Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 3523e4bd

History | View | Annotate | Download (71.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21
#include <linux/kvm_para.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu/sysemu.h"
25
#include "sysemu/kvm.h"
26
#include "kvm_i386.h"
27
#include "cpu.h"
28
#include "exec/gdbstub.h"
29
#include "qemu/host-utils.h"
30
#include "qemu/config-file.h"
31
#include "hw/i386/pc.h"
32
#include "hw/i386/apic.h"
33
#include "exec/ioport.h"
34
#include <asm/hyperv.h>
35
#include "hw/pci/pci.h"
36

    
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
static bool has_msr_tsc_adjust;
67
static bool has_msr_tsc_deadline;
68
static bool has_msr_feature_control;
69
static bool has_msr_async_pf_en;
70
static bool has_msr_pv_eoi_en;
71
static bool has_msr_misc_enable;
72
static bool has_msr_kvm_steal_time;
73
static int lm_capable_kernel;
74

    
75
static bool has_msr_architectural_pmu;
76
static uint32_t num_architectural_pmu_counters;
77

    
78
bool kvm_allows_irq0_override(void)
79
{
80
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
81
}
82

    
83
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
84
{
85
    struct kvm_cpuid2 *cpuid;
86
    int r, size;
87

    
88
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
89
    cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
90
    cpuid->nent = max;
91
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
92
    if (r == 0 && cpuid->nent >= max) {
93
        r = -E2BIG;
94
    }
95
    if (r < 0) {
96
        if (r == -E2BIG) {
97
            g_free(cpuid);
98
            return NULL;
99
        } else {
100
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
101
                    strerror(-r));
102
            exit(1);
103
        }
104
    }
105
    return cpuid;
106
}
107

    
108
/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
109
 * for all entries.
110
 */
111
static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
112
{
113
    struct kvm_cpuid2 *cpuid;
114
    int max = 1;
115
    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
116
        max *= 2;
117
    }
118
    return cpuid;
119
}
120

    
121
struct kvm_para_features {
122
    int cap;
123
    int feature;
124
} para_features[] = {
125
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
126
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
127
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
128
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
129
    { -1, -1 }
130
};
131

    
132
static int get_para_features(KVMState *s)
133
{
134
    int i, features = 0;
135

    
136
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
137
        if (kvm_check_extension(s, para_features[i].cap)) {
138
            features |= (1 << para_features[i].feature);
139
        }
140
    }
141

    
142
    return features;
143
}
144

    
145

    
146
/* Returns the value for a specific register on the cpuid entry
147
 */
148
static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
149
{
150
    uint32_t ret = 0;
151
    switch (reg) {
152
    case R_EAX:
153
        ret = entry->eax;
154
        break;
155
    case R_EBX:
156
        ret = entry->ebx;
157
        break;
158
    case R_ECX:
159
        ret = entry->ecx;
160
        break;
161
    case R_EDX:
162
        ret = entry->edx;
163
        break;
164
    }
165
    return ret;
166
}
167

    
168
/* Find matching entry for function/index on kvm_cpuid2 struct
169
 */
170
static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
171
                                                 uint32_t function,
172
                                                 uint32_t index)
173
{
174
    int i;
175
    for (i = 0; i < cpuid->nent; ++i) {
176
        if (cpuid->entries[i].function == function &&
177
            cpuid->entries[i].index == index) {
178
            return &cpuid->entries[i];
179
        }
180
    }
181
    /* not found: */
182
    return NULL;
183
}
184

    
185
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
186
                                      uint32_t index, int reg)
187
{
188
    struct kvm_cpuid2 *cpuid;
189
    uint32_t ret = 0;
190
    uint32_t cpuid_1_edx;
191
    bool found = false;
192

    
193
    cpuid = get_supported_cpuid(s);
194

    
195
    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
196
    if (entry) {
197
        found = true;
198
        ret = cpuid_entry_get_reg(entry, reg);
199
    }
200

    
201
    /* Fixups for the data returned by KVM, below */
202

    
203
    if (function == 1 && reg == R_EDX) {
204
        /* KVM before 2.6.30 misreports the following features */
205
        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
206
    } else if (function == 1 && reg == R_ECX) {
207
        /* We can set the hypervisor flag, even if KVM does not return it on
208
         * GET_SUPPORTED_CPUID
209
         */
210
        ret |= CPUID_EXT_HYPERVISOR;
211
        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
212
         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
213
         * and the irqchip is in the kernel.
214
         */
215
        if (kvm_irqchip_in_kernel() &&
216
                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
217
            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
218
        }
219

    
220
        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
221
         * without the in-kernel irqchip
222
         */
223
        if (!kvm_irqchip_in_kernel()) {
224
            ret &= ~CPUID_EXT_X2APIC;
225
        }
226
    } else if (function == 0x80000001 && reg == R_EDX) {
227
        /* On Intel, kvm returns cpuid according to the Intel spec,
228
         * so add missing bits according to the AMD spec:
229
         */
230
        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
231
        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
232
    }
233

    
234
    g_free(cpuid);
235

    
236
    /* fallback for older kernels */
237
    if ((function == KVM_CPUID_FEATURES) && !found) {
238
        ret = get_para_features(s);
239
    }
240

    
241
    return ret;
242
}
243

    
244
typedef struct HWPoisonPage {
245
    ram_addr_t ram_addr;
246
    QLIST_ENTRY(HWPoisonPage) list;
247
} HWPoisonPage;
248

    
249
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
250
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
251

    
252
static void kvm_unpoison_all(void *param)
253
{
254
    HWPoisonPage *page, *next_page;
255

    
256
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
257
        QLIST_REMOVE(page, list);
258
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
259
        g_free(page);
260
    }
261
}
262

    
263
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
264
{
265
    HWPoisonPage *page;
266

    
267
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
268
        if (page->ram_addr == ram_addr) {
269
            return;
270
        }
271
    }
272
    page = g_malloc(sizeof(HWPoisonPage));
273
    page->ram_addr = ram_addr;
274
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
275
}
276

    
277
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
278
                                     int *max_banks)
279
{
280
    int r;
281

    
282
    r = kvm_check_extension(s, KVM_CAP_MCE);
283
    if (r > 0) {
284
        *max_banks = r;
285
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
286
    }
287
    return -ENOSYS;
288
}
289

    
290
static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
291
{
292
    CPUX86State *env = &cpu->env;
293
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
294
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
295
    uint64_t mcg_status = MCG_STATUS_MCIP;
296

    
297
    if (code == BUS_MCEERR_AR) {
298
        status |= MCI_STATUS_AR | 0x134;
299
        mcg_status |= MCG_STATUS_EIPV;
300
    } else {
301
        status |= 0xc0;
302
        mcg_status |= MCG_STATUS_RIPV;
303
    }
304
    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
305
                       (MCM_ADDR_PHYS << 6) | 0xc,
306
                       cpu_x86_support_mca_broadcast(env) ?
307
                       MCE_INJECT_BROADCAST : 0);
308
}
309

    
310
static void hardware_memory_error(void)
311
{
312
    fprintf(stderr, "Hardware memory error!\n");
313
    exit(1);
314
}
315

    
316
int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
317
{
318
    X86CPU *cpu = X86_CPU(c);
319
    CPUX86State *env = &cpu->env;
320
    ram_addr_t ram_addr;
321
    hwaddr paddr;
322

    
323
    if ((env->mcg_cap & MCG_SER_P) && addr
324
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
325
        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
326
            !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
327
            fprintf(stderr, "Hardware memory error for memory used by "
328
                    "QEMU itself instead of guest system!\n");
329
            /* Hope we are lucky for AO MCE */
330
            if (code == BUS_MCEERR_AO) {
331
                return 0;
332
            } else {
333
                hardware_memory_error();
334
            }
335
        }
336
        kvm_hwpoison_page_add(ram_addr);
337
        kvm_mce_inject(cpu, paddr, code);
338
    } else {
339
        if (code == BUS_MCEERR_AO) {
340
            return 0;
341
        } else if (code == BUS_MCEERR_AR) {
342
            hardware_memory_error();
343
        } else {
344
            return 1;
345
        }
346
    }
347
    return 0;
348
}
349

    
350
int kvm_arch_on_sigbus(int code, void *addr)
351
{
352
    X86CPU *cpu = X86_CPU(first_cpu);
353

    
354
    if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
355
        ram_addr_t ram_addr;
356
        hwaddr paddr;
357

    
358
        /* Hope we are lucky for AO MCE */
359
        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
360
            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
361
                                                addr, &paddr)) {
362
            fprintf(stderr, "Hardware memory error for memory used by "
363
                    "QEMU itself instead of guest system!: %p\n", addr);
364
            return 0;
365
        }
366
        kvm_hwpoison_page_add(ram_addr);
367
        kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
368
    } else {
369
        if (code == BUS_MCEERR_AO) {
370
            return 0;
371
        } else if (code == BUS_MCEERR_AR) {
372
            hardware_memory_error();
373
        } else {
374
            return 1;
375
        }
376
    }
377
    return 0;
378
}
379

    
380
static int kvm_inject_mce_oldstyle(X86CPU *cpu)
381
{
382
    CPUX86State *env = &cpu->env;
383

    
384
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
385
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
386
        struct kvm_x86_mce mce;
387

    
388
        env->exception_injected = -1;
389

    
390
        /*
391
         * There must be at least one bank in use if an MCE is pending.
392
         * Find it and use its values for the event injection.
393
         */
394
        for (bank = 0; bank < bank_num; bank++) {
395
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
396
                break;
397
            }
398
        }
399
        assert(bank < bank_num);
400

    
401
        mce.bank = bank;
402
        mce.status = env->mce_banks[bank * 4 + 1];
403
        mce.mcg_status = env->mcg_status;
404
        mce.addr = env->mce_banks[bank * 4 + 2];
405
        mce.misc = env->mce_banks[bank * 4 + 3];
406

    
407
        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
408
    }
409
    return 0;
410
}
411

    
412
static void cpu_update_state(void *opaque, int running, RunState state)
413
{
414
    CPUX86State *env = opaque;
415

    
416
    if (running) {
417
        env->tsc_valid = false;
418
    }
419
}
420

    
421
unsigned long kvm_arch_vcpu_id(CPUState *cs)
422
{
423
    X86CPU *cpu = X86_CPU(cs);
424
    return cpu->env.cpuid_apic_id;
425
}
426

    
427
#ifndef KVM_CPUID_SIGNATURE_NEXT
428
#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
429
#endif
430

    
431
static bool hyperv_hypercall_available(X86CPU *cpu)
432
{
433
    return cpu->hyperv_vapic ||
434
           (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
435
}
436

    
437
static bool hyperv_enabled(X86CPU *cpu)
438
{
439
    return hyperv_hypercall_available(cpu) ||
440
           cpu->hyperv_relaxed_timing;
441
}
442

    
443
#define KVM_MAX_CPUID_ENTRIES  100
444

    
445
int kvm_arch_init_vcpu(CPUState *cs)
446
{
447
    struct {
448
        struct kvm_cpuid2 cpuid;
449
        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
450
    } QEMU_PACKED cpuid_data;
451
    X86CPU *cpu = X86_CPU(cs);
452
    CPUX86State *env = &cpu->env;
453
    uint32_t limit, i, j, cpuid_i;
454
    uint32_t unused;
455
    struct kvm_cpuid_entry2 *c;
456
    uint32_t signature[3];
457
    int r;
458

    
459
    memset(&cpuid_data, 0, sizeof(cpuid_data));
460

    
461
    cpuid_i = 0;
462

    
463
    /* Paravirtualization CPUIDs */
464
    c = &cpuid_data.entries[cpuid_i++];
465
    c->function = KVM_CPUID_SIGNATURE;
466
    if (!hyperv_enabled(cpu)) {
467
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
468
        c->eax = 0;
469
    } else {
470
        memcpy(signature, "Microsoft Hv", 12);
471
        c->eax = HYPERV_CPUID_MIN;
472
    }
473
    c->ebx = signature[0];
474
    c->ecx = signature[1];
475
    c->edx = signature[2];
476

    
477
    c = &cpuid_data.entries[cpuid_i++];
478
    c->function = KVM_CPUID_FEATURES;
479
    c->eax = env->features[FEAT_KVM];
480

    
481
    if (hyperv_enabled(cpu)) {
482
        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
483
        c->eax = signature[0];
484

    
485
        c = &cpuid_data.entries[cpuid_i++];
486
        c->function = HYPERV_CPUID_VERSION;
487
        c->eax = 0x00001bbc;
488
        c->ebx = 0x00060001;
489

    
490
        c = &cpuid_data.entries[cpuid_i++];
491
        c->function = HYPERV_CPUID_FEATURES;
492
        if (cpu->hyperv_relaxed_timing) {
493
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
494
        }
495
        if (cpu->hyperv_vapic) {
496
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
497
            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
498
        }
499

    
500
        c = &cpuid_data.entries[cpuid_i++];
501
        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
502
        if (cpu->hyperv_relaxed_timing) {
503
            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
504
        }
505
        if (cpu->hyperv_vapic) {
506
            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
507
        }
508
        c->ebx = cpu->hyperv_spinlock_attempts;
509

    
510
        c = &cpuid_data.entries[cpuid_i++];
511
        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
512
        c->eax = 0x40;
513
        c->ebx = 0x40;
514

    
515
        c = &cpuid_data.entries[cpuid_i++];
516
        c->function = KVM_CPUID_SIGNATURE_NEXT;
517
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
518
        c->eax = 0;
519
        c->ebx = signature[0];
520
        c->ecx = signature[1];
521
        c->edx = signature[2];
522
    }
523

    
524
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
525

    
526
    has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
527

    
528
    has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
529

    
530
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
531

    
532
    for (i = 0; i <= limit; i++) {
533
        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
534
            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
535
            abort();
536
        }
537
        c = &cpuid_data.entries[cpuid_i++];
538

    
539
        switch (i) {
540
        case 2: {
541
            /* Keep reading function 2 till all the input is received */
542
            int times;
543

    
544
            c->function = i;
545
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
546
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
547
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
548
            times = c->eax & 0xff;
549

    
550
            for (j = 1; j < times; ++j) {
551
                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
552
                    fprintf(stderr, "cpuid_data is full, no space for "
553
                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
554
                    abort();
555
                }
556
                c = &cpuid_data.entries[cpuid_i++];
557
                c->function = i;
558
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
559
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
560
            }
561
            break;
562
        }
563
        case 4:
564
        case 0xb:
565
        case 0xd:
566
            for (j = 0; ; j++) {
567
                if (i == 0xd && j == 64) {
568
                    break;
569
                }
570
                c->function = i;
571
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
572
                c->index = j;
573
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
574

    
575
                if (i == 4 && c->eax == 0) {
576
                    break;
577
                }
578
                if (i == 0xb && !(c->ecx & 0xff00)) {
579
                    break;
580
                }
581
                if (i == 0xd && c->eax == 0) {
582
                    continue;
583
                }
584
                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
585
                    fprintf(stderr, "cpuid_data is full, no space for "
586
                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
587
                    abort();
588
                }
589
                c = &cpuid_data.entries[cpuid_i++];
590
            }
591
            break;
592
        default:
593
            c->function = i;
594
            c->flags = 0;
595
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
596
            break;
597
        }
598
    }
599

    
600
    if (limit >= 0x0a) {
601
        uint32_t ver;
602

    
603
        cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
604
        if ((ver & 0xff) > 0) {
605
            has_msr_architectural_pmu = true;
606
            num_architectural_pmu_counters = (ver & 0xff00) >> 8;
607

    
608
            /* Shouldn't be more than 32, since that's the number of bits
609
             * available in EBX to tell us _which_ counters are available.
610
             * Play it safe.
611
             */
612
            if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
613
                num_architectural_pmu_counters = MAX_GP_COUNTERS;
614
            }
615
        }
616
    }
617

    
618
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
619

    
620
    for (i = 0x80000000; i <= limit; i++) {
621
        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
622
            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
623
            abort();
624
        }
625
        c = &cpuid_data.entries[cpuid_i++];
626

    
627
        c->function = i;
628
        c->flags = 0;
629
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
630
    }
631

    
632
    /* Call Centaur's CPUID instructions they are supported. */
633
    if (env->cpuid_xlevel2 > 0) {
634
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
635

    
636
        for (i = 0xC0000000; i <= limit; i++) {
637
            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
638
                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
639
                abort();
640
            }
641
            c = &cpuid_data.entries[cpuid_i++];
642

    
643
            c->function = i;
644
            c->flags = 0;
645
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
646
        }
647
    }
648

    
649
    cpuid_data.cpuid.nent = cpuid_i;
650

    
651
    if (((env->cpuid_version >> 8)&0xF) >= 6
652
        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
653
           (CPUID_MCE | CPUID_MCA)
654
        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
655
        uint64_t mcg_cap;
656
        int banks;
657
        int ret;
658

    
659
        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
660
        if (ret < 0) {
661
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
662
            return ret;
663
        }
664

    
665
        if (banks > MCE_BANKS_DEF) {
666
            banks = MCE_BANKS_DEF;
667
        }
668
        mcg_cap &= MCE_CAP_DEF;
669
        mcg_cap |= banks;
670
        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
671
        if (ret < 0) {
672
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
673
            return ret;
674
        }
675

    
676
        env->mcg_cap = mcg_cap;
677
    }
678

    
679
    qemu_add_vm_change_state_handler(cpu_update_state, env);
680

    
681
    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
682
    if (c) {
683
        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
684
                                  !!(c->ecx & CPUID_EXT_SMX);
685
    }
686

    
687
    cpuid_data.cpuid.padding = 0;
688
    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
689
    if (r) {
690
        return r;
691
    }
692

    
693
    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
694
    if (r && env->tsc_khz) {
695
        r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
696
        if (r < 0) {
697
            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
698
            return r;
699
        }
700
    }
701

    
702
    if (kvm_has_xsave()) {
703
        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
704
    }
705

    
706
    return 0;
707
}
708

    
709
void kvm_arch_reset_vcpu(CPUState *cs)
710
{
711
    X86CPU *cpu = X86_CPU(cs);
712
    CPUX86State *env = &cpu->env;
713

    
714
    env->exception_injected = -1;
715
    env->interrupt_injected = -1;
716
    env->xcr0 = 1;
717
    if (kvm_irqchip_in_kernel()) {
718
        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
719
                                          KVM_MP_STATE_UNINITIALIZED;
720
    } else {
721
        env->mp_state = KVM_MP_STATE_RUNNABLE;
722
    }
723
}
724

    
725
static int kvm_get_supported_msrs(KVMState *s)
726
{
727
    static int kvm_supported_msrs;
728
    int ret = 0;
729

    
730
    /* first time */
731
    if (kvm_supported_msrs == 0) {
732
        struct kvm_msr_list msr_list, *kvm_msr_list;
733

    
734
        kvm_supported_msrs = -1;
735

    
736
        /* Obtain MSR list from KVM.  These are the MSRs that we must
737
         * save/restore */
738
        msr_list.nmsrs = 0;
739
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
740
        if (ret < 0 && ret != -E2BIG) {
741
            return ret;
742
        }
743
        /* Old kernel modules had a bug and could write beyond the provided
744
           memory. Allocate at least a safe amount of 1K. */
745
        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
746
                                              msr_list.nmsrs *
747
                                              sizeof(msr_list.indices[0])));
748

    
749
        kvm_msr_list->nmsrs = msr_list.nmsrs;
750
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
751
        if (ret >= 0) {
752
            int i;
753

    
754
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
755
                if (kvm_msr_list->indices[i] == MSR_STAR) {
756
                    has_msr_star = true;
757
                    continue;
758
                }
759
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
760
                    has_msr_hsave_pa = true;
761
                    continue;
762
                }
763
                if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
764
                    has_msr_tsc_adjust = true;
765
                    continue;
766
                }
767
                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
768
                    has_msr_tsc_deadline = true;
769
                    continue;
770
                }
771
                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
772
                    has_msr_misc_enable = true;
773
                    continue;
774
                }
775
            }
776
        }
777

    
778
        g_free(kvm_msr_list);
779
    }
780

    
781
    return ret;
782
}
783

    
784
int kvm_arch_init(KVMState *s)
785
{
786
    uint64_t identity_base = 0xfffbc000;
787
    uint64_t shadow_mem;
788
    int ret;
789
    struct utsname utsname;
790

    
791
    ret = kvm_get_supported_msrs(s);
792
    if (ret < 0) {
793
        return ret;
794
    }
795

    
796
    uname(&utsname);
797
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
798

    
799
    /*
800
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
801
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
802
     * Since these must be part of guest physical memory, we need to allocate
803
     * them, both by setting their start addresses in the kernel and by
804
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
805
     *
806
     * Older KVM versions may not support setting the identity map base. In
807
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
808
     * size.
809
     */
810
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
811
        /* Allows up to 16M BIOSes. */
812
        identity_base = 0xfeffc000;
813

    
814
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
815
        if (ret < 0) {
816
            return ret;
817
        }
818
    }
819

    
820
    /* Set TSS base one page after EPT identity map. */
821
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
822
    if (ret < 0) {
823
        return ret;
824
    }
825

    
826
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
827
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
828
    if (ret < 0) {
829
        fprintf(stderr, "e820_add_entry() table is full\n");
830
        return ret;
831
    }
832
    qemu_register_reset(kvm_unpoison_all, NULL);
833

    
834
    shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
835
                                   "kvm_shadow_mem", -1);
836
    if (shadow_mem != -1) {
837
        shadow_mem /= 4096;
838
        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
839
        if (ret < 0) {
840
            return ret;
841
        }
842
    }
843
    return 0;
844
}
845

    
846
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
847
{
848
    lhs->selector = rhs->selector;
849
    lhs->base = rhs->base;
850
    lhs->limit = rhs->limit;
851
    lhs->type = 3;
852
    lhs->present = 1;
853
    lhs->dpl = 3;
854
    lhs->db = 0;
855
    lhs->s = 1;
856
    lhs->l = 0;
857
    lhs->g = 0;
858
    lhs->avl = 0;
859
    lhs->unusable = 0;
860
}
861

    
862
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
863
{
864
    unsigned flags = rhs->flags;
865
    lhs->selector = rhs->selector;
866
    lhs->base = rhs->base;
867
    lhs->limit = rhs->limit;
868
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
869
    lhs->present = (flags & DESC_P_MASK) != 0;
870
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
871
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
872
    lhs->s = (flags & DESC_S_MASK) != 0;
873
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
874
    lhs->g = (flags & DESC_G_MASK) != 0;
875
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
876
    lhs->unusable = 0;
877
    lhs->padding = 0;
878
}
879

    
880
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
881
{
882
    lhs->selector = rhs->selector;
883
    lhs->base = rhs->base;
884
    lhs->limit = rhs->limit;
885
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
886
                 (rhs->present * DESC_P_MASK) |
887
                 (rhs->dpl << DESC_DPL_SHIFT) |
888
                 (rhs->db << DESC_B_SHIFT) |
889
                 (rhs->s * DESC_S_MASK) |
890
                 (rhs->l << DESC_L_SHIFT) |
891
                 (rhs->g * DESC_G_MASK) |
892
                 (rhs->avl * DESC_AVL_MASK);
893
}
894

    
895
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
896
{
897
    if (set) {
898
        *kvm_reg = *qemu_reg;
899
    } else {
900
        *qemu_reg = *kvm_reg;
901
    }
902
}
903

    
904
static int kvm_getput_regs(X86CPU *cpu, int set)
905
{
906
    CPUX86State *env = &cpu->env;
907
    struct kvm_regs regs;
908
    int ret = 0;
909

    
910
    if (!set) {
911
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
912
        if (ret < 0) {
913
            return ret;
914
        }
915
    }
916

    
917
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
918
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
919
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
920
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
921
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
922
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
923
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
924
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
925
#ifdef TARGET_X86_64
926
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
927
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
928
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
929
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
930
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
931
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
932
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
933
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
934
#endif
935

    
936
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
937
    kvm_getput_reg(&regs.rip, &env->eip, set);
938

    
939
    if (set) {
940
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
941
    }
942

    
943
    return ret;
944
}
945

    
946
static int kvm_put_fpu(X86CPU *cpu)
947
{
948
    CPUX86State *env = &cpu->env;
949
    struct kvm_fpu fpu;
950
    int i;
951

    
952
    memset(&fpu, 0, sizeof fpu);
953
    fpu.fsw = env->fpus & ~(7 << 11);
954
    fpu.fsw |= (env->fpstt & 7) << 11;
955
    fpu.fcw = env->fpuc;
956
    fpu.last_opcode = env->fpop;
957
    fpu.last_ip = env->fpip;
958
    fpu.last_dp = env->fpdp;
959
    for (i = 0; i < 8; ++i) {
960
        fpu.ftwx |= (!env->fptags[i]) << i;
961
    }
962
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
963
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
964
    fpu.mxcsr = env->mxcsr;
965

    
966
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
967
}
968

    
969
#define XSAVE_FCW_FSW     0
970
#define XSAVE_FTW_FOP     1
971
#define XSAVE_CWD_RIP     2
972
#define XSAVE_CWD_RDP     4
973
#define XSAVE_MXCSR       6
974
#define XSAVE_ST_SPACE    8
975
#define XSAVE_XMM_SPACE   40
976
#define XSAVE_XSTATE_BV   128
977
#define XSAVE_YMMH_SPACE  144
978

    
979
static int kvm_put_xsave(X86CPU *cpu)
980
{
981
    CPUX86State *env = &cpu->env;
982
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
983
    uint16_t cwd, swd, twd;
984
    int i, r;
985

    
986
    if (!kvm_has_xsave()) {
987
        return kvm_put_fpu(cpu);
988
    }
989

    
990
    memset(xsave, 0, sizeof(struct kvm_xsave));
991
    twd = 0;
992
    swd = env->fpus & ~(7 << 11);
993
    swd |= (env->fpstt & 7) << 11;
994
    cwd = env->fpuc;
995
    for (i = 0; i < 8; ++i) {
996
        twd |= (!env->fptags[i]) << i;
997
    }
998
    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
999
    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1000
    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1001
    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1002
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1003
            sizeof env->fpregs);
1004
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1005
            sizeof env->xmm_regs);
1006
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
1007
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1008
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1009
            sizeof env->ymmh_regs);
1010
    r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1011
    return r;
1012
}
1013

    
1014
static int kvm_put_xcrs(X86CPU *cpu)
1015
{
1016
    CPUX86State *env = &cpu->env;
1017
    struct kvm_xcrs xcrs;
1018

    
1019
    if (!kvm_has_xcrs()) {
1020
        return 0;
1021
    }
1022

    
1023
    xcrs.nr_xcrs = 1;
1024
    xcrs.flags = 0;
1025
    xcrs.xcrs[0].xcr = 0;
1026
    xcrs.xcrs[0].value = env->xcr0;
1027
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1028
}
1029

    
1030
static int kvm_put_sregs(X86CPU *cpu)
1031
{
1032
    CPUX86State *env = &cpu->env;
1033
    struct kvm_sregs sregs;
1034

    
1035
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1036
    if (env->interrupt_injected >= 0) {
1037
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1038
                (uint64_t)1 << (env->interrupt_injected % 64);
1039
    }
1040

    
1041
    if ((env->eflags & VM_MASK)) {
1042
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1043
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1044
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1045
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1046
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1047
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1048
    } else {
1049
        set_seg(&sregs.cs, &env->segs[R_CS]);
1050
        set_seg(&sregs.ds, &env->segs[R_DS]);
1051
        set_seg(&sregs.es, &env->segs[R_ES]);
1052
        set_seg(&sregs.fs, &env->segs[R_FS]);
1053
        set_seg(&sregs.gs, &env->segs[R_GS]);
1054
        set_seg(&sregs.ss, &env->segs[R_SS]);
1055
    }
1056

    
1057
    set_seg(&sregs.tr, &env->tr);
1058
    set_seg(&sregs.ldt, &env->ldt);
1059

    
1060
    sregs.idt.limit = env->idt.limit;
1061
    sregs.idt.base = env->idt.base;
1062
    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1063
    sregs.gdt.limit = env->gdt.limit;
1064
    sregs.gdt.base = env->gdt.base;
1065
    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1066

    
1067
    sregs.cr0 = env->cr[0];
1068
    sregs.cr2 = env->cr[2];
1069
    sregs.cr3 = env->cr[3];
1070
    sregs.cr4 = env->cr[4];
1071

    
1072
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1073
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
1074

    
1075
    sregs.efer = env->efer;
1076

    
1077
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1078
}
1079

    
1080
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1081
                              uint32_t index, uint64_t value)
1082
{
1083
    entry->index = index;
1084
    entry->data = value;
1085
}
1086

    
1087
static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1088
{
1089
    CPUX86State *env = &cpu->env;
1090
    struct {
1091
        struct kvm_msrs info;
1092
        struct kvm_msr_entry entries[1];
1093
    } msr_data;
1094
    struct kvm_msr_entry *msrs = msr_data.entries;
1095

    
1096
    if (!has_msr_tsc_deadline) {
1097
        return 0;
1098
    }
1099

    
1100
    kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1101

    
1102
    msr_data.info.nmsrs = 1;
1103

    
1104
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1105
}
1106

    
1107
static int kvm_put_msrs(X86CPU *cpu, int level)
1108
{
1109
    CPUX86State *env = &cpu->env;
1110
    struct {
1111
        struct kvm_msrs info;
1112
        struct kvm_msr_entry entries[100];
1113
    } msr_data;
1114
    struct kvm_msr_entry *msrs = msr_data.entries;
1115
    int n = 0, i;
1116

    
1117
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1118
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1119
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1120
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1121
    if (has_msr_star) {
1122
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1123
    }
1124
    if (has_msr_hsave_pa) {
1125
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1126
    }
1127
    if (has_msr_tsc_adjust) {
1128
        kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1129
    }
1130
    if (has_msr_misc_enable) {
1131
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1132
                          env->msr_ia32_misc_enable);
1133
    }
1134
#ifdef TARGET_X86_64
1135
    if (lm_capable_kernel) {
1136
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1137
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1138
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1139
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1140
    }
1141
#endif
1142
    if (level == KVM_PUT_FULL_STATE) {
1143
        /*
1144
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1145
         * writeback. Until this is fixed, we only write the offset to SMP
1146
         * guests after migration, desynchronizing the VCPUs, but avoiding
1147
         * huge jump-backs that would occur without any writeback at all.
1148
         */
1149
        if (smp_cpus == 1 || env->tsc != 0) {
1150
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1151
        }
1152
    }
1153
    /*
1154
     * The following MSRs have side effects on the guest or are too heavy
1155
     * for normal writeback. Limit them to reset or full state updates.
1156
     */
1157
    if (level >= KVM_PUT_RESET_STATE) {
1158
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1159
                          env->system_time_msr);
1160
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1161
        if (has_msr_async_pf_en) {
1162
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1163
                              env->async_pf_en_msr);
1164
        }
1165
        if (has_msr_pv_eoi_en) {
1166
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1167
                              env->pv_eoi_en_msr);
1168
        }
1169
        if (has_msr_kvm_steal_time) {
1170
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1171
                              env->steal_time_msr);
1172
        }
1173
        if (has_msr_architectural_pmu) {
1174
            /* Stop the counter.  */
1175
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1176
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1177

    
1178
            /* Set the counter values.  */
1179
            for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1180
                kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1181
                                  env->msr_fixed_counters[i]);
1182
            }
1183
            for (i = 0; i < num_architectural_pmu_counters; i++) {
1184
                kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1185
                                  env->msr_gp_counters[i]);
1186
                kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1187
                                  env->msr_gp_evtsel[i]);
1188
            }
1189
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1190
                              env->msr_global_status);
1191
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1192
                              env->msr_global_ovf_ctrl);
1193

    
1194
            /* Now start the PMU.  */
1195
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1196
                              env->msr_fixed_ctr_ctrl);
1197
            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1198
                              env->msr_global_ctrl);
1199
        }
1200
        if (hyperv_hypercall_available(cpu)) {
1201
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1202
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1203
        }
1204
        if (cpu->hyperv_vapic) {
1205
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1206
        }
1207
        if (has_msr_feature_control) {
1208
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_FEATURE_CONTROL,
1209
                              env->msr_ia32_feature_control);
1210
        }
1211
    }
1212
    if (env->mcg_cap) {
1213
        int i;
1214

    
1215
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1216
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1217
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1218
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1219
        }
1220
    }
1221

    
1222
    msr_data.info.nmsrs = n;
1223

    
1224
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1225

    
1226
}
1227

    
1228

    
1229
static int kvm_get_fpu(X86CPU *cpu)
1230
{
1231
    CPUX86State *env = &cpu->env;
1232
    struct kvm_fpu fpu;
1233
    int i, ret;
1234

    
1235
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1236
    if (ret < 0) {
1237
        return ret;
1238
    }
1239

    
1240
    env->fpstt = (fpu.fsw >> 11) & 7;
1241
    env->fpus = fpu.fsw;
1242
    env->fpuc = fpu.fcw;
1243
    env->fpop = fpu.last_opcode;
1244
    env->fpip = fpu.last_ip;
1245
    env->fpdp = fpu.last_dp;
1246
    for (i = 0; i < 8; ++i) {
1247
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1248
    }
1249
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1250
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1251
    env->mxcsr = fpu.mxcsr;
1252

    
1253
    return 0;
1254
}
1255

    
1256
static int kvm_get_xsave(X86CPU *cpu)
1257
{
1258
    CPUX86State *env = &cpu->env;
1259
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1260
    int ret, i;
1261
    uint16_t cwd, swd, twd;
1262

    
1263
    if (!kvm_has_xsave()) {
1264
        return kvm_get_fpu(cpu);
1265
    }
1266

    
1267
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1268
    if (ret < 0) {
1269
        return ret;
1270
    }
1271

    
1272
    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1273
    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1274
    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1275
    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1276
    env->fpstt = (swd >> 11) & 7;
1277
    env->fpus = swd;
1278
    env->fpuc = cwd;
1279
    for (i = 0; i < 8; ++i) {
1280
        env->fptags[i] = !((twd >> i) & 1);
1281
    }
1282
    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1283
    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1284
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1285
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1286
            sizeof env->fpregs);
1287
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1288
            sizeof env->xmm_regs);
1289
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1290
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1291
            sizeof env->ymmh_regs);
1292
    return 0;
1293
}
1294

    
1295
static int kvm_get_xcrs(X86CPU *cpu)
1296
{
1297
    CPUX86State *env = &cpu->env;
1298
    int i, ret;
1299
    struct kvm_xcrs xcrs;
1300

    
1301
    if (!kvm_has_xcrs()) {
1302
        return 0;
1303
    }
1304

    
1305
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1306
    if (ret < 0) {
1307
        return ret;
1308
    }
1309

    
1310
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1311
        /* Only support xcr0 now */
1312
        if (xcrs.xcrs[i].xcr == 0) {
1313
            env->xcr0 = xcrs.xcrs[i].value;
1314
            break;
1315
        }
1316
    }
1317
    return 0;
1318
}
1319

    
1320
static int kvm_get_sregs(X86CPU *cpu)
1321
{
1322
    CPUX86State *env = &cpu->env;
1323
    struct kvm_sregs sregs;
1324
    uint32_t hflags;
1325
    int bit, i, ret;
1326

    
1327
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1328
    if (ret < 0) {
1329
        return ret;
1330
    }
1331

    
1332
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1333
       to find it and save its number instead (-1 for none). */
1334
    env->interrupt_injected = -1;
1335
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1336
        if (sregs.interrupt_bitmap[i]) {
1337
            bit = ctz64(sregs.interrupt_bitmap[i]);
1338
            env->interrupt_injected = i * 64 + bit;
1339
            break;
1340
        }
1341
    }
1342

    
1343
    get_seg(&env->segs[R_CS], &sregs.cs);
1344
    get_seg(&env->segs[R_DS], &sregs.ds);
1345
    get_seg(&env->segs[R_ES], &sregs.es);
1346
    get_seg(&env->segs[R_FS], &sregs.fs);
1347
    get_seg(&env->segs[R_GS], &sregs.gs);
1348
    get_seg(&env->segs[R_SS], &sregs.ss);
1349

    
1350
    get_seg(&env->tr, &sregs.tr);
1351
    get_seg(&env->ldt, &sregs.ldt);
1352

    
1353
    env->idt.limit = sregs.idt.limit;
1354
    env->idt.base = sregs.idt.base;
1355
    env->gdt.limit = sregs.gdt.limit;
1356
    env->gdt.base = sregs.gdt.base;
1357

    
1358
    env->cr[0] = sregs.cr0;
1359
    env->cr[2] = sregs.cr2;
1360
    env->cr[3] = sregs.cr3;
1361
    env->cr[4] = sregs.cr4;
1362

    
1363
    env->efer = sregs.efer;
1364

    
1365
    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1366

    
1367
#define HFLAG_COPY_MASK \
1368
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1369
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1370
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1371
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1372

    
1373
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1374
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1375
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1376
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1377
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1378
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1379
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1380

    
1381
    if (env->efer & MSR_EFER_LMA) {
1382
        hflags |= HF_LMA_MASK;
1383
    }
1384

    
1385
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1386
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1387
    } else {
1388
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1389
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1390
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1391
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1392
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1393
            !(hflags & HF_CS32_MASK)) {
1394
            hflags |= HF_ADDSEG_MASK;
1395
        } else {
1396
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1397
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1398
        }
1399
    }
1400
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1401

    
1402
    return 0;
1403
}
1404

    
1405
static int kvm_get_msrs(X86CPU *cpu)
1406
{
1407
    CPUX86State *env = &cpu->env;
1408
    struct {
1409
        struct kvm_msrs info;
1410
        struct kvm_msr_entry entries[100];
1411
    } msr_data;
1412
    struct kvm_msr_entry *msrs = msr_data.entries;
1413
    int ret, i, n;
1414

    
1415
    n = 0;
1416
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1417
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1418
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1419
    msrs[n++].index = MSR_PAT;
1420
    if (has_msr_star) {
1421
        msrs[n++].index = MSR_STAR;
1422
    }
1423
    if (has_msr_hsave_pa) {
1424
        msrs[n++].index = MSR_VM_HSAVE_PA;
1425
    }
1426
    if (has_msr_tsc_adjust) {
1427
        msrs[n++].index = MSR_TSC_ADJUST;
1428
    }
1429
    if (has_msr_tsc_deadline) {
1430
        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1431
    }
1432
    if (has_msr_misc_enable) {
1433
        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1434
    }
1435
    if (has_msr_feature_control) {
1436
        msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1437
    }
1438

    
1439
    if (!env->tsc_valid) {
1440
        msrs[n++].index = MSR_IA32_TSC;
1441
        env->tsc_valid = !runstate_is_running();
1442
    }
1443

    
1444
#ifdef TARGET_X86_64
1445
    if (lm_capable_kernel) {
1446
        msrs[n++].index = MSR_CSTAR;
1447
        msrs[n++].index = MSR_KERNELGSBASE;
1448
        msrs[n++].index = MSR_FMASK;
1449
        msrs[n++].index = MSR_LSTAR;
1450
    }
1451
#endif
1452
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1453
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1454
    if (has_msr_async_pf_en) {
1455
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1456
    }
1457
    if (has_msr_pv_eoi_en) {
1458
        msrs[n++].index = MSR_KVM_PV_EOI_EN;
1459
    }
1460
    if (has_msr_kvm_steal_time) {
1461
        msrs[n++].index = MSR_KVM_STEAL_TIME;
1462
    }
1463
    if (has_msr_architectural_pmu) {
1464
        msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1465
        msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1466
        msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1467
        msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1468
        for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1469
            msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1470
        }
1471
        for (i = 0; i < num_architectural_pmu_counters; i++) {
1472
            msrs[n++].index = MSR_P6_PERFCTR0 + i;
1473
            msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1474
        }
1475
    }
1476

    
1477
    if (env->mcg_cap) {
1478
        msrs[n++].index = MSR_MCG_STATUS;
1479
        msrs[n++].index = MSR_MCG_CTL;
1480
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1481
            msrs[n++].index = MSR_MC0_CTL + i;
1482
        }
1483
    }
1484

    
1485
    msr_data.info.nmsrs = n;
1486
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1487
    if (ret < 0) {
1488
        return ret;
1489
    }
1490

    
1491
    for (i = 0; i < ret; i++) {
1492
        uint32_t index = msrs[i].index;
1493
        switch (index) {
1494
        case MSR_IA32_SYSENTER_CS:
1495
            env->sysenter_cs = msrs[i].data;
1496
            break;
1497
        case MSR_IA32_SYSENTER_ESP:
1498
            env->sysenter_esp = msrs[i].data;
1499
            break;
1500
        case MSR_IA32_SYSENTER_EIP:
1501
            env->sysenter_eip = msrs[i].data;
1502
            break;
1503
        case MSR_PAT:
1504
            env->pat = msrs[i].data;
1505
            break;
1506
        case MSR_STAR:
1507
            env->star = msrs[i].data;
1508
            break;
1509
#ifdef TARGET_X86_64
1510
        case MSR_CSTAR:
1511
            env->cstar = msrs[i].data;
1512
            break;
1513
        case MSR_KERNELGSBASE:
1514
            env->kernelgsbase = msrs[i].data;
1515
            break;
1516
        case MSR_FMASK:
1517
            env->fmask = msrs[i].data;
1518
            break;
1519
        case MSR_LSTAR:
1520
            env->lstar = msrs[i].data;
1521
            break;
1522
#endif
1523
        case MSR_IA32_TSC:
1524
            env->tsc = msrs[i].data;
1525
            break;
1526
        case MSR_TSC_ADJUST:
1527
            env->tsc_adjust = msrs[i].data;
1528
            break;
1529
        case MSR_IA32_TSCDEADLINE:
1530
            env->tsc_deadline = msrs[i].data;
1531
            break;
1532
        case MSR_VM_HSAVE_PA:
1533
            env->vm_hsave = msrs[i].data;
1534
            break;
1535
        case MSR_KVM_SYSTEM_TIME:
1536
            env->system_time_msr = msrs[i].data;
1537
            break;
1538
        case MSR_KVM_WALL_CLOCK:
1539
            env->wall_clock_msr = msrs[i].data;
1540
            break;
1541
        case MSR_MCG_STATUS:
1542
            env->mcg_status = msrs[i].data;
1543
            break;
1544
        case MSR_MCG_CTL:
1545
            env->mcg_ctl = msrs[i].data;
1546
            break;
1547
        case MSR_IA32_MISC_ENABLE:
1548
            env->msr_ia32_misc_enable = msrs[i].data;
1549
            break;
1550
        case MSR_IA32_FEATURE_CONTROL:
1551
            env->msr_ia32_feature_control = msrs[i].data;
1552
            break;
1553
        default:
1554
            if (msrs[i].index >= MSR_MC0_CTL &&
1555
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1556
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1557
            }
1558
            break;
1559
        case MSR_KVM_ASYNC_PF_EN:
1560
            env->async_pf_en_msr = msrs[i].data;
1561
            break;
1562
        case MSR_KVM_PV_EOI_EN:
1563
            env->pv_eoi_en_msr = msrs[i].data;
1564
            break;
1565
        case MSR_KVM_STEAL_TIME:
1566
            env->steal_time_msr = msrs[i].data;
1567
            break;
1568
        case MSR_CORE_PERF_FIXED_CTR_CTRL:
1569
            env->msr_fixed_ctr_ctrl = msrs[i].data;
1570
            break;
1571
        case MSR_CORE_PERF_GLOBAL_CTRL:
1572
            env->msr_global_ctrl = msrs[i].data;
1573
            break;
1574
        case MSR_CORE_PERF_GLOBAL_STATUS:
1575
            env->msr_global_status = msrs[i].data;
1576
            break;
1577
        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1578
            env->msr_global_ovf_ctrl = msrs[i].data;
1579
            break;
1580
        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1581
            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1582
            break;
1583
        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1584
            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1585
            break;
1586
        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1587
            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1588
            break;
1589
        }
1590
    }
1591

    
1592
    return 0;
1593
}
1594

    
1595
static int kvm_put_mp_state(X86CPU *cpu)
1596
{
1597
    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1598

    
1599
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1600
}
1601

    
1602
static int kvm_get_mp_state(X86CPU *cpu)
1603
{
1604
    CPUState *cs = CPU(cpu);
1605
    CPUX86State *env = &cpu->env;
1606
    struct kvm_mp_state mp_state;
1607
    int ret;
1608

    
1609
    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1610
    if (ret < 0) {
1611
        return ret;
1612
    }
1613
    env->mp_state = mp_state.mp_state;
1614
    if (kvm_irqchip_in_kernel()) {
1615
        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1616
    }
1617
    return 0;
1618
}
1619

    
1620
static int kvm_get_apic(X86CPU *cpu)
1621
{
1622
    CPUX86State *env = &cpu->env;
1623
    DeviceState *apic = env->apic_state;
1624
    struct kvm_lapic_state kapic;
1625
    int ret;
1626

    
1627
    if (apic && kvm_irqchip_in_kernel()) {
1628
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1629
        if (ret < 0) {
1630
            return ret;
1631
        }
1632

    
1633
        kvm_get_apic_state(apic, &kapic);
1634
    }
1635
    return 0;
1636
}
1637

    
1638
static int kvm_put_apic(X86CPU *cpu)
1639
{
1640
    CPUX86State *env = &cpu->env;
1641
    DeviceState *apic = env->apic_state;
1642
    struct kvm_lapic_state kapic;
1643

    
1644
    if (apic && kvm_irqchip_in_kernel()) {
1645
        kvm_put_apic_state(apic, &kapic);
1646

    
1647
        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1648
    }
1649
    return 0;
1650
}
1651

    
1652
static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1653
{
1654
    CPUX86State *env = &cpu->env;
1655
    struct kvm_vcpu_events events;
1656

    
1657
    if (!kvm_has_vcpu_events()) {
1658
        return 0;
1659
    }
1660

    
1661
    events.exception.injected = (env->exception_injected >= 0);
1662
    events.exception.nr = env->exception_injected;
1663
    events.exception.has_error_code = env->has_error_code;
1664
    events.exception.error_code = env->error_code;
1665
    events.exception.pad = 0;
1666

    
1667
    events.interrupt.injected = (env->interrupt_injected >= 0);
1668
    events.interrupt.nr = env->interrupt_injected;
1669
    events.interrupt.soft = env->soft_interrupt;
1670

    
1671
    events.nmi.injected = env->nmi_injected;
1672
    events.nmi.pending = env->nmi_pending;
1673
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1674
    events.nmi.pad = 0;
1675

    
1676
    events.sipi_vector = env->sipi_vector;
1677

    
1678
    events.flags = 0;
1679
    if (level >= KVM_PUT_RESET_STATE) {
1680
        events.flags |=
1681
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1682
    }
1683

    
1684
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1685
}
1686

    
1687
static int kvm_get_vcpu_events(X86CPU *cpu)
1688
{
1689
    CPUX86State *env = &cpu->env;
1690
    struct kvm_vcpu_events events;
1691
    int ret;
1692

    
1693
    if (!kvm_has_vcpu_events()) {
1694
        return 0;
1695
    }
1696

    
1697
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1698
    if (ret < 0) {
1699
       return ret;
1700
    }
1701
    env->exception_injected =
1702
       events.exception.injected ? events.exception.nr : -1;
1703
    env->has_error_code = events.exception.has_error_code;
1704
    env->error_code = events.exception.error_code;
1705

    
1706
    env->interrupt_injected =
1707
        events.interrupt.injected ? events.interrupt.nr : -1;
1708
    env->soft_interrupt = events.interrupt.soft;
1709

    
1710
    env->nmi_injected = events.nmi.injected;
1711
    env->nmi_pending = events.nmi.pending;
1712
    if (events.nmi.masked) {
1713
        env->hflags2 |= HF2_NMI_MASK;
1714
    } else {
1715
        env->hflags2 &= ~HF2_NMI_MASK;
1716
    }
1717

    
1718
    env->sipi_vector = events.sipi_vector;
1719

    
1720
    return 0;
1721
}
1722

    
1723
static int kvm_guest_debug_workarounds(X86CPU *cpu)
1724
{
1725
    CPUState *cs = CPU(cpu);
1726
    CPUX86State *env = &cpu->env;
1727
    int ret = 0;
1728
    unsigned long reinject_trap = 0;
1729

    
1730
    if (!kvm_has_vcpu_events()) {
1731
        if (env->exception_injected == 1) {
1732
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1733
        } else if (env->exception_injected == 3) {
1734
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1735
        }
1736
        env->exception_injected = -1;
1737
    }
1738

    
1739
    /*
1740
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1741
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1742
     * by updating the debug state once again if single-stepping is on.
1743
     * Another reason to call kvm_update_guest_debug here is a pending debug
1744
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1745
     * reinject them via SET_GUEST_DEBUG.
1746
     */
1747
    if (reinject_trap ||
1748
        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
1749
        ret = kvm_update_guest_debug(cs, reinject_trap);
1750
    }
1751
    return ret;
1752
}
1753

    
1754
static int kvm_put_debugregs(X86CPU *cpu)
1755
{
1756
    CPUX86State *env = &cpu->env;
1757
    struct kvm_debugregs dbgregs;
1758
    int i;
1759

    
1760
    if (!kvm_has_debugregs()) {
1761
        return 0;
1762
    }
1763

    
1764
    for (i = 0; i < 4; i++) {
1765
        dbgregs.db[i] = env->dr[i];
1766
    }
1767
    dbgregs.dr6 = env->dr[6];
1768
    dbgregs.dr7 = env->dr[7];
1769
    dbgregs.flags = 0;
1770

    
1771
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1772
}
1773

    
1774
static int kvm_get_debugregs(X86CPU *cpu)
1775
{
1776
    CPUX86State *env = &cpu->env;
1777
    struct kvm_debugregs dbgregs;
1778
    int i, ret;
1779

    
1780
    if (!kvm_has_debugregs()) {
1781
        return 0;
1782
    }
1783

    
1784
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1785
    if (ret < 0) {
1786
        return ret;
1787
    }
1788
    for (i = 0; i < 4; i++) {
1789
        env->dr[i] = dbgregs.db[i];
1790
    }
1791
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1792
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1793

    
1794
    return 0;
1795
}
1796

    
1797
int kvm_arch_put_registers(CPUState *cpu, int level)
1798
{
1799
    X86CPU *x86_cpu = X86_CPU(cpu);
1800
    int ret;
1801

    
1802
    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1803

    
1804
    ret = kvm_getput_regs(x86_cpu, 1);
1805
    if (ret < 0) {
1806
        return ret;
1807
    }
1808
    ret = kvm_put_xsave(x86_cpu);
1809
    if (ret < 0) {
1810
        return ret;
1811
    }
1812
    ret = kvm_put_xcrs(x86_cpu);
1813
    if (ret < 0) {
1814
        return ret;
1815
    }
1816
    ret = kvm_put_sregs(x86_cpu);
1817
    if (ret < 0) {
1818
        return ret;
1819
    }
1820
    /* must be before kvm_put_msrs */
1821
    ret = kvm_inject_mce_oldstyle(x86_cpu);
1822
    if (ret < 0) {
1823
        return ret;
1824
    }
1825
    ret = kvm_put_msrs(x86_cpu, level);
1826
    if (ret < 0) {
1827
        return ret;
1828
    }
1829
    if (level >= KVM_PUT_RESET_STATE) {
1830
        ret = kvm_put_mp_state(x86_cpu);
1831
        if (ret < 0) {
1832
            return ret;
1833
        }
1834
        ret = kvm_put_apic(x86_cpu);
1835
        if (ret < 0) {
1836
            return ret;
1837
        }
1838
    }
1839

    
1840
    ret = kvm_put_tscdeadline_msr(x86_cpu);
1841
    if (ret < 0) {
1842
        return ret;
1843
    }
1844

    
1845
    ret = kvm_put_vcpu_events(x86_cpu, level);
1846
    if (ret < 0) {
1847
        return ret;
1848
    }
1849
    ret = kvm_put_debugregs(x86_cpu);
1850
    if (ret < 0) {
1851
        return ret;
1852
    }
1853
    /* must be last */
1854
    ret = kvm_guest_debug_workarounds(x86_cpu);
1855
    if (ret < 0) {
1856
        return ret;
1857
    }
1858
    return 0;
1859
}
1860

    
1861
int kvm_arch_get_registers(CPUState *cs)
1862
{
1863
    X86CPU *cpu = X86_CPU(cs);
1864
    int ret;
1865

    
1866
    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1867

    
1868
    ret = kvm_getput_regs(cpu, 0);
1869
    if (ret < 0) {
1870
        return ret;
1871
    }
1872
    ret = kvm_get_xsave(cpu);
1873
    if (ret < 0) {
1874
        return ret;
1875
    }
1876
    ret = kvm_get_xcrs(cpu);
1877
    if (ret < 0) {
1878
        return ret;
1879
    }
1880
    ret = kvm_get_sregs(cpu);
1881
    if (ret < 0) {
1882
        return ret;
1883
    }
1884
    ret = kvm_get_msrs(cpu);
1885
    if (ret < 0) {
1886
        return ret;
1887
    }
1888
    ret = kvm_get_mp_state(cpu);
1889
    if (ret < 0) {
1890
        return ret;
1891
    }
1892
    ret = kvm_get_apic(cpu);
1893
    if (ret < 0) {
1894
        return ret;
1895
    }
1896
    ret = kvm_get_vcpu_events(cpu);
1897
    if (ret < 0) {
1898
        return ret;
1899
    }
1900
    ret = kvm_get_debugregs(cpu);
1901
    if (ret < 0) {
1902
        return ret;
1903
    }
1904
    return 0;
1905
}
1906

    
1907
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1908
{
1909
    X86CPU *x86_cpu = X86_CPU(cpu);
1910
    CPUX86State *env = &x86_cpu->env;
1911
    int ret;
1912

    
1913
    /* Inject NMI */
1914
    if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1915
        cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1916
        DPRINTF("injected NMI\n");
1917
        ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1918
        if (ret < 0) {
1919
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1920
                    strerror(-ret));
1921
        }
1922
    }
1923

    
1924
    if (!kvm_irqchip_in_kernel()) {
1925
        /* Force the VCPU out of its inner loop to process any INIT requests
1926
         * or pending TPR access reports. */
1927
        if (cpu->interrupt_request &
1928
            (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1929
            cpu->exit_request = 1;
1930
        }
1931

    
1932
        /* Try to inject an interrupt if the guest can accept it */
1933
        if (run->ready_for_interrupt_injection &&
1934
            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1935
            (env->eflags & IF_MASK)) {
1936
            int irq;
1937

    
1938
            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1939
            irq = cpu_get_pic_interrupt(env);
1940
            if (irq >= 0) {
1941
                struct kvm_interrupt intr;
1942

    
1943
                intr.irq = irq;
1944
                DPRINTF("injected interrupt %d\n", irq);
1945
                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1946
                if (ret < 0) {
1947
                    fprintf(stderr,
1948
                            "KVM: injection failed, interrupt lost (%s)\n",
1949
                            strerror(-ret));
1950
                }
1951
            }
1952
        }
1953

    
1954
        /* If we have an interrupt but the guest is not ready to receive an
1955
         * interrupt, request an interrupt window exit.  This will
1956
         * cause a return to userspace as soon as the guest is ready to
1957
         * receive interrupts. */
1958
        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1959
            run->request_interrupt_window = 1;
1960
        } else {
1961
            run->request_interrupt_window = 0;
1962
        }
1963

    
1964
        DPRINTF("setting tpr\n");
1965
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1966
    }
1967
}
1968

    
1969
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1970
{
1971
    X86CPU *x86_cpu = X86_CPU(cpu);
1972
    CPUX86State *env = &x86_cpu->env;
1973

    
1974
    if (run->if_flag) {
1975
        env->eflags |= IF_MASK;
1976
    } else {
1977
        env->eflags &= ~IF_MASK;
1978
    }
1979
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1980
    cpu_set_apic_base(env->apic_state, run->apic_base);
1981
}
1982

    
1983
int kvm_arch_process_async_events(CPUState *cs)
1984
{
1985
    X86CPU *cpu = X86_CPU(cs);
1986
    CPUX86State *env = &cpu->env;
1987

    
1988
    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1989
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1990
        assert(env->mcg_cap);
1991

    
1992
        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1993

    
1994
        kvm_cpu_synchronize_state(cs);
1995

    
1996
        if (env->exception_injected == EXCP08_DBLE) {
1997
            /* this means triple fault */
1998
            qemu_system_reset_request();
1999
            cs->exit_request = 1;
2000
            return 0;
2001
        }
2002
        env->exception_injected = EXCP12_MCHK;
2003
        env->has_error_code = 0;
2004

    
2005
        cs->halted = 0;
2006
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2007
            env->mp_state = KVM_MP_STATE_RUNNABLE;
2008
        }
2009
    }
2010

    
2011
    if (kvm_irqchip_in_kernel()) {
2012
        return 0;
2013
    }
2014

    
2015
    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2016
        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2017
        apic_poll_irq(env->apic_state);
2018
    }
2019
    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2020
         (env->eflags & IF_MASK)) ||
2021
        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2022
        cs->halted = 0;
2023
    }
2024
    if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
2025
        kvm_cpu_synchronize_state(cs);
2026
        do_cpu_init(cpu);
2027
    }
2028
    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2029
        kvm_cpu_synchronize_state(cs);
2030
        do_cpu_sipi(cpu);
2031
    }
2032
    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2033
        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2034
        kvm_cpu_synchronize_state(cs);
2035
        apic_handle_tpr_access_report(env->apic_state, env->eip,
2036
                                      env->tpr_access_type);
2037
    }
2038

    
2039
    return cs->halted;
2040
}
2041

    
2042
static int kvm_handle_halt(X86CPU *cpu)
2043
{
2044
    CPUState *cs = CPU(cpu);
2045
    CPUX86State *env = &cpu->env;
2046

    
2047
    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2048
          (env->eflags & IF_MASK)) &&
2049
        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2050
        cs->halted = 1;
2051
        return EXCP_HLT;
2052
    }
2053

    
2054
    return 0;
2055
}
2056

    
2057
static int kvm_handle_tpr_access(X86CPU *cpu)
2058
{
2059
    CPUX86State *env = &cpu->env;
2060
    CPUState *cs = CPU(cpu);
2061
    struct kvm_run *run = cs->kvm_run;
2062

    
2063
    apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
2064
                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
2065
                                                           : TPR_ACCESS_READ);
2066
    return 1;
2067
}
2068

    
2069
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2070
{
2071
    static const uint8_t int3 = 0xcc;
2072

    
2073
    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2074
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2075
        return -EINVAL;
2076
    }
2077
    return 0;
2078
}
2079

    
2080
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2081
{
2082
    uint8_t int3;
2083

    
2084
    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2085
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2086
        return -EINVAL;
2087
    }
2088
    return 0;
2089
}
2090

    
2091
static struct {
2092
    target_ulong addr;
2093
    int len;
2094
    int type;
2095
} hw_breakpoint[4];
2096

    
2097
static int nb_hw_breakpoint;
2098

    
2099
static int find_hw_breakpoint(target_ulong addr, int len, int type)
2100
{
2101
    int n;
2102

    
2103
    for (n = 0; n < nb_hw_breakpoint; n++) {
2104
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2105
            (hw_breakpoint[n].len == len || len == -1)) {
2106
            return n;
2107
        }
2108
    }
2109
    return -1;
2110
}
2111

    
2112
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2113
                                  target_ulong len, int type)
2114
{
2115
    switch (type) {
2116
    case GDB_BREAKPOINT_HW:
2117
        len = 1;
2118
        break;
2119
    case GDB_WATCHPOINT_WRITE:
2120
    case GDB_WATCHPOINT_ACCESS:
2121
        switch (len) {
2122
        case 1:
2123
            break;
2124
        case 2:
2125
        case 4:
2126
        case 8:
2127
            if (addr & (len - 1)) {
2128
                return -EINVAL;
2129
            }
2130
            break;
2131
        default:
2132
            return -EINVAL;
2133
        }
2134
        break;
2135
    default:
2136
        return -ENOSYS;
2137
    }
2138

    
2139
    if (nb_hw_breakpoint == 4) {
2140
        return -ENOBUFS;
2141
    }
2142
    if (find_hw_breakpoint(addr, len, type) >= 0) {
2143
        return -EEXIST;
2144
    }
2145
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
2146
    hw_breakpoint[nb_hw_breakpoint].len = len;
2147
    hw_breakpoint[nb_hw_breakpoint].type = type;
2148
    nb_hw_breakpoint++;
2149

    
2150
    return 0;
2151
}
2152

    
2153
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2154
                                  target_ulong len, int type)
2155
{
2156
    int n;
2157

    
2158
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2159
    if (n < 0) {
2160
        return -ENOENT;
2161
    }
2162
    nb_hw_breakpoint--;
2163
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2164

    
2165
    return 0;
2166
}
2167

    
2168
void kvm_arch_remove_all_hw_breakpoints(void)
2169
{
2170
    nb_hw_breakpoint = 0;
2171
}
2172

    
2173
static CPUWatchpoint hw_watchpoint;
2174

    
2175
static int kvm_handle_debug(X86CPU *cpu,
2176
                            struct kvm_debug_exit_arch *arch_info)
2177
{
2178
    CPUState *cs = CPU(cpu);
2179
    CPUX86State *env = &cpu->env;
2180
    int ret = 0;
2181
    int n;
2182

    
2183
    if (arch_info->exception == 1) {
2184
        if (arch_info->dr6 & (1 << 14)) {
2185
            if (cs->singlestep_enabled) {
2186
                ret = EXCP_DEBUG;
2187
            }
2188
        } else {
2189
            for (n = 0; n < 4; n++) {
2190
                if (arch_info->dr6 & (1 << n)) {
2191
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2192
                    case 0x0:
2193
                        ret = EXCP_DEBUG;
2194
                        break;
2195
                    case 0x1:
2196
                        ret = EXCP_DEBUG;
2197
                        env->watchpoint_hit = &hw_watchpoint;
2198
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2199
                        hw_watchpoint.flags = BP_MEM_WRITE;
2200
                        break;
2201
                    case 0x3:
2202
                        ret = EXCP_DEBUG;
2203
                        env->watchpoint_hit = &hw_watchpoint;
2204
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2205
                        hw_watchpoint.flags = BP_MEM_ACCESS;
2206
                        break;
2207
                    }
2208
                }
2209
            }
2210
        }
2211
    } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2212
        ret = EXCP_DEBUG;
2213
    }
2214
    if (ret == 0) {
2215
        cpu_synchronize_state(CPU(cpu));
2216
        assert(env->exception_injected == -1);
2217

    
2218
        /* pass to guest */
2219
        env->exception_injected = arch_info->exception;
2220
        env->has_error_code = 0;
2221
    }
2222

    
2223
    return ret;
2224
}
2225

    
2226
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2227
{
2228
    const uint8_t type_code[] = {
2229
        [GDB_BREAKPOINT_HW] = 0x0,
2230
        [GDB_WATCHPOINT_WRITE] = 0x1,
2231
        [GDB_WATCHPOINT_ACCESS] = 0x3
2232
    };
2233
    const uint8_t len_code[] = {
2234
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2235
    };
2236
    int n;
2237

    
2238
    if (kvm_sw_breakpoints_active(cpu)) {
2239
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2240
    }
2241
    if (nb_hw_breakpoint > 0) {
2242
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2243
        dbg->arch.debugreg[7] = 0x0600;
2244
        for (n = 0; n < nb_hw_breakpoint; n++) {
2245
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2246
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2247
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2248
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2249
        }
2250
    }
2251
}
2252

    
2253
static bool host_supports_vmx(void)
2254
{
2255
    uint32_t ecx, unused;
2256

    
2257
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2258
    return ecx & CPUID_EXT_VMX;
2259
}
2260

    
2261
#define VMX_INVALID_GUEST_STATE 0x80000021
2262

    
2263
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2264
{
2265
    X86CPU *cpu = X86_CPU(cs);
2266
    uint64_t code;
2267
    int ret;
2268

    
2269
    switch (run->exit_reason) {
2270
    case KVM_EXIT_HLT:
2271
        DPRINTF("handle_hlt\n");
2272
        ret = kvm_handle_halt(cpu);
2273
        break;
2274
    case KVM_EXIT_SET_TPR:
2275
        ret = 0;
2276
        break;
2277
    case KVM_EXIT_TPR_ACCESS:
2278
        ret = kvm_handle_tpr_access(cpu);
2279
        break;
2280
    case KVM_EXIT_FAIL_ENTRY:
2281
        code = run->fail_entry.hardware_entry_failure_reason;
2282
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2283
                code);
2284
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2285
            fprintf(stderr,
2286
                    "\nIf you're running a guest on an Intel machine without "
2287
                        "unrestricted mode\n"
2288
                    "support, the failure can be most likely due to the guest "
2289
                        "entering an invalid\n"
2290
                    "state for Intel VT. For example, the guest maybe running "
2291
                        "in big real mode\n"
2292
                    "which is not supported on less recent Intel processors."
2293
                        "\n\n");
2294
        }
2295
        ret = -1;
2296
        break;
2297
    case KVM_EXIT_EXCEPTION:
2298
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2299
                run->ex.exception, run->ex.error_code);
2300
        ret = -1;
2301
        break;
2302
    case KVM_EXIT_DEBUG:
2303
        DPRINTF("kvm_exit_debug\n");
2304
        ret = kvm_handle_debug(cpu, &run->debug.arch);
2305
        break;
2306
    default:
2307
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2308
        ret = -1;
2309
        break;
2310
    }
2311

    
2312
    return ret;
2313
}
2314

    
2315
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2316
{
2317
    X86CPU *cpu = X86_CPU(cs);
2318
    CPUX86State *env = &cpu->env;
2319

    
2320
    kvm_cpu_synchronize_state(cs);
2321
    return !(env->cr[0] & CR0_PE_MASK) ||
2322
           ((env->segs[R_CS].selector  & 3) != 3);
2323
}
2324

    
2325
void kvm_arch_init_irq_routing(KVMState *s)
2326
{
2327
    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2328
        /* If kernel can't do irq routing, interrupt source
2329
         * override 0->2 cannot be set up as required by HPET.
2330
         * So we have to disable it.
2331
         */
2332
        no_hpet = 1;
2333
    }
2334
    /* We know at this point that we're using the in-kernel
2335
     * irqchip, so we can use irqfds, and on x86 we know
2336
     * we can use msi via irqfd and GSI routing.
2337
     */
2338
    kvm_irqfds_allowed = true;
2339
    kvm_msi_via_irqfd_allowed = true;
2340
    kvm_gsi_routing_allowed = true;
2341
}
2342

    
2343
/* Classic KVM device assignment interface. Will remain x86 only. */
2344
int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2345
                          uint32_t flags, uint32_t *dev_id)
2346
{
2347
    struct kvm_assigned_pci_dev dev_data = {
2348
        .segnr = dev_addr->domain,
2349
        .busnr = dev_addr->bus,
2350
        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2351
        .flags = flags,
2352
    };
2353
    int ret;
2354

    
2355
    dev_data.assigned_dev_id =
2356
        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2357

    
2358
    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2359
    if (ret < 0) {
2360
        return ret;
2361
    }
2362

    
2363
    *dev_id = dev_data.assigned_dev_id;
2364

    
2365
    return 0;
2366
}
2367

    
2368
int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2369
{
2370
    struct kvm_assigned_pci_dev dev_data = {
2371
        .assigned_dev_id = dev_id,
2372
    };
2373

    
2374
    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2375
}
2376

    
2377
static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2378
                                   uint32_t irq_type, uint32_t guest_irq)
2379
{
2380
    struct kvm_assigned_irq assigned_irq = {
2381
        .assigned_dev_id = dev_id,
2382
        .guest_irq = guest_irq,
2383
        .flags = irq_type,
2384
    };
2385

    
2386
    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2387
        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2388
    } else {
2389
        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2390
    }
2391
}
2392

    
2393
int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2394
                           uint32_t guest_irq)
2395
{
2396
    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2397
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2398

    
2399
    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2400
}
2401

    
2402
int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2403
{
2404
    struct kvm_assigned_pci_dev dev_data = {
2405
        .assigned_dev_id = dev_id,
2406
        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2407
    };
2408

    
2409
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2410
}
2411

    
2412
static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2413
                                     uint32_t type)
2414
{
2415
    struct kvm_assigned_irq assigned_irq = {
2416
        .assigned_dev_id = dev_id,
2417
        .flags = type,
2418
    };
2419

    
2420
    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2421
}
2422

    
2423
int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2424
{
2425
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2426
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2427
}
2428

    
2429
int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2430
{
2431
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2432
                                              KVM_DEV_IRQ_GUEST_MSI, virq);
2433
}
2434

    
2435
int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2436
{
2437
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2438
                                                KVM_DEV_IRQ_HOST_MSI);
2439
}
2440

    
2441
bool kvm_device_msix_supported(KVMState *s)
2442
{
2443
    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2444
     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2445
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2446
}
2447

    
2448
int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2449
                                 uint32_t nr_vectors)
2450
{
2451
    struct kvm_assigned_msix_nr msix_nr = {
2452
        .assigned_dev_id = dev_id,
2453
        .entry_nr = nr_vectors,
2454
    };
2455

    
2456
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2457
}
2458

    
2459
int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2460
                               int virq)
2461
{
2462
    struct kvm_assigned_msix_entry msix_entry = {
2463
        .assigned_dev_id = dev_id,
2464
        .gsi = virq,
2465
        .entry = vector,
2466
    };
2467

    
2468
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2469
}
2470

    
2471
int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2472
{
2473
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2474
                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
2475
}
2476

    
2477
int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2478
{
2479
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2480
                                                KVM_DEV_IRQ_HOST_MSIX);
2481
}