Statistics
| Branch: | Revision:

root / cpu-exec.c @ 34ee2ede

History | View | Annotate | Download (48.6 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
183
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184
        | env->psrs;
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195
    cs_base = 0;
196
    pc = env->PC;
197
#elif defined(TARGET_M68K)
198
    flags = env->fpcr & M68K_FPCR_PREC;
199
    cs_base = 0;
200
    pc = env->pc;
201
#elif defined(TARGET_SH4)
202
    flags = env->sr & (SR_MD | SR_RB);
203
    cs_base = 0;         /* XXXXX */
204
    pc = env->pc;
205
#else
206
#error unsupported CPU
207
#endif
208
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210
                         tb->flags != flags, 0)) {
211
        tb = tb_find_slow(pc, cs_base, flags);
212
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
213
           doing it in tb_find_slow */
214
        if (tb_invalidated_flag) {
215
            /* as some TB could have been invalidated because
216
               of memory exceptions while generating the code, we
217
               must recompute the hash index here */
218
            T0 = 0;
219
        }
220
    }
221
    return tb;
222
}
223

    
224

    
225
/* main execution loop */
226

    
227
int cpu_exec(CPUState *env1)
228
{
229
#define DECLARE_HOST_REGS 1
230
#include "hostregs_helper.h"
231
#if defined(TARGET_SPARC)
232
#if defined(reg_REGWPTR)
233
    uint32_t *saved_regwptr;
234
#endif
235
#endif
236
#if defined(__sparc__) && !defined(HOST_SOLARIS)
237
    int saved_i7;
238
    target_ulong tmp_T0;
239
#endif
240
    int ret, interrupt_request;
241
    void (*gen_func)(void);
242
    TranslationBlock *tb;
243
    uint8_t *tc_ptr;
244

    
245
#if defined(TARGET_I386)
246
    /* handle exit of HALTED state */
247
    if (env1->hflags & HF_HALTED_MASK) {
248
        /* disable halt condition */
249
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250
            (env1->eflags & IF_MASK)) {
251
            env1->hflags &= ~HF_HALTED_MASK;
252
        } else {
253
            return EXCP_HALTED;
254
        }
255
    }
256
#elif defined(TARGET_PPC)
257
    if (env1->halted) {
258
        if (env1->msr[MSR_EE] && 
259
            (env1->interrupt_request & 
260
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
261
            env1->halted = 0;
262
        } else {
263
            return EXCP_HALTED;
264
        }
265
    }
266
#elif defined(TARGET_SPARC)
267
    if (env1->halted) {
268
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269
            (env1->psret != 0)) {
270
            env1->halted = 0;
271
        } else {
272
            return EXCP_HALTED;
273
        }
274
    }
275
#elif defined(TARGET_ARM)
276
    if (env1->halted) {
277
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
278
           set.  */
279
        if (env1->interrupt_request
280
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
281
            env1->halted = 0;
282
        } else {
283
            return EXCP_HALTED;
284
        }
285
    }
286
#elif defined(TARGET_MIPS)
287
    if (env1->halted) {
288
        if (env1->interrupt_request &
289
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
290
            env1->halted = 0;
291
        } else {
292
            return EXCP_HALTED;
293
        }
294
    }
295
#endif
296

    
297
    cpu_single_env = env1; 
298

    
299
    /* first we save global registers */
300
#define SAVE_HOST_REGS 1
301
#include "hostregs_helper.h"
302
    env = env1;
303
#if defined(__sparc__) && !defined(HOST_SOLARIS)
304
    /* we also save i7 because longjmp may not restore it */
305
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
306
#endif
307

    
308
#if defined(TARGET_I386)
309
    env_to_regs();
310
    /* put eflags in CPU temporary format */
311
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
312
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
313
    CC_OP = CC_OP_EFLAGS;
314
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
315
#elif defined(TARGET_ARM)
316
#elif defined(TARGET_SPARC)
317
#if defined(reg_REGWPTR)
318
    saved_regwptr = REGWPTR;
319
#endif
320
#elif defined(TARGET_PPC)
321
#elif defined(TARGET_M68K)
322
    env->cc_op = CC_OP_FLAGS;
323
    env->cc_dest = env->sr & 0xf;
324
    env->cc_x = (env->sr >> 4) & 1;
325
#elif defined(TARGET_MIPS)
326
#elif defined(TARGET_SH4)
327
    /* XXXXX */
328
#else
329
#error unsupported target CPU
330
#endif
331
    env->exception_index = -1;
332

    
333
    /* prepare setjmp context for exception handling */
334
    for(;;) {
335
        if (setjmp(env->jmp_env) == 0) {
336
            env->current_tb = NULL;
337
            /* if an exception is pending, we execute it here */
338
            if (env->exception_index >= 0) {
339
                if (env->exception_index >= EXCP_INTERRUPT) {
340
                    /* exit request from the cpu execution loop */
341
                    ret = env->exception_index;
342
                    break;
343
                } else if (env->user_mode_only) {
344
                    /* if user mode only, we simulate a fake exception
345
                       which will be handled outside the cpu execution
346
                       loop */
347
#if defined(TARGET_I386)
348
                    do_interrupt_user(env->exception_index, 
349
                                      env->exception_is_int, 
350
                                      env->error_code, 
351
                                      env->exception_next_eip);
352
#endif
353
                    ret = env->exception_index;
354
                    break;
355
                } else {
356
#if defined(TARGET_I386)
357
                    /* simulate a real cpu exception. On i386, it can
358
                       trigger new exceptions, but we do not handle
359
                       double or triple faults yet. */
360
                    do_interrupt(env->exception_index, 
361
                                 env->exception_is_int, 
362
                                 env->error_code, 
363
                                 env->exception_next_eip, 0);
364
#elif defined(TARGET_PPC)
365
                    do_interrupt(env);
366
#elif defined(TARGET_MIPS)
367
                    do_interrupt(env);
368
#elif defined(TARGET_SPARC)
369
                    do_interrupt(env->exception_index);
370
#elif defined(TARGET_ARM)
371
                    do_interrupt(env);
372
#elif defined(TARGET_SH4)
373
                    do_interrupt(env);
374
#endif
375
                }
376
                env->exception_index = -1;
377
            } 
378
#ifdef USE_KQEMU
379
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
380
                int ret;
381
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
382
                ret = kqemu_cpu_exec(env);
383
                /* put eflags in CPU temporary format */
384
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
385
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
386
                CC_OP = CC_OP_EFLAGS;
387
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
388
                if (ret == 1) {
389
                    /* exception */
390
                    longjmp(env->jmp_env, 1);
391
                } else if (ret == 2) {
392
                    /* softmmu execution needed */
393
                } else {
394
                    if (env->interrupt_request != 0) {
395
                        /* hardware interrupt will be executed just after */
396
                    } else {
397
                        /* otherwise, we restart */
398
                        longjmp(env->jmp_env, 1);
399
                    }
400
                }
401
            }
402
#endif
403

    
404
            T0 = 0; /* force lookup of first TB */
405
            for(;;) {
406
#if defined(__sparc__) && !defined(HOST_SOLARIS)
407
                /* g1 can be modified by some libc? functions */ 
408
                tmp_T0 = T0;
409
#endif            
410
                interrupt_request = env->interrupt_request;
411
                if (__builtin_expect(interrupt_request, 0)) {
412
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
413
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
414
                        env->exception_index = EXCP_DEBUG;
415
                        cpu_loop_exit();
416
                    }
417
#if defined(TARGET_I386)
418
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
419
                        !(env->hflags & HF_SMM_MASK)) {
420
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
421
                        do_smm_enter();
422
#if defined(__sparc__) && !defined(HOST_SOLARIS)
423
                        tmp_T0 = 0;
424
#else
425
                        T0 = 0;
426
#endif
427
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
428
                        (env->eflags & IF_MASK) && 
429
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
430
                        int intno;
431
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
432
                        intno = cpu_get_pic_interrupt(env);
433
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
434
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
435
                        }
436
                        do_interrupt(intno, 0, 0, 0, 1);
437
                        /* ensure that no TB jump will be modified as
438
                           the program flow was changed */
439
#if defined(__sparc__) && !defined(HOST_SOLARIS)
440
                        tmp_T0 = 0;
441
#else
442
                        T0 = 0;
443
#endif
444
                    }
445
#elif defined(TARGET_PPC)
446
#if 0
447
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
448
                        cpu_ppc_reset(env);
449
                    }
450
#endif
451
                    if (msr_ee != 0) {
452
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
453
                            /* Raise it */
454
                            env->exception_index = EXCP_EXTERNAL;
455
                            env->error_code = 0;
456
                            do_interrupt(env);
457
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
458
#if defined(__sparc__) && !defined(HOST_SOLARIS)
459
                            tmp_T0 = 0;
460
#else
461
                            T0 = 0;
462
#endif
463
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
464
                            /* Raise it */
465
                            env->exception_index = EXCP_DECR;
466
                            env->error_code = 0;
467
                            do_interrupt(env);
468
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
469
#if defined(__sparc__) && !defined(HOST_SOLARIS)
470
                            tmp_T0 = 0;
471
#else
472
                            T0 = 0;
473
#endif
474
                        }
475
                    }
476
#elif defined(TARGET_MIPS)
477
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
478
                        (env->CP0_Status & (1 << CP0St_IE)) &&
479
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
480
                        !(env->hflags & MIPS_HFLAG_EXL) &&
481
                        !(env->hflags & MIPS_HFLAG_ERL) &&
482
                        !(env->hflags & MIPS_HFLAG_DM)) {
483
                        /* Raise it */
484
                        env->exception_index = EXCP_EXT_INTERRUPT;
485
                        env->error_code = 0;
486
                        do_interrupt(env);
487
#if defined(__sparc__) && !defined(HOST_SOLARIS)
488
                        tmp_T0 = 0;
489
#else
490
                        T0 = 0;
491
#endif
492
                    }
493
#elif defined(TARGET_SPARC)
494
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
495
                        (env->psret != 0)) {
496
                        int pil = env->interrupt_index & 15;
497
                        int type = env->interrupt_index & 0xf0;
498

    
499
                        if (((type == TT_EXTINT) &&
500
                             (pil == 15 || pil > env->psrpil)) ||
501
                            type != TT_EXTINT) {
502
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
503
                            do_interrupt(env->interrupt_index);
504
                            env->interrupt_index = 0;
505
#if defined(__sparc__) && !defined(HOST_SOLARIS)
506
                            tmp_T0 = 0;
507
#else
508
                            T0 = 0;
509
#endif
510
                        }
511
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
512
                        //do_interrupt(0, 0, 0, 0, 0);
513
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
514
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
515
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
516
                        env->halted = 1;
517
                        env->exception_index = EXCP_HLT;
518
                        cpu_loop_exit();
519
                    }
520
#elif defined(TARGET_ARM)
521
                    if (interrupt_request & CPU_INTERRUPT_FIQ
522
                        && !(env->uncached_cpsr & CPSR_F)) {
523
                        env->exception_index = EXCP_FIQ;
524
                        do_interrupt(env);
525
                    }
526
                    if (interrupt_request & CPU_INTERRUPT_HARD
527
                        && !(env->uncached_cpsr & CPSR_I)) {
528
                        env->exception_index = EXCP_IRQ;
529
                        do_interrupt(env);
530
                    }
531
#elif defined(TARGET_SH4)
532
                    /* XXXXX */
533
#endif
534
                   /* Don't use the cached interupt_request value,
535
                      do_interrupt may have updated the EXITTB flag. */
536
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
537
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
538
                        /* ensure that no TB jump will be modified as
539
                           the program flow was changed */
540
#if defined(__sparc__) && !defined(HOST_SOLARIS)
541
                        tmp_T0 = 0;
542
#else
543
                        T0 = 0;
544
#endif
545
                    }
546
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
547
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
548
                        env->exception_index = EXCP_INTERRUPT;
549
                        cpu_loop_exit();
550
                    }
551
                }
552
#ifdef DEBUG_EXEC
553
                if ((loglevel & CPU_LOG_TB_CPU)) {
554
#if defined(TARGET_I386)
555
                    /* restore flags in standard format */
556
#ifdef reg_EAX
557
                    env->regs[R_EAX] = EAX;
558
#endif
559
#ifdef reg_EBX
560
                    env->regs[R_EBX] = EBX;
561
#endif
562
#ifdef reg_ECX
563
                    env->regs[R_ECX] = ECX;
564
#endif
565
#ifdef reg_EDX
566
                    env->regs[R_EDX] = EDX;
567
#endif
568
#ifdef reg_ESI
569
                    env->regs[R_ESI] = ESI;
570
#endif
571
#ifdef reg_EDI
572
                    env->regs[R_EDI] = EDI;
573
#endif
574
#ifdef reg_EBP
575
                    env->regs[R_EBP] = EBP;
576
#endif
577
#ifdef reg_ESP
578
                    env->regs[R_ESP] = ESP;
579
#endif
580
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
581
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
582
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
583
#elif defined(TARGET_ARM)
584
                    cpu_dump_state(env, logfile, fprintf, 0);
585
#elif defined(TARGET_SPARC)
586
                    REGWPTR = env->regbase + (env->cwp * 16);
587
                    env->regwptr = REGWPTR;
588
                    cpu_dump_state(env, logfile, fprintf, 0);
589
#elif defined(TARGET_PPC)
590
                    cpu_dump_state(env, logfile, fprintf, 0);
591
#elif defined(TARGET_M68K)
592
                    cpu_m68k_flush_flags(env, env->cc_op);
593
                    env->cc_op = CC_OP_FLAGS;
594
                    env->sr = (env->sr & 0xffe0)
595
                              | env->cc_dest | (env->cc_x << 4);
596
                    cpu_dump_state(env, logfile, fprintf, 0);
597
#elif defined(TARGET_MIPS)
598
                    cpu_dump_state(env, logfile, fprintf, 0);
599
#elif defined(TARGET_SH4)
600
                    cpu_dump_state(env, logfile, fprintf, 0);
601
#else
602
#error unsupported target CPU 
603
#endif
604
                }
605
#endif
606
                tb = tb_find_fast();
607
#ifdef DEBUG_EXEC
608
                if ((loglevel & CPU_LOG_EXEC)) {
609
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
610
                            (long)tb->tc_ptr, tb->pc,
611
                            lookup_symbol(tb->pc));
612
                }
613
#endif
614
#if defined(__sparc__) && !defined(HOST_SOLARIS)
615
                T0 = tmp_T0;
616
#endif            
617
                /* see if we can patch the calling TB. When the TB
618
                   spans two pages, we cannot safely do a direct
619
                   jump. */
620
                {
621
                    if (T0 != 0 &&
622
#if USE_KQEMU
623
                        (env->kqemu_enabled != 2) &&
624
#endif
625
                        tb->page_addr[1] == -1
626
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
627
                    && (tb->cflags & CF_CODE_COPY) == 
628
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
629
#endif
630
                    ) {
631
                    spin_lock(&tb_lock);
632
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
633
#if defined(USE_CODE_COPY)
634
                    /* propagates the FP use info */
635
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
636
                        (tb->cflags & CF_FP_USED);
637
#endif
638
                    spin_unlock(&tb_lock);
639
                }
640
                }
641
                tc_ptr = tb->tc_ptr;
642
                env->current_tb = tb;
643
                /* execute the generated code */
644
                gen_func = (void *)tc_ptr;
645
#if defined(__sparc__)
646
                __asm__ __volatile__("call        %0\n\t"
647
                                     "mov        %%o7,%%i0"
648
                                     : /* no outputs */
649
                                     : "r" (gen_func) 
650
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
651
                                       "o0", "o1", "o2", "o3", "o4", "o5",
652
                                       "l0", "l1", "l2", "l3", "l4", "l5",
653
                                       "l6", "l7");
654
#elif defined(__arm__)
655
                asm volatile ("mov pc, %0\n\t"
656
                              ".global exec_loop\n\t"
657
                              "exec_loop:\n\t"
658
                              : /* no outputs */
659
                              : "r" (gen_func)
660
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
661
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
662
{
663
    if (!(tb->cflags & CF_CODE_COPY)) {
664
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
665
            save_native_fp_state(env);
666
        }
667
        gen_func();
668
    } else {
669
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
670
            restore_native_fp_state(env);
671
        }
672
        /* we work with native eflags */
673
        CC_SRC = cc_table[CC_OP].compute_all();
674
        CC_OP = CC_OP_EFLAGS;
675
        asm(".globl exec_loop\n"
676
            "\n"
677
            "debug1:\n"
678
            "    pushl %%ebp\n"
679
            "    fs movl %10, %9\n"
680
            "    fs movl %11, %%eax\n"
681
            "    andl $0x400, %%eax\n"
682
            "    fs orl %8, %%eax\n"
683
            "    pushl %%eax\n"
684
            "    popf\n"
685
            "    fs movl %%esp, %12\n"
686
            "    fs movl %0, %%eax\n"
687
            "    fs movl %1, %%ecx\n"
688
            "    fs movl %2, %%edx\n"
689
            "    fs movl %3, %%ebx\n"
690
            "    fs movl %4, %%esp\n"
691
            "    fs movl %5, %%ebp\n"
692
            "    fs movl %6, %%esi\n"
693
            "    fs movl %7, %%edi\n"
694
            "    fs jmp *%9\n"
695
            "exec_loop:\n"
696
            "    fs movl %%esp, %4\n"
697
            "    fs movl %12, %%esp\n"
698
            "    fs movl %%eax, %0\n"
699
            "    fs movl %%ecx, %1\n"
700
            "    fs movl %%edx, %2\n"
701
            "    fs movl %%ebx, %3\n"
702
            "    fs movl %%ebp, %5\n"
703
            "    fs movl %%esi, %6\n"
704
            "    fs movl %%edi, %7\n"
705
            "    pushf\n"
706
            "    popl %%eax\n"
707
            "    movl %%eax, %%ecx\n"
708
            "    andl $0x400, %%ecx\n"
709
            "    shrl $9, %%ecx\n"
710
            "    andl $0x8d5, %%eax\n"
711
            "    fs movl %%eax, %8\n"
712
            "    movl $1, %%eax\n"
713
            "    subl %%ecx, %%eax\n"
714
            "    fs movl %%eax, %11\n"
715
            "    fs movl %9, %%ebx\n" /* get T0 value */
716
            "    popl %%ebp\n"
717
            :
718
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
719
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
720
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
721
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
722
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
723
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
724
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
725
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
726
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
727
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
728
            "a" (gen_func),
729
            "m" (*(uint8_t *)offsetof(CPUState, df)),
730
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
731
            : "%ecx", "%edx"
732
            );
733
    }
734
}
735
#elif defined(__ia64)
736
                struct fptr {
737
                        void *ip;
738
                        void *gp;
739
                } fp;
740

    
741
                fp.ip = tc_ptr;
742
                fp.gp = code_gen_buffer + 2 * (1 << 20);
743
                (*(void (*)(void)) &fp)();
744
#else
745
                gen_func();
746
#endif
747
                env->current_tb = NULL;
748
                /* reset soft MMU for next block (it can currently
749
                   only be set by a memory fault) */
750
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
751
                if (env->hflags & HF_SOFTMMU_MASK) {
752
                    env->hflags &= ~HF_SOFTMMU_MASK;
753
                    /* do not allow linking to another block */
754
                    T0 = 0;
755
                }
756
#endif
757
#if defined(USE_KQEMU)
758
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
759
                if (kqemu_is_ok(env) &&
760
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
761
                    cpu_loop_exit();
762
                }
763
#endif
764
            }
765
        } else {
766
            env_to_regs();
767
        }
768
    } /* for(;;) */
769

    
770

    
771
#if defined(TARGET_I386)
772
#if defined(USE_CODE_COPY)
773
    if (env->native_fp_regs) {
774
        save_native_fp_state(env);
775
    }
776
#endif
777
    /* restore flags in standard format */
778
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
779
#elif defined(TARGET_ARM)
780
    /* XXX: Save/restore host fpu exception state?.  */
781
#elif defined(TARGET_SPARC)
782
#if defined(reg_REGWPTR)
783
    REGWPTR = saved_regwptr;
784
#endif
785
#elif defined(TARGET_PPC)
786
#elif defined(TARGET_M68K)
787
    cpu_m68k_flush_flags(env, env->cc_op);
788
    env->cc_op = CC_OP_FLAGS;
789
    env->sr = (env->sr & 0xffe0)
790
              | env->cc_dest | (env->cc_x << 4);
791
#elif defined(TARGET_MIPS)
792
#elif defined(TARGET_SH4)
793
    /* XXXXX */
794
#else
795
#error unsupported target CPU
796
#endif
797

    
798
    /* restore global registers */
799
#if defined(__sparc__) && !defined(HOST_SOLARIS)
800
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
801
#endif
802
#include "hostregs_helper.h"
803

    
804
    /* fail safe : never use cpu_single_env outside cpu_exec() */
805
    cpu_single_env = NULL; 
806
    return ret;
807
}
808

    
809
/* must only be called from the generated code as an exception can be
810
   generated */
811
void tb_invalidate_page_range(target_ulong start, target_ulong end)
812
{
813
    /* XXX: cannot enable it yet because it yields to MMU exception
814
       where NIP != read address on PowerPC */
815
#if 0
816
    target_ulong phys_addr;
817
    phys_addr = get_phys_addr_code(env, start);
818
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
819
#endif
820
}
821

    
822
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
823

    
824
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
825
{
826
    CPUX86State *saved_env;
827

    
828
    saved_env = env;
829
    env = s;
830
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
831
        selector &= 0xffff;
832
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
833
                               (selector << 4), 0xffff, 0);
834
    } else {
835
        load_seg(seg_reg, selector);
836
    }
837
    env = saved_env;
838
}
839

    
840
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
841
{
842
    CPUX86State *saved_env;
843

    
844
    saved_env = env;
845
    env = s;
846
    
847
    helper_fsave((target_ulong)ptr, data32);
848

    
849
    env = saved_env;
850
}
851

    
852
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
853
{
854
    CPUX86State *saved_env;
855

    
856
    saved_env = env;
857
    env = s;
858
    
859
    helper_frstor((target_ulong)ptr, data32);
860

    
861
    env = saved_env;
862
}
863

    
864
#endif /* TARGET_I386 */
865

    
866
#if !defined(CONFIG_SOFTMMU)
867

    
868
#if defined(TARGET_I386)
869

    
870
/* 'pc' is the host PC at which the exception was raised. 'address' is
871
   the effective address of the memory exception. 'is_write' is 1 if a
872
   write caused the exception and otherwise 0'. 'old_set' is the
873
   signal set which should be restored */
874
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
875
                                    int is_write, sigset_t *old_set, 
876
                                    void *puc)
877
{
878
    TranslationBlock *tb;
879
    int ret;
880

    
881
    if (cpu_single_env)
882
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
883
#if defined(DEBUG_SIGNAL)
884
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
885
                pc, address, is_write, *(unsigned long *)old_set);
886
#endif
887
    /* XXX: locking issue */
888
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
889
        return 1;
890
    }
891

    
892
    /* see if it is an MMU fault */
893
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
894
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
895
    if (ret < 0)
896
        return 0; /* not an MMU fault */
897
    if (ret == 0)
898
        return 1; /* the MMU fault was handled without causing real CPU fault */
899
    /* now we have a real cpu fault */
900
    tb = tb_find_pc(pc);
901
    if (tb) {
902
        /* the PC is inside the translated code. It means that we have
903
           a virtual CPU fault */
904
        cpu_restore_state(tb, env, pc, puc);
905
    }
906
    if (ret == 1) {
907
#if 0
908
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
909
               env->eip, env->cr[2], env->error_code);
910
#endif
911
        /* we restore the process signal mask as the sigreturn should
912
           do it (XXX: use sigsetjmp) */
913
        sigprocmask(SIG_SETMASK, old_set, NULL);
914
        raise_exception_err(env->exception_index, env->error_code);
915
    } else {
916
        /* activate soft MMU for this block */
917
        env->hflags |= HF_SOFTMMU_MASK;
918
        cpu_resume_from_signal(env, puc);
919
    }
920
    /* never comes here */
921
    return 1;
922
}
923

    
924
#elif defined(TARGET_ARM)
925
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
926
                                    int is_write, sigset_t *old_set,
927
                                    void *puc)
928
{
929
    TranslationBlock *tb;
930
    int ret;
931

    
932
    if (cpu_single_env)
933
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
934
#if defined(DEBUG_SIGNAL)
935
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
936
           pc, address, is_write, *(unsigned long *)old_set);
937
#endif
938
    /* XXX: locking issue */
939
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
940
        return 1;
941
    }
942
    /* see if it is an MMU fault */
943
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
944
    if (ret < 0)
945
        return 0; /* not an MMU fault */
946
    if (ret == 0)
947
        return 1; /* the MMU fault was handled without causing real CPU fault */
948
    /* now we have a real cpu fault */
949
    tb = tb_find_pc(pc);
950
    if (tb) {
951
        /* the PC is inside the translated code. It means that we have
952
           a virtual CPU fault */
953
        cpu_restore_state(tb, env, pc, puc);
954
    }
955
    /* we restore the process signal mask as the sigreturn should
956
       do it (XXX: use sigsetjmp) */
957
    sigprocmask(SIG_SETMASK, old_set, NULL);
958
    cpu_loop_exit();
959
}
960
#elif defined(TARGET_SPARC)
961
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
962
                                    int is_write, sigset_t *old_set,
963
                                    void *puc)
964
{
965
    TranslationBlock *tb;
966
    int ret;
967

    
968
    if (cpu_single_env)
969
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
970
#if defined(DEBUG_SIGNAL)
971
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
972
           pc, address, is_write, *(unsigned long *)old_set);
973
#endif
974
    /* XXX: locking issue */
975
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
976
        return 1;
977
    }
978
    /* see if it is an MMU fault */
979
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
980
    if (ret < 0)
981
        return 0; /* not an MMU fault */
982
    if (ret == 0)
983
        return 1; /* the MMU fault was handled without causing real CPU fault */
984
    /* now we have a real cpu fault */
985
    tb = tb_find_pc(pc);
986
    if (tb) {
987
        /* the PC is inside the translated code. It means that we have
988
           a virtual CPU fault */
989
        cpu_restore_state(tb, env, pc, puc);
990
    }
991
    /* we restore the process signal mask as the sigreturn should
992
       do it (XXX: use sigsetjmp) */
993
    sigprocmask(SIG_SETMASK, old_set, NULL);
994
    cpu_loop_exit();
995
}
996
#elif defined (TARGET_PPC)
997
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
998
                                    int is_write, sigset_t *old_set,
999
                                    void *puc)
1000
{
1001
    TranslationBlock *tb;
1002
    int ret;
1003
    
1004
    if (cpu_single_env)
1005
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1006
#if defined(DEBUG_SIGNAL)
1007
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1008
           pc, address, is_write, *(unsigned long *)old_set);
1009
#endif
1010
    /* XXX: locking issue */
1011
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1012
        return 1;
1013
    }
1014

    
1015
    /* see if it is an MMU fault */
1016
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1017
    if (ret < 0)
1018
        return 0; /* not an MMU fault */
1019
    if (ret == 0)
1020
        return 1; /* the MMU fault was handled without causing real CPU fault */
1021

    
1022
    /* now we have a real cpu fault */
1023
    tb = tb_find_pc(pc);
1024
    if (tb) {
1025
        /* the PC is inside the translated code. It means that we have
1026
           a virtual CPU fault */
1027
        cpu_restore_state(tb, env, pc, puc);
1028
    }
1029
    if (ret == 1) {
1030
#if 0
1031
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1032
               env->nip, env->error_code, tb);
1033
#endif
1034
    /* we restore the process signal mask as the sigreturn should
1035
       do it (XXX: use sigsetjmp) */
1036
        sigprocmask(SIG_SETMASK, old_set, NULL);
1037
        do_raise_exception_err(env->exception_index, env->error_code);
1038
    } else {
1039
        /* activate soft MMU for this block */
1040
        cpu_resume_from_signal(env, puc);
1041
    }
1042
    /* never comes here */
1043
    return 1;
1044
}
1045

    
1046
#elif defined(TARGET_M68K)
1047
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1048
                                    int is_write, sigset_t *old_set,
1049
                                    void *puc)
1050
{
1051
    TranslationBlock *tb;
1052
    int ret;
1053

    
1054
    if (cpu_single_env)
1055
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1056
#if defined(DEBUG_SIGNAL)
1057
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1058
           pc, address, is_write, *(unsigned long *)old_set);
1059
#endif
1060
    /* XXX: locking issue */
1061
    if (is_write && page_unprotect(address, pc, puc)) {
1062
        return 1;
1063
    }
1064
    /* see if it is an MMU fault */
1065
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1066
    if (ret < 0)
1067
        return 0; /* not an MMU fault */
1068
    if (ret == 0)
1069
        return 1; /* the MMU fault was handled without causing real CPU fault */
1070
    /* now we have a real cpu fault */
1071
    tb = tb_find_pc(pc);
1072
    if (tb) {
1073
        /* the PC is inside the translated code. It means that we have
1074
           a virtual CPU fault */
1075
        cpu_restore_state(tb, env, pc, puc);
1076
    }
1077
    /* we restore the process signal mask as the sigreturn should
1078
       do it (XXX: use sigsetjmp) */
1079
    sigprocmask(SIG_SETMASK, old_set, NULL);
1080
    cpu_loop_exit();
1081
    /* never comes here */
1082
    return 1;
1083
}
1084

    
1085
#elif defined (TARGET_MIPS)
1086
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1087
                                    int is_write, sigset_t *old_set,
1088
                                    void *puc)
1089
{
1090
    TranslationBlock *tb;
1091
    int ret;
1092
    
1093
    if (cpu_single_env)
1094
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1095
#if defined(DEBUG_SIGNAL)
1096
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1097
           pc, address, is_write, *(unsigned long *)old_set);
1098
#endif
1099
    /* XXX: locking issue */
1100
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1101
        return 1;
1102
    }
1103

    
1104
    /* see if it is an MMU fault */
1105
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1106
    if (ret < 0)
1107
        return 0; /* not an MMU fault */
1108
    if (ret == 0)
1109
        return 1; /* the MMU fault was handled without causing real CPU fault */
1110

    
1111
    /* now we have a real cpu fault */
1112
    tb = tb_find_pc(pc);
1113
    if (tb) {
1114
        /* the PC is inside the translated code. It means that we have
1115
           a virtual CPU fault */
1116
        cpu_restore_state(tb, env, pc, puc);
1117
    }
1118
    if (ret == 1) {
1119
#if 0
1120
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1121
               env->nip, env->error_code, tb);
1122
#endif
1123
    /* we restore the process signal mask as the sigreturn should
1124
       do it (XXX: use sigsetjmp) */
1125
        sigprocmask(SIG_SETMASK, old_set, NULL);
1126
        do_raise_exception_err(env->exception_index, env->error_code);
1127
    } else {
1128
        /* activate soft MMU for this block */
1129
        cpu_resume_from_signal(env, puc);
1130
    }
1131
    /* never comes here */
1132
    return 1;
1133
}
1134

    
1135
#elif defined (TARGET_SH4)
1136
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1137
                                    int is_write, sigset_t *old_set,
1138
                                    void *puc)
1139
{
1140
    TranslationBlock *tb;
1141
    int ret;
1142
    
1143
    if (cpu_single_env)
1144
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1145
#if defined(DEBUG_SIGNAL)
1146
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1147
           pc, address, is_write, *(unsigned long *)old_set);
1148
#endif
1149
    /* XXX: locking issue */
1150
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1151
        return 1;
1152
    }
1153

    
1154
    /* see if it is an MMU fault */
1155
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1156
    if (ret < 0)
1157
        return 0; /* not an MMU fault */
1158
    if (ret == 0)
1159
        return 1; /* the MMU fault was handled without causing real CPU fault */
1160

    
1161
    /* now we have a real cpu fault */
1162
    tb = tb_find_pc(pc);
1163
    if (tb) {
1164
        /* the PC is inside the translated code. It means that we have
1165
           a virtual CPU fault */
1166
        cpu_restore_state(tb, env, pc, puc);
1167
    }
1168
#if 0
1169
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1170
               env->nip, env->error_code, tb);
1171
#endif
1172
    /* we restore the process signal mask as the sigreturn should
1173
       do it (XXX: use sigsetjmp) */
1174
    sigprocmask(SIG_SETMASK, old_set, NULL);
1175
    cpu_loop_exit();
1176
    /* never comes here */
1177
    return 1;
1178
}
1179
#else
1180
#error unsupported target CPU
1181
#endif
1182

    
1183
#if defined(__i386__)
1184

    
1185
#if defined(__APPLE__)
1186
# include <sys/ucontext.h>
1187

    
1188
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1189
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1190
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1191
#else
1192
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1193
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1194
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1195
#endif
1196

    
1197
#if defined(USE_CODE_COPY)
1198
static void cpu_send_trap(unsigned long pc, int trap, 
1199
                          struct ucontext *uc)
1200
{
1201
    TranslationBlock *tb;
1202

    
1203
    if (cpu_single_env)
1204
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1205
    /* now we have a real cpu fault */
1206
    tb = tb_find_pc(pc);
1207
    if (tb) {
1208
        /* the PC is inside the translated code. It means that we have
1209
           a virtual CPU fault */
1210
        cpu_restore_state(tb, env, pc, uc);
1211
    }
1212
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1213
    raise_exception_err(trap, env->error_code);
1214
}
1215
#endif
1216

    
1217
int cpu_signal_handler(int host_signum, void *pinfo, 
1218
                       void *puc)
1219
{
1220
    siginfo_t *info = pinfo;
1221
    struct ucontext *uc = puc;
1222
    unsigned long pc;
1223
    int trapno;
1224

    
1225
#ifndef REG_EIP
1226
/* for glibc 2.1 */
1227
#define REG_EIP    EIP
1228
#define REG_ERR    ERR
1229
#define REG_TRAPNO TRAPNO
1230
#endif
1231
    pc = EIP_sig(uc);
1232
    trapno = TRAP_sig(uc);
1233
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1234
    if (trapno == 0x00 || trapno == 0x05) {
1235
        /* send division by zero or bound exception */
1236
        cpu_send_trap(pc, trapno, uc);
1237
        return 1;
1238
    } else
1239
#endif
1240
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1241
                                 trapno == 0xe ? 
1242
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1243
                                 &uc->uc_sigmask, puc);
1244
}
1245

    
1246
#elif defined(__x86_64__)
1247

    
1248
int cpu_signal_handler(int host_signum, void *pinfo,
1249
                       void *puc)
1250
{
1251
    siginfo_t *info = pinfo;
1252
    struct ucontext *uc = puc;
1253
    unsigned long pc;
1254

    
1255
    pc = uc->uc_mcontext.gregs[REG_RIP];
1256
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1257
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1258
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1259
                             &uc->uc_sigmask, puc);
1260
}
1261

    
1262
#elif defined(__powerpc__)
1263

    
1264
/***********************************************************************
1265
 * signal context platform-specific definitions
1266
 * From Wine
1267
 */
1268
#ifdef linux
1269
/* All Registers access - only for local access */
1270
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1271
/* Gpr Registers access  */
1272
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1273
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1274
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1275
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1276
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1277
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1278
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1279
/* Float Registers access  */
1280
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1281
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1282
/* Exception Registers access */
1283
# define DAR_sig(context)                        REG_sig(dar, context)
1284
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1285
# define TRAP_sig(context)                        REG_sig(trap, context)
1286
#endif /* linux */
1287

    
1288
#ifdef __APPLE__
1289
# include <sys/ucontext.h>
1290
typedef struct ucontext SIGCONTEXT;
1291
/* All Registers access - only for local access */
1292
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1293
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1294
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1295
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1296
/* Gpr Registers access */
1297
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1298
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1299
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1300
# define CTR_sig(context)                        REG_sig(ctr, context)
1301
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1302
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1303
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1304
/* Float Registers access */
1305
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1306
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1307
/* Exception Registers access */
1308
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1309
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1310
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1311
#endif /* __APPLE__ */
1312

    
1313
int cpu_signal_handler(int host_signum, void *pinfo, 
1314
                       void *puc)
1315
{
1316
    siginfo_t *info = pinfo;
1317
    struct ucontext *uc = puc;
1318
    unsigned long pc;
1319
    int is_write;
1320

    
1321
    pc = IAR_sig(uc);
1322
    is_write = 0;
1323
#if 0
1324
    /* ppc 4xx case */
1325
    if (DSISR_sig(uc) & 0x00800000)
1326
        is_write = 1;
1327
#else
1328
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1329
        is_write = 1;
1330
#endif
1331
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1332
                             is_write, &uc->uc_sigmask, puc);
1333
}
1334

    
1335
#elif defined(__alpha__)
1336

    
1337
int cpu_signal_handler(int host_signum, void *pinfo, 
1338
                           void *puc)
1339
{
1340
    siginfo_t *info = pinfo;
1341
    struct ucontext *uc = puc;
1342
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1343
    uint32_t insn = *pc;
1344
    int is_write = 0;
1345

    
1346
    /* XXX: need kernel patch to get write flag faster */
1347
    switch (insn >> 26) {
1348
    case 0x0d: // stw
1349
    case 0x0e: // stb
1350
    case 0x0f: // stq_u
1351
    case 0x24: // stf
1352
    case 0x25: // stg
1353
    case 0x26: // sts
1354
    case 0x27: // stt
1355
    case 0x2c: // stl
1356
    case 0x2d: // stq
1357
    case 0x2e: // stl_c
1358
    case 0x2f: // stq_c
1359
        is_write = 1;
1360
    }
1361

    
1362
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1363
                             is_write, &uc->uc_sigmask, puc);
1364
}
1365
#elif defined(__sparc__)
1366

    
1367
int cpu_signal_handler(int host_signum, void *pinfo, 
1368
                       void *puc)
1369
{
1370
    siginfo_t *info = pinfo;
1371
    uint32_t *regs = (uint32_t *)(info + 1);
1372
    void *sigmask = (regs + 20);
1373
    unsigned long pc;
1374
    int is_write;
1375
    uint32_t insn;
1376
    
1377
    /* XXX: is there a standard glibc define ? */
1378
    pc = regs[1];
1379
    /* XXX: need kernel patch to get write flag faster */
1380
    is_write = 0;
1381
    insn = *(uint32_t *)pc;
1382
    if ((insn >> 30) == 3) {
1383
      switch((insn >> 19) & 0x3f) {
1384
      case 0x05: // stb
1385
      case 0x06: // sth
1386
      case 0x04: // st
1387
      case 0x07: // std
1388
      case 0x24: // stf
1389
      case 0x27: // stdf
1390
      case 0x25: // stfsr
1391
        is_write = 1;
1392
        break;
1393
      }
1394
    }
1395
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1396
                             is_write, sigmask, NULL);
1397
}
1398

    
1399
#elif defined(__arm__)
1400

    
1401
int cpu_signal_handler(int host_signum, void *pinfo, 
1402
                       void *puc)
1403
{
1404
    siginfo_t *info = pinfo;
1405
    struct ucontext *uc = puc;
1406
    unsigned long pc;
1407
    int is_write;
1408
    
1409
    pc = uc->uc_mcontext.gregs[R15];
1410
    /* XXX: compute is_write */
1411
    is_write = 0;
1412
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1413
                             is_write,
1414
                             &uc->uc_sigmask, puc);
1415
}
1416

    
1417
#elif defined(__mc68000)
1418

    
1419
int cpu_signal_handler(int host_signum, void *pinfo, 
1420
                       void *puc)
1421
{
1422
    siginfo_t *info = pinfo;
1423
    struct ucontext *uc = puc;
1424
    unsigned long pc;
1425
    int is_write;
1426
    
1427
    pc = uc->uc_mcontext.gregs[16];
1428
    /* XXX: compute is_write */
1429
    is_write = 0;
1430
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1431
                             is_write,
1432
                             &uc->uc_sigmask, puc);
1433
}
1434

    
1435
#elif defined(__ia64)
1436

    
1437
#ifndef __ISR_VALID
1438
  /* This ought to be in <bits/siginfo.h>... */
1439
# define __ISR_VALID        1
1440
#endif
1441

    
1442
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1443
{
1444
    siginfo_t *info = pinfo;
1445
    struct ucontext *uc = puc;
1446
    unsigned long ip;
1447
    int is_write = 0;
1448

    
1449
    ip = uc->uc_mcontext.sc_ip;
1450
    switch (host_signum) {
1451
      case SIGILL:
1452
      case SIGFPE:
1453
      case SIGSEGV:
1454
      case SIGBUS:
1455
      case SIGTRAP:
1456
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1457
              /* ISR.W (write-access) is bit 33:  */
1458
              is_write = (info->si_isr >> 33) & 1;
1459
          break;
1460

    
1461
      default:
1462
          break;
1463
    }
1464
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1465
                             is_write,
1466
                             &uc->uc_sigmask, puc);
1467
}
1468

    
1469
#elif defined(__s390__)
1470

    
1471
int cpu_signal_handler(int host_signum, void *pinfo, 
1472
                       void *puc)
1473
{
1474
    siginfo_t *info = pinfo;
1475
    struct ucontext *uc = puc;
1476
    unsigned long pc;
1477
    int is_write;
1478
    
1479
    pc = uc->uc_mcontext.psw.addr;
1480
    /* XXX: compute is_write */
1481
    is_write = 0;
1482
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1483
                             is_write,
1484
                             &uc->uc_sigmask, puc);
1485
}
1486

    
1487
#else
1488

    
1489
#error host CPU specific signal handler needed
1490

    
1491
#endif
1492

    
1493
#endif /* !defined(CONFIG_SOFTMMU) */