Statistics
| Branch: | Revision:

root / hw / eepro100.c @ 3031efab

History | View | Annotate | Download (58.2 kB)

1
/*
2
 * QEMU i8255x (PRO100) emulation
3
 *
4
 * Copyright (c) 2006-2007 Stefan Weil
5
 *
6
 * Portions of the code are copies from grub / etherboot eepro100.c
7
 * and linux e100.c.
8
 *
9
 * This program is free software; you can redistribute it and/or modify
10
 * it under the terms of the GNU General Public License as published by
11
 * the Free Software Foundation; either version 2 of the License, or
12
 * (at your option) any later version.
13
 *
14
 * This program is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
 * GNU General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU General Public License
20
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21
 *
22
 * Tested features (i82559):
23
 *      PXE boot (i386) no valid link
24
 *      Linux networking (i386) ok
25
 *
26
 * Untested:
27
 *      non-i386 platforms
28
 *      Windows networking
29
 *
30
 * References:
31
 *
32
 * Intel 8255x 10/100 Mbps Ethernet Controller Family
33
 * Open Source Software Developer Manual
34
 */
35

    
36
#if defined(TARGET_I386)
37
# warning "PXE boot still not working!"
38
#endif
39

    
40
#include <stddef.h>             /* offsetof */
41
#include <stdbool.h>
42
#include "hw.h"
43
#include "pci.h"
44
#include "net.h"
45
#include "eeprom93xx.h"
46

    
47
/* Common declarations for all PCI devices. */
48

    
49
#define PCI_CONFIG_8(offset, value) \
50
    (pci_conf[offset] = (value))
51
#define PCI_CONFIG_16(offset, value) \
52
    (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
53
#define PCI_CONFIG_32(offset, value) \
54
    (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
55

    
56
#define KiB 1024
57

    
58
/* Debug EEPRO100 card. */
59
//~ #define DEBUG_EEPRO100
60

    
61
#ifdef DEBUG_EEPRO100
62
#define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
63
#else
64
#define logout(fmt, ...) ((void)0)
65
#endif
66

    
67
/* Set flags to 0 to disable debug output. */
68
#define INT     1       /* interrupt related actions */
69
#define MDI     1       /* mdi related actions */
70
#define OTHER   1
71
#define RXTX    1
72
#define EEPROM  1       /* eeprom related actions */
73

    
74
#define TRACE(flag, command) ((flag) ? (command) : (void)0)
75

    
76
#define missing(text)       assert(!"feature is missing in this emulation: " text)
77

    
78
#define MAX_ETH_FRAME_SIZE 1514
79

    
80
/* This driver supports several different devices which are declared here. */
81
#define i82551          0x82551
82
#define i82557B         0x82557b
83
#define i82557C         0x82557c
84
#define i82558B         0x82558b
85
#define i82559C         0x82559c
86
#define i82559ER        0x82559e
87
#define i82562          0x82562
88

    
89
/* Use 64 word EEPROM. TODO: could be a runtime option. */
90
#define EEPROM_SIZE     64
91

    
92
#define PCI_MEM_SIZE            (4 * KiB)
93
#define PCI_IO_SIZE             64
94
#define PCI_FLASH_SIZE          (128 * KiB)
95

    
96
#define BIT(n) (1 << (n))
97
#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
98

    
99
/* The SCB accepts the following controls for the Tx and Rx units: */
100
#define  CU_NOP         0x0000  /* No operation. */
101
#define  CU_START       0x0010  /* CU start. */
102
#define  CU_RESUME      0x0020  /* CU resume. */
103
#define  CU_STATSADDR   0x0040  /* Load dump counters address. */
104
#define  CU_SHOWSTATS   0x0050  /* Dump statistical counters. */
105
#define  CU_CMD_BASE    0x0060  /* Load CU base address. */
106
#define  CU_DUMPSTATS   0x0070  /* Dump and reset statistical counters. */
107
#define  CU_SRESUME     0x00a0  /* CU static resume. */
108

    
109
#define  RU_NOP         0x0000
110
#define  RX_START       0x0001
111
#define  RX_RESUME      0x0002
112
#define  RX_ABORT       0x0004
113
#define  RX_ADDR_LOAD   0x0006
114
#define  RX_RESUMENR    0x0007
115
#define INT_MASK        0x0100
116
#define DRVR_INT        0x0200  /* Driver generated interrupt. */
117

    
118
/* Offsets to the various registers.
119
   All accesses need not be longword aligned. */
120
enum speedo_offsets {
121
    SCBStatus = 0,
122
    SCBAck = 1,
123
    SCBCmd = 2,                 /* Rx/Command Unit command and status. */
124
    SCBIntmask = 3,
125
    SCBPointer = 4,             /* General purpose pointer. */
126
    SCBPort = 8,                /* Misc. commands and operands.  */
127
    SCBflash = 12, SCBeeprom = 14,      /* EEPROM and flash memory control. */
128
    SCBCtrlMDI = 16,            /* MDI interface control. */
129
    SCBEarlyRx = 20,            /* Early receive byte count. */
130
    SCBFlow = 24,
131
};
132

    
133
/* A speedo3 transmit buffer descriptor with two buffers... */
134
typedef struct {
135
    uint16_t status;
136
    uint16_t command;
137
    uint32_t link;              /* void * */
138
    uint32_t tx_desc_addr;      /* transmit buffer decsriptor array address. */
139
    uint16_t tcb_bytes;         /* transmit command block byte count (in lower 14 bits */
140
    uint8_t tx_threshold;       /* transmit threshold */
141
    uint8_t tbd_count;          /* TBD number */
142
    //~ /* This constitutes two "TBD" entries: hdr and data */
143
    //~ uint32_t tx_buf_addr0;  /* void *, header of frame to be transmitted.  */
144
    //~ int32_t  tx_buf_size0;  /* Length of Tx hdr. */
145
    //~ uint32_t tx_buf_addr1;  /* void *, data to be transmitted.  */
146
    //~ int32_t  tx_buf_size1;  /* Length of Tx data. */
147
} eepro100_tx_t;
148

    
149
/* Receive frame descriptor. */
150
typedef struct {
151
    int16_t status;
152
    uint16_t command;
153
    uint32_t link;              /* struct RxFD * */
154
    uint32_t rx_buf_addr;       /* void * */
155
    uint16_t count;
156
    uint16_t size;
157
    char packet[MAX_ETH_FRAME_SIZE + 4];
158
} eepro100_rx_t;
159

    
160
typedef struct {
161
    uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
162
        tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
163
        tx_multiple_collisions, tx_total_collisions;
164
    uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
165
        rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
166
        rx_short_frame_errors;
167
    uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
168
    uint16_t xmt_tco_frames, rcv_tco_frames;
169
    uint32_t complete;
170
} eepro100_stats_t;
171

    
172
typedef enum {
173
    cu_idle = 0,
174
    cu_suspended = 1,
175
    cu_active = 2,
176
    cu_lpq_active = 2,
177
    cu_hqp_active = 3
178
} cu_state_t;
179

    
180
typedef enum {
181
    ru_idle = 0,
182
    ru_suspended = 1,
183
    ru_no_resources = 2,
184
    ru_ready = 4
185
} ru_state_t;
186

    
187
typedef struct {
188
    PCIDevice dev;
189
#if 1
190
    uint8_t cmd;
191
    uint32_t start;
192
    uint32_t stop;
193
    uint8_t mult[8];            /* multicast mask array */
194
    int mmio_index;
195
    VLANClientState *vc;
196
#endif
197
    uint8_t scb_stat;           /* SCB stat/ack byte */
198
    uint8_t int_stat;           /* PCI interrupt status */
199
    uint32_t region[3];         /* PCI region addresses */
200
    uint8_t macaddr[6];
201
    uint16_t mdimem[32];
202
    eeprom_t *eeprom;
203
    uint32_t device;            /* device variant */
204
    uint32_t pointer;
205
    /* (cu_base + cu_offset) address the next command block in the command block list. */
206
    uint32_t cu_base;           /* CU base address */
207
    uint32_t cu_offset;         /* CU address offset */
208
    /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
209
    uint32_t ru_base;           /* RU base address */
210
    uint32_t ru_offset;         /* RU address offset */
211
    uint32_t statsaddr;         /* pointer to eepro100_stats_t */
212
    /* Statistical counters. Also used for wake-up packet (i82559). */
213
    eepro100_stats_t statistics;
214
#if 0
215
    uint16_t status;
216
#endif
217

    
218
    /* Configuration bytes. */
219
    uint8_t configuration[22];
220

    
221
    /* Data in mem is always in the byte order of the controller (le). */
222
    uint8_t mem[PCI_MEM_SIZE];
223
} EEPRO100State;
224

    
225
/* Parameters for nic_save, nic_load. */
226
static const int eepro100_instance = -1;
227
static const int eepro100_version = 20090807;
228

    
229
/* Default values for MDI (PHY) registers */
230
static const uint16_t eepro100_mdi_default[] = {
231
    /* MDI Registers 0 - 6, 7 */
232
    0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
233
    /* MDI Registers 8 - 15 */
234
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
235
    /* MDI Registers 16 - 31 */
236
    0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
237
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
238
};
239

    
240
/* Readonly mask for MDI (PHY) registers */
241
static const uint16_t eepro100_mdi_mask[] = {
242
    0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
243
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
244
    0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
245
    0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
246
};
247

    
248
#define POLYNOMIAL 0x04c11db6
249

    
250
/* From FreeBSD */
251
/* XXX: optimize */
252
static int compute_mcast_idx(const uint8_t * ep)
253
{
254
    uint32_t crc;
255
    int carry, i, j;
256
    uint8_t b;
257

    
258
    crc = 0xffffffff;
259
    for (i = 0; i < 6; i++) {
260
        b = *ep++;
261
        for (j = 0; j < 8; j++) {
262
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
263
            crc <<= 1;
264
            b >>= 1;
265
            if (carry) {
266
                crc = ((crc ^ POLYNOMIAL) | carry);
267
            }
268
        }
269
    }
270
    return (crc >> 26);
271
}
272

    
273
#if defined(DEBUG_EEPRO100)
274
static const char *nic_dump(const uint8_t * buf, unsigned size)
275
{
276
    static char dump[3 * 16 + 1];
277
    char *p = &dump[0];
278
    if (size > 16) {
279
        size = 16;
280
    }
281
    while (size-- > 0) {
282
        p += sprintf(p, " %02x", *buf++);
283
    }
284
    return dump;
285
}
286
#endif                          /* DEBUG_EEPRO100 */
287

    
288
enum scb_stat_ack {
289
    stat_ack_not_ours = 0x00,
290
    stat_ack_sw_gen = 0x04,
291
    stat_ack_rnr = 0x10,
292
    stat_ack_cu_idle = 0x20,
293
    stat_ack_frame_rx = 0x40,
294
    stat_ack_cu_cmd_done = 0x80,
295
    stat_ack_not_present = 0xFF,
296
    stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297
    stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298
};
299

    
300
static void disable_interrupt(EEPRO100State * s)
301
{
302
    if (s->int_stat) {
303
        TRACE(INT, logout("interrupt disabled\n"));
304
        qemu_irq_lower(s->dev.irq[0]);
305
        s->int_stat = 0;
306
    }
307
}
308

    
309
static void enable_interrupt(EEPRO100State * s)
310
{
311
    if (!s->int_stat) {
312
        TRACE(INT, logout("interrupt enabled\n"));
313
        qemu_irq_raise(s->dev.irq[0]);
314
        s->int_stat = 1;
315
    }
316
}
317

    
318
static void eepro100_acknowledge(EEPRO100State * s)
319
{
320
    s->scb_stat &= ~s->mem[SCBAck];
321
    s->mem[SCBAck] = s->scb_stat;
322
    if (s->scb_stat == 0) {
323
        disable_interrupt(s);
324
    }
325
}
326

    
327
static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
328
{
329
    uint8_t mask = ~s->mem[SCBIntmask];
330
    s->mem[SCBAck] |= stat;
331
    stat = s->scb_stat = s->mem[SCBAck];
332
    stat &= (mask | 0x0f);
333
    //~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
334
    if (stat && (mask & 0x01)) {
335
        /* SCB mask and SCB Bit M do not disable interrupt. */
336
        enable_interrupt(s);
337
    } else if (s->int_stat) {
338
        disable_interrupt(s);
339
    }
340
}
341

    
342
static void eepro100_cx_interrupt(EEPRO100State * s)
343
{
344
    /* CU completed action command. */
345
    /* Transmit not ok (82557 only, not in emulation). */
346
    eepro100_interrupt(s, 0x80);
347
}
348

    
349
static void eepro100_cna_interrupt(EEPRO100State * s)
350
{
351
    /* CU left the active state. */
352
    eepro100_interrupt(s, 0x20);
353
}
354

    
355
static void eepro100_fr_interrupt(EEPRO100State * s)
356
{
357
    /* RU received a complete frame. */
358
    eepro100_interrupt(s, 0x40);
359
}
360

    
361
#if 0
362
static void eepro100_rnr_interrupt(EEPRO100State * s)
363
{
364
    /* RU is not ready. */
365
    eepro100_interrupt(s, 0x10);
366
}
367
#endif
368

    
369
static void eepro100_mdi_interrupt(EEPRO100State * s)
370
{
371
    /* MDI completed read or write cycle. */
372
    eepro100_interrupt(s, 0x08);
373
}
374

    
375
static void eepro100_swi_interrupt(EEPRO100State * s)
376
{
377
    /* Software has requested an interrupt. */
378
    eepro100_interrupt(s, 0x04);
379
}
380

    
381
#if 0
382
static void eepro100_fcp_interrupt(EEPRO100State * s)
383
{
384
    /* Flow control pause interrupt (82558 and later). */
385
    eepro100_interrupt(s, 0x01);
386
}
387
#endif
388

    
389
static void pci_reset(EEPRO100State * s)
390
{
391
    uint32_t device = s->device;
392
    uint8_t *pci_conf = s->dev.config;
393

    
394
    TRACE(OTHER, logout("%p\n", s));
395

    
396
    /* PCI Vendor ID */
397
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
398
    /* PCI Device ID depends on device and is set below. */
399
    /* PCI Command */
400
    PCI_CONFIG_16(PCI_COMMAND, 0x0000);
401
    /* PCI Status */
402
    PCI_CONFIG_16(PCI_STATUS, 0x2800);
403
    /* PCI Revision ID */
404
    PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
405
    /* PCI Class Code */
406
    PCI_CONFIG_8(0x09, 0x00);
407
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
408
    /* PCI Cache Line Size */
409
    /* check cache line size!!! */
410
    //~ PCI_CONFIG_8(0x0c, 0x00);
411
    /* PCI Latency Timer */
412
    PCI_CONFIG_8(0x0d, 0x20);   // latency timer = 32 clocks
413
    /* PCI Header Type */
414
    /* BIST (built-in self test) */
415
#if defined(TARGET_I386)
416
// !!! workaround for buggy bios
417
//~ #define PCI_ADDRESS_SPACE_MEM_PREFETCH 0
418
#endif
419
#if 0
420
    /* PCI Base Address Registers */
421
    /* CSR Memory Mapped Base Address */
422
    PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
423
                  PCI_ADDRESS_SPACE_MEM | PCI_ADDRESS_SPACE_MEM_PREFETCH);
424
    /* CSR I/O Mapped Base Address */
425
    PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_ADDRESS_SPACE_IO);
426
#if 0
427
    /* Flash Memory Mapped Base Address */
428
    PCI_CONFIG_32(PCI_BASE_ADDRESS_2, 0xfffe0000 | PCI_ADDRESS_SPACE_MEM);
429
#endif
430
#endif
431
    /* Expansion ROM Base Address (depends on boot disable!!!) */
432
    PCI_CONFIG_32(0x30, 0x00000000);
433
    /* Capability Pointer */
434
    PCI_CONFIG_8(0x34, 0xdc);
435
    /* Interrupt Line */
436
    /* Interrupt Pin */
437
    PCI_CONFIG_8(0x3d, 1);      // interrupt pin 0
438
    /* Minimum Grant */
439
    PCI_CONFIG_8(0x3e, 0x08);
440
    /* Maximum Latency */
441
    PCI_CONFIG_8(0x3f, 0x18);
442
    /* Power Management Capabilities / Next Item Pointer / Capability ID */
443
    PCI_CONFIG_32(0xdc, 0x7e210001);
444

    
445
    switch (device) {
446
    case i82551:
447
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
448
        PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
449
        break;
450
    case i82557B:
451
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
452
        PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
453
        break;
454
    case i82557C:
455
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
456
        PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
457
        break;
458
    case i82558B:
459
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
460
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
461
        PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
462
        break;
463
    case i82559C:
464
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
465
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
466
        //~ PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
467
        break;
468
    case i82559ER:
469
        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
470
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
471
        PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
472
        break;
473
    //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1029);
474
    //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1030);       /* 82559 InBusiness 10/100 */
475
    default:
476
        logout("Device %X is undefined!\n", device);
477
    }
478

    
479
    if (device == i82557C || device == i82558B || device == i82559C) {
480
        logout("Get device id and revision from EEPROM!!!\n");
481
    }
482
}
483

    
484
static void nic_selective_reset(EEPRO100State * s)
485
{
486
    size_t i;
487
    uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
488
    //~ eeprom93xx_reset(s->eeprom);
489
    memcpy(eeprom_contents, s->macaddr, 6);
490
    eeprom_contents[0xa] = 0x4000;
491
    uint16_t sum = 0;
492
    for (i = 0; i < EEPROM_SIZE - 1; i++) {
493
        sum += eeprom_contents[i];
494
    }
495
    eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
496
    TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
497

    
498
    memset(s->mem, 0, sizeof(s->mem));
499
    uint32_t val = BIT(21);
500
    memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
501

    
502
    assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
503
    memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
504
}
505

    
506
static void nic_reset(void *opaque)
507
{
508
    EEPRO100State *s = opaque;
509
    TRACE(OTHER, logout("%p\n", s));
510
    nic_selective_reset(s);
511
}
512

    
513
#if defined(DEBUG_EEPRO100)
514
static const char * const reg[PCI_IO_SIZE / 4] = {
515
    "Command/Status",
516
    "General Pointer",
517
    "Port",
518
    "EEPROM/Flash Control",
519
    "MDI Control",
520
    "Receive DMA Byte Count",
521
    "Flow control",
522
    "General Status/Control"
523
};
524

    
525
static char *regname(uint32_t addr)
526
{
527
    static char buf[16];
528
    if (addr < PCI_IO_SIZE) {
529
        const char *r = reg[addr / 4];
530
        if (r != 0) {
531
            snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
532
        } else {
533
            snprintf(buf, sizeof(buf), "0x%02x", addr);
534
        }
535
    } else {
536
        snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
537
    }
538
    return buf;
539
}
540
#endif                          /* DEBUG_EEPRO100 */
541

    
542
#if 0
543
static uint16_t eepro100_read_status(EEPRO100State * s)
544
{
545
    uint16_t val = s->status;
546
    TRACE(OTHER, logout("val=0x%04x\n", val));
547
    return val;
548
}
549

550
static void eepro100_write_status(EEPRO100State * s, uint16_t val)
551
{
552
    TRACE(OTHER, logout("val=0x%04x\n", val));
553
    s->status = val;
554
}
555
#endif
556

    
557
/*****************************************************************************
558
 *
559
 * Command emulation.
560
 *
561
 ****************************************************************************/
562

    
563
#if 0
564
static uint16_t eepro100_read_command(EEPRO100State * s)
565
{
566
    uint16_t val = 0xffff;
567
    //~ TRACE(OTHER, logout("val=0x%04x\n", val));
568
    return val;
569
}
570
#endif
571

    
572
static bool device_supports_eTxCB(EEPRO100State * s)
573
{
574
    return (s->device != i82557B && s->device != i82557C);
575
}
576

    
577
/* Commands that can be put in a command list entry. */
578
enum commands {
579
    CmdNOp = 0,
580
    CmdIASetup = 1,
581
    CmdConfigure = 2,
582
    CmdMulticastList = 3,
583
    CmdTx = 4,
584
    CmdTDR = 5,                 /* load microcode */
585
    CmdDump = 6,
586
    CmdDiagnose = 7,
587

    
588
    /* And some extra flags: */
589
    CmdSuspend = 0x4000,        /* Suspend after completion. */
590
    CmdIntr = 0x2000,           /* Interrupt after completion. */
591
    CmdTxFlex = 0x0008,         /* Use "Flexible mode" for CmdTx command. */
592
};
593

    
594
static cu_state_t get_cu_state(EEPRO100State * s)
595
{
596
    return ((s->mem[SCBStatus] >> 6) & 0x03);
597
}
598

    
599
static void set_cu_state(EEPRO100State * s, cu_state_t state)
600
{
601
    s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
602
}
603

    
604
static ru_state_t get_ru_state(EEPRO100State * s)
605
{
606
    return ((s->mem[SCBStatus] >> 2) & 0x0f);
607
}
608

    
609
static void set_ru_state(EEPRO100State * s, ru_state_t state)
610
{
611
    s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
612
}
613

    
614
static void dump_statistics(EEPRO100State * s)
615
{
616
    /* Dump statistical data. Most data is never changed by the emulation
617
     * and always 0, so we first just copy the whole block and then those
618
     * values which really matter.
619
     * Number of data should check configuration!!!
620
     */
621
    cpu_physical_memory_write(s->statsaddr, (uint8_t *) & s->statistics, 64);
622
    stl_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
623
    stl_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
624
    stl_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
625
    stl_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
626
    //~ stw_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
627
    //~ stw_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
628
    //~ missing("CU dump statistical counters");
629
}
630

    
631
static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
632
{
633
    eepro100_tx_t tx;
634
    uint32_t cb_address;
635
    switch (val) {
636
    case CU_NOP:
637
        /* No operation. */
638
        break;
639
    case CU_START:
640
        if (get_cu_state(s) != cu_idle) {
641
            /* Intel documentation says that CU must be idle for the CU
642
             * start command. Intel driver for Linux also starts the CU
643
             * from suspended state. */
644
            logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
645
            //~ assert(!"wrong CU state");
646
        }
647
        set_cu_state(s, cu_active);
648
        s->cu_offset = s->pointer;
649
      next_command:
650
        cb_address = s->cu_base + s->cu_offset;
651
        cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx));
652
        uint16_t status = le16_to_cpu(tx.status);
653
        uint16_t command = le16_to_cpu(tx.command);
654
        logout
655
            ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
656
             val, status, command, tx.link);
657
        bool bit_el = ((command & 0x8000) != 0);
658
        bool bit_s = ((command & 0x4000) != 0);
659
        bool bit_i = ((command & 0x2000) != 0);
660
        bool bit_nc = ((command & 0x0010) != 0);
661
        //~ bool bit_sf = ((command & 0x0008) != 0);
662
        uint16_t cmd = command & 0x0007;
663
        s->cu_offset = le32_to_cpu(tx.link);
664
        switch (cmd) {
665
        case CmdNOp:
666
            /* Do nothing. */
667
            break;
668
        case CmdIASetup:
669
            cpu_physical_memory_read(cb_address + 8, &s->macaddr[0], 6);
670
            TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6)));
671
            break;
672
        case CmdConfigure:
673
            cpu_physical_memory_read(cb_address + 8, &s->configuration[0],
674
                                     sizeof(s->configuration));
675
            TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[0], 16)));
676
            break;
677
        case CmdMulticastList:
678
            //~ missing("multicast list");
679
            break;
680
        case CmdTx:
681
            (void)0;
682
            uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr);
683
            uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff);
684
            TRACE(RXTX, logout
685
                ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
686
                 tbd_array, tcb_bytes, tx.tbd_count));
687
            assert(!bit_nc);
688
            //~ assert(!bit_sf);
689
            assert(tcb_bytes <= 2600);
690
            /* Next assertion fails for local configuration. */
691
            //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff));
692
            if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
693
                logout
694
                    ("illegal values of TBD array address and TCB byte count!\n");
695
            }
696
            // sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes
697
            uint8_t buf[2600];
698
            uint16_t size = 0;
699
            uint32_t tbd_address = cb_address + 0x10;
700
            assert(tcb_bytes <= sizeof(buf));
701
            while (size < tcb_bytes) {
702
                uint32_t tx_buffer_address = ldl_phys(tbd_address);
703
                uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
704
                //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
705
                tbd_address += 8;
706
                TRACE(RXTX, logout
707
                    ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
708
                     tx_buffer_address, tx_buffer_size));
709
                tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
710
                cpu_physical_memory_read(tx_buffer_address, &buf[size],
711
                                         tx_buffer_size);
712
                size += tx_buffer_size;
713
            }
714
            if (tbd_array == 0xffffffff) {
715
                /* Simplified mode. Was already handled by code above. */
716
            } else {
717
                /* Flexible mode. */
718
                uint8_t tbd_count = 0;
719
                if (device_supports_eTxCB(s) && !(s->configuration[6] & BIT(4))) {
720
                    /* Extended Flexible TCB. */
721
                    assert(tcb_bytes == 0);
722
                    for (; tbd_count < 2; tbd_count++) {
723
                        uint32_t tx_buffer_address = ldl_phys(tbd_address);
724
                        uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
725
                        uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
726
                        tbd_address += 8;
727
                        TRACE(RXTX, logout
728
                            ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
729
                             tx_buffer_address, tx_buffer_size));
730
                        tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
731
                        cpu_physical_memory_read(tx_buffer_address, &buf[size],
732
                                                 tx_buffer_size);
733
                        size += tx_buffer_size;
734
                        if (tx_buffer_el & 1) {
735
                            break;
736
                        }
737
                    }
738
                }
739
                tbd_address = tbd_array;
740
                for (; tbd_count < tx.tbd_count; tbd_count++) {
741
                    uint32_t tx_buffer_address = ldl_phys(tbd_address);
742
                    uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
743
                    uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
744
                    tbd_address += 8;
745
                    TRACE(RXTX, logout
746
                        ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
747
                         tx_buffer_address, tx_buffer_size));
748
                    tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
749
                    cpu_physical_memory_read(tx_buffer_address, &buf[size],
750
                                             tx_buffer_size);
751
                    size += tx_buffer_size;
752
                    if (tx_buffer_el & 1) {
753
                        break;
754
                    }
755
                }
756
            }
757
            TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
758
            qemu_send_packet(s->vc, buf, size);
759
            s->statistics.tx_good_frames++;
760
            /* Transmit with bad status would raise an CX/TNO interrupt.
761
             * (82557 only). Emulation never has bad status. */
762
            //~ eepro100_cx_interrupt(s);
763
            break;
764
        case CmdTDR:
765
            TRACE(OTHER, logout("load microcode\n"));
766
            /* Starting with offset 8, the command contains
767
             * 64 dwords microcode which we just ignore here. */
768
            break;
769
        default:
770
            missing("undefined command");
771
        }
772
        /* Write new status (success). */
773
        stw_phys(cb_address, status | 0x8000 | 0x2000);
774
        if (bit_i) {
775
            /* CU completed action. */
776
            eepro100_cx_interrupt(s);
777
        }
778
        if (bit_el) {
779
            /* CU becomes idle. Terminate command loop. */
780
            set_cu_state(s, cu_idle);
781
            eepro100_cna_interrupt(s);
782
        } else if (bit_s) {
783
            /* CU becomes suspended. */
784
            set_cu_state(s, cu_suspended);
785
            eepro100_cna_interrupt(s);
786
        } else {
787
            /* More entries in list. */
788
            TRACE(OTHER, logout("CU list with at least one more entry\n"));
789
            goto next_command;
790
        }
791
        TRACE(OTHER, logout("CU list empty\n"));
792
        /* List is empty. Now CU is idle or suspended. */
793
        break;
794
    case CU_RESUME:
795
        if (get_cu_state(s) != cu_suspended) {
796
            logout("bad CU resume from CU state %u\n", get_cu_state(s));
797
            /* Workaround for bad Linux eepro100 driver which resumes
798
             * from idle state. */
799
            //~ missing("cu resume");
800
            set_cu_state(s, cu_suspended);
801
        }
802
        if (get_cu_state(s) == cu_suspended) {
803
            TRACE(OTHER, logout("CU resuming\n"));
804
            set_cu_state(s, cu_active);
805
            goto next_command;
806
        }
807
        break;
808
    case CU_STATSADDR:
809
        /* Load dump counters address. */
810
        s->statsaddr = s->pointer;
811
        TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
812
        break;
813
    case CU_SHOWSTATS:
814
        /* Dump statistical counters. */
815
        TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
816
        dump_statistics(s);
817
        break;
818
    case CU_CMD_BASE:
819
        /* Load CU base. */
820
        TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
821
        s->cu_base = s->pointer;
822
        break;
823
    case CU_DUMPSTATS:
824
        /* Dump and reset statistical counters. */
825
        TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
826
        dump_statistics(s);
827
        memset(&s->statistics, 0, sizeof(s->statistics));
828
        break;
829
    case CU_SRESUME:
830
        /* CU static resume. */
831
        missing("CU static resume");
832
        break;
833
    default:
834
        missing("Undefined CU command");
835
    }
836
}
837

    
838
static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
839
{
840
    switch (val) {
841
    case RU_NOP:
842
        /* No operation. */
843
        break;
844
    case RX_START:
845
        /* RU start. */
846
        if (get_ru_state(s) != ru_idle) {
847
            logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
848
            //~ assert(!"wrong RU state");
849
        }
850
        set_ru_state(s, ru_ready);
851
        s->ru_offset = s->pointer;
852
        TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
853
        break;
854
    case RX_RESUME:
855
        /* Restart RU. */
856
        if (get_ru_state(s) != ru_suspended) {
857
            logout("RU state is %u, should be %u\n", get_ru_state(s),
858
                   ru_suspended);
859
            //~ assert(!"wrong RU state");
860
        }
861
        set_ru_state(s, ru_ready);
862
        break;
863
    case RX_ADDR_LOAD:
864
        /* Load RU base. */
865
        TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
866
        s->ru_base = s->pointer;
867
        break;
868
    default:
869
        logout("val=0x%02x (undefined RU command)\n", val);
870
        missing("Undefined SU command");
871
    }
872
}
873

    
874
static void eepro100_write_command(EEPRO100State * s, uint8_t val)
875
{
876
    eepro100_ru_command(s, val & 0x0f);
877
    eepro100_cu_command(s, val & 0xf0);
878
    if ((val) == 0) {
879
        TRACE(OTHER, logout("val=0x%02x\n", val));
880
    }
881
    /* Clear command byte after command was accepted. */
882
    s->mem[SCBCmd] = 0;
883
}
884

    
885
/*****************************************************************************
886
 *
887
 * EEPROM emulation.
888
 *
889
 ****************************************************************************/
890

    
891
#define EEPROM_CS       0x02
892
#define EEPROM_SK       0x01
893
#define EEPROM_DI       0x04
894
#define EEPROM_DO       0x08
895

    
896
static uint16_t eepro100_read_eeprom(EEPRO100State * s)
897
{
898
    uint16_t val;
899
    memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
900
    if (eeprom93xx_read(s->eeprom)) {
901
        val |= EEPROM_DO;
902
    } else {
903
        val &= ~EEPROM_DO;
904
    }
905
    TRACE(EEPROM, logout("val=0x%04x\n", val));
906
    return val;
907
}
908

    
909
static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
910
{
911
    TRACE(EEPROM, logout("val=0x%02x\n", val));
912

    
913
    /* mask unwriteable bits */
914
    //~ val = SET_MASKED(val, 0x31, eeprom->value);
915

    
916
    int eecs = ((val & EEPROM_CS) != 0);
917
    int eesk = ((val & EEPROM_SK) != 0);
918
    int eedi = ((val & EEPROM_DI) != 0);
919
    eeprom93xx_write(eeprom, eecs, eesk, eedi);
920
}
921

    
922
static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
923
{
924
    s->pointer = le32_to_cpu(val);
925
    TRACE(OTHER, logout("val=0x%08x\n", val));
926
}
927

    
928
/*****************************************************************************
929
 *
930
 * MDI emulation.
931
 *
932
 ****************************************************************************/
933

    
934
#if defined(DEBUG_EEPRO100)
935
static const char * const mdi_op_name[] = {
936
    "opcode 0",
937
    "write",
938
    "read",
939
    "opcode 3"
940
};
941

    
942
static const char * const mdi_reg_name[] = {
943
    "Control",
944
    "Status",
945
    "PHY Identification (Word 1)",
946
    "PHY Identification (Word 2)",
947
    "Auto-Negotiation Advertisement",
948
    "Auto-Negotiation Link Partner Ability",
949
    "Auto-Negotiation Expansion"
950
};
951

    
952
static const char *reg2name(uint8_t reg)
953
{
954
    static char buffer[10];
955
    const char *p = buffer;
956
    if (reg < ARRAY_SIZE(mdi_reg_name)) {
957
        p = mdi_reg_name[reg];
958
    } else {
959
        snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
960
    }
961
    return p;
962
}
963
#endif                          /* DEBUG_EEPRO100 */
964

    
965
static uint32_t eepro100_read_mdi(EEPRO100State * s)
966
{
967
    uint32_t val;
968
    memcpy(&val, &s->mem[0x10], sizeof(val));
969

    
970
#ifdef DEBUG_EEPRO100
971
    uint8_t raiseint = (val & BIT(29)) >> 29;
972
    uint8_t opcode = (val & BITS(27, 26)) >> 26;
973
    uint8_t phy = (val & BITS(25, 21)) >> 21;
974
    uint8_t reg = (val & BITS(20, 16)) >> 16;
975
    uint16_t data = (val & BITS(15, 0));
976
#endif
977
    /* Emulation takes no time to finish MDI transaction. */
978
    val |= BIT(28);
979
    TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
980
                      val, raiseint, mdi_op_name[opcode], phy,
981
                      reg2name(reg), data));
982
    return val;
983
}
984

    
985
static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
986
{
987
    uint8_t raiseint = (val & BIT(29)) >> 29;
988
    uint8_t opcode = (val & BITS(27, 26)) >> 26;
989
    uint8_t phy = (val & BITS(25, 21)) >> 21;
990
    uint8_t reg = (val & BITS(20, 16)) >> 16;
991
    uint16_t data = (val & BITS(15, 0));
992
    TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
993
          val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
994
    if (phy != 1) {
995
        /* Unsupported PHY address. */
996
        //~ logout("phy must be 1 but is %u\n", phy);
997
        data = 0;
998
    } else if (opcode != 1 && opcode != 2) {
999
        /* Unsupported opcode. */
1000
        logout("opcode must be 1 or 2 but is %u\n", opcode);
1001
        data = 0;
1002
    } else if (reg > 6) {
1003
        /* Unsupported register. */
1004
        logout("register must be 0...6 but is %u\n", reg);
1005
        data = 0;
1006
    } else {
1007
        TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1008
                          val, raiseint, mdi_op_name[opcode], phy,
1009
                          reg2name(reg), data));
1010
        if (opcode == 1) {
1011
            /* MDI write */
1012
            switch (reg) {
1013
            case 0:            /* Control Register */
1014
                if (data & 0x8000) {
1015
                    /* Reset status and control registers to default. */
1016
                    s->mdimem[0] = eepro100_mdi_default[0];
1017
                    s->mdimem[1] = eepro100_mdi_default[1];
1018
                    data = s->mdimem[reg];
1019
                } else {
1020
                    /* Restart Auto Configuration = Normal Operation */
1021
                    data &= ~0x0200;
1022
                }
1023
                break;
1024
            case 1:            /* Status Register */
1025
                missing("not writable");
1026
                data = s->mdimem[reg];
1027
                break;
1028
            case 2:            /* PHY Identification Register (Word 1) */
1029
            case 3:            /* PHY Identification Register (Word 2) */
1030
                missing("not implemented");
1031
                break;
1032
            case 4:            /* Auto-Negotiation Advertisement Register */
1033
            case 5:            /* Auto-Negotiation Link Partner Ability Register */
1034
                break;
1035
            case 6:            /* Auto-Negotiation Expansion Register */
1036
            default:
1037
                missing("not implemented");
1038
            }
1039
            s->mdimem[reg] = data;
1040
        } else if (opcode == 2) {
1041
            /* MDI read */
1042
            switch (reg) {
1043
            case 0:            /* Control Register */
1044
                if (data & 0x8000) {
1045
                    /* Reset status and control registers to default. */
1046
                    s->mdimem[0] = eepro100_mdi_default[0];
1047
                    s->mdimem[1] = eepro100_mdi_default[1];
1048
                }
1049
                break;
1050
            case 1:            /* Status Register */
1051
                s->mdimem[reg] |= 0x0020;
1052
                break;
1053
            case 2:            /* PHY Identification Register (Word 1) */
1054
            case 3:            /* PHY Identification Register (Word 2) */
1055
            case 4:            /* Auto-Negotiation Advertisement Register */
1056
                break;
1057
            case 5:            /* Auto-Negotiation Link Partner Ability Register */
1058
                s->mdimem[reg] = 0x41fe;
1059
                break;
1060
            case 6:            /* Auto-Negotiation Expansion Register */
1061
                s->mdimem[reg] = 0x0001;
1062
                break;
1063
            }
1064
            data = s->mdimem[reg];
1065
        }
1066
        /* Emulation takes no time to finish MDI transaction.
1067
         * Set MDI bit in SCB status register. */
1068
        s->mem[SCBAck] |= 0x08;
1069
        val |= BIT(28);
1070
        if (raiseint) {
1071
            eepro100_mdi_interrupt(s);
1072
        }
1073
    }
1074
    val = (val & 0xffff0000) + data;
1075
    memcpy(&s->mem[0x10], &val, sizeof(val));
1076
}
1077

    
1078
/*****************************************************************************
1079
 *
1080
 * Port emulation.
1081
 *
1082
 ****************************************************************************/
1083

    
1084
#define PORT_SOFTWARE_RESET     0
1085
#define PORT_SELFTEST           1
1086
#define PORT_SELECTIVE_RESET    2
1087
#define PORT_DUMP               3
1088
#define PORT_SELECTION_MASK     3
1089

    
1090
typedef struct {
1091
    uint32_t st_sign;           /* Self Test Signature */
1092
    uint32_t st_result;         /* Self Test Results */
1093
} eepro100_selftest_t;
1094

    
1095
static uint32_t eepro100_read_port(EEPRO100State * s)
1096
{
1097
    return 0;
1098
}
1099

    
1100
static void eepro100_write_port(EEPRO100State * s, uint32_t val)
1101
{
1102
    val = le32_to_cpu(val);
1103
    uint32_t address = (val & ~PORT_SELECTION_MASK);
1104
    uint8_t selection = (val & PORT_SELECTION_MASK);
1105
    switch (selection) {
1106
    case PORT_SOFTWARE_RESET:
1107
        nic_reset(s);
1108
        break;
1109
    case PORT_SELFTEST:
1110
        TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1111
        eepro100_selftest_t data;
1112
        cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
1113
        data.st_sign = 0xffffffff;
1114
        data.st_result = 0;
1115
        cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
1116
        break;
1117
    case PORT_SELECTIVE_RESET:
1118
        TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1119
        nic_selective_reset(s);
1120
        break;
1121
    default:
1122
        logout("val=0x%08x\n", val);
1123
        missing("unknown port selection");
1124
    }
1125
}
1126

    
1127
/*****************************************************************************
1128
 *
1129
 * General hardware emulation.
1130
 *
1131
 ****************************************************************************/
1132

    
1133
static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1134
{
1135
    uint8_t val;
1136
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1137
        memcpy(&val, &s->mem[addr], sizeof(val));
1138
    }
1139

    
1140
    switch (addr) {
1141
    case SCBStatus:
1142
        //~ val = eepro100_read_status(s);
1143
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1144
        break;
1145
    case SCBAck:
1146
        //~ val = eepro100_read_status(s);
1147
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1148
        break;
1149
    case SCBCmd:
1150
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1151
        //~ val = eepro100_read_command(s);
1152
        break;
1153
    case SCBIntmask:
1154
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1155
        break;
1156
    case SCBPort + 3:
1157
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1158
        break;
1159
    case SCBeeprom:
1160
        val = eepro100_read_eeprom(s);
1161
        break;
1162
    case 0x1b:                 /* PMDR (power management driver register) */
1163
        val = 0;
1164
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1165
        break;
1166
    case 0x1d:                 /* general status register */
1167
        /* 100 Mbps full duplex, valid link */
1168
        val = 0x07;
1169
        TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1170
        break;
1171
    default:
1172
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1173
        missing("unknown byte read");
1174
    }
1175
    return val;
1176
}
1177

    
1178
static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1179
{
1180
    uint16_t val;
1181
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1182
        memcpy(&val, &s->mem[addr], sizeof(val));
1183
    }
1184

    
1185
    switch (addr) {
1186
    case SCBStatus:
1187
        //~ val = eepro100_read_status(s);
1188
        TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1189
        break;
1190
    case SCBeeprom:
1191
        val = eepro100_read_eeprom(s);
1192
        TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1193
        break;
1194
    default:
1195
        logout("addr=%s val=0x%04x\n", regname(addr), val);
1196
        missing("unknown word read");
1197
    }
1198
    return val;
1199
}
1200

    
1201
static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1202
{
1203
    uint32_t val;
1204
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1205
        memcpy(&val, &s->mem[addr], sizeof(val));
1206
    }
1207

    
1208
    switch (addr) {
1209
    case SCBStatus:
1210
        //~ val = eepro100_read_status(s);
1211
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1212
        break;
1213
    case SCBPointer:
1214
        //~ val = eepro100_read_pointer(s);
1215
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1216
        break;
1217
    case SCBPort:
1218
        val = eepro100_read_port(s);
1219
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1220
        break;
1221
    case SCBCtrlMDI:
1222
        val = eepro100_read_mdi(s);
1223
        break;
1224
    default:
1225
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1226
        missing("unknown longword read");
1227
    }
1228
    return val;
1229
}
1230

    
1231
static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1232
{
1233
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1234
        memcpy(&s->mem[addr], &val, sizeof(val));
1235
    }
1236

    
1237
    TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1238

    
1239
    switch (addr) {
1240
    case SCBStatus:
1241
        //~ eepro100_write_status(s, val);
1242
        break;
1243
    case SCBAck:
1244
        eepro100_acknowledge(s);
1245
        break;
1246
    case SCBCmd:
1247
        eepro100_write_command(s, val);
1248
        break;
1249
    case SCBIntmask:
1250
        if (val & BIT(1)) {
1251
            eepro100_swi_interrupt(s);
1252
        }
1253
        eepro100_interrupt(s, 0);
1254
        break;
1255
    case SCBPort + 3:
1256
    case SCBFlow:       /* does not exist on 82557 */
1257
    case SCBFlow + 1:
1258
    case SCBFlow + 2:
1259
    case SCBFlow + 3:
1260
        TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1261
        break;
1262
    case SCBeeprom:
1263
        eepro100_write_eeprom(s->eeprom, val);
1264
        break;
1265
    default:
1266
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1267
        missing("unknown byte write");
1268
    }
1269
}
1270

    
1271
static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1272
{
1273
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1274
        memcpy(&s->mem[addr], &val, sizeof(val));
1275
    }
1276

    
1277
    TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1278

    
1279
    switch (addr) {
1280
    case SCBStatus:
1281
        //~ eepro100_write_status(s, val);
1282
        eepro100_acknowledge(s);
1283
        break;
1284
    case SCBCmd:
1285
        eepro100_write_command(s, val);
1286
        eepro100_write1(s, SCBIntmask, val >> 8);
1287
        break;
1288
    case SCBeeprom:
1289
        eepro100_write_eeprom(s->eeprom, val);
1290
        break;
1291
    default:
1292
        logout("addr=%s val=0x%04x\n", regname(addr), val);
1293
        missing("unknown word write");
1294
    }
1295
}
1296

    
1297
static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1298
{
1299
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1300
        memcpy(&s->mem[addr], &val, sizeof(val));
1301
    }
1302

    
1303
    switch (addr) {
1304
    case SCBPointer:
1305
        eepro100_write_pointer(s, val);
1306
        break;
1307
    case SCBPort:
1308
        TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1309
        eepro100_write_port(s, val);
1310
        break;
1311
    case SCBCtrlMDI:
1312
        eepro100_write_mdi(s, val);
1313
        break;
1314
    default:
1315
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1316
        missing("unknown longword write");
1317
    }
1318
}
1319

    
1320
/*****************************************************************************
1321
 *
1322
 * Port mapped I/O.
1323
 *
1324
 ****************************************************************************/
1325

    
1326
static uint32_t ioport_read1(void *opaque, uint32_t addr)
1327
{
1328
    EEPRO100State *s = opaque;
1329
    //~ logout("addr=%s\n", regname(addr));
1330
    return eepro100_read1(s, addr - s->region[1]);
1331
}
1332

    
1333
static uint32_t ioport_read2(void *opaque, uint32_t addr)
1334
{
1335
    EEPRO100State *s = opaque;
1336
    return eepro100_read2(s, addr - s->region[1]);
1337
}
1338

    
1339
static uint32_t ioport_read4(void *opaque, uint32_t addr)
1340
{
1341
    EEPRO100State *s = opaque;
1342
    return eepro100_read4(s, addr - s->region[1]);
1343
}
1344

    
1345
static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
1346
{
1347
    EEPRO100State *s = opaque;
1348
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1349
    eepro100_write1(s, addr - s->region[1], val);
1350
}
1351

    
1352
static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
1353
{
1354
    EEPRO100State *s = opaque;
1355
    eepro100_write2(s, addr - s->region[1], val);
1356
}
1357

    
1358
static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
1359
{
1360
    EEPRO100State *s = opaque;
1361
    eepro100_write4(s, addr - s->region[1], val);
1362
}
1363

    
1364
/***********************************************************/
1365
/* PCI EEPRO100 definitions */
1366

    
1367
static void pci_map(PCIDevice * pci_dev, int region_num,
1368
                    uint32_t addr, uint32_t size, int type)
1369
{
1370
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1371

    
1372
    TRACE(OTHER, logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1373
          region_num, addr, size, type));
1374

    
1375
    assert(region_num == 1);
1376
    register_ioport_write(addr, size, 1, ioport_write1, s);
1377
    register_ioport_read(addr, size, 1, ioport_read1, s);
1378
    register_ioport_write(addr, size, 2, ioport_write2, s);
1379
    register_ioport_read(addr, size, 2, ioport_read2, s);
1380
    register_ioport_write(addr, size, 4, ioport_write4, s);
1381
    register_ioport_read(addr, size, 4, ioport_read4, s);
1382

    
1383
    s->region[region_num] = addr;
1384
}
1385

    
1386
/*****************************************************************************
1387
 *
1388
 * Memory mapped I/O.
1389
 *
1390
 ****************************************************************************/
1391

    
1392
static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1393
{
1394
    EEPRO100State *s = opaque;
1395
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1396
    eepro100_write1(s, addr, val);
1397
}
1398

    
1399
static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1400
{
1401
    EEPRO100State *s = opaque;
1402
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1403
    eepro100_write2(s, addr, val);
1404
}
1405

    
1406
static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1407
{
1408
    EEPRO100State *s = opaque;
1409
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1410
    eepro100_write4(s, addr, val);
1411
}
1412

    
1413
static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
1414
{
1415
    EEPRO100State *s = opaque;
1416
    //~ logout("addr=%s\n", regname(addr));
1417
    return eepro100_read1(s, addr);
1418
}
1419

    
1420
static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
1421
{
1422
    EEPRO100State *s = opaque;
1423
    //~ logout("addr=%s\n", regname(addr));
1424
    return eepro100_read2(s, addr);
1425
}
1426

    
1427
static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
1428
{
1429
    EEPRO100State *s = opaque;
1430
    //~ logout("addr=%s\n", regname(addr));
1431
    return eepro100_read4(s, addr);
1432
}
1433

    
1434
static CPUWriteMemoryFunc * const pci_mmio_write[] = {
1435
    pci_mmio_writeb,
1436
    pci_mmio_writew,
1437
    pci_mmio_writel
1438
};
1439

    
1440
static CPUReadMemoryFunc * const pci_mmio_read[] = {
1441
    pci_mmio_readb,
1442
    pci_mmio_readw,
1443
    pci_mmio_readl
1444
};
1445

    
1446
static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
1447
                         uint32_t addr, uint32_t size, int type)
1448
{
1449
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1450

    
1451
    TRACE(OTHER, logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1452
          region_num, addr, size, type));
1453

    
1454
    if (region_num == 0) {
1455
        /* Map control / status registers. */
1456
        cpu_register_physical_memory(addr, size, s->mmio_index);
1457
        s->region[region_num] = addr;
1458
    }
1459
}
1460

    
1461
static int nic_can_receive(VLANClientState *vc)
1462
{
1463
    EEPRO100State *s = vc->opaque;
1464
    TRACE(RXTX, logout("%p\n", s));
1465
    return get_ru_state(s) == ru_ready;
1466
    //~ return !eepro100_buffer_full(s);
1467
}
1468

    
1469
static ssize_t nic_receive(VLANClientState *vc, const uint8_t * buf, size_t size)
1470
{
1471
    /* TODO:
1472
     * - Magic packets should set bit 30 in power management driver register.
1473
     * - Interesting packets should set bit 29 in power management driver register.
1474
     */
1475
    EEPRO100State *s = vc->opaque;
1476
    uint16_t rfd_status = 0xa000;
1477
    static const uint8_t broadcast_macaddr[6] =
1478
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1479

    
1480
    /* TODO: check multiple IA bit. */
1481
    assert(!(s->configuration[20] & BIT(6)));
1482

    
1483
    if (s->configuration[8] & 0x80) {
1484
        /* CSMA is disabled. */
1485
        logout("%p received while CSMA is disabled\n", s);
1486
        return -1;
1487
    } else if (size < 64 && (s->configuration[7] & 1)) {
1488
        /* Short frame and configuration byte 7/0 (discard short receive) set:
1489
         * Short frame is discarded */
1490
        logout("%p received short frame (%zu byte)\n", s, size);
1491
        s->statistics.rx_short_frame_errors++;
1492
        //~ return -1;
1493
    } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
1494
        /* Long frame and configuration byte 18/3 (long receive ok) not set:
1495
         * Long frames are discarded. */
1496
        logout("%p received long frame (%zu byte), ignored\n", s, size);
1497
        return -1;
1498
    } else if (memcmp(buf, s->macaddr, 6) == 0) {       // !!!
1499
        /* Frame matches individual address. */
1500
        /* TODO: check configuration byte 15/4 (ignore U/L). */
1501
        TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1502
    } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1503
        /* Broadcast frame. */
1504
        TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1505
        rfd_status |= 0x0002;
1506
    } else if (buf[0] & 0x01) { // !!!
1507
        /* Multicast frame. */
1508
        TRACE(RXTX, logout("%p received multicast, len=%zu\n", s, size));
1509
        /* TODO: check multicast all bit. */
1510
        assert(!(s->configuration[21] & BIT(3)));
1511
        int mcast_idx = compute_mcast_idx(buf);
1512
        if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
1513
            return size;
1514
        }
1515
        rfd_status |= 0x0002;
1516
    } else if (s->configuration[15] & 1) {
1517
        /* Promiscuous: receive all. */
1518
        TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1519
        rfd_status |= 0x0004;
1520
    } else {
1521
        TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1522
              nic_dump(buf, size)));
1523
        return size;
1524
    }
1525

    
1526
    if (get_ru_state(s) != ru_ready) {
1527
        /* No resources available. */
1528
        logout("no resources, state=%u\n", get_ru_state(s));
1529
        s->statistics.rx_resource_errors++;
1530
        //~ assert(!"no resources");
1531
        return -1;
1532
    }
1533
    //~ !!!
1534
//~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
1535
    eepro100_rx_t rx;
1536
    cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
1537
                             offsetof(eepro100_rx_t, packet));
1538
    uint16_t rfd_command = le16_to_cpu(rx.command);
1539
    uint16_t rfd_size = le16_to_cpu(rx.size);
1540
    assert(size <= rfd_size);
1541
    if (size < 64) {
1542
        rfd_status |= 0x0080;
1543
    }
1544
    TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1545
          rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1546
    stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
1547
             rfd_status);
1548
    stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
1549
    /* Early receive interrupt not supported. */
1550
    //~ eepro100_er_interrupt(s);
1551
    /* Receive CRC Transfer not supported. */
1552
    assert(!(s->configuration[18] & 4));
1553
    /* TODO: check stripping enable bit. */
1554
    //~ assert(!(s->configuration[17] & 1));
1555
    cpu_physical_memory_write(s->ru_base + s->ru_offset +
1556
                              offsetof(eepro100_rx_t, packet), buf, size);
1557
    s->statistics.rx_good_frames++;
1558
    eepro100_fr_interrupt(s);
1559
    s->ru_offset = le32_to_cpu(rx.link);
1560
    if (rfd_command & 0x8000) {
1561
        /* EL bit is set, so this was the last frame. */
1562
        assert(0);
1563
    }
1564
    if (rfd_command & 0x4000) {
1565
        /* S bit is set. */
1566
        set_ru_state(s, ru_suspended);
1567
    }
1568
    return size;
1569
}
1570

    
1571
static int nic_load(QEMUFile * f, void *opaque, int version_id)
1572
{
1573
    EEPRO100State *s = opaque;
1574
    int i;
1575
    int ret;
1576

    
1577
    if (version_id != eepro100_version) {
1578
        return -EINVAL;
1579
    }
1580

    
1581
    ret = pci_device_load(&s->dev, f);
1582
    if (ret < 0) {
1583
        return ret;
1584
    }
1585

    
1586
    qemu_get_8s(f, &s->cmd);
1587
    qemu_get_be32s(f, &s->start);
1588
    qemu_get_be32s(f, &s->stop);
1589
    qemu_get_buffer(f, s->mult, 8);
1590
    qemu_get_buffer(f, s->mem, sizeof(s->mem));
1591

    
1592
    /* Restore all members of struct between scv_stat and mem. */
1593
    qemu_get_8s(f, &s->scb_stat);
1594
    qemu_get_8s(f, &s->int_stat);
1595
    for (i = 0; i < ARRAY_SIZE(s->region); i++) {
1596
        qemu_get_be32s(f, &s->region[i]);
1597
    }
1598
    qemu_get_buffer(f, s->macaddr, 6);
1599
    for (i = 0; i < ARRAY_SIZE(s->mdimem); i++) {
1600
        qemu_get_be16s(f, &s->mdimem[i]);
1601
    }
1602
    /* The eeprom should be saved and restored by its own routines. */
1603
    qemu_get_be32s(f, &s->device);
1604
    qemu_get_be32s(f, &s->pointer);
1605
    qemu_get_be32s(f, &s->cu_base);
1606
    qemu_get_be32s(f, &s->cu_offset);
1607
    qemu_get_be32s(f, &s->ru_base);
1608
    qemu_get_be32s(f, &s->ru_offset);
1609
    qemu_get_be32s(f, &s->statsaddr);
1610
    /* Restore epro100_stats_t statistics. */
1611
    qemu_get_be32s(f, &s->statistics.tx_good_frames);
1612
    qemu_get_be32s(f, &s->statistics.tx_max_collisions);
1613
    qemu_get_be32s(f, &s->statistics.tx_late_collisions);
1614
    qemu_get_be32s(f, &s->statistics.tx_underruns);
1615
    qemu_get_be32s(f, &s->statistics.tx_lost_crs);
1616
    qemu_get_be32s(f, &s->statistics.tx_deferred);
1617
    qemu_get_be32s(f, &s->statistics.tx_single_collisions);
1618
    qemu_get_be32s(f, &s->statistics.tx_multiple_collisions);
1619
    qemu_get_be32s(f, &s->statistics.tx_total_collisions);
1620
    qemu_get_be32s(f, &s->statistics.rx_good_frames);
1621
    qemu_get_be32s(f, &s->statistics.rx_crc_errors);
1622
    qemu_get_be32s(f, &s->statistics.rx_alignment_errors);
1623
    qemu_get_be32s(f, &s->statistics.rx_resource_errors);
1624
    qemu_get_be32s(f, &s->statistics.rx_overrun_errors);
1625
    qemu_get_be32s(f, &s->statistics.rx_cdt_errors);
1626
    qemu_get_be32s(f, &s->statistics.rx_short_frame_errors);
1627
    qemu_get_be32s(f, &s->statistics.fc_xmt_pause);
1628
    qemu_get_be32s(f, &s->statistics.fc_rcv_pause);
1629
    qemu_get_be32s(f, &s->statistics.fc_rcv_unsupported);
1630
    qemu_get_be16s(f, &s->statistics.xmt_tco_frames);
1631
    qemu_get_be16s(f, &s->statistics.rcv_tco_frames);
1632
    qemu_get_be32s(f, &s->statistics.complete);
1633
#if 0
1634
    qemu_get_be16s(f, &s->status);
1635
#endif
1636

    
1637
    /* Configuration bytes. */
1638
    qemu_get_buffer(f, s->configuration, sizeof(s->configuration));
1639

    
1640
    return 0;
1641
}
1642

    
1643
static void nic_save(QEMUFile * f, void *opaque)
1644
{
1645
    EEPRO100State *s = opaque;
1646
    int i;
1647

    
1648
    pci_device_save(&s->dev, f);
1649

    
1650
    qemu_put_8s(f, &s->cmd);
1651
    qemu_put_be32s(f, &s->start);
1652
    qemu_put_be32s(f, &s->stop);
1653
    qemu_put_buffer(f, s->mult, 8);
1654
    qemu_put_buffer(f, s->mem, sizeof(s->mem));
1655

    
1656
    /* Save all members of struct between scv_stat and mem. */
1657
    qemu_put_8s(f, &s->scb_stat);
1658
    qemu_put_8s(f, &s->int_stat);
1659
    for (i = 0; i < ARRAY_SIZE(s->region); i++) {
1660
        qemu_put_be32s(f, &s->region[i]);
1661
    }
1662
    qemu_put_buffer(f, s->macaddr, 6);
1663
    for (i = 0; i < ARRAY_SIZE(s->mdimem); i++) {
1664
        qemu_put_be16s(f, &s->mdimem[i]);
1665
    }
1666
    /* The eeprom should be saved and restored by its own routines. */
1667
    qemu_put_be32s(f, &s->device);
1668
    qemu_put_be32s(f, &s->pointer);
1669
    qemu_put_be32s(f, &s->cu_base);
1670
    qemu_put_be32s(f, &s->cu_offset);
1671
    qemu_put_be32s(f, &s->ru_base);
1672
    qemu_put_be32s(f, &s->ru_offset);
1673
    qemu_put_be32s(f, &s->statsaddr);
1674
    /* Save epro100_stats_t statistics. */
1675
    qemu_put_be32s(f, &s->statistics.tx_good_frames);
1676
    qemu_put_be32s(f, &s->statistics.tx_max_collisions);
1677
    qemu_put_be32s(f, &s->statistics.tx_late_collisions);
1678
    qemu_put_be32s(f, &s->statistics.tx_underruns);
1679
    qemu_put_be32s(f, &s->statistics.tx_lost_crs);
1680
    qemu_put_be32s(f, &s->statistics.tx_deferred);
1681
    qemu_put_be32s(f, &s->statistics.tx_single_collisions);
1682
    qemu_put_be32s(f, &s->statistics.tx_multiple_collisions);
1683
    qemu_put_be32s(f, &s->statistics.tx_total_collisions);
1684
    qemu_put_be32s(f, &s->statistics.rx_good_frames);
1685
    qemu_put_be32s(f, &s->statistics.rx_crc_errors);
1686
    qemu_put_be32s(f, &s->statistics.rx_alignment_errors);
1687
    qemu_put_be32s(f, &s->statistics.rx_resource_errors);
1688
    qemu_put_be32s(f, &s->statistics.rx_overrun_errors);
1689
    qemu_put_be32s(f, &s->statistics.rx_cdt_errors);
1690
    qemu_put_be32s(f, &s->statistics.rx_short_frame_errors);
1691
    qemu_put_be32s(f, &s->statistics.fc_xmt_pause);
1692
    qemu_put_be32s(f, &s->statistics.fc_rcv_pause);
1693
    qemu_put_be32s(f, &s->statistics.fc_rcv_unsupported);
1694
    qemu_put_be16s(f, &s->statistics.xmt_tco_frames);
1695
    qemu_put_be16s(f, &s->statistics.rcv_tco_frames);
1696
    qemu_put_be32s(f, &s->statistics.complete);
1697
#if 0
1698
    qemu_put_be16s(f, &s->status);
1699
#endif
1700

    
1701
    /* Configuration bytes. */
1702
    qemu_put_buffer(f, s->configuration, sizeof(s->configuration));
1703
}
1704

    
1705
static void nic_cleanup(VLANClientState *vc)
1706
{
1707
    EEPRO100State *s = vc->opaque;
1708

    
1709
    unregister_savevm(vc->model, s);
1710

    
1711
    eeprom93xx_free(s->eeprom);
1712
}
1713

    
1714
static int pci_nic_uninit(PCIDevice *dev)
1715
{
1716
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, dev);
1717

    
1718
    cpu_unregister_io_memory(s->mmio_index);
1719

    
1720
    return 0;
1721
}
1722

    
1723
static int nic_init(PCIDevice *pci_dev, uint32_t device)
1724
{
1725
    EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1726

    
1727
    TRACE(OTHER, logout("\n"));
1728

    
1729
    s->dev.unregister = pci_nic_uninit;
1730

    
1731
    s->device = device;
1732

    
1733
    pci_reset(s);
1734

    
1735
    /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1736
     * i82559 and later support 64 or 256 word EEPROM. */
1737
    s->eeprom = eeprom93xx_new(EEPROM_SIZE);
1738

    
1739
    /* Handler for memory-mapped I/O */
1740
    s->mmio_index =
1741
        cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s);
1742

    
1743
    pci_register_bar(&s->dev, 0, PCI_MEM_SIZE,
1744
                           PCI_ADDRESS_SPACE_MEM |
1745
                           PCI_ADDRESS_SPACE_MEM_PREFETCH, pci_mmio_map);
1746
    pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_ADDRESS_SPACE_IO,
1747
                           pci_map);
1748
    pci_register_bar(&s->dev, 2, PCI_FLASH_SIZE, PCI_ADDRESS_SPACE_MEM,
1749
                           pci_mmio_map);
1750

    
1751
    qdev_get_macaddr(&s->dev.qdev, s->macaddr);
1752
    logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
1753
    assert(s->region[1] == 0);
1754

    
1755
    nic_reset(s);
1756

    
1757
    s->vc = qdev_get_vlan_client(&s->dev.qdev,
1758
                                 nic_can_receive, nic_receive, NULL,
1759
                                 nic_cleanup, s);
1760

    
1761
    qemu_format_nic_info_str(s->vc, s->macaddr);
1762
    TRACE(OTHER, logout("%s\n", s->vc->info_str));
1763

    
1764
    qemu_register_reset(nic_reset, s);
1765

    
1766
    register_savevm(s->vc->model, eepro100_instance, eepro100_version,
1767
                    nic_save, nic_load, s);
1768
    return 0;
1769
}
1770

    
1771
static int pci_i82551_init(PCIDevice *dev)
1772
{
1773
    return nic_init(dev, i82551);
1774
}
1775

    
1776
static int pci_i82557b_init(PCIDevice *dev)
1777
{
1778
    return nic_init(dev, i82557B);
1779
}
1780

    
1781
static int pci_i82559er_init(PCIDevice *dev)
1782
{
1783
    return nic_init(dev, i82559ER);
1784
}
1785

    
1786
static PCIDeviceInfo eepro100_info[] = {
1787
    {
1788
        .qdev.name = "i82551",
1789
        .qdev.size = sizeof(EEPRO100State),
1790
        .init      = pci_i82551_init,
1791
    },{
1792
        .qdev.name = "i82557b",
1793
        .qdev.size = sizeof(EEPRO100State),
1794
        .init      = pci_i82557b_init,
1795
    },{
1796
        .qdev.name = "i82559er",
1797
        .qdev.size = sizeof(EEPRO100State),
1798
        .init      = pci_i82559er_init,
1799
    },{
1800
        /* end of list */
1801
    }
1802
};
1803

    
1804
static void eepro100_register_devices(void)
1805
{
1806
    pci_qdev_register_many(eepro100_info);
1807
}
1808

    
1809
device_init(eepro100_register_devices)