Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 32a42024

History | View | Annotate | Download (49.9 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifndef BUS_MCEERR_AR
50
#define BUS_MCEERR_AR 4
51
#endif
52
#ifndef BUS_MCEERR_AO
53
#define BUS_MCEERR_AO 5
54
#endif
55

    
56
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57
    KVM_CAP_INFO(SET_TSS_ADDR),
58
    KVM_CAP_INFO(EXT_CPUID),
59
    KVM_CAP_INFO(MP_STATE),
60
    KVM_CAP_LAST_INFO
61
};
62

    
63
static bool has_msr_star;
64
static bool has_msr_hsave_pa;
65
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66
static bool has_msr_async_pf_en;
67
#endif
68
static int lm_capable_kernel;
69

    
70
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71
{
72
    struct kvm_cpuid2 *cpuid;
73
    int r, size;
74

    
75
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77
    cpuid->nent = max;
78
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79
    if (r == 0 && cpuid->nent >= max) {
80
        r = -E2BIG;
81
    }
82
    if (r < 0) {
83
        if (r == -E2BIG) {
84
            qemu_free(cpuid);
85
            return NULL;
86
        } else {
87
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88
                    strerror(-r));
89
            exit(1);
90
        }
91
    }
92
    return cpuid;
93
}
94

    
95
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96
                                      uint32_t index, int reg)
97
{
98
    struct kvm_cpuid2 *cpuid;
99
    int i, max;
100
    uint32_t ret = 0;
101
    uint32_t cpuid_1_edx;
102

    
103
    max = 1;
104
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105
        max *= 2;
106
    }
107

    
108
    for (i = 0; i < cpuid->nent; ++i) {
109
        if (cpuid->entries[i].function == function &&
110
            cpuid->entries[i].index == index) {
111
            switch (reg) {
112
            case R_EAX:
113
                ret = cpuid->entries[i].eax;
114
                break;
115
            case R_EBX:
116
                ret = cpuid->entries[i].ebx;
117
                break;
118
            case R_ECX:
119
                ret = cpuid->entries[i].ecx;
120
                break;
121
            case R_EDX:
122
                ret = cpuid->entries[i].edx;
123
                switch (function) {
124
                case 1:
125
                    /* KVM before 2.6.30 misreports the following features */
126
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127
                    break;
128
                case 0x80000001:
129
                    /* On Intel, kvm returns cpuid according to the Intel spec,
130
                     * so add missing bits according to the AMD spec:
131
                     */
132
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
133
                    ret |= cpuid_1_edx & 0x183f7ff;
134
                    break;
135
                }
136
                break;
137
            }
138
        }
139
    }
140

    
141
    qemu_free(cpuid);
142

    
143
    return ret;
144
}
145

    
146
#ifdef CONFIG_KVM_PARA
147
struct kvm_para_features {
148
    int cap;
149
    int feature;
150
} para_features[] = {
151
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
152
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
153
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154
#ifdef KVM_CAP_ASYNC_PF
155
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
156
#endif
157
    { -1, -1 }
158
};
159

    
160
static int get_para_features(CPUState *env)
161
{
162
    int i, features = 0;
163

    
164
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166
            features |= (1 << para_features[i].feature);
167
        }
168
    }
169
#ifdef KVM_CAP_ASYNC_PF
170
    has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
171
#endif
172
    return features;
173
}
174
#endif /* CONFIG_KVM_PARA */
175

    
176
#ifdef KVM_CAP_MCE
177
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
178
                                     int *max_banks)
179
{
180
    int r;
181

    
182
    r = kvm_check_extension(s, KVM_CAP_MCE);
183
    if (r > 0) {
184
        *max_banks = r;
185
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
186
    }
187
    return -ENOSYS;
188
}
189

    
190
static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
191
{
192
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
193
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
194
    uint64_t mcg_status = MCG_STATUS_MCIP;
195

    
196
    if (code == BUS_MCEERR_AR) {
197
        status |= MCI_STATUS_AR | 0x134;
198
        mcg_status |= MCG_STATUS_EIPV;
199
    } else {
200
        status |= 0xc0;
201
        mcg_status |= MCG_STATUS_RIPV;
202
    }
203
    cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
204
                       (MCM_ADDR_PHYS << 6) | 0xc,
205
                       cpu_x86_support_mca_broadcast(env) ?
206
                       MCE_INJECT_BROADCAST : 0);
207
}
208
#endif /* KVM_CAP_MCE */
209

    
210
static void hardware_memory_error(void)
211
{
212
    fprintf(stderr, "Hardware memory error!\n");
213
    exit(1);
214
}
215

    
216
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
217
{
218
#ifdef KVM_CAP_MCE
219
    ram_addr_t ram_addr;
220
    target_phys_addr_t paddr;
221

    
222
    if ((env->mcg_cap & MCG_SER_P) && addr
223
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
224
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
225
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
226
                                               &paddr)) {
227
            fprintf(stderr, "Hardware memory error for memory used by "
228
                    "QEMU itself instead of guest system!\n");
229
            /* Hope we are lucky for AO MCE */
230
            if (code == BUS_MCEERR_AO) {
231
                return 0;
232
            } else {
233
                hardware_memory_error();
234
            }
235
        }
236
        kvm_mce_inject(env, paddr, code);
237
    } else
238
#endif /* KVM_CAP_MCE */
239
    {
240
        if (code == BUS_MCEERR_AO) {
241
            return 0;
242
        } else if (code == BUS_MCEERR_AR) {
243
            hardware_memory_error();
244
        } else {
245
            return 1;
246
        }
247
    }
248
    return 0;
249
}
250

    
251
int kvm_arch_on_sigbus(int code, void *addr)
252
{
253
#ifdef KVM_CAP_MCE
254
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
255
        ram_addr_t ram_addr;
256
        target_phys_addr_t paddr;
257

    
258
        /* Hope we are lucky for AO MCE */
259
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
260
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
261
                                               &paddr)) {
262
            fprintf(stderr, "Hardware memory error for memory used by "
263
                    "QEMU itself instead of guest system!: %p\n", addr);
264
            return 0;
265
        }
266
        kvm_mce_inject(first_cpu, paddr, code);
267
    } else
268
#endif /* KVM_CAP_MCE */
269
    {
270
        if (code == BUS_MCEERR_AO) {
271
            return 0;
272
        } else if (code == BUS_MCEERR_AR) {
273
            hardware_memory_error();
274
        } else {
275
            return 1;
276
        }
277
    }
278
    return 0;
279
}
280

    
281
static int kvm_inject_mce_oldstyle(CPUState *env)
282
{
283
#ifdef KVM_CAP_MCE
284
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
285
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
286
        struct kvm_x86_mce mce;
287

    
288
        env->exception_injected = -1;
289

    
290
        /*
291
         * There must be at least one bank in use if an MCE is pending.
292
         * Find it and use its values for the event injection.
293
         */
294
        for (bank = 0; bank < bank_num; bank++) {
295
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
296
                break;
297
            }
298
        }
299
        assert(bank < bank_num);
300

    
301
        mce.bank = bank;
302
        mce.status = env->mce_banks[bank * 4 + 1];
303
        mce.mcg_status = env->mcg_status;
304
        mce.addr = env->mce_banks[bank * 4 + 2];
305
        mce.misc = env->mce_banks[bank * 4 + 3];
306

    
307
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
308
    }
309
#endif /* KVM_CAP_MCE */
310
    return 0;
311
}
312

    
313
static void cpu_update_state(void *opaque, int running, int reason)
314
{
315
    CPUState *env = opaque;
316

    
317
    if (running) {
318
        env->tsc_valid = false;
319
    }
320
}
321

    
322
int kvm_arch_init_vcpu(CPUState *env)
323
{
324
    struct {
325
        struct kvm_cpuid2 cpuid;
326
        struct kvm_cpuid_entry2 entries[100];
327
    } __attribute__((packed)) cpuid_data;
328
    uint32_t limit, i, j, cpuid_i;
329
    uint32_t unused;
330
    struct kvm_cpuid_entry2 *c;
331
#ifdef CONFIG_KVM_PARA
332
    uint32_t signature[3];
333
#endif
334

    
335
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
336

    
337
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
338
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
339
    env->cpuid_ext_features |= i;
340

    
341
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
342
                                                             0, R_EDX);
343
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
344
                                                             0, R_ECX);
345
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
346
                                                             0, R_EDX);
347

    
348

    
349
    cpuid_i = 0;
350

    
351
#ifdef CONFIG_KVM_PARA
352
    /* Paravirtualization CPUIDs */
353
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
354
    c = &cpuid_data.entries[cpuid_i++];
355
    memset(c, 0, sizeof(*c));
356
    c->function = KVM_CPUID_SIGNATURE;
357
    c->eax = 0;
358
    c->ebx = signature[0];
359
    c->ecx = signature[1];
360
    c->edx = signature[2];
361

    
362
    c = &cpuid_data.entries[cpuid_i++];
363
    memset(c, 0, sizeof(*c));
364
    c->function = KVM_CPUID_FEATURES;
365
    c->eax = env->cpuid_kvm_features & get_para_features(env);
366
#endif
367

    
368
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
369

    
370
    for (i = 0; i <= limit; i++) {
371
        c = &cpuid_data.entries[cpuid_i++];
372

    
373
        switch (i) {
374
        case 2: {
375
            /* Keep reading function 2 till all the input is received */
376
            int times;
377

    
378
            c->function = i;
379
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
380
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
381
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
382
            times = c->eax & 0xff;
383

    
384
            for (j = 1; j < times; ++j) {
385
                c = &cpuid_data.entries[cpuid_i++];
386
                c->function = i;
387
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
388
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
389
            }
390
            break;
391
        }
392
        case 4:
393
        case 0xb:
394
        case 0xd:
395
            for (j = 0; ; j++) {
396
                c->function = i;
397
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
398
                c->index = j;
399
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
400

    
401
                if (i == 4 && c->eax == 0) {
402
                    break;
403
                }
404
                if (i == 0xb && !(c->ecx & 0xff00)) {
405
                    break;
406
                }
407
                if (i == 0xd && c->eax == 0) {
408
                    break;
409
                }
410
                c = &cpuid_data.entries[cpuid_i++];
411
            }
412
            break;
413
        default:
414
            c->function = i;
415
            c->flags = 0;
416
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417
            break;
418
        }
419
    }
420
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
421

    
422
    for (i = 0x80000000; i <= limit; i++) {
423
        c = &cpuid_data.entries[cpuid_i++];
424

    
425
        c->function = i;
426
        c->flags = 0;
427
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
428
    }
429

    
430
    cpuid_data.cpuid.nent = cpuid_i;
431

    
432
#ifdef KVM_CAP_MCE
433
    if (((env->cpuid_version >> 8)&0xF) >= 6
434
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
435
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
436
        uint64_t mcg_cap;
437
        int banks;
438
        int ret;
439

    
440
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
441
            perror("kvm_get_mce_cap_supported FAILED");
442
        } else {
443
            if (banks > MCE_BANKS_DEF)
444
                banks = MCE_BANKS_DEF;
445
            mcg_cap &= MCE_CAP_DEF;
446
            mcg_cap |= banks;
447
            ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
448
            if (ret < 0) {
449
                fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
450
            } else {
451
                env->mcg_cap = mcg_cap;
452
            }
453
        }
454
    }
455
#endif
456

    
457
    qemu_add_vm_change_state_handler(cpu_update_state, env);
458

    
459
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
460
}
461

    
462
void kvm_arch_reset_vcpu(CPUState *env)
463
{
464
    env->exception_injected = -1;
465
    env->interrupt_injected = -1;
466
    env->xcr0 = 1;
467
    if (kvm_irqchip_in_kernel()) {
468
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
469
                                          KVM_MP_STATE_UNINITIALIZED;
470
    } else {
471
        env->mp_state = KVM_MP_STATE_RUNNABLE;
472
    }
473
}
474

    
475
static int kvm_get_supported_msrs(KVMState *s)
476
{
477
    static int kvm_supported_msrs;
478
    int ret = 0;
479

    
480
    /* first time */
481
    if (kvm_supported_msrs == 0) {
482
        struct kvm_msr_list msr_list, *kvm_msr_list;
483

    
484
        kvm_supported_msrs = -1;
485

    
486
        /* Obtain MSR list from KVM.  These are the MSRs that we must
487
         * save/restore */
488
        msr_list.nmsrs = 0;
489
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
490
        if (ret < 0 && ret != -E2BIG) {
491
            return ret;
492
        }
493
        /* Old kernel modules had a bug and could write beyond the provided
494
           memory. Allocate at least a safe amount of 1K. */
495
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
496
                                              msr_list.nmsrs *
497
                                              sizeof(msr_list.indices[0])));
498

    
499
        kvm_msr_list->nmsrs = msr_list.nmsrs;
500
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
501
        if (ret >= 0) {
502
            int i;
503

    
504
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
505
                if (kvm_msr_list->indices[i] == MSR_STAR) {
506
                    has_msr_star = true;
507
                    continue;
508
                }
509
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
510
                    has_msr_hsave_pa = true;
511
                    continue;
512
                }
513
            }
514
        }
515

    
516
        free(kvm_msr_list);
517
    }
518

    
519
    return ret;
520
}
521

    
522
int kvm_arch_init(KVMState *s)
523
{
524
    uint64_t identity_base = 0xfffbc000;
525
    int ret;
526
    struct utsname utsname;
527

    
528
    ret = kvm_get_supported_msrs(s);
529
    if (ret < 0) {
530
        return ret;
531
    }
532

    
533
    uname(&utsname);
534
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
535

    
536
    /*
537
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
538
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
539
     * Since these must be part of guest physical memory, we need to allocate
540
     * them, both by setting their start addresses in the kernel and by
541
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
542
     *
543
     * Older KVM versions may not support setting the identity map base. In
544
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
545
     * size.
546
     */
547
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
548
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
549
        /* Allows up to 16M BIOSes. */
550
        identity_base = 0xfeffc000;
551

    
552
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
553
        if (ret < 0) {
554
            return ret;
555
        }
556
    }
557
#endif
558
    /* Set TSS base one page after EPT identity map. */
559
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
560
    if (ret < 0) {
561
        return ret;
562
    }
563

    
564
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
565
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
566
    if (ret < 0) {
567
        fprintf(stderr, "e820_add_entry() table is full\n");
568
        return ret;
569
    }
570

    
571
    return 0;
572
}
573

    
574
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
575
{
576
    lhs->selector = rhs->selector;
577
    lhs->base = rhs->base;
578
    lhs->limit = rhs->limit;
579
    lhs->type = 3;
580
    lhs->present = 1;
581
    lhs->dpl = 3;
582
    lhs->db = 0;
583
    lhs->s = 1;
584
    lhs->l = 0;
585
    lhs->g = 0;
586
    lhs->avl = 0;
587
    lhs->unusable = 0;
588
}
589

    
590
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
591
{
592
    unsigned flags = rhs->flags;
593
    lhs->selector = rhs->selector;
594
    lhs->base = rhs->base;
595
    lhs->limit = rhs->limit;
596
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
597
    lhs->present = (flags & DESC_P_MASK) != 0;
598
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
599
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
600
    lhs->s = (flags & DESC_S_MASK) != 0;
601
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
602
    lhs->g = (flags & DESC_G_MASK) != 0;
603
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
604
    lhs->unusable = 0;
605
}
606

    
607
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
608
{
609
    lhs->selector = rhs->selector;
610
    lhs->base = rhs->base;
611
    lhs->limit = rhs->limit;
612
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
613
                 (rhs->present * DESC_P_MASK) |
614
                 (rhs->dpl << DESC_DPL_SHIFT) |
615
                 (rhs->db << DESC_B_SHIFT) |
616
                 (rhs->s * DESC_S_MASK) |
617
                 (rhs->l << DESC_L_SHIFT) |
618
                 (rhs->g * DESC_G_MASK) |
619
                 (rhs->avl * DESC_AVL_MASK);
620
}
621

    
622
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
623
{
624
    if (set) {
625
        *kvm_reg = *qemu_reg;
626
    } else {
627
        *qemu_reg = *kvm_reg;
628
    }
629
}
630

    
631
static int kvm_getput_regs(CPUState *env, int set)
632
{
633
    struct kvm_regs regs;
634
    int ret = 0;
635

    
636
    if (!set) {
637
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
638
        if (ret < 0) {
639
            return ret;
640
        }
641
    }
642

    
643
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
644
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
645
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
646
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
647
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
648
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
649
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
650
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
651
#ifdef TARGET_X86_64
652
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
653
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
654
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
655
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
656
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
657
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
658
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
659
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
660
#endif
661

    
662
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
663
    kvm_getput_reg(&regs.rip, &env->eip, set);
664

    
665
    if (set) {
666
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
667
    }
668

    
669
    return ret;
670
}
671

    
672
static int kvm_put_fpu(CPUState *env)
673
{
674
    struct kvm_fpu fpu;
675
    int i;
676

    
677
    memset(&fpu, 0, sizeof fpu);
678
    fpu.fsw = env->fpus & ~(7 << 11);
679
    fpu.fsw |= (env->fpstt & 7) << 11;
680
    fpu.fcw = env->fpuc;
681
    for (i = 0; i < 8; ++i) {
682
        fpu.ftwx |= (!env->fptags[i]) << i;
683
    }
684
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
685
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
686
    fpu.mxcsr = env->mxcsr;
687

    
688
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
689
}
690

    
691
#ifdef KVM_CAP_XSAVE
692
#define XSAVE_CWD_RIP     2
693
#define XSAVE_CWD_RDP     4
694
#define XSAVE_MXCSR       6
695
#define XSAVE_ST_SPACE    8
696
#define XSAVE_XMM_SPACE   40
697
#define XSAVE_XSTATE_BV   128
698
#define XSAVE_YMMH_SPACE  144
699
#endif
700

    
701
static int kvm_put_xsave(CPUState *env)
702
{
703
#ifdef KVM_CAP_XSAVE
704
    int i, r;
705
    struct kvm_xsave* xsave;
706
    uint16_t cwd, swd, twd, fop;
707

    
708
    if (!kvm_has_xsave()) {
709
        return kvm_put_fpu(env);
710
    }
711

    
712
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
713
    memset(xsave, 0, sizeof(struct kvm_xsave));
714
    cwd = swd = twd = fop = 0;
715
    swd = env->fpus & ~(7 << 11);
716
    swd |= (env->fpstt & 7) << 11;
717
    cwd = env->fpuc;
718
    for (i = 0; i < 8; ++i) {
719
        twd |= (!env->fptags[i]) << i;
720
    }
721
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
722
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
723
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
724
            sizeof env->fpregs);
725
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
726
            sizeof env->xmm_regs);
727
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
728
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
729
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
730
            sizeof env->ymmh_regs);
731
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
732
    qemu_free(xsave);
733
    return r;
734
#else
735
    return kvm_put_fpu(env);
736
#endif
737
}
738

    
739
static int kvm_put_xcrs(CPUState *env)
740
{
741
#ifdef KVM_CAP_XCRS
742
    struct kvm_xcrs xcrs;
743

    
744
    if (!kvm_has_xcrs()) {
745
        return 0;
746
    }
747

    
748
    xcrs.nr_xcrs = 1;
749
    xcrs.flags = 0;
750
    xcrs.xcrs[0].xcr = 0;
751
    xcrs.xcrs[0].value = env->xcr0;
752
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
753
#else
754
    return 0;
755
#endif
756
}
757

    
758
static int kvm_put_sregs(CPUState *env)
759
{
760
    struct kvm_sregs sregs;
761

    
762
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
763
    if (env->interrupt_injected >= 0) {
764
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
765
                (uint64_t)1 << (env->interrupt_injected % 64);
766
    }
767

    
768
    if ((env->eflags & VM_MASK)) {
769
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
770
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
771
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
772
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
773
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
774
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
775
    } else {
776
        set_seg(&sregs.cs, &env->segs[R_CS]);
777
        set_seg(&sregs.ds, &env->segs[R_DS]);
778
        set_seg(&sregs.es, &env->segs[R_ES]);
779
        set_seg(&sregs.fs, &env->segs[R_FS]);
780
        set_seg(&sregs.gs, &env->segs[R_GS]);
781
        set_seg(&sregs.ss, &env->segs[R_SS]);
782
    }
783

    
784
    set_seg(&sregs.tr, &env->tr);
785
    set_seg(&sregs.ldt, &env->ldt);
786

    
787
    sregs.idt.limit = env->idt.limit;
788
    sregs.idt.base = env->idt.base;
789
    sregs.gdt.limit = env->gdt.limit;
790
    sregs.gdt.base = env->gdt.base;
791

    
792
    sregs.cr0 = env->cr[0];
793
    sregs.cr2 = env->cr[2];
794
    sregs.cr3 = env->cr[3];
795
    sregs.cr4 = env->cr[4];
796

    
797
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
798
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
799

    
800
    sregs.efer = env->efer;
801

    
802
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
803
}
804

    
805
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
806
                              uint32_t index, uint64_t value)
807
{
808
    entry->index = index;
809
    entry->data = value;
810
}
811

    
812
static int kvm_put_msrs(CPUState *env, int level)
813
{
814
    struct {
815
        struct kvm_msrs info;
816
        struct kvm_msr_entry entries[100];
817
    } msr_data;
818
    struct kvm_msr_entry *msrs = msr_data.entries;
819
    int n = 0;
820

    
821
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
822
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
823
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
824
    if (has_msr_star) {
825
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
826
    }
827
    if (has_msr_hsave_pa) {
828
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
829
    }
830
#ifdef TARGET_X86_64
831
    if (lm_capable_kernel) {
832
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
833
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
834
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
835
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
836
    }
837
#endif
838
    if (level == KVM_PUT_FULL_STATE) {
839
        /*
840
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
841
         * writeback. Until this is fixed, we only write the offset to SMP
842
         * guests after migration, desynchronizing the VCPUs, but avoiding
843
         * huge jump-backs that would occur without any writeback at all.
844
         */
845
        if (smp_cpus == 1 || env->tsc != 0) {
846
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
847
        }
848
    }
849
    /*
850
     * The following paravirtual MSRs have side effects on the guest or are
851
     * too heavy for normal writeback. Limit them to reset or full state
852
     * updates.
853
     */
854
    if (level >= KVM_PUT_RESET_STATE) {
855
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
856
                          env->system_time_msr);
857
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
858
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
859
        if (has_msr_async_pf_en) {
860
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
861
                              env->async_pf_en_msr);
862
        }
863
#endif
864
    }
865
#ifdef KVM_CAP_MCE
866
    if (env->mcg_cap) {
867
        int i;
868

    
869
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
870
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
871
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
872
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
873
        }
874
    }
875
#endif
876

    
877
    msr_data.info.nmsrs = n;
878

    
879
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
880

    
881
}
882

    
883

    
884
static int kvm_get_fpu(CPUState *env)
885
{
886
    struct kvm_fpu fpu;
887
    int i, ret;
888

    
889
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
890
    if (ret < 0) {
891
        return ret;
892
    }
893

    
894
    env->fpstt = (fpu.fsw >> 11) & 7;
895
    env->fpus = fpu.fsw;
896
    env->fpuc = fpu.fcw;
897
    for (i = 0; i < 8; ++i) {
898
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
899
    }
900
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
901
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
902
    env->mxcsr = fpu.mxcsr;
903

    
904
    return 0;
905
}
906

    
907
static int kvm_get_xsave(CPUState *env)
908
{
909
#ifdef KVM_CAP_XSAVE
910
    struct kvm_xsave* xsave;
911
    int ret, i;
912
    uint16_t cwd, swd, twd, fop;
913

    
914
    if (!kvm_has_xsave()) {
915
        return kvm_get_fpu(env);
916
    }
917

    
918
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
919
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
920
    if (ret < 0) {
921
        qemu_free(xsave);
922
        return ret;
923
    }
924

    
925
    cwd = (uint16_t)xsave->region[0];
926
    swd = (uint16_t)(xsave->region[0] >> 16);
927
    twd = (uint16_t)xsave->region[1];
928
    fop = (uint16_t)(xsave->region[1] >> 16);
929
    env->fpstt = (swd >> 11) & 7;
930
    env->fpus = swd;
931
    env->fpuc = cwd;
932
    for (i = 0; i < 8; ++i) {
933
        env->fptags[i] = !((twd >> i) & 1);
934
    }
935
    env->mxcsr = xsave->region[XSAVE_MXCSR];
936
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
937
            sizeof env->fpregs);
938
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
939
            sizeof env->xmm_regs);
940
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
941
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
942
            sizeof env->ymmh_regs);
943
    qemu_free(xsave);
944
    return 0;
945
#else
946
    return kvm_get_fpu(env);
947
#endif
948
}
949

    
950
static int kvm_get_xcrs(CPUState *env)
951
{
952
#ifdef KVM_CAP_XCRS
953
    int i, ret;
954
    struct kvm_xcrs xcrs;
955

    
956
    if (!kvm_has_xcrs()) {
957
        return 0;
958
    }
959

    
960
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
961
    if (ret < 0) {
962
        return ret;
963
    }
964

    
965
    for (i = 0; i < xcrs.nr_xcrs; i++) {
966
        /* Only support xcr0 now */
967
        if (xcrs.xcrs[0].xcr == 0) {
968
            env->xcr0 = xcrs.xcrs[0].value;
969
            break;
970
        }
971
    }
972
    return 0;
973
#else
974
    return 0;
975
#endif
976
}
977

    
978
static int kvm_get_sregs(CPUState *env)
979
{
980
    struct kvm_sregs sregs;
981
    uint32_t hflags;
982
    int bit, i, ret;
983

    
984
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
985
    if (ret < 0) {
986
        return ret;
987
    }
988

    
989
    /* There can only be one pending IRQ set in the bitmap at a time, so try
990
       to find it and save its number instead (-1 for none). */
991
    env->interrupt_injected = -1;
992
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
993
        if (sregs.interrupt_bitmap[i]) {
994
            bit = ctz64(sregs.interrupt_bitmap[i]);
995
            env->interrupt_injected = i * 64 + bit;
996
            break;
997
        }
998
    }
999

    
1000
    get_seg(&env->segs[R_CS], &sregs.cs);
1001
    get_seg(&env->segs[R_DS], &sregs.ds);
1002
    get_seg(&env->segs[R_ES], &sregs.es);
1003
    get_seg(&env->segs[R_FS], &sregs.fs);
1004
    get_seg(&env->segs[R_GS], &sregs.gs);
1005
    get_seg(&env->segs[R_SS], &sregs.ss);
1006

    
1007
    get_seg(&env->tr, &sregs.tr);
1008
    get_seg(&env->ldt, &sregs.ldt);
1009

    
1010
    env->idt.limit = sregs.idt.limit;
1011
    env->idt.base = sregs.idt.base;
1012
    env->gdt.limit = sregs.gdt.limit;
1013
    env->gdt.base = sregs.gdt.base;
1014

    
1015
    env->cr[0] = sregs.cr0;
1016
    env->cr[2] = sregs.cr2;
1017
    env->cr[3] = sregs.cr3;
1018
    env->cr[4] = sregs.cr4;
1019

    
1020
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1021

    
1022
    env->efer = sregs.efer;
1023
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1024

    
1025
#define HFLAG_COPY_MASK \
1026
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1027
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1028
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1029
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1030

    
1031
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1032
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1033
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1034
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1035
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1036
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1037
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1038

    
1039
    if (env->efer & MSR_EFER_LMA) {
1040
        hflags |= HF_LMA_MASK;
1041
    }
1042

    
1043
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1044
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1045
    } else {
1046
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1047
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1048
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1049
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1050
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1051
            !(hflags & HF_CS32_MASK)) {
1052
            hflags |= HF_ADDSEG_MASK;
1053
        } else {
1054
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1055
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1056
        }
1057
    }
1058
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1059

    
1060
    return 0;
1061
}
1062

    
1063
static int kvm_get_msrs(CPUState *env)
1064
{
1065
    struct {
1066
        struct kvm_msrs info;
1067
        struct kvm_msr_entry entries[100];
1068
    } msr_data;
1069
    struct kvm_msr_entry *msrs = msr_data.entries;
1070
    int ret, i, n;
1071

    
1072
    n = 0;
1073
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1074
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1075
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1076
    if (has_msr_star) {
1077
        msrs[n++].index = MSR_STAR;
1078
    }
1079
    if (has_msr_hsave_pa) {
1080
        msrs[n++].index = MSR_VM_HSAVE_PA;
1081
    }
1082

    
1083
    if (!env->tsc_valid) {
1084
        msrs[n++].index = MSR_IA32_TSC;
1085
        env->tsc_valid = !vm_running;
1086
    }
1087

    
1088
#ifdef TARGET_X86_64
1089
    if (lm_capable_kernel) {
1090
        msrs[n++].index = MSR_CSTAR;
1091
        msrs[n++].index = MSR_KERNELGSBASE;
1092
        msrs[n++].index = MSR_FMASK;
1093
        msrs[n++].index = MSR_LSTAR;
1094
    }
1095
#endif
1096
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1097
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1098
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1099
    if (has_msr_async_pf_en) {
1100
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1101
    }
1102
#endif
1103

    
1104
#ifdef KVM_CAP_MCE
1105
    if (env->mcg_cap) {
1106
        msrs[n++].index = MSR_MCG_STATUS;
1107
        msrs[n++].index = MSR_MCG_CTL;
1108
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1109
            msrs[n++].index = MSR_MC0_CTL + i;
1110
        }
1111
    }
1112
#endif
1113

    
1114
    msr_data.info.nmsrs = n;
1115
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1116
    if (ret < 0) {
1117
        return ret;
1118
    }
1119

    
1120
    for (i = 0; i < ret; i++) {
1121
        switch (msrs[i].index) {
1122
        case MSR_IA32_SYSENTER_CS:
1123
            env->sysenter_cs = msrs[i].data;
1124
            break;
1125
        case MSR_IA32_SYSENTER_ESP:
1126
            env->sysenter_esp = msrs[i].data;
1127
            break;
1128
        case MSR_IA32_SYSENTER_EIP:
1129
            env->sysenter_eip = msrs[i].data;
1130
            break;
1131
        case MSR_STAR:
1132
            env->star = msrs[i].data;
1133
            break;
1134
#ifdef TARGET_X86_64
1135
        case MSR_CSTAR:
1136
            env->cstar = msrs[i].data;
1137
            break;
1138
        case MSR_KERNELGSBASE:
1139
            env->kernelgsbase = msrs[i].data;
1140
            break;
1141
        case MSR_FMASK:
1142
            env->fmask = msrs[i].data;
1143
            break;
1144
        case MSR_LSTAR:
1145
            env->lstar = msrs[i].data;
1146
            break;
1147
#endif
1148
        case MSR_IA32_TSC:
1149
            env->tsc = msrs[i].data;
1150
            break;
1151
        case MSR_VM_HSAVE_PA:
1152
            env->vm_hsave = msrs[i].data;
1153
            break;
1154
        case MSR_KVM_SYSTEM_TIME:
1155
            env->system_time_msr = msrs[i].data;
1156
            break;
1157
        case MSR_KVM_WALL_CLOCK:
1158
            env->wall_clock_msr = msrs[i].data;
1159
            break;
1160
#ifdef KVM_CAP_MCE
1161
        case MSR_MCG_STATUS:
1162
            env->mcg_status = msrs[i].data;
1163
            break;
1164
        case MSR_MCG_CTL:
1165
            env->mcg_ctl = msrs[i].data;
1166
            break;
1167
#endif
1168
        default:
1169
#ifdef KVM_CAP_MCE
1170
            if (msrs[i].index >= MSR_MC0_CTL &&
1171
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1172
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1173
            }
1174
#endif
1175
            break;
1176
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1177
        case MSR_KVM_ASYNC_PF_EN:
1178
            env->async_pf_en_msr = msrs[i].data;
1179
            break;
1180
#endif
1181
        }
1182
    }
1183

    
1184
    return 0;
1185
}
1186

    
1187
static int kvm_put_mp_state(CPUState *env)
1188
{
1189
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1190

    
1191
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1192
}
1193

    
1194
static int kvm_get_mp_state(CPUState *env)
1195
{
1196
    struct kvm_mp_state mp_state;
1197
    int ret;
1198

    
1199
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1200
    if (ret < 0) {
1201
        return ret;
1202
    }
1203
    env->mp_state = mp_state.mp_state;
1204
    if (kvm_irqchip_in_kernel()) {
1205
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1206
    }
1207
    return 0;
1208
}
1209

    
1210
static int kvm_put_vcpu_events(CPUState *env, int level)
1211
{
1212
#ifdef KVM_CAP_VCPU_EVENTS
1213
    struct kvm_vcpu_events events;
1214

    
1215
    if (!kvm_has_vcpu_events()) {
1216
        return 0;
1217
    }
1218

    
1219
    events.exception.injected = (env->exception_injected >= 0);
1220
    events.exception.nr = env->exception_injected;
1221
    events.exception.has_error_code = env->has_error_code;
1222
    events.exception.error_code = env->error_code;
1223

    
1224
    events.interrupt.injected = (env->interrupt_injected >= 0);
1225
    events.interrupt.nr = env->interrupt_injected;
1226
    events.interrupt.soft = env->soft_interrupt;
1227

    
1228
    events.nmi.injected = env->nmi_injected;
1229
    events.nmi.pending = env->nmi_pending;
1230
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1231

    
1232
    events.sipi_vector = env->sipi_vector;
1233

    
1234
    events.flags = 0;
1235
    if (level >= KVM_PUT_RESET_STATE) {
1236
        events.flags |=
1237
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1238
    }
1239

    
1240
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1241
#else
1242
    return 0;
1243
#endif
1244
}
1245

    
1246
static int kvm_get_vcpu_events(CPUState *env)
1247
{
1248
#ifdef KVM_CAP_VCPU_EVENTS
1249
    struct kvm_vcpu_events events;
1250
    int ret;
1251

    
1252
    if (!kvm_has_vcpu_events()) {
1253
        return 0;
1254
    }
1255

    
1256
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1257
    if (ret < 0) {
1258
       return ret;
1259
    }
1260
    env->exception_injected =
1261
       events.exception.injected ? events.exception.nr : -1;
1262
    env->has_error_code = events.exception.has_error_code;
1263
    env->error_code = events.exception.error_code;
1264

    
1265
    env->interrupt_injected =
1266
        events.interrupt.injected ? events.interrupt.nr : -1;
1267
    env->soft_interrupt = events.interrupt.soft;
1268

    
1269
    env->nmi_injected = events.nmi.injected;
1270
    env->nmi_pending = events.nmi.pending;
1271
    if (events.nmi.masked) {
1272
        env->hflags2 |= HF2_NMI_MASK;
1273
    } else {
1274
        env->hflags2 &= ~HF2_NMI_MASK;
1275
    }
1276

    
1277
    env->sipi_vector = events.sipi_vector;
1278
#endif
1279

    
1280
    return 0;
1281
}
1282

    
1283
static int kvm_guest_debug_workarounds(CPUState *env)
1284
{
1285
    int ret = 0;
1286
#ifdef KVM_CAP_SET_GUEST_DEBUG
1287
    unsigned long reinject_trap = 0;
1288

    
1289
    if (!kvm_has_vcpu_events()) {
1290
        if (env->exception_injected == 1) {
1291
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1292
        } else if (env->exception_injected == 3) {
1293
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1294
        }
1295
        env->exception_injected = -1;
1296
    }
1297

    
1298
    /*
1299
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1300
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1301
     * by updating the debug state once again if single-stepping is on.
1302
     * Another reason to call kvm_update_guest_debug here is a pending debug
1303
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1304
     * reinject them via SET_GUEST_DEBUG.
1305
     */
1306
    if (reinject_trap ||
1307
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1308
        ret = kvm_update_guest_debug(env, reinject_trap);
1309
    }
1310
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1311
    return ret;
1312
}
1313

    
1314
static int kvm_put_debugregs(CPUState *env)
1315
{
1316
#ifdef KVM_CAP_DEBUGREGS
1317
    struct kvm_debugregs dbgregs;
1318
    int i;
1319

    
1320
    if (!kvm_has_debugregs()) {
1321
        return 0;
1322
    }
1323

    
1324
    for (i = 0; i < 4; i++) {
1325
        dbgregs.db[i] = env->dr[i];
1326
    }
1327
    dbgregs.dr6 = env->dr[6];
1328
    dbgregs.dr7 = env->dr[7];
1329
    dbgregs.flags = 0;
1330

    
1331
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1332
#else
1333
    return 0;
1334
#endif
1335
}
1336

    
1337
static int kvm_get_debugregs(CPUState *env)
1338
{
1339
#ifdef KVM_CAP_DEBUGREGS
1340
    struct kvm_debugregs dbgregs;
1341
    int i, ret;
1342

    
1343
    if (!kvm_has_debugregs()) {
1344
        return 0;
1345
    }
1346

    
1347
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1348
    if (ret < 0) {
1349
        return ret;
1350
    }
1351
    for (i = 0; i < 4; i++) {
1352
        env->dr[i] = dbgregs.db[i];
1353
    }
1354
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1355
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1356
#endif
1357

    
1358
    return 0;
1359
}
1360

    
1361
int kvm_arch_put_registers(CPUState *env, int level)
1362
{
1363
    int ret;
1364

    
1365
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1366

    
1367
    ret = kvm_getput_regs(env, 1);
1368
    if (ret < 0) {
1369
        return ret;
1370
    }
1371
    ret = kvm_put_xsave(env);
1372
    if (ret < 0) {
1373
        return ret;
1374
    }
1375
    ret = kvm_put_xcrs(env);
1376
    if (ret < 0) {
1377
        return ret;
1378
    }
1379
    ret = kvm_put_sregs(env);
1380
    if (ret < 0) {
1381
        return ret;
1382
    }
1383
    /* must be before kvm_put_msrs */
1384
    ret = kvm_inject_mce_oldstyle(env);
1385
    if (ret < 0) {
1386
        return ret;
1387
    }
1388
    ret = kvm_put_msrs(env, level);
1389
    if (ret < 0) {
1390
        return ret;
1391
    }
1392
    if (level >= KVM_PUT_RESET_STATE) {
1393
        ret = kvm_put_mp_state(env);
1394
        if (ret < 0) {
1395
            return ret;
1396
        }
1397
    }
1398
    ret = kvm_put_vcpu_events(env, level);
1399
    if (ret < 0) {
1400
        return ret;
1401
    }
1402
    ret = kvm_put_debugregs(env);
1403
    if (ret < 0) {
1404
        return ret;
1405
    }
1406
    /* must be last */
1407
    ret = kvm_guest_debug_workarounds(env);
1408
    if (ret < 0) {
1409
        return ret;
1410
    }
1411
    return 0;
1412
}
1413

    
1414
int kvm_arch_get_registers(CPUState *env)
1415
{
1416
    int ret;
1417

    
1418
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1419

    
1420
    ret = kvm_getput_regs(env, 0);
1421
    if (ret < 0) {
1422
        return ret;
1423
    }
1424
    ret = kvm_get_xsave(env);
1425
    if (ret < 0) {
1426
        return ret;
1427
    }
1428
    ret = kvm_get_xcrs(env);
1429
    if (ret < 0) {
1430
        return ret;
1431
    }
1432
    ret = kvm_get_sregs(env);
1433
    if (ret < 0) {
1434
        return ret;
1435
    }
1436
    ret = kvm_get_msrs(env);
1437
    if (ret < 0) {
1438
        return ret;
1439
    }
1440
    ret = kvm_get_mp_state(env);
1441
    if (ret < 0) {
1442
        return ret;
1443
    }
1444
    ret = kvm_get_vcpu_events(env);
1445
    if (ret < 0) {
1446
        return ret;
1447
    }
1448
    ret = kvm_get_debugregs(env);
1449
    if (ret < 0) {
1450
        return ret;
1451
    }
1452
    return 0;
1453
}
1454

    
1455
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1456
{
1457
    int ret;
1458

    
1459
    /* Inject NMI */
1460
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1461
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1462
        DPRINTF("injected NMI\n");
1463
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1464
        if (ret < 0) {
1465
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1466
                    strerror(-ret));
1467
        }
1468
    }
1469

    
1470
    if (!kvm_irqchip_in_kernel()) {
1471
        /* Force the VCPU out of its inner loop to process the INIT request */
1472
        if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1473
            env->exit_request = 1;
1474
        }
1475

    
1476
        /* Try to inject an interrupt if the guest can accept it */
1477
        if (run->ready_for_interrupt_injection &&
1478
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1479
            (env->eflags & IF_MASK)) {
1480
            int irq;
1481

    
1482
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1483
            irq = cpu_get_pic_interrupt(env);
1484
            if (irq >= 0) {
1485
                struct kvm_interrupt intr;
1486

    
1487
                intr.irq = irq;
1488
                DPRINTF("injected interrupt %d\n", irq);
1489
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1490
                if (ret < 0) {
1491
                    fprintf(stderr,
1492
                            "KVM: injection failed, interrupt lost (%s)\n",
1493
                            strerror(-ret));
1494
                }
1495
            }
1496
        }
1497

    
1498
        /* If we have an interrupt but the guest is not ready to receive an
1499
         * interrupt, request an interrupt window exit.  This will
1500
         * cause a return to userspace as soon as the guest is ready to
1501
         * receive interrupts. */
1502
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1503
            run->request_interrupt_window = 1;
1504
        } else {
1505
            run->request_interrupt_window = 0;
1506
        }
1507

    
1508
        DPRINTF("setting tpr\n");
1509
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1510
    }
1511
}
1512

    
1513
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1514
{
1515
    if (run->if_flag) {
1516
        env->eflags |= IF_MASK;
1517
    } else {
1518
        env->eflags &= ~IF_MASK;
1519
    }
1520
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1521
    cpu_set_apic_base(env->apic_state, run->apic_base);
1522
}
1523

    
1524
int kvm_arch_process_async_events(CPUState *env)
1525
{
1526
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1527
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1528
        assert(env->mcg_cap);
1529

    
1530
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1531

    
1532
        kvm_cpu_synchronize_state(env);
1533

    
1534
        if (env->exception_injected == EXCP08_DBLE) {
1535
            /* this means triple fault */
1536
            qemu_system_reset_request();
1537
            env->exit_request = 1;
1538
            return 0;
1539
        }
1540
        env->exception_injected = EXCP12_MCHK;
1541
        env->has_error_code = 0;
1542

    
1543
        env->halted = 0;
1544
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1545
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1546
        }
1547
    }
1548

    
1549
    if (kvm_irqchip_in_kernel()) {
1550
        return 0;
1551
    }
1552

    
1553
    if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1554
        env->halted = 0;
1555
    }
1556
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1557
        kvm_cpu_synchronize_state(env);
1558
        do_cpu_init(env);
1559
    }
1560
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1561
        kvm_cpu_synchronize_state(env);
1562
        do_cpu_sipi(env);
1563
    }
1564

    
1565
    return env->halted;
1566
}
1567

    
1568
static int kvm_handle_halt(CPUState *env)
1569
{
1570
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1571
          (env->eflags & IF_MASK)) &&
1572
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1573
        env->halted = 1;
1574
        return 0;
1575
    }
1576

    
1577
    return 1;
1578
}
1579

    
1580
static bool host_supports_vmx(void)
1581
{
1582
    uint32_t ecx, unused;
1583

    
1584
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1585
    return ecx & CPUID_EXT_VMX;
1586
}
1587

    
1588
#define VMX_INVALID_GUEST_STATE 0x80000021
1589

    
1590
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1591
{
1592
    uint64_t code;
1593
    int ret = 0;
1594

    
1595
    switch (run->exit_reason) {
1596
    case KVM_EXIT_HLT:
1597
        DPRINTF("handle_hlt\n");
1598
        ret = kvm_handle_halt(env);
1599
        break;
1600
    case KVM_EXIT_SET_TPR:
1601
        ret = 1;
1602
        break;
1603
    case KVM_EXIT_FAIL_ENTRY:
1604
        code = run->fail_entry.hardware_entry_failure_reason;
1605
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1606
                code);
1607
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1608
            fprintf(stderr,
1609
                    "\nIf you're runnning a guest on an Intel machine without "
1610
                        "unrestricted mode\n"
1611
                    "support, the failure can be most likely due to the guest "
1612
                        "entering an invalid\n"
1613
                    "state for Intel VT. For example, the guest maybe running "
1614
                        "in big real mode\n"
1615
                    "which is not supported on less recent Intel processors."
1616
                        "\n\n");
1617
        }
1618
        ret = -1;
1619
        break;
1620
    case KVM_EXIT_EXCEPTION:
1621
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1622
                run->ex.exception, run->ex.error_code);
1623
        ret = -1;
1624
        break;
1625
    default:
1626
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1627
        ret = -1;
1628
        break;
1629
    }
1630

    
1631
    return ret;
1632
}
1633

    
1634
#ifdef KVM_CAP_SET_GUEST_DEBUG
1635
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1636
{
1637
    static const uint8_t int3 = 0xcc;
1638

    
1639
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1640
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1641
        return -EINVAL;
1642
    }
1643
    return 0;
1644
}
1645

    
1646
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1647
{
1648
    uint8_t int3;
1649

    
1650
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1651
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1652
        return -EINVAL;
1653
    }
1654
    return 0;
1655
}
1656

    
1657
static struct {
1658
    target_ulong addr;
1659
    int len;
1660
    int type;
1661
} hw_breakpoint[4];
1662

    
1663
static int nb_hw_breakpoint;
1664

    
1665
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1666
{
1667
    int n;
1668

    
1669
    for (n = 0; n < nb_hw_breakpoint; n++) {
1670
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1671
            (hw_breakpoint[n].len == len || len == -1)) {
1672
            return n;
1673
        }
1674
    }
1675
    return -1;
1676
}
1677

    
1678
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1679
                                  target_ulong len, int type)
1680
{
1681
    switch (type) {
1682
    case GDB_BREAKPOINT_HW:
1683
        len = 1;
1684
        break;
1685
    case GDB_WATCHPOINT_WRITE:
1686
    case GDB_WATCHPOINT_ACCESS:
1687
        switch (len) {
1688
        case 1:
1689
            break;
1690
        case 2:
1691
        case 4:
1692
        case 8:
1693
            if (addr & (len - 1)) {
1694
                return -EINVAL;
1695
            }
1696
            break;
1697
        default:
1698
            return -EINVAL;
1699
        }
1700
        break;
1701
    default:
1702
        return -ENOSYS;
1703
    }
1704

    
1705
    if (nb_hw_breakpoint == 4) {
1706
        return -ENOBUFS;
1707
    }
1708
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1709
        return -EEXIST;
1710
    }
1711
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1712
    hw_breakpoint[nb_hw_breakpoint].len = len;
1713
    hw_breakpoint[nb_hw_breakpoint].type = type;
1714
    nb_hw_breakpoint++;
1715

    
1716
    return 0;
1717
}
1718

    
1719
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1720
                                  target_ulong len, int type)
1721
{
1722
    int n;
1723

    
1724
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1725
    if (n < 0) {
1726
        return -ENOENT;
1727
    }
1728
    nb_hw_breakpoint--;
1729
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1730

    
1731
    return 0;
1732
}
1733

    
1734
void kvm_arch_remove_all_hw_breakpoints(void)
1735
{
1736
    nb_hw_breakpoint = 0;
1737
}
1738

    
1739
static CPUWatchpoint hw_watchpoint;
1740

    
1741
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1742
{
1743
    int handle = 0;
1744
    int n;
1745

    
1746
    if (arch_info->exception == 1) {
1747
        if (arch_info->dr6 & (1 << 14)) {
1748
            if (cpu_single_env->singlestep_enabled) {
1749
                handle = 1;
1750
            }
1751
        } else {
1752
            for (n = 0; n < 4; n++) {
1753
                if (arch_info->dr6 & (1 << n)) {
1754
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1755
                    case 0x0:
1756
                        handle = 1;
1757
                        break;
1758
                    case 0x1:
1759
                        handle = 1;
1760
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1761
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1762
                        hw_watchpoint.flags = BP_MEM_WRITE;
1763
                        break;
1764
                    case 0x3:
1765
                        handle = 1;
1766
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1767
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1768
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1769
                        break;
1770
                    }
1771
                }
1772
            }
1773
        }
1774
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1775
        handle = 1;
1776
    }
1777
    if (!handle) {
1778
        cpu_synchronize_state(cpu_single_env);
1779
        assert(cpu_single_env->exception_injected == -1);
1780

    
1781
        cpu_single_env->exception_injected = arch_info->exception;
1782
        cpu_single_env->has_error_code = 0;
1783
    }
1784

    
1785
    return handle;
1786
}
1787

    
1788
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1789
{
1790
    const uint8_t type_code[] = {
1791
        [GDB_BREAKPOINT_HW] = 0x0,
1792
        [GDB_WATCHPOINT_WRITE] = 0x1,
1793
        [GDB_WATCHPOINT_ACCESS] = 0x3
1794
    };
1795
    const uint8_t len_code[] = {
1796
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1797
    };
1798
    int n;
1799

    
1800
    if (kvm_sw_breakpoints_active(env)) {
1801
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1802
    }
1803
    if (nb_hw_breakpoint > 0) {
1804
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1805
        dbg->arch.debugreg[7] = 0x0600;
1806
        for (n = 0; n < nb_hw_breakpoint; n++) {
1807
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1808
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1809
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1810
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1811
        }
1812
    }
1813
}
1814
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1815

    
1816
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1817
{
1818
    return !(env->cr[0] & CR0_PE_MASK) ||
1819
           ((env->segs[R_CS].selector  & 3) != 3);
1820
}