 System emulator::
1838
* Sparc64 System emulator::
1839
* MIPS System emulator::
1840
* ARM System emulator::
1841
* ColdFire System emulator::
1842
* Cris System emulator::
1843
* Microblaze System emulator::
1844
* SH4 System emulator::
1845
* Xtensa System emulator::
1846
@end menu
1847

    
1848
@node PowerPC System emulator
1849
@section PowerPC System emulator
1850
@cindex system emulation (PowerPC)
1851

    
1852
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1853
or PowerMac PowerPC system.
1854

    
1855
QEMU emulates the following PowerMac peripherals:
1856

    
1857
@itemize @minus
1858
@item
1859
UniNorth or Grackle PCI Bridge
1860
@item
1861
PCI VGA compatible card with VESA Bochs Extensions
1862
@item
1863
2 PMAC IDE interfaces with hard disk and CD-ROM support
1864
@item
1865
NE2000 PCI adapters
1866
@item
1867
Non Volatile RAM
1868
@item
1869
VIA-CUDA with ADB keyboard and mouse.
1870
@end itemize
1871

    
1872
QEMU emulates the following PREP peripherals:
1873

    
1874
@itemize @minus
1875
@item
1876
PCI Bridge
1877
@item
1878
PCI VGA compatible card with VESA Bochs Extensions
1879
@item
1880
2 IDE interfaces with hard disk and CD-ROM support
1881
@item
1882
Floppy disk
1883
@item
1884
NE2000 network adapters
1885
@item
1886
Serial port
1887
@item
1888
PREP Non Volatile RAM
1889
@item
1890
PC compatible keyboard and mouse.
1891
@end itemize
1892

    
1893
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1894
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1895

    
1896
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1897
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1898
v2) portable firmware implementation. The goal is to implement a 100%
1899
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1900

    
1901
@c man begin OPTIONS
1902

    
1903
The following options are specific to the PowerPC emulation:
1904

    
1905
@table @option
1906

    
1907
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1908

    
1909
Set the initial VGA graphic mode. The default is 800x600x15.
1910

    
1911
@item -prom-env @var{string}
1912

    
1913
Set OpenBIOS variables in NVRAM, for example:
1914

    
1915
@example
1916
qemu-system-ppc -prom-env 'auto-boot?=false' \
1917
 -prom-env 'boot-device=hd:2,\yaboot' \
1918
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1919
@end example
1920

    
1921
These variables are not used by Open Hack'Ware.
1922

    
1923
@end table
1924

    
1925
@c man end
1926

    
1927

    
1928
More information is available at
1929
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1930

    
1931
@node Sparc32 System emulator
1932
@section Sparc32 System emulator
1933
@cindex system emulation (Sparc32)
1934

    
1935
Use the executable @file{qemu-system-sparc} to simulate the following
1936
Sun4m architecture machines:
1937
@itemize @minus
1938
@item
1939
SPARCstation 4
1940
@item
1941
SPARCstation 5
1942
@item
1943
SPARCstation 10
1944
@item
1945
SPARCstation 20
1946
@item
1947
SPARCserver 600MP
1948
@item
1949
SPARCstation LX
1950
@item
1951
SPARCstation Voyager
1952
@item
1953
SPARCclassic
1954
@item
1955
SPARCbook
1956
@end itemize
1957

    
1958
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1959
but Linux limits the number of usable CPUs to 4.
1960

    
1961
QEMU emulates the following sun4m peripherals:
1962

    
1963
@itemize @minus
1964
@item
1965
IOMMU
1966
@item
1967
TCX Frame buffer
1968
@item
1969
Lance (Am7990) Ethernet
1970
@item
1971
Non Volatile RAM M48T02/M48T08
1972
@item
1973
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1974
and power/reset logic
1975
@item
1976
ESP SCSI controller with hard disk and CD-ROM support
1977
@item
1978
Floppy drive (not on SS-600MP)
1979
@item
1980
CS4231 sound device (only on SS-5, not working yet)
1981
@end itemize
1982

    
1983
The number of peripherals is fixed in the architecture.  Maximum
1984
memory size depends on the machine type, for SS-5 it is 256MB and for
1985
others 2047MB.
1986

    
1987
Since version 0.8.2, QEMU uses OpenBIOS
1988
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1989
firmware implementation. The goal is to implement a 100% IEEE
1990
1275-1994 (referred to as Open Firmware) compliant firmware.
1991

    
1992
A sample Linux 2.6 series kernel and ram disk image are available on
1993
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1994
some kernel versions work. Please note that currently Solaris kernels
1995
don't work probably due to interface issues between OpenBIOS and
1996
Solaris.
1997

    
1998
@c man begin OPTIONS
1999

    
2000
The following options are specific to the Sparc32 emulation:
2001

    
2002
@table @option
2003

    
2004
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
2005

    
2006
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2007
the only other possible mode is 1024x768x24.
2008

    
2009
@item -prom-env @var{string}
2010

    
2011
Set OpenBIOS variables in NVRAM, for example:
2012

    
2013
@example
2014
qemu-system-sparc -prom-env 'auto-boot?=false' \
2015
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2016
@end example
2017

    
2018
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
2019

    
2020
Set the emulated machine type. Default is SS-5.
2021

    
2022
@end table
2023

    
2024
@c man end
2025

    
2026
@node Sparc64 System emulator
2027
@section Sparc64 System emulator
2028
@cindex system emulation (Sparc64)
2029

    
2030
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2031
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2032
Niagara (T1) machine. The emulator is not usable for anything yet, but
2033
it can launch some kernels.
2034

    
2035
QEMU emulates the following peripherals:
2036

    
2037
@itemize @minus
2038
@item
2039
UltraSparc IIi APB PCI Bridge
2040
@item
2041
PCI VGA compatible card with VESA Bochs Extensions
2042
@item
2043
PS/2 mouse and keyboard
2044
@item
2045
Non Volatile RAM M48T59
2046
@item
2047
PC-compatible serial ports
2048
@item
2049
2 PCI IDE interfaces with hard disk and CD-ROM support
2050
@item
2051
Floppy disk
2052
@end itemize
2053

    
2054
@c man begin OPTIONS
2055

    
2056
The following options are specific to the Sparc64 emulation:
2057

    
2058
@table @option
2059

    
2060
@item -prom-env @var{string}
2061

    
2062
Set OpenBIOS variables in NVRAM, for example:
2063

    
2064
@example
2065
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2066
@end example
2067

    
2068
@item -M [sun4u|sun4v|Niagara]
2069

    
2070
Set the emulated machine type. The default is sun4u.
2071

    
2072
@end table
2073

    
2074
@c man end
2075

    
2076
@node MIPS System emulator
2077
@section MIPS System emulator
2078
@cindex system emulation (MIPS)
2079

    
2080
Four executables cover simulation of 32 and 64-bit MIPS systems in
2081
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2082
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2083
Five different machine types are emulated:
2084

    
2085
@itemize @minus
2086
@item
2087
A generic ISA PC-like machine "mips"
2088
@item
2089
The MIPS Malta prototype board "malta"
2090
@item
2091
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2092
@item
2093
MIPS emulator pseudo board "mipssim"
2094
@item
2095
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2096
@end itemize
2097

    
2098
The generic emulation is supported by Debian 'Etch' and is able to
2099
install Debian into a virtual disk image. The following devices are
2100
emulated:
2101

    
2102
@itemize @minus
2103
@item
2104
A range of MIPS CPUs, default is the 24Kf
2105
@item
2106
PC style serial port
2107
@item
2108
PC style IDE disk
2109
@item
2110
NE2000 network card
2111
@end itemize
2112

    
2113
The Malta emulation supports the following devices:
2114

    
2115
@itemize @minus
2116
@item
2117
Core board with MIPS 24Kf CPU and Galileo system controller
2118
@item
2119
PIIX4 PCI/USB/SMbus controller
2120
@item
2121
The Multi-I/O chip's serial device
2122
@item
2123
PCI network cards (PCnet32 and others)
2124
@item
2125
Malta FPGA serial device
2126
@item
2127
Cirrus (default) or any other PCI VGA graphics card
2128
@end itemize
2129

    
2130
The ACER Pica emulation supports:
2131

    
2132
@itemize @minus
2133
@item
2134
MIPS R4000 CPU
2135
@item
2136
PC-style IRQ and DMA controllers
2137
@item
2138
PC Keyboard
2139
@item
2140
IDE controller
2141
@end itemize
2142

    
2143
The mipssim pseudo board emulation provides an environment similar
2144
to what the proprietary MIPS emulator uses for running Linux.
2145
It supports:
2146

    
2147
@itemize @minus
2148
@item
2149
A range of MIPS CPUs, default is the 24Kf
2150
@item
2151
PC style serial port
2152
@item
2153
MIPSnet network emulation
2154
@end itemize
2155

    
2156
The MIPS Magnum R4000 emulation supports:
2157

    
2158
@itemize @minus
2159
@item
2160
MIPS R4000 CPU
2161
@item
2162
PC-style IRQ controller
2163
@item
2164
PC Keyboard
2165
@item
2166
SCSI controller
2167
@item
2168
G364 framebuffer
2169
@end itemize
2170

    
2171

    
2172
@node ARM System emulator
2173
@section ARM System emulator
2174
@cindex system emulation (ARM)
2175

    
2176
Use the executable @file{qemu-system-arm} to simulate a ARM
2177
machine. The ARM Integrator/CP board is emulated with the following
2178
devices:
2179

    
2180
@itemize @minus
2181
@item
2182
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2183
@item
2184
Two PL011 UARTs
2185
@item
2186
SMC 91c111 Ethernet adapter
2187
@item
2188
PL110 LCD controller
2189
@item
2190
PL050 KMI with PS/2 keyboard and mouse.
2191
@item
2192
PL181 MultiMedia Card Interface with SD card.
2193
@end itemize
2194

    
2195
The ARM Versatile baseboard is emulated with the following devices:
2196

    
2197
@itemize @minus
2198
@item
2199
ARM926E, ARM1136 or Cortex-A8 CPU
2200
@item
2201
PL190 Vectored Interrupt Controller
2202
@item
2203
Four PL011 UARTs
2204
@item
2205
SMC 91c111 Ethernet adapter
2206
@item
2207
PL110 LCD controller
2208
@item
2209
PL050 KMI with PS/2 keyboard and mouse.
2210
@item
2211
PCI host bridge.  Note the emulated PCI bridge only provides access to
2212
PCI memory space.  It does not provide access to PCI IO space.
2213
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2214
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2215
mapped control registers.
2216
@item
2217
PCI OHCI USB controller.
2218
@item
2219
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2220
@item
2221
PL181 MultiMedia Card Interface with SD card.
2222
@end itemize
2223

    
2224
Several variants of the ARM RealView baseboard are emulated,
2225
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2226
bootloader, only certain Linux kernel configurations work out
2227
of the box on these boards.
2228

    
2229
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2230
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2231
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2232
disabled and expect 1024M RAM.
2233

    
2234
The following devices are emulated:
2235

    
2236
@itemize @minus
2237
@item
2238
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2239
@item
2240
ARM AMBA Generic/Distributed Interrupt Controller
2241
@item
2242
Four PL011 UARTs
2243
@item
2244
SMC 91c111 or SMSC LAN9118 Ethernet adapter
2245
@item
2246
PL110 LCD controller
2247
@item
2248
PL050 KMI with PS/2 keyboard and mouse
2249
@item
2250
PCI host bridge
2251
@item
2252
PCI OHCI USB controller
2253
@item
2254
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2255
@item
2256
PL181 MultiMedia Card Interface with SD card.
2257
@end itemize
2258

    
2259
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2260
and "Terrier") emulation includes the following peripherals:
2261

    
2262
@itemize @minus
2263
@item
2264
Intel PXA270 System-on-chip (ARM V5TE core)
2265
@item
2266
NAND Flash memory
2267
@item
2268
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2269
@item
2270
On-chip OHCI USB controller
2271
@item
2272
On-chip LCD controller
2273
@item
2274
On-chip Real Time Clock
2275
@item
2276
TI ADS7846 touchscreen controller on SSP bus
2277
@item
2278
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2279
@item
2280
GPIO-connected keyboard controller and LEDs
2281
@item
2282
Secure Digital card connected to PXA MMC/SD host
2283
@item
2284
Three on-chip UARTs
2285
@item
2286
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2287
@end itemize
2288

    
2289
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2290
following elements:
2291

    
2292
@itemize @minus
2293
@item
2294
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2295
@item
2296
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2297
@item
2298
On-chip LCD controller
2299
@item
2300
On-chip Real Time Clock
2301
@item
2302
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2303
CODEC, connected through MicroWire and I@math{^2}S busses
2304
@item
2305
GPIO-connected matrix keypad
2306
@item
2307
Secure Digital card connected to OMAP MMC/SD host
2308
@item
2309
Three on-chip UARTs
2310
@end itemize
2311

    
2312
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2313
emulation supports the following elements:
2314

    
2315
@itemize @minus
2316
@item
2317
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2318
@item
2319
RAM and non-volatile OneNAND Flash memories
2320
@item
2321
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2322
display controller and a LS041y3 MIPI DBI-C controller
2323
@item
2324
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2325
driven through SPI bus
2326
@item
2327
National Semiconductor LM8323-controlled qwerty keyboard driven
2328
through I@math{^2}C bus
2329
@item
2330
Secure Digital card connected to OMAP MMC/SD host
2331
@item
2332
Three OMAP on-chip UARTs and on-chip STI debugging console
2333
@item
2334
A Bluetooth(R) transceiver and HCI connected to an UART
2335
@item
2336
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2337
TUSB6010 chip - only USB host mode is supported
2338
@item
2339
TI TMP105 temperature sensor driven through I@math{^2}C bus
2340
@item
2341
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2342
@item
2343
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2344
through CBUS
2345
@end itemize
2346

    
2347
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2348
devices:
2349

    
2350
@itemize @minus
2351
@item
2352
Cortex-M3 CPU core.
2353
@item
2354
64k Flash and 8k SRAM.
2355
@item
2356
Timers, UARTs, ADC and I@math{^2}C interface.
2357
@item
2358
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2359
@end itemize
2360

    
2361
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2362
devices:
2363

    
2364
@itemize @minus
2365
@item
2366
Cortex-M3 CPU core.
2367
@item
2368
256k Flash and 64k SRAM.
2369
@item
2370
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2371
@item
2372
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2373
@end itemize
2374

    
2375
The Freecom MusicPal internet radio emulation includes the following
2376
elements:
2377

    
2378
@itemize @minus
2379
@item
2380
Marvell MV88W8618 ARM core.
2381
@item
2382
32 MB RAM, 256 KB SRAM, 8 MB flash.
2383
@item
2384
Up to 2 16550 UARTs
2385
@item
2386
MV88W8xx8 Ethernet controller
2387
@item
2388
MV88W8618 audio controller, WM8750 CODEC and mixer
2389
@item
2390
128×64 display with brightness control
2391
@item
2392
2 buttons, 2 navigation wheels with button function
2393
@end itemize
2394

    
2395
The Siemens SX1 models v1 and v2 (default) basic emulation.
2396
The emulation includes the following elements:
2397

    
2398
@itemize @minus
2399
@item
2400
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2401
@item
2402
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2403
V1
2404
1 Flash of 16MB and 1 Flash of 8MB
2405
V2
2406
1 Flash of 32MB
2407
@item
2408
On-chip LCD controller
2409
@item
2410
On-chip Real Time Clock
2411
@item
2412
Secure Digital card connected to OMAP MMC/SD host
2413
@item
2414
Three on-chip UARTs
2415
@end itemize
2416

    
2417
A Linux 2.6 test image is available on the QEMU web site. More
2418
information is available in the QEMU mailing-list archive.
2419

    
2420
@c man begin OPTIONS
2421

    
2422
The following options are specific to the ARM emulation:
2423

    
2424
@table @option
2425

    
2426
@item -semihosting
2427
Enable semihosting syscall emulation.
2428

    
2429
On ARM this implements the "Angel" interface.
2430

    
2431
Note that this allows guest direct access to the host filesystem,
2432
so should only be used with trusted guest OS.
2433

    
2434
@end table
2435

    
2436
@node ColdFire System emulator
2437
@section ColdFire System emulator
2438
@cindex system emulation (ColdFire)
2439
@cindex system emulation (M68K)
2440

    
2441
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2442
The emulator is able to boot a uClinux kernel.
2443

    
2444
The M5208EVB emulation includes the following devices:
2445

    
2446
@itemize @minus
2447
@item
2448
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2449
@item
2450
Three Two on-chip UARTs.
2451
@item
2452
Fast Ethernet Controller (FEC)
2453
@end itemize
2454

    
2455
The AN5206 emulation includes the following devices:
2456

    
2457
@itemize @minus
2458
@item
2459
MCF5206 ColdFire V2 Microprocessor.
2460
@item
2461
Two on-chip UARTs.
2462
@end itemize
2463

    
2464
@c man begin OPTIONS
2465

    
2466
The following options are specific to the ColdFire emulation:
2467

    
2468
@table @option
2469

    
2470
@item -semihosting
2471
Enable semihosting syscall emulation.
2472

    
2473
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2474

    
2475
Note that this allows guest direct access to the host filesystem,
2476
so should only be used with trusted guest OS.
2477

    
2478
@end table
2479

    
2480
@node Cris System emulator
2481
@section Cris System emulator
2482
@cindex system emulation (Cris)
2483

    
2484
TODO
2485

    
2486
@node Microblaze System emulator
2487
@section Microblaze System emulator
2488
@cindex system emulation (Microblaze)
2489

    
2490
TODO
2491

    
2492
@node SH4 System emulator
2493
@section SH4 System emulator
2494
@cindex system emulation (SH4)
2495

    
2496
TODO
2497

    
2498
@node Xtensa System emulator
2499
@section Xtensa System emulator
2500
@cindex system emulation (Xtensa)
2501

    
2502
Two executables cover simulation of both Xtensa endian options,
2503
@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2504
Two different machine types are emulated:
2505

    
2506
@itemize @minus
2507
@item
2508
Xtensa emulator pseudo board "sim"
2509
@item
2510
Avnet LX60/LX110/LX200 board
2511
@end itemize
2512

    
2513
The sim pseudo board emulation provides an environment similar
2514
to one provided by the proprietary Tensilica ISS.
2515
It supports:
2516

    
2517
@itemize @minus
2518
@item
2519
A range of Xtensa CPUs, default is the DC232B
2520
@item
2521
Console and filesystem access via semihosting calls
2522
@end itemize
2523

    
2524
The Avnet LX60/LX110/LX200 emulation supports:
2525

    
2526
@itemize @minus
2527
@item
2528
A range of Xtensa CPUs, default is the DC232B
2529
@item
2530
16550 UART
2531
@item
2532
OpenCores 10/100 Mbps Ethernet MAC
2533
@end itemize
2534

    
2535
@c man begin OPTIONS
2536

    
2537
The following options are specific to the Xtensa emulation:
2538

    
2539
@table @option
2540

    
2541
@item -semihosting
2542
Enable semihosting syscall emulation.
2543

    
2544
Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2545
Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2546

    
2547
Note that this allows guest direct access to the host filesystem,
2548
so should only be used with trusted guest OS.
2549

    
2550
@end table
2551
@node QEMU User space emulator
2552
@chapter QEMU User space emulator
2553

    
2554
@menu
2555
* Supported Operating Systems ::
2556
* Linux User space emulator::
2557
* BSD User space emulator ::
2558
@end menu
2559

    
2560
@node Supported Operating Systems
2561
@section Supported Operating Systems
2562

    
2563
The following OS are supported in user space emulation:
2564

    
2565
@itemize @minus
2566
@item
2567
Linux (referred as qemu-linux-user)
2568
@item
2569
BSD (referred as qemu-bsd-user)
2570
@end itemize
2571

    
2572
@node Linux User space emulator
2573
@section Linux User space emulator
2574

    
2575
@menu
2576
* Quick Start::
2577
* Wine launch::
2578
* Command line options::
2579
* Other binaries::
2580
@end menu
2581

    
2582
@node Quick Start
2583
@subsection Quick Start
2584

    
2585
In order to launch a Linux process, QEMU needs the process executable
2586
itself and all the target (x86) dynamic libraries used by it.
2587

    
2588
@itemize
2589

    
2590
@item On x86, you can just try to launch any process by using the native
2591
libraries:
2592

    
2593
@example
2594
qemu-i386 -L / /bin/ls
2595
@end example
2596

    
2597
@code{-L /} tells that the x86 dynamic linker must be searched with a
2598
@file{/} prefix.
2599

    
2600
@item Since QEMU is also a linux process, you can launch QEMU with
2601
QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2602

    
2603
@example
2604
qemu-i386 -L / qemu-i386 -L / /bin/ls
2605
@end example
2606

    
2607
@item On non x86 CPUs, you need first to download at least an x86 glibc
2608
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2609
@code{LD_LIBRARY_PATH} is not set:
2610

    
2611
@example
2612
unset LD_LIBRARY_PATH
2613
@end example
2614

    
2615
Then you can launch the precompiled @file{ls} x86 executable:
2616

    
2617
@example
2618
qemu-i386 tests/i386/ls
2619
@end example
2620
You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2621
QEMU is automatically launched by the Linux kernel when you try to
2622
launch x86 executables. It requires the @code{binfmt_misc} module in the
2623
Linux kernel.
2624

    
2625
@item The x86 version of QEMU is also included. You can try weird things such as:
2626
@example
2627
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2628
          /usr/local/qemu-i386/bin/ls-i386
2629
@end example
2630

    
2631
@end itemize
2632

    
2633
@node Wine launch
2634
@subsection Wine launch
2635

    
2636
@itemize
2637

    
2638
@item Ensure that you have a working QEMU with the x86 glibc
2639
distribution (see previous section). In order to verify it, you must be
2640
able to do:
2641

    
2642
@example
2643
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2644
@end example
2645

    
2646
@item Download the binary x86 Wine install
2647
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2648

    
2649
@item Configure Wine on your account. Look at the provided script
2650
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2651
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2652

    
2653
@item Then you can try the example @file{putty.exe}:
2654

    
2655
@example
2656
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2657
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2658
@end example
2659

    
2660
@end itemize
2661

    
2662
@node Command line options
2663
@subsection Command line options
2664

    
2665
@example
2666
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2667
@end example
2668

    
2669
@table @option
2670
@item -h
2671
Print the help
2672
@item -L path
2673
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2674
@item -s size
2675
Set the x86 stack size in bytes (default=524288)
2676
@item -cpu model
2677
Select CPU model (-cpu help for list and additional feature selection)
2678
@item -E @var{var}=@var{value}
2679
Set environment @var{var} to @var{value}.
2680
@item -U @var{var}
2681
Remove @var{var} from the environment.
2682
@item -B offset
2683
Offset guest address by the specified number of bytes.  This is useful when
2684
the address region required by guest applications is reserved on the host.
2685
This option is currently only supported on some hosts.
2686
@item -R size
2687
Pre-allocate a guest virtual address space of the given size (in bytes).
2688
"G", "M", and "k" suffixes may be used when specifying the size.
2689
@end table
2690

    
2691
Debug options:
2692

    
2693
@table @option
2694
@item -d item1,...
2695
Activate logging of the specified items (use '-d help' for a list of log items)
2696
@item -p pagesize
2697
Act as if the host page size was 'pagesize' bytes
2698
@item -g port
2699
Wait gdb connection to port
2700
@item -singlestep
2701
Run the emulation in single step mode.
2702
@end table
2703

    
2704
Environment variables:
2705

    
2706
@table @env
2707
@item QEMU_STRACE
2708
Print system calls and arguments similar to the 'strace' program
2709
(NOTE: the actual 'strace' program will not work because the user
2710
space emulator hasn't implemented ptrace).  At the moment this is
2711
incomplete.  All system calls that don't have a specific argument
2712
format are printed with information for six arguments.  Many
2713
flag-style arguments don't have decoders and will show up as numbers.
2714
@end table
2715

    
2716
@node Other binaries
2717
@subsection Other binaries
2718

    
2719
@cindex user mode (Alpha)
2720
@command{qemu-alpha} TODO.
2721

    
2722
@cindex user mode (ARM)
2723
@command{qemu-armeb} TODO.
2724

    
2725
@cindex user mode (ARM)
2726
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2727
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2728
configurations), and arm-uclinux bFLT format binaries.
2729

    
2730
@cindex user mode (ColdFire)
2731
@cindex user mode (M68K)
2732
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2733
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2734
coldfire uClinux bFLT format binaries.
2735

    
2736
The binary format is detected automatically.
2737

    
2738
@cindex user mode (Cris)
2739
@command{qemu-cris} TODO.
2740

    
2741
@cindex user mode (i386)
2742
@command{qemu-i386} TODO.
2743
@command{qemu-x86_64} TODO.
2744

    
2745
@cindex user mode (Microblaze)
2746
@command{qemu-microblaze} TODO.
2747

    
2748
@cindex user mode (MIPS)
2749
@command{qemu-mips} TODO.
2750
@command{qemu-mipsel} TODO.
2751

    
2752
@cindex user mode (PowerPC)
2753
@command{qemu-ppc64abi32} TODO.
2754
@command{qemu-ppc64} TODO.
2755
@command{qemu-ppc} TODO.
2756

    
2757
@cindex user mode (SH4)
2758
@command{qemu-sh4eb} TODO.
2759
@command{qemu-sh4} TODO.
2760

    
2761
@cindex user mode (SPARC)
2762
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2763

    
2764
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2765
(Sparc64 CPU, 32 bit ABI).
2766

    
2767
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2768
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2769

    
2770
@node BSD User space emulator
2771
@section BSD User space emulator
2772

    
2773
@menu
2774
* BSD Status::
2775
* BSD Quick Start::
2776
* BSD Command line options::
2777
@end menu
2778

    
2779
@node BSD Status
2780
@subsection BSD Status
2781

    
2782
@itemize @minus
2783
@item
2784
target Sparc64 on Sparc64: Some trivial programs work.
2785
@end itemize
2786

    
2787
@node BSD Quick Start
2788
@subsection Quick Start
2789

    
2790
In order to launch a BSD process, QEMU needs the process executable
2791
itself and all the target dynamic libraries used by it.
2792

    
2793
@itemize
2794

    
2795
@item On Sparc64, you can just try to launch any process by using the native
2796
libraries:
2797

    
2798
@example
2799
qemu-sparc64 /bin/ls
2800
@end example
2801

    
2802
@end itemize
2803

    
2804
@node BSD Command line options
2805
@subsection Command line options
2806

    
2807
@example
2808
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2809
@end example
2810

    
2811
@table @option
2812
@item -h
2813
Print the help
2814
@item -L path
2815
Set the library root path (default=/)
2816
@item -s size
2817
Set the stack size in bytes (default=524288)
2818
@item -ignore-environment
2819
Start with an empty environment. Without this option,
2820
the initial environment is a copy of the caller's environment.
2821
@item -E @var{var}=@var{value}
2822
Set environment @var{var} to @var{value}.
2823
@item -U @var{var}
2824
Remove @var{var} from the environment.
2825
@item -bsd type
2826
Set the type of the emulated BSD Operating system. Valid values are
2827
FreeBSD, NetBSD and OpenBSD (default).
2828
@end table
2829

    
2830
Debug options:
2831

    
2832
@table @option
2833
@item -d item1,...
2834
Activate logging of the specified items (use '-d help' for a list of log items)
2835
@item -p pagesize
2836
Act as if the host page size was 'pagesize' bytes
2837
@item -singlestep
2838
Run the emulation in single step mode.
2839
@end table
2840

    
2841
@node compilation
2842
@chapter Compilation from the sources
2843

    
2844
@menu
2845
* Linux/Unix::
2846
* Windows::
2847
* Cross compilation for Windows with Linux::
2848
* Mac OS X::
2849
* Make targets::
2850
@end menu
2851

    
2852
@node Linux/Unix
2853
@section Linux/Unix
2854

    
2855
@subsection Compilation
2856

    
2857
First you must decompress the sources:
2858
@example
2859
cd /tmp
2860
tar zxvf qemu-x.y.z.tar.gz
2861
cd qemu-x.y.z
2862
@end example
2863

    
2864
Then you configure QEMU and build it (usually no options are needed):
2865
@example
2866
./configure
2867
make
2868
@end example
2869

    
2870
Then type as root user:
2871
@example
2872
make install
2873
@end example
2874
to install QEMU in @file{/usr/local}.
2875

    
2876
@node Windows
2877
@section Windows
2878

    
2879
@itemize
2880
@item Install the current versions of MSYS and MinGW from
2881
@url{http://www.mingw.org/}. You can find detailed installation
2882
instructions in the download section and the FAQ.
2883

    
2884
@item Download
2885
the MinGW development library of SDL 1.2.x
2886
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2887
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2888
edit the @file{sdl-config} script so that it gives the
2889
correct SDL directory when invoked.
2890

    
2891
@item Install the MinGW version of zlib and make sure
2892
@file{zlib.h} and @file{libz.dll.a} are in
2893
MinGW's default header and linker search paths.
2894

    
2895
@item Extract the current version of QEMU.
2896

    
2897
@item Start the MSYS shell (file @file{msys.bat}).
2898

    
2899
@item Change to the QEMU directory. Launch @file{./configure} and
2900
@file{make}.  If you have problems using SDL, verify that
2901
@file{sdl-config} can be launched from the MSYS command line.
2902

    
2903
@item You can install QEMU in @file{Program Files/QEMU} by typing
2904
@file{make install}. Don't forget to copy @file{SDL.dll} in
2905
@file{Program Files/QEMU}.
2906

    
2907
@end itemize
2908

    
2909
@node Cross compilation for Windows with Linux
2910
@section Cross compilation for Windows with Linux
2911

    
2912
@itemize
2913
@item
2914
Install the MinGW cross compilation tools available at
2915
@url{http://www.mingw.org/}.
2916

    
2917
@item Download
2918
the MinGW development library of SDL 1.2.x
2919
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2920
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2921
edit the @file{sdl-config} script so that it gives the
2922
correct SDL directory when invoked.  Set up the @code{PATH} environment
2923
variable so that @file{sdl-config} can be launched by
2924
the QEMU configuration script.
2925

    
2926
@item Install the MinGW version of zlib and make sure
2927
@file{zlib.h} and @file{libz.dll.a} are in
2928
MinGW's default header and linker search paths.
2929

    
2930
@item
2931
Configure QEMU for Windows cross compilation:
2932
@example
2933
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2934
@end example
2935
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2936
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2937
We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2938
use --cross-prefix to specify the name of the cross compiler.
2939
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2940

    
2941
Under Fedora Linux, you can run:
2942
@example
2943
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2944
@end example
2945
to get a suitable cross compilation environment.
2946

    
2947
@item You can install QEMU in the installation directory by typing
2948
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2949
installation directory.
2950

    
2951
@end itemize
2952

    
2953
Wine can be used to launch the resulting qemu-system-i386.exe
2954
and all other qemu-system-@var{target}.exe compiled for Win32.
2955

    
2956
@node Mac OS X
2957
@section Mac OS X
2958

    
2959
The Mac OS X patches are not fully merged in QEMU, so you should look
2960
at the QEMU mailing list archive to have all the necessary
2961
information.
2962

    
2963
@node Make targets
2964
@section Make targets
2965

    
2966
@table @code
2967

    
2968
@item make
2969
@item make all
2970
Make everything which is typically needed.
2971

    
2972
@item install
2973
TODO
2974

    
2975
@item install-doc
2976
TODO
2977

    
2978
@item make clean
2979
Remove most files which were built during make.
2980

    
2981
@item make distclean
2982
Remove everything which was built during make.
2983

    
2984
@item make dvi
2985
@item make html
2986
@item make info
2987
@item make pdf
2988
Create documentation in dvi, html, info or pdf format.
2989

    
2990
@item make cscope
2991
TODO
2992

    
2993
@item make defconfig
2994
(Re-)create some build configuration files.
2995
User made changes will be overwritten.
2996

    
2997
@item tar
2998
@item tarbin
2999
TODO
3000

    
3001
@end table
3002

    
3003
@node License
3004
@appendix License
3005

    
3006
QEMU is a trademark of Fabrice Bellard.
3007

    
3008
QEMU is released under the GNU General Public License (TODO: add link).
3009
Parts of QEMU have specific licenses, see file LICENSE.
3010

    
3011
TODO (refer to file LICENSE, include it, include the GPL?)
3012

    
3013
@node Index
3014
@appendix Index
3015
@menu
3016
* Concept Index::
3017
* Function Index::
3018
* Keystroke Index::
3019
* Program Index::
3020
* Data Type Index::
3021
* Variable Index::
3022
@end menu
3023

    
3024
@node Concept Index
3025
@section Concept Index
3026
This is the main index. Should we combine all keywords in one index? TODO
3027
@printindex cp
3028

    
3029
@node Function Index
3030
@section Function Index
3031
This index could be used for command line options and monitor functions.
3032
@printindex fn
3033

    
3034
@node Keystroke Index
3035
@section Keystroke Index
3036

    
3037
This is a list of all keystrokes which have a special function
3038
in system emulation.
3039

    
3040
@printindex ky
3041

    
3042
@node Program Index
3043
@section Program Index
3044
@printindex pg
3045

    
3046
@node Data Type Index
3047
@section Data Type Index
3048

    
3049
This index could be used for qdev device names and options.
3050

    
3051
@printindex tp
3052

    
3053
@node Variable Index
3054
@section Variable Index
3055
@printindex vr
3056

    
3057
@bye