Statistics
| Branch: | Revision:

root / hw / sun4u.c @ 313feaab

History | View | Annotate | Download (22 kB)

1
/*
2
 * QEMU Sun4u/Sun4v System Emulator
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "pc.h"
27
#include "nvram.h"
28
#include "fdc.h"
29
#include "net.h"
30
#include "qemu-timer.h"
31
#include "sysemu.h"
32
#include "boards.h"
33
#include "firmware_abi.h"
34
#include "fw_cfg.h"
35
#include "sysbus.h"
36

    
37
//#define DEBUG_IRQ
38

    
39
#ifdef DEBUG_IRQ
40
#define DPRINTF(fmt, ...)                                       \
41
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...)
44
#endif
45

    
46
#define KERNEL_LOAD_ADDR     0x00404000
47
#define CMDLINE_ADDR         0x003ff000
48
#define INITRD_LOAD_ADDR     0x00300000
49
#define PROM_SIZE_MAX        (4 * 1024 * 1024)
50
#define PROM_VADDR           0x000ffd00000ULL
51
#define APB_SPECIAL_BASE     0x1fe00000000ULL
52
#define APB_MEM_BASE         0x1ff00000000ULL
53
#define VGA_BASE             (APB_MEM_BASE + 0x400000ULL)
54
#define PROM_FILENAME        "openbios-sparc64"
55
#define NVRAM_SIZE           0x2000
56
#define MAX_IDE_BUS          2
57
#define BIOS_CFG_IOPORT      0x510
58
#define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
59
#define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
60
#define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
61

    
62
#define MAX_PILS 16
63

    
64
#define TICK_INT_DIS         0x8000000000000000ULL
65
#define TICK_MAX             0x7fffffffffffffffULL
66

    
67
struct hwdef {
68
    const char * const default_cpu_model;
69
    uint16_t machine_id;
70
    uint64_t prom_addr;
71
    uint64_t console_serial_base;
72
};
73

    
74
int DMA_get_channel_mode (int nchan)
75
{
76
    return 0;
77
}
78
int DMA_read_memory (int nchan, void *buf, int pos, int size)
79
{
80
    return 0;
81
}
82
int DMA_write_memory (int nchan, void *buf, int pos, int size)
83
{
84
    return 0;
85
}
86
void DMA_hold_DREQ (int nchan) {}
87
void DMA_release_DREQ (int nchan) {}
88
void DMA_schedule(int nchan) {}
89
void DMA_init (int high_page_enable) {}
90
void DMA_register_channel (int nchan,
91
                           DMA_transfer_handler transfer_handler,
92
                           void *opaque)
93
{
94
}
95

    
96
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
97
{
98
    fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
99
    return 0;
100
}
101

    
102
static int sun4u_NVRAM_set_params (m48t59_t *nvram, uint16_t NVRAM_size,
103
                                   const char *arch,
104
                                   ram_addr_t RAM_size,
105
                                   const char *boot_devices,
106
                                   uint32_t kernel_image, uint32_t kernel_size,
107
                                   const char *cmdline,
108
                                   uint32_t initrd_image, uint32_t initrd_size,
109
                                   uint32_t NVRAM_image,
110
                                   int width, int height, int depth,
111
                                   const uint8_t *macaddr)
112
{
113
    unsigned int i;
114
    uint32_t start, end;
115
    uint8_t image[0x1ff0];
116
    struct OpenBIOS_nvpart_v1 *part_header;
117

    
118
    memset(image, '\0', sizeof(image));
119

    
120
    start = 0;
121

    
122
    // OpenBIOS nvram variables
123
    // Variable partition
124
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
125
    part_header->signature = OPENBIOS_PART_SYSTEM;
126
    pstrcpy(part_header->name, sizeof(part_header->name), "system");
127

    
128
    end = start + sizeof(struct OpenBIOS_nvpart_v1);
129
    for (i = 0; i < nb_prom_envs; i++)
130
        end = OpenBIOS_set_var(image, end, prom_envs[i]);
131

    
132
    // End marker
133
    image[end++] = '\0';
134

    
135
    end = start + ((end - start + 15) & ~15);
136
    OpenBIOS_finish_partition(part_header, end - start);
137

    
138
    // free partition
139
    start = end;
140
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
141
    part_header->signature = OPENBIOS_PART_FREE;
142
    pstrcpy(part_header->name, sizeof(part_header->name), "free");
143

    
144
    end = 0x1fd0;
145
    OpenBIOS_finish_partition(part_header, end - start);
146

    
147
    Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
148

    
149
    for (i = 0; i < sizeof(image); i++)
150
        m48t59_write(nvram, i, image[i]);
151

    
152
    return 0;
153
}
154
static unsigned long sun4u_load_kernel(const char *kernel_filename,
155
                                       const char *initrd_filename,
156
                                       ram_addr_t RAM_size, long *initrd_size)
157
{
158
    int linux_boot;
159
    unsigned int i;
160
    long kernel_size;
161

    
162
    linux_boot = (kernel_filename != NULL);
163

    
164
    kernel_size = 0;
165
    if (linux_boot) {
166
        kernel_size = load_elf(kernel_filename, 0, NULL, NULL, NULL);
167
        if (kernel_size < 0)
168
            kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
169
                                    RAM_size - KERNEL_LOAD_ADDR);
170
        if (kernel_size < 0)
171
            kernel_size = load_image_targphys(kernel_filename,
172
                                              KERNEL_LOAD_ADDR,
173
                                              RAM_size - KERNEL_LOAD_ADDR);
174
        if (kernel_size < 0) {
175
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
176
                    kernel_filename);
177
            exit(1);
178
        }
179

    
180
        /* load initrd */
181
        *initrd_size = 0;
182
        if (initrd_filename) {
183
            *initrd_size = load_image_targphys(initrd_filename,
184
                                               INITRD_LOAD_ADDR,
185
                                               RAM_size - INITRD_LOAD_ADDR);
186
            if (*initrd_size < 0) {
187
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
188
                        initrd_filename);
189
                exit(1);
190
            }
191
        }
192
        if (*initrd_size > 0) {
193
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
194
                if (ldl_phys(KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS
195
                    stl_phys(KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
196
                    stl_phys(KERNEL_LOAD_ADDR + i + 20, *initrd_size);
197
                    break;
198
                }
199
            }
200
        }
201
    }
202
    return kernel_size;
203
}
204

    
205
void pic_info(Monitor *mon)
206
{
207
}
208

    
209
void irq_info(Monitor *mon)
210
{
211
}
212

    
213
void cpu_check_irqs(CPUState *env)
214
{
215
    uint32_t pil = env->pil_in | (env->softint & ~SOFTINT_TIMER) |
216
        ((env->softint & SOFTINT_TIMER) << 14);
217

    
218
    if (pil && (env->interrupt_index == 0 ||
219
                (env->interrupt_index & ~15) == TT_EXTINT)) {
220
        unsigned int i;
221

    
222
        for (i = 15; i > 0; i--) {
223
            if (pil & (1 << i)) {
224
                int old_interrupt = env->interrupt_index;
225

    
226
                env->interrupt_index = TT_EXTINT | i;
227
                if (old_interrupt != env->interrupt_index) {
228
                    DPRINTF("Set CPU IRQ %d\n", i);
229
                    cpu_interrupt(env, CPU_INTERRUPT_HARD);
230
                }
231
                break;
232
            }
233
        }
234
    } else if (!pil && (env->interrupt_index & ~15) == TT_EXTINT) {
235
        DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
236
        env->interrupt_index = 0;
237
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
238
    }
239
}
240

    
241
static void cpu_set_irq(void *opaque, int irq, int level)
242
{
243
    CPUState *env = opaque;
244

    
245
    if (level) {
246
        DPRINTF("Raise CPU IRQ %d\n", irq);
247
        env->halted = 0;
248
        env->pil_in |= 1 << irq;
249
        cpu_check_irqs(env);
250
    } else {
251
        DPRINTF("Lower CPU IRQ %d\n", irq);
252
        env->pil_in &= ~(1 << irq);
253
        cpu_check_irqs(env);
254
    }
255
}
256

    
257
typedef struct ResetData {
258
    CPUState *env;
259
    uint64_t reset_addr;
260
} ResetData;
261

    
262
static void main_cpu_reset(void *opaque)
263
{
264
    ResetData *s = (ResetData *)opaque;
265
    CPUState *env = s->env;
266

    
267
    cpu_reset(env);
268
    env->tick_cmpr = TICK_INT_DIS | 0;
269
    ptimer_set_limit(env->tick, TICK_MAX, 1);
270
    ptimer_run(env->tick, 1);
271
    env->stick_cmpr = TICK_INT_DIS | 0;
272
    ptimer_set_limit(env->stick, TICK_MAX, 1);
273
    ptimer_run(env->stick, 1);
274
    env->hstick_cmpr = TICK_INT_DIS | 0;
275
    ptimer_set_limit(env->hstick, TICK_MAX, 1);
276
    ptimer_run(env->hstick, 1);
277
    env->gregs[1] = 0; // Memory start
278
    env->gregs[2] = ram_size; // Memory size
279
    env->gregs[3] = 0; // Machine description XXX
280
    env->pc = s->reset_addr;
281
    env->npc = env->pc + 4;
282
}
283

    
284
static void tick_irq(void *opaque)
285
{
286
    CPUState *env = opaque;
287

    
288
    if (!(env->tick_cmpr & TICK_INT_DIS)) {
289
        env->softint |= SOFTINT_TIMER;
290
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
291
    }
292
}
293

    
294
static void stick_irq(void *opaque)
295
{
296
    CPUState *env = opaque;
297

    
298
    if (!(env->stick_cmpr & TICK_INT_DIS)) {
299
        env->softint |= SOFTINT_STIMER;
300
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
301
    }
302
}
303

    
304
static void hstick_irq(void *opaque)
305
{
306
    CPUState *env = opaque;
307

    
308
    if (!(env->hstick_cmpr & TICK_INT_DIS)) {
309
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
310
    }
311
}
312

    
313
void cpu_tick_set_count(void *opaque, uint64_t count)
314
{
315
    ptimer_set_count(opaque, -count);
316
}
317

    
318
uint64_t cpu_tick_get_count(void *opaque)
319
{
320
    return -ptimer_get_count(opaque);
321
}
322

    
323
void cpu_tick_set_limit(void *opaque, uint64_t limit)
324
{
325
    ptimer_set_limit(opaque, -limit, 0);
326
}
327

    
328
static const int ide_iobase[2] = { 0x1f0, 0x170 };
329
static const int ide_iobase2[2] = { 0x3f6, 0x376 };
330
static const int ide_irq[2] = { 14, 15 };
331

    
332
static const int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
333
static const int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
334

    
335
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
336
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
337

    
338
static fdctrl_t *floppy_controller;
339

    
340
static void ebus_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
341
                              uint32_t addr, uint32_t size, int type)
342
{
343
    DPRINTF("Mapping region %d registers at %08x\n", region_num, addr);
344
    switch (region_num) {
345
    case 0:
346
        isa_mmio_init(addr, 0x1000000);
347
        break;
348
    case 1:
349
        isa_mmio_init(addr, 0x800000);
350
        break;
351
    }
352
}
353

    
354
/* EBUS (Eight bit bus) bridge */
355
static void
356
pci_ebus_init(PCIBus *bus, int devfn)
357
{
358
    pci_create_simple(bus, devfn, "ebus");
359
}
360

    
361
static void
362
pci_ebus_init1(PCIDevice *s)
363
{
364
    pci_config_set_vendor_id(s->config, PCI_VENDOR_ID_SUN);
365
    pci_config_set_device_id(s->config, PCI_DEVICE_ID_SUN_EBUS);
366
    s->config[0x04] = 0x06; // command = bus master, pci mem
367
    s->config[0x05] = 0x00;
368
    s->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
369
    s->config[0x07] = 0x03; // status = medium devsel
370
    s->config[0x08] = 0x01; // revision
371
    s->config[0x09] = 0x00; // programming i/f
372
    pci_config_set_class(s->config, PCI_CLASS_BRIDGE_OTHER);
373
    s->config[0x0D] = 0x0a; // latency_timer
374
    s->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
375

    
376
    pci_register_bar(s, 0, 0x1000000, PCI_ADDRESS_SPACE_MEM,
377
                           ebus_mmio_mapfunc);
378
    pci_register_bar(s, 1, 0x800000,  PCI_ADDRESS_SPACE_MEM,
379
                           ebus_mmio_mapfunc);
380
}
381

    
382
static PCIDeviceInfo ebus_info = {
383
    .qdev.name = "ebus",
384
    .qdev.size = sizeof(PCIDevice),
385
    .init = pci_ebus_init1,
386
};
387

    
388
static void pci_ebus_register(void)
389
{
390
    pci_qdev_register(&ebus_info);
391
}
392

    
393
device_init(pci_ebus_register);
394

    
395
/* Boot PROM (OpenBIOS) */
396
static void prom_init(target_phys_addr_t addr, const char *bios_name)
397
{
398
    DeviceState *dev;
399
    SysBusDevice *s;
400
    char *filename;
401
    int ret;
402

    
403
    dev = qdev_create(NULL, "openprom");
404
    qdev_init(dev);
405
    s = sysbus_from_qdev(dev);
406

    
407
    sysbus_mmio_map(s, 0, addr);
408

    
409
    /* load boot prom */
410
    if (bios_name == NULL) {
411
        bios_name = PROM_FILENAME;
412
    }
413
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
414
    if (filename) {
415
        ret = load_elf(filename, addr - PROM_VADDR, NULL, NULL, NULL);
416
        if (ret < 0 || ret > PROM_SIZE_MAX) {
417
            ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
418
        }
419
        qemu_free(filename);
420
    } else {
421
        ret = -1;
422
    }
423
    if (ret < 0 || ret > PROM_SIZE_MAX) {
424
        fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
425
        exit(1);
426
    }
427
}
428

    
429
static void prom_init1(SysBusDevice *dev)
430
{
431
    ram_addr_t prom_offset;
432

    
433
    prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
434
    sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
435
}
436

    
437
static SysBusDeviceInfo prom_info = {
438
    .init = prom_init1,
439
    .qdev.name  = "openprom",
440
    .qdev.size  = sizeof(SysBusDevice),
441
    .qdev.props = (Property[]) {
442
        {/* end of property list */}
443
    }
444
};
445

    
446
static void prom_register_devices(void)
447
{
448
    sysbus_register_withprop(&prom_info);
449
}
450

    
451
device_init(prom_register_devices);
452

    
453

    
454
typedef struct RamDevice
455
{
456
    SysBusDevice busdev;
457
    uint64_t size;
458
} RamDevice;
459

    
460
/* System RAM */
461
static void ram_init1(SysBusDevice *dev)
462
{
463
    ram_addr_t RAM_size, ram_offset;
464
    RamDevice *d = FROM_SYSBUS(RamDevice, dev);
465

    
466
    RAM_size = d->size;
467

    
468
    ram_offset = qemu_ram_alloc(RAM_size);
469
    sysbus_init_mmio(dev, RAM_size, ram_offset);
470
}
471

    
472
static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size)
473
{
474
    DeviceState *dev;
475
    SysBusDevice *s;
476
    RamDevice *d;
477

    
478
    /* allocate RAM */
479
    dev = qdev_create(NULL, "memory");
480
    s = sysbus_from_qdev(dev);
481

    
482
    d = FROM_SYSBUS(RamDevice, s);
483
    d->size = RAM_size;
484
    qdev_init(dev);
485

    
486
    sysbus_mmio_map(s, 0, addr);
487
}
488

    
489
static SysBusDeviceInfo ram_info = {
490
    .init = ram_init1,
491
    .qdev.name  = "memory",
492
    .qdev.size  = sizeof(RamDevice),
493
    .qdev.props = (Property[]) {
494
        {
495
            .name = "size",
496
            .info = &qdev_prop_uint64,
497
            .offset = offsetof(RamDevice, size),
498
        },
499
        {/* end of property list */}
500
    }
501
};
502

    
503
static void ram_register_devices(void)
504
{
505
    sysbus_register_withprop(&ram_info);
506
}
507

    
508
device_init(ram_register_devices);
509

    
510
static CPUState *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
511
{
512
    CPUState *env;
513
    QEMUBH *bh;
514
    ResetData *reset_info;
515

    
516
    if (!cpu_model)
517
        cpu_model = hwdef->default_cpu_model;
518
    env = cpu_init(cpu_model);
519
    if (!env) {
520
        fprintf(stderr, "Unable to find Sparc CPU definition\n");
521
        exit(1);
522
    }
523
    bh = qemu_bh_new(tick_irq, env);
524
    env->tick = ptimer_init(bh);
525
    ptimer_set_period(env->tick, 1ULL);
526

    
527
    bh = qemu_bh_new(stick_irq, env);
528
    env->stick = ptimer_init(bh);
529
    ptimer_set_period(env->stick, 1ULL);
530

    
531
    bh = qemu_bh_new(hstick_irq, env);
532
    env->hstick = ptimer_init(bh);
533
    ptimer_set_period(env->hstick, 1ULL);
534

    
535
    reset_info = qemu_mallocz(sizeof(ResetData));
536
    reset_info->env = env;
537
    reset_info->reset_addr = hwdef->prom_addr + 0x40ULL;
538
    qemu_register_reset(main_cpu_reset, reset_info);
539
    main_cpu_reset(reset_info);
540
    // Override warm reset address with cold start address
541
    env->pc = hwdef->prom_addr + 0x20ULL;
542
    env->npc = env->pc + 4;
543

    
544
    return env;
545
}
546

    
547
static void sun4uv_init(ram_addr_t RAM_size,
548
                        const char *boot_devices,
549
                        const char *kernel_filename, const char *kernel_cmdline,
550
                        const char *initrd_filename, const char *cpu_model,
551
                        const struct hwdef *hwdef)
552
{
553
    CPUState *env;
554
    m48t59_t *nvram;
555
    unsigned int i;
556
    long initrd_size, kernel_size;
557
    PCIBus *pci_bus, *pci_bus2, *pci_bus3;
558
    qemu_irq *irq;
559
    BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
560
    BlockDriverState *fd[MAX_FD];
561
    void *fw_cfg;
562
    DriveInfo *dinfo;
563

    
564
    /* init CPUs */
565
    env = cpu_devinit(cpu_model, hwdef);
566

    
567
    /* set up devices */
568
    ram_init(0, RAM_size);
569

    
570
    prom_init(hwdef->prom_addr, bios_name);
571

    
572

    
573
    irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
574
    pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, irq, &pci_bus2,
575
                           &pci_bus3);
576
    isa_mem_base = VGA_BASE;
577
    pci_vga_init(pci_bus, 0, 0);
578

    
579
    // XXX Should be pci_bus3
580
    pci_ebus_init(pci_bus, -1);
581

    
582
    i = 0;
583
    if (hwdef->console_serial_base) {
584
        serial_mm_init(hwdef->console_serial_base, 0, NULL, 115200,
585
                       serial_hds[i], 1);
586
        i++;
587
    }
588
    for(; i < MAX_SERIAL_PORTS; i++) {
589
        if (serial_hds[i]) {
590
            serial_init(serial_io[i], NULL/*serial_irq[i]*/, 115200,
591
                        serial_hds[i]);
592
        }
593
    }
594

    
595
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
596
        if (parallel_hds[i]) {
597
            parallel_init(parallel_io[i], NULL/*parallel_irq[i]*/,
598
                          parallel_hds[i]);
599
        }
600
    }
601

    
602
    for(i = 0; i < nb_nics; i++)
603
        pci_nic_init(&nd_table[i], "ne2k_pci", NULL);
604

    
605
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
606
        fprintf(stderr, "qemu: too many IDE bus\n");
607
        exit(1);
608
    }
609
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
610
        dinfo = drive_get(IF_IDE, i / MAX_IDE_DEVS,
611
                          i % MAX_IDE_DEVS);
612
        hd[i] = dinfo ? dinfo->bdrv : NULL;
613
    }
614

    
615
    pci_cmd646_ide_init(pci_bus, hd, 1);
616

    
617
    /* FIXME: wire up interrupts.  */
618
    i8042_init(NULL/*1*/, NULL/*12*/, 0x60);
619
    for(i = 0; i < MAX_FD; i++) {
620
        dinfo = drive_get(IF_FLOPPY, 0, i);
621
        fd[i] = dinfo ? dinfo->bdrv : NULL;
622
    }
623
    floppy_controller = fdctrl_init(NULL/*6*/, 2, 0, 0x3f0, fd);
624
    nvram = m48t59_init(NULL/*8*/, 0, 0x0074, NVRAM_SIZE, 59);
625

    
626
    initrd_size = 0;
627
    kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
628
                                    ram_size, &initrd_size);
629

    
630
    sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
631
                           KERNEL_LOAD_ADDR, kernel_size,
632
                           kernel_cmdline,
633
                           INITRD_LOAD_ADDR, initrd_size,
634
                           /* XXX: need an option to load a NVRAM image */
635
                           0,
636
                           graphic_width, graphic_height, graphic_depth,
637
                           (uint8_t *)&nd_table[0].macaddr);
638

    
639
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
640
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
641
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
642
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
643
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
644
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
645
    if (kernel_cmdline) {
646
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
647
        pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
648
    } else {
649
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
650
    }
651
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
652
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
653
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
654

    
655
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
656
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
657
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
658

    
659
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
660
}
661

    
662
enum {
663
    sun4u_id = 0,
664
    sun4v_id = 64,
665
    niagara_id,
666
};
667

    
668
static const struct hwdef hwdefs[] = {
669
    /* Sun4u generic PC-like machine */
670
    {
671
        .default_cpu_model = "TI UltraSparc II",
672
        .machine_id = sun4u_id,
673
        .prom_addr = 0x1fff0000000ULL,
674
        .console_serial_base = 0,
675
    },
676
    /* Sun4v generic PC-like machine */
677
    {
678
        .default_cpu_model = "Sun UltraSparc T1",
679
        .machine_id = sun4v_id,
680
        .prom_addr = 0x1fff0000000ULL,
681
        .console_serial_base = 0,
682
    },
683
    /* Sun4v generic Niagara machine */
684
    {
685
        .default_cpu_model = "Sun UltraSparc T1",
686
        .machine_id = niagara_id,
687
        .prom_addr = 0xfff0000000ULL,
688
        .console_serial_base = 0xfff0c2c000ULL,
689
    },
690
};
691

    
692
/* Sun4u hardware initialisation */
693
static void sun4u_init(ram_addr_t RAM_size,
694
                       const char *boot_devices,
695
                       const char *kernel_filename, const char *kernel_cmdline,
696
                       const char *initrd_filename, const char *cpu_model)
697
{
698
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
699
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
700
}
701

    
702
/* Sun4v hardware initialisation */
703
static void sun4v_init(ram_addr_t RAM_size,
704
                       const char *boot_devices,
705
                       const char *kernel_filename, const char *kernel_cmdline,
706
                       const char *initrd_filename, const char *cpu_model)
707
{
708
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
709
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
710
}
711

    
712
/* Niagara hardware initialisation */
713
static void niagara_init(ram_addr_t RAM_size,
714
                         const char *boot_devices,
715
                         const char *kernel_filename, const char *kernel_cmdline,
716
                         const char *initrd_filename, const char *cpu_model)
717
{
718
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
719
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
720
}
721

    
722
static QEMUMachine sun4u_machine = {
723
    .name = "sun4u",
724
    .desc = "Sun4u platform",
725
    .init = sun4u_init,
726
    .max_cpus = 1, // XXX for now
727
    .is_default = 1,
728
};
729

    
730
static QEMUMachine sun4v_machine = {
731
    .name = "sun4v",
732
    .desc = "Sun4v platform",
733
    .init = sun4v_init,
734
    .max_cpus = 1, // XXX for now
735
};
736

    
737
static QEMUMachine niagara_machine = {
738
    .name = "Niagara",
739
    .desc = "Sun4v platform, Niagara",
740
    .init = niagara_init,
741
    .max_cpus = 1, // XXX for now
742
};
743

    
744
static void sun4u_machine_init(void)
745
{
746
    qemu_register_machine(&sun4u_machine);
747
    qemu_register_machine(&sun4v_machine);
748
    qemu_register_machine(&niagara_machine);
749
}
750

    
751
machine_init(sun4u_machine_init);