Statistics
| Branch: | Revision:

root / hw / musicpal.c @ 35ef81d6

History | View | Annotate | Download (39.3 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_ETH_BASE             0x80008000
24
#define MP_ETH_SIZE             0x00001000
25

    
26
#define MP_UART1_BASE           0x8000C840
27
#define MP_UART2_BASE           0x8000C940
28

    
29
#define MP_FLASHCFG_BASE        0x90006000
30
#define MP_FLASHCFG_SIZE        0x00001000
31

    
32
#define MP_AUDIO_BASE           0x90007000
33
#define MP_AUDIO_SIZE           0x00001000
34

    
35
#define MP_PIC_BASE             0x90008000
36
#define MP_PIC_SIZE             0x00001000
37

    
38
#define MP_PIT_BASE             0x90009000
39
#define MP_PIT_SIZE             0x00001000
40

    
41
#define MP_LCD_BASE             0x9000c000
42
#define MP_LCD_SIZE             0x00001000
43

    
44
#define MP_SRAM_BASE            0xC0000000
45
#define MP_SRAM_SIZE            0x00020000
46

    
47
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
48
#define MP_FLASH_SIZE_MAX       32*1024*1024
49

    
50
#define MP_TIMER1_IRQ           4
51
/* ... */
52
#define MP_TIMER4_IRQ           7
53
#define MP_EHCI_IRQ             8
54
#define MP_ETH_IRQ              9
55
#define MP_UART1_IRQ            11
56
#define MP_UART2_IRQ            11
57
#define MP_GPIO_IRQ             12
58
#define MP_RTC_IRQ              28
59
#define MP_AUDIO_IRQ            30
60

    
61
static uint32_t gpio_in_state = 0xffffffff;
62
static uint32_t gpio_isr;
63
static uint32_t gpio_out_state;
64
static ram_addr_t sram_off;
65

    
66
/* Address conversion helpers */
67
static void *target2host_addr(uint32_t addr)
68
{
69
    if (addr < MP_SRAM_BASE) {
70
        if (addr >= MP_RAM_DEFAULT_SIZE)
71
            return NULL;
72
        return (void *)(phys_ram_base + addr);
73
    } else {
74
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
75
            return NULL;
76
        return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
77
    }
78
}
79

    
80
static uint32_t host2target_addr(void *addr)
81
{
82
    if (addr < ((void *)phys_ram_base) + sram_off)
83
        return (unsigned long)addr - (unsigned long)phys_ram_base;
84
    else
85
        return (unsigned long)addr - (unsigned long)phys_ram_base -
86
            sram_off + MP_SRAM_BASE;
87
}
88

    
89

    
90
typedef enum i2c_state {
91
    STOPPED = 0,
92
    INITIALIZING,
93
    SENDING_BIT7,
94
    SENDING_BIT6,
95
    SENDING_BIT5,
96
    SENDING_BIT4,
97
    SENDING_BIT3,
98
    SENDING_BIT2,
99
    SENDING_BIT1,
100
    SENDING_BIT0,
101
    WAITING_FOR_ACK,
102
    RECEIVING_BIT7,
103
    RECEIVING_BIT6,
104
    RECEIVING_BIT5,
105
    RECEIVING_BIT4,
106
    RECEIVING_BIT3,
107
    RECEIVING_BIT2,
108
    RECEIVING_BIT1,
109
    RECEIVING_BIT0,
110
    SENDING_ACK
111
} i2c_state;
112

    
113
typedef struct i2c_interface {
114
    i2c_bus *bus;
115
    i2c_state state;
116
    int last_data;
117
    int last_clock;
118
    uint8_t buffer;
119
    int current_addr;
120
} i2c_interface;
121

    
122
static void i2c_enter_stop(i2c_interface *i2c)
123
{
124
    if (i2c->current_addr >= 0)
125
        i2c_end_transfer(i2c->bus);
126
    i2c->current_addr = -1;
127
    i2c->state = STOPPED;
128
}
129

    
130
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
131
{
132
    if (!i2c)
133
        return;
134

    
135
    switch (i2c->state) {
136
    case STOPPED:
137
        if (data == 0 && i2c->last_data == 1 && clock == 1)
138
            i2c->state = INITIALIZING;
139
        break;
140

    
141
    case INITIALIZING:
142
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
143
            i2c->state = SENDING_BIT7;
144
        else
145
            i2c_enter_stop(i2c);
146
        break;
147

    
148
    case SENDING_BIT7 ... SENDING_BIT0:
149
        if (clock == 0 && i2c->last_clock == 1) {
150
            i2c->buffer = (i2c->buffer << 1) | data;
151
            i2c->state++; /* will end up in WAITING_FOR_ACK */
152
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
153
            i2c_enter_stop(i2c);
154
        break;
155

    
156
    case WAITING_FOR_ACK:
157
        if (clock == 0 && i2c->last_clock == 1) {
158
            if (i2c->current_addr < 0) {
159
                i2c->current_addr = i2c->buffer;
160
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
161
                                   i2c->buffer & 1);
162
            } else
163
                i2c_send(i2c->bus, i2c->buffer);
164
            if (i2c->current_addr & 1) {
165
                i2c->state = RECEIVING_BIT7;
166
                i2c->buffer = i2c_recv(i2c->bus);
167
            } else
168
                i2c->state = SENDING_BIT7;
169
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
170
            i2c_enter_stop(i2c);
171
        break;
172

    
173
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
174
        if (clock == 0 && i2c->last_clock == 1) {
175
            i2c->state++; /* will end up in SENDING_ACK */
176
            i2c->buffer <<= 1;
177
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
178
            i2c_enter_stop(i2c);
179
        break;
180

    
181
    case SENDING_ACK:
182
        if (clock == 0 && i2c->last_clock == 1) {
183
            i2c->state = RECEIVING_BIT7;
184
            if (data == 0)
185
                i2c->buffer = i2c_recv(i2c->bus);
186
            else
187
                i2c_nack(i2c->bus);
188
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
189
            i2c_enter_stop(i2c);
190
        break;
191
    }
192

    
193
    i2c->last_data = data;
194
    i2c->last_clock = clock;
195
}
196

    
197
static int i2c_get_data(i2c_interface *i2c)
198
{
199
    if (!i2c)
200
        return 0;
201

    
202
    switch (i2c->state) {
203
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
204
        return (i2c->buffer >> 7);
205

    
206
    case WAITING_FOR_ACK:
207
    default:
208
        return 0;
209
    }
210
}
211

    
212
static i2c_interface *mixer_i2c;
213

    
214
#ifdef HAS_AUDIO
215

    
216
/* Audio register offsets */
217
#define MP_AUDIO_PLAYBACK_MODE  0x00
218
#define MP_AUDIO_CLOCK_DIV      0x18
219
#define MP_AUDIO_IRQ_STATUS     0x20
220
#define MP_AUDIO_IRQ_ENABLE     0x24
221
#define MP_AUDIO_TX_START_LO    0x28
222
#define MP_AUDIO_TX_THRESHOLD   0x2C
223
#define MP_AUDIO_TX_STATUS      0x38
224
#define MP_AUDIO_TX_START_HI    0x40
225

    
226
/* Status register and IRQ enable bits */
227
#define MP_AUDIO_TX_HALF        (1 << 6)
228
#define MP_AUDIO_TX_FULL        (1 << 7)
229

    
230
/* Playback mode bits */
231
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
232
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
233
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
234
#define MP_AUDIO_MONO           (1 << 14)
235

    
236
/* Wolfson 8750 I2C address */
237
#define MP_WM_ADDR              0x34
238

    
239
static const char audio_name[] = "mv88w8618";
240

    
241
typedef struct musicpal_audio_state {
242
    qemu_irq irq;
243
    uint32_t playback_mode;
244
    uint32_t status;
245
    uint32_t irq_enable;
246
    unsigned long phys_buf;
247
    int8_t *target_buffer;
248
    unsigned int threshold;
249
    unsigned int play_pos;
250
    unsigned int last_free;
251
    uint32_t clock_div;
252
    i2c_slave *wm;
253
} musicpal_audio_state;
254

    
255
static void audio_callback(void *opaque, int free_out, int free_in)
256
{
257
    musicpal_audio_state *s = opaque;
258
    int16_t *codec_buffer;
259
    int8_t *mem_buffer;
260
    int pos, block_size;
261

    
262
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
263
        return;
264

    
265
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
266
        free_out <<= 1;
267

    
268
    if (!(s->playback_mode & MP_AUDIO_MONO))
269
        free_out <<= 1;
270

    
271
    block_size = s->threshold/2;
272
    if (free_out - s->last_free < block_size)
273
        return;
274

    
275
    mem_buffer = s->target_buffer + s->play_pos;
276
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
277
        if (s->playback_mode & MP_AUDIO_MONO) {
278
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
279
            for (pos = 0; pos < block_size; pos += 2) {
280
                *codec_buffer++ = *(int16_t *)mem_buffer;
281
                *codec_buffer++ = *(int16_t *)mem_buffer;
282
                mem_buffer += 2;
283
            }
284
        } else
285
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
286
                   (uint32_t *)mem_buffer, block_size);
287
    } else {
288
        if (s->playback_mode & MP_AUDIO_MONO) {
289
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
290
            for (pos = 0; pos < block_size; pos++) {
291
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
292
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
293
            }
294
        } else {
295
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
296
            for (pos = 0; pos < block_size; pos += 2) {
297
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
298
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
299
            }
300
        }
301
    }
302
    wm8750_dac_commit(s->wm);
303

    
304
    s->last_free = free_out - block_size;
305

    
306
    if (s->play_pos == 0) {
307
        s->status |= MP_AUDIO_TX_HALF;
308
        s->play_pos = block_size;
309
    } else {
310
        s->status |= MP_AUDIO_TX_FULL;
311
        s->play_pos = 0;
312
    }
313

    
314
    if (s->status & s->irq_enable)
315
        qemu_irq_raise(s->irq);
316
}
317

    
318
static void musicpal_audio_clock_update(musicpal_audio_state *s)
319
{
320
    int rate;
321

    
322
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
323
        rate = 24576000 / 64; /* 24.576MHz */
324
    else
325
        rate = 11289600 / 64; /* 11.2896MHz */
326

    
327
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
328

    
329
    wm8750_set_bclk_in(s->wm, rate);
330
}
331

    
332
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
333
{
334
    musicpal_audio_state *s = opaque;
335

    
336
    switch (offset) {
337
    case MP_AUDIO_PLAYBACK_MODE:
338
        return s->playback_mode;
339

    
340
    case MP_AUDIO_CLOCK_DIV:
341
        return s->clock_div;
342

    
343
    case MP_AUDIO_IRQ_STATUS:
344
        return s->status;
345

    
346
    case MP_AUDIO_IRQ_ENABLE:
347
        return s->irq_enable;
348

    
349
    case MP_AUDIO_TX_STATUS:
350
        return s->play_pos >> 2;
351

    
352
    default:
353
        return 0;
354
    }
355
}
356

    
357
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
358
                                 uint32_t value)
359
{
360
    musicpal_audio_state *s = opaque;
361

    
362
    switch (offset) {
363
    case MP_AUDIO_PLAYBACK_MODE:
364
        if (value & MP_AUDIO_PLAYBACK_EN &&
365
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
366
            s->status = 0;
367
            s->last_free = 0;
368
            s->play_pos = 0;
369
        }
370
        s->playback_mode = value;
371
        musicpal_audio_clock_update(s);
372
        break;
373

    
374
    case MP_AUDIO_CLOCK_DIV:
375
        s->clock_div = value;
376
        s->last_free = 0;
377
        s->play_pos = 0;
378
        musicpal_audio_clock_update(s);
379
        break;
380

    
381
    case MP_AUDIO_IRQ_STATUS:
382
        s->status &= ~value;
383
        break;
384

    
385
    case MP_AUDIO_IRQ_ENABLE:
386
        s->irq_enable = value;
387
        if (s->status & s->irq_enable)
388
            qemu_irq_raise(s->irq);
389
        break;
390

    
391
    case MP_AUDIO_TX_START_LO:
392
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
393
        s->target_buffer = target2host_addr(s->phys_buf);
394
        s->play_pos = 0;
395
        s->last_free = 0;
396
        break;
397

    
398
    case MP_AUDIO_TX_THRESHOLD:
399
        s->threshold = (value + 1) * 4;
400
        break;
401

    
402
    case MP_AUDIO_TX_START_HI:
403
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
404
        s->target_buffer = target2host_addr(s->phys_buf);
405
        s->play_pos = 0;
406
        s->last_free = 0;
407
        break;
408
    }
409
}
410

    
411
static void musicpal_audio_reset(void *opaque)
412
{
413
    musicpal_audio_state *s = opaque;
414

    
415
    s->playback_mode = 0;
416
    s->status = 0;
417
    s->irq_enable = 0;
418
}
419

    
420
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
421
    musicpal_audio_read,
422
    musicpal_audio_read,
423
    musicpal_audio_read
424
};
425

    
426
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
427
    musicpal_audio_write,
428
    musicpal_audio_write,
429
    musicpal_audio_write
430
};
431

    
432
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
433
{
434
    AudioState *audio;
435
    musicpal_audio_state *s;
436
    i2c_interface *i2c;
437
    int iomemtype;
438

    
439
    audio = AUD_init();
440
    if (!audio) {
441
        AUD_log(audio_name, "No audio state\n");
442
        return NULL;
443
    }
444

    
445
    s = qemu_mallocz(sizeof(musicpal_audio_state));
446
    if (!s)
447
        return NULL;
448
    s->irq = irq;
449

    
450
    i2c = qemu_mallocz(sizeof(i2c_interface));
451
    if (!i2c)
452
        return NULL;
453
    i2c->bus = i2c_init_bus();
454
    i2c->current_addr = -1;
455

    
456
    s->wm = wm8750_init(i2c->bus, audio);
457
    if (!s->wm)
458
        return NULL;
459
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
460
    wm8750_data_req_set(s->wm, audio_callback, s);
461

    
462
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
463
                       musicpal_audio_writefn, s);
464
    cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
465

    
466
    qemu_register_reset(musicpal_audio_reset, s);
467

    
468
    return i2c;
469
}
470
#else  /* !HAS_AUDIO */
471
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
472
{
473
    return NULL;
474
}
475
#endif /* !HAS_AUDIO */
476

    
477
/* Ethernet register offsets */
478
#define MP_ETH_SMIR             0x010
479
#define MP_ETH_PCXR             0x408
480
#define MP_ETH_SDCMR            0x448
481
#define MP_ETH_ICR              0x450
482
#define MP_ETH_IMR              0x458
483
#define MP_ETH_FRDP0            0x480
484
#define MP_ETH_FRDP1            0x484
485
#define MP_ETH_FRDP2            0x488
486
#define MP_ETH_FRDP3            0x48C
487
#define MP_ETH_CRDP0            0x4A0
488
#define MP_ETH_CRDP1            0x4A4
489
#define MP_ETH_CRDP2            0x4A8
490
#define MP_ETH_CRDP3            0x4AC
491
#define MP_ETH_CTDP0            0x4E0
492
#define MP_ETH_CTDP1            0x4E4
493
#define MP_ETH_CTDP2            0x4E8
494
#define MP_ETH_CTDP3            0x4EC
495

    
496
/* MII PHY access */
497
#define MP_ETH_SMIR_DATA        0x0000FFFF
498
#define MP_ETH_SMIR_ADDR        0x03FF0000
499
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
500
#define MP_ETH_SMIR_RDVALID     (1 << 27)
501

    
502
/* PHY registers */
503
#define MP_ETH_PHY1_BMSR        0x00210000
504
#define MP_ETH_PHY1_PHYSID1     0x00410000
505
#define MP_ETH_PHY1_PHYSID2     0x00610000
506

    
507
#define MP_PHY_BMSR_LINK        0x0004
508
#define MP_PHY_BMSR_AUTONEG     0x0008
509

    
510
#define MP_PHY_88E3015          0x01410E20
511

    
512
/* TX descriptor status */
513
#define MP_ETH_TX_OWN           (1 << 31)
514

    
515
/* RX descriptor status */
516
#define MP_ETH_RX_OWN           (1 << 31)
517

    
518
/* Interrupt cause/mask bits */
519
#define MP_ETH_IRQ_RX_BIT       0
520
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
521
#define MP_ETH_IRQ_TXHI_BIT     2
522
#define MP_ETH_IRQ_TXLO_BIT     3
523

    
524
/* Port config bits */
525
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
526

    
527
/* SDMA command bits */
528
#define MP_ETH_CMD_TXHI         (1 << 23)
529
#define MP_ETH_CMD_TXLO         (1 << 22)
530

    
531
typedef struct mv88w8618_tx_desc {
532
    uint32_t cmdstat;
533
    uint16_t res;
534
    uint16_t bytes;
535
    uint32_t buffer;
536
    uint32_t next;
537
} mv88w8618_tx_desc;
538

    
539
typedef struct mv88w8618_rx_desc {
540
    uint32_t cmdstat;
541
    uint16_t bytes;
542
    uint16_t buffer_size;
543
    uint32_t buffer;
544
    uint32_t next;
545
} mv88w8618_rx_desc;
546

    
547
typedef struct mv88w8618_eth_state {
548
    qemu_irq irq;
549
    uint32_t smir;
550
    uint32_t icr;
551
    uint32_t imr;
552
    int vlan_header;
553
    mv88w8618_tx_desc *tx_queue[2];
554
    mv88w8618_rx_desc *rx_queue[4];
555
    mv88w8618_rx_desc *frx_queue[4];
556
    mv88w8618_rx_desc *cur_rx[4];
557
    VLANClientState *vc;
558
} mv88w8618_eth_state;
559

    
560
static int eth_can_receive(void *opaque)
561
{
562
    return 1;
563
}
564

    
565
static void eth_receive(void *opaque, const uint8_t *buf, int size)
566
{
567
    mv88w8618_eth_state *s = opaque;
568
    mv88w8618_rx_desc *desc;
569
    int i;
570

    
571
    for (i = 0; i < 4; i++) {
572
        desc = s->cur_rx[i];
573
        if (!desc)
574
            continue;
575
        do {
576
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
577
                le16_to_cpu(desc->buffer_size) >= size) {
578
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
579
                                        s->vlan_header),
580
                       buf, size);
581
                desc->bytes = cpu_to_le16(size + s->vlan_header);
582
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
583
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
584

    
585
                s->icr |= MP_ETH_IRQ_RX;
586
                if (s->icr & s->imr)
587
                    qemu_irq_raise(s->irq);
588
                return;
589
            }
590
            desc = target2host_addr(le32_to_cpu(desc->next));
591
        } while (desc != s->rx_queue[i]);
592
    }
593
}
594

    
595
static void eth_send(mv88w8618_eth_state *s, int queue_index)
596
{
597
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
598

    
599
    do {
600
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
601
            qemu_send_packet(s->vc,
602
                             target2host_addr(le32_to_cpu(desc->buffer)),
603
                             le16_to_cpu(desc->bytes));
604
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
605
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
606
        }
607
        desc = target2host_addr(le32_to_cpu(desc->next));
608
    } while (desc != s->tx_queue[queue_index]);
609
}
610

    
611
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
612
{
613
    mv88w8618_eth_state *s = opaque;
614

    
615
    switch (offset) {
616
    case MP_ETH_SMIR:
617
        if (s->smir & MP_ETH_SMIR_OPCODE) {
618
            switch (s->smir & MP_ETH_SMIR_ADDR) {
619
            case MP_ETH_PHY1_BMSR:
620
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
621
                       MP_ETH_SMIR_RDVALID;
622
            case MP_ETH_PHY1_PHYSID1:
623
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
624
            case MP_ETH_PHY1_PHYSID2:
625
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
626
            default:
627
                return MP_ETH_SMIR_RDVALID;
628
            }
629
        }
630
        return 0;
631

    
632
    case MP_ETH_ICR:
633
        return s->icr;
634

    
635
    case MP_ETH_IMR:
636
        return s->imr;
637

    
638
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
639
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
640

    
641
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
642
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
643

    
644
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
645
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
646

    
647
    default:
648
        return 0;
649
    }
650
}
651

    
652
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
653
                                uint32_t value)
654
{
655
    mv88w8618_eth_state *s = opaque;
656

    
657
    switch (offset) {
658
    case MP_ETH_SMIR:
659
        s->smir = value;
660
        break;
661

    
662
    case MP_ETH_PCXR:
663
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
664
        break;
665

    
666
    case MP_ETH_SDCMR:
667
        if (value & MP_ETH_CMD_TXHI)
668
            eth_send(s, 1);
669
        if (value & MP_ETH_CMD_TXLO)
670
            eth_send(s, 0);
671
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
672
            qemu_irq_raise(s->irq);
673
        break;
674

    
675
    case MP_ETH_ICR:
676
        s->icr &= value;
677
        break;
678

    
679
    case MP_ETH_IMR:
680
        s->imr = value;
681
        if (s->icr & s->imr)
682
            qemu_irq_raise(s->irq);
683
        break;
684

    
685
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
686
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
687
        break;
688

    
689
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
690
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
691
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
692
        break;
693

    
694
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
695
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
696
        break;
697
    }
698
}
699

    
700
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
701
    mv88w8618_eth_read,
702
    mv88w8618_eth_read,
703
    mv88w8618_eth_read
704
};
705

    
706
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
707
    mv88w8618_eth_write,
708
    mv88w8618_eth_write,
709
    mv88w8618_eth_write
710
};
711

    
712
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
713
{
714
    mv88w8618_eth_state *s;
715
    int iomemtype;
716

    
717
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
718
    if (!s)
719
        return;
720
    s->irq = irq;
721
    s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
722
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
723
                                       mv88w8618_eth_writefn, s);
724
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
725
}
726

    
727
/* LCD register offsets */
728
#define MP_LCD_IRQCTRL          0x180
729
#define MP_LCD_IRQSTAT          0x184
730
#define MP_LCD_SPICTRL          0x1ac
731
#define MP_LCD_INST             0x1bc
732
#define MP_LCD_DATA             0x1c0
733

    
734
/* Mode magics */
735
#define MP_LCD_SPI_DATA         0x00100011
736
#define MP_LCD_SPI_CMD          0x00104011
737
#define MP_LCD_SPI_INVALID      0x00000000
738

    
739
/* Commmands */
740
#define MP_LCD_INST_SETPAGE0    0xB0
741
/* ... */
742
#define MP_LCD_INST_SETPAGE7    0xB7
743

    
744
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
745

    
746
typedef struct musicpal_lcd_state {
747
    uint32_t mode;
748
    uint32_t irqctrl;
749
    int page;
750
    int page_off;
751
    DisplayState *ds;
752
    QEMUConsole *console;
753
    uint8_t video_ram[128*64/8];
754
} musicpal_lcd_state;
755

    
756
static uint32_t lcd_brightness;
757

    
758
static uint8_t scale_lcd_color(uint8_t col)
759
{
760
    int tmp = col;
761

    
762
    switch (lcd_brightness) {
763
    case 0x00000007: /* 0 */
764
        return 0;
765

    
766
    case 0x00020000: /* 1 */
767
        return (tmp * 1) / 7;
768

    
769
    case 0x00020001: /* 2 */
770
        return (tmp * 2) / 7;
771

    
772
    case 0x00040000: /* 3 */
773
        return (tmp * 3) / 7;
774

    
775
    case 0x00010006: /* 4 */
776
        return (tmp * 4) / 7;
777

    
778
    case 0x00020005: /* 5 */
779
        return (tmp * 5) / 7;
780

    
781
    case 0x00040003: /* 6 */
782
        return (tmp * 6) / 7;
783

    
784
    case 0x00030004: /* 7 */
785
    default:
786
        return col;
787
    }
788
}
789

    
790
#define SET_LCD_PIXEL(depth, type) \
791
static inline void glue(set_lcd_pixel, depth) \
792
        (musicpal_lcd_state *s, int x, int y, type col) \
793
{ \
794
    int dx, dy; \
795
    type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
796
\
797
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
798
        for (dx = 0; dx < 3; dx++, pixel++) \
799
            *pixel = col; \
800
}
801
SET_LCD_PIXEL(8, uint8_t)
802
SET_LCD_PIXEL(16, uint16_t)
803
SET_LCD_PIXEL(32, uint32_t)
804

    
805
#include "pixel_ops.h"
806

    
807
static void lcd_refresh(void *opaque)
808
{
809
    musicpal_lcd_state *s = opaque;
810
    int x, y, col;
811

    
812
    switch (ds_get_bits_per_pixel(s->ds)) {
813
    case 0:
814
        return;
815
#define LCD_REFRESH(depth, func) \
816
    case depth: \
817
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
818
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
819
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
820
        for (x = 0; x < 128; x++) \
821
            for (y = 0; y < 64; y++) \
822
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
823
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
824
                else \
825
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
826
        break;
827
    LCD_REFRESH(8, rgb_to_pixel8)
828
    LCD_REFRESH(16, rgb_to_pixel16)
829
    LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
830
    default:
831
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
832
                  ds_get_bits_per_pixel(s->ds));
833
    }
834

    
835
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
836
}
837

    
838
static void lcd_invalidate(void *opaque)
839
{
840
}
841

    
842
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
843
{
844
    musicpal_lcd_state *s = opaque;
845

    
846
    switch (offset) {
847
    case MP_LCD_IRQCTRL:
848
        return s->irqctrl;
849

    
850
    default:
851
        return 0;
852
    }
853
}
854

    
855
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
856
                               uint32_t value)
857
{
858
    musicpal_lcd_state *s = opaque;
859

    
860
    switch (offset) {
861
    case MP_LCD_IRQCTRL:
862
        s->irqctrl = value;
863
        break;
864

    
865
    case MP_LCD_SPICTRL:
866
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
867
            s->mode = value;
868
        else
869
            s->mode = MP_LCD_SPI_INVALID;
870
        break;
871

    
872
    case MP_LCD_INST:
873
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
874
            s->page = value - MP_LCD_INST_SETPAGE0;
875
            s->page_off = 0;
876
        }
877
        break;
878

    
879
    case MP_LCD_DATA:
880
        if (s->mode == MP_LCD_SPI_CMD) {
881
            if (value >= MP_LCD_INST_SETPAGE0 &&
882
                value <= MP_LCD_INST_SETPAGE7) {
883
                s->page = value - MP_LCD_INST_SETPAGE0;
884
                s->page_off = 0;
885
            }
886
        } else if (s->mode == MP_LCD_SPI_DATA) {
887
            s->video_ram[s->page*128 + s->page_off] = value;
888
            s->page_off = (s->page_off + 1) & 127;
889
        }
890
        break;
891
    }
892
}
893

    
894
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
895
    musicpal_lcd_read,
896
    musicpal_lcd_read,
897
    musicpal_lcd_read
898
};
899

    
900
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
901
    musicpal_lcd_write,
902
    musicpal_lcd_write,
903
    musicpal_lcd_write
904
};
905

    
906
static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
907
{
908
    musicpal_lcd_state *s;
909
    int iomemtype;
910

    
911
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
912
    if (!s)
913
        return;
914
    s->ds = ds;
915
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
916
                                       musicpal_lcd_writefn, s);
917
    cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
918

    
919
    s->console = graphic_console_init(ds, lcd_refresh, lcd_invalidate,
920
                                      NULL, NULL, s);
921
    qemu_console_resize(s->console, 128*3, 64*3);
922
}
923

    
924
/* PIC register offsets */
925
#define MP_PIC_STATUS           0x00
926
#define MP_PIC_ENABLE_SET       0x08
927
#define MP_PIC_ENABLE_CLR       0x0C
928

    
929
typedef struct mv88w8618_pic_state
930
{
931
    uint32_t level;
932
    uint32_t enabled;
933
    qemu_irq parent_irq;
934
} mv88w8618_pic_state;
935

    
936
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
937
{
938
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
939
}
940

    
941
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
942
{
943
    mv88w8618_pic_state *s = opaque;
944

    
945
    if (level)
946
        s->level |= 1 << irq;
947
    else
948
        s->level &= ~(1 << irq);
949
    mv88w8618_pic_update(s);
950
}
951

    
952
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
953
{
954
    mv88w8618_pic_state *s = opaque;
955

    
956
    switch (offset) {
957
    case MP_PIC_STATUS:
958
        return s->level & s->enabled;
959

    
960
    default:
961
        return 0;
962
    }
963
}
964

    
965
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
966
                                uint32_t value)
967
{
968
    mv88w8618_pic_state *s = opaque;
969

    
970
    switch (offset) {
971
    case MP_PIC_ENABLE_SET:
972
        s->enabled |= value;
973
        break;
974

    
975
    case MP_PIC_ENABLE_CLR:
976
        s->enabled &= ~value;
977
        s->level &= ~value;
978
        break;
979
    }
980
    mv88w8618_pic_update(s);
981
}
982

    
983
static void mv88w8618_pic_reset(void *opaque)
984
{
985
    mv88w8618_pic_state *s = opaque;
986

    
987
    s->level = 0;
988
    s->enabled = 0;
989
}
990

    
991
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
992
    mv88w8618_pic_read,
993
    mv88w8618_pic_read,
994
    mv88w8618_pic_read
995
};
996

    
997
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
998
    mv88w8618_pic_write,
999
    mv88w8618_pic_write,
1000
    mv88w8618_pic_write
1001
};
1002

    
1003
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1004
{
1005
    mv88w8618_pic_state *s;
1006
    int iomemtype;
1007
    qemu_irq *qi;
1008

    
1009
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1010
    if (!s)
1011
        return NULL;
1012
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1013
    s->parent_irq = parent_irq;
1014
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1015
                                       mv88w8618_pic_writefn, s);
1016
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1017

    
1018
    qemu_register_reset(mv88w8618_pic_reset, s);
1019

    
1020
    return qi;
1021
}
1022

    
1023
/* PIT register offsets */
1024
#define MP_PIT_TIMER1_LENGTH    0x00
1025
/* ... */
1026
#define MP_PIT_TIMER4_LENGTH    0x0C
1027
#define MP_PIT_CONTROL          0x10
1028
#define MP_PIT_TIMER1_VALUE     0x14
1029
/* ... */
1030
#define MP_PIT_TIMER4_VALUE     0x20
1031
#define MP_BOARD_RESET          0x34
1032

    
1033
/* Magic board reset value (probably some watchdog behind it) */
1034
#define MP_BOARD_RESET_MAGIC    0x10000
1035

    
1036
typedef struct mv88w8618_timer_state {
1037
    ptimer_state *timer;
1038
    uint32_t limit;
1039
    int freq;
1040
    qemu_irq irq;
1041
} mv88w8618_timer_state;
1042

    
1043
typedef struct mv88w8618_pit_state {
1044
    void *timer[4];
1045
    uint32_t control;
1046
} mv88w8618_pit_state;
1047

    
1048
static void mv88w8618_timer_tick(void *opaque)
1049
{
1050
    mv88w8618_timer_state *s = opaque;
1051

    
1052
    qemu_irq_raise(s->irq);
1053
}
1054

    
1055
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1056
{
1057
    mv88w8618_timer_state *s;
1058
    QEMUBH *bh;
1059

    
1060
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1061
    s->irq = irq;
1062
    s->freq = freq;
1063

    
1064
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1065
    s->timer = ptimer_init(bh);
1066

    
1067
    return s;
1068
}
1069

    
1070
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1071
{
1072
    mv88w8618_pit_state *s = opaque;
1073
    mv88w8618_timer_state *t;
1074

    
1075
    switch (offset) {
1076
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1077
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1078
        return ptimer_get_count(t->timer);
1079

    
1080
    default:
1081
        return 0;
1082
    }
1083
}
1084

    
1085
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1086
                                uint32_t value)
1087
{
1088
    mv88w8618_pit_state *s = opaque;
1089
    mv88w8618_timer_state *t;
1090
    int i;
1091

    
1092
    switch (offset) {
1093
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1094
        t = s->timer[offset >> 2];
1095
        t->limit = value;
1096
        ptimer_set_limit(t->timer, t->limit, 1);
1097
        break;
1098

    
1099
    case MP_PIT_CONTROL:
1100
        for (i = 0; i < 4; i++) {
1101
            if (value & 0xf) {
1102
                t = s->timer[i];
1103
                ptimer_set_limit(t->timer, t->limit, 0);
1104
                ptimer_set_freq(t->timer, t->freq);
1105
                ptimer_run(t->timer, 0);
1106
            }
1107
            value >>= 4;
1108
        }
1109
        break;
1110

    
1111
    case MP_BOARD_RESET:
1112
        if (value == MP_BOARD_RESET_MAGIC)
1113
            qemu_system_reset_request();
1114
        break;
1115
    }
1116
}
1117

    
1118
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1119
    mv88w8618_pit_read,
1120
    mv88w8618_pit_read,
1121
    mv88w8618_pit_read
1122
};
1123

    
1124
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1125
    mv88w8618_pit_write,
1126
    mv88w8618_pit_write,
1127
    mv88w8618_pit_write
1128
};
1129

    
1130
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1131
{
1132
    int iomemtype;
1133
    mv88w8618_pit_state *s;
1134

    
1135
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1136
    if (!s)
1137
        return;
1138

    
1139
    /* Letting them all run at 1 MHz is likely just a pragmatic
1140
     * simplification. */
1141
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1142
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1143
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1144
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1145

    
1146
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1147
                                       mv88w8618_pit_writefn, s);
1148
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1149
}
1150

    
1151
/* Flash config register offsets */
1152
#define MP_FLASHCFG_CFGR0    0x04
1153

    
1154
typedef struct mv88w8618_flashcfg_state {
1155
    uint32_t cfgr0;
1156
} mv88w8618_flashcfg_state;
1157

    
1158
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1159
                                        target_phys_addr_t offset)
1160
{
1161
    mv88w8618_flashcfg_state *s = opaque;
1162

    
1163
    switch (offset) {
1164
    case MP_FLASHCFG_CFGR0:
1165
        return s->cfgr0;
1166

    
1167
    default:
1168
        return 0;
1169
    }
1170
}
1171

    
1172
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1173
                                     uint32_t value)
1174
{
1175
    mv88w8618_flashcfg_state *s = opaque;
1176

    
1177
    switch (offset) {
1178
    case MP_FLASHCFG_CFGR0:
1179
        s->cfgr0 = value;
1180
        break;
1181
    }
1182
}
1183

    
1184
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1185
    mv88w8618_flashcfg_read,
1186
    mv88w8618_flashcfg_read,
1187
    mv88w8618_flashcfg_read
1188
};
1189

    
1190
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1191
    mv88w8618_flashcfg_write,
1192
    mv88w8618_flashcfg_write,
1193
    mv88w8618_flashcfg_write
1194
};
1195

    
1196
static void mv88w8618_flashcfg_init(uint32_t base)
1197
{
1198
    int iomemtype;
1199
    mv88w8618_flashcfg_state *s;
1200

    
1201
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1202
    if (!s)
1203
        return;
1204

    
1205
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1206
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1207
                       mv88w8618_flashcfg_writefn, s);
1208
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1209
}
1210

    
1211
/* Various registers in the 0x80000000 domain */
1212
#define MP_BOARD_REVISION       0x2018
1213

    
1214
#define MP_WLAN_MAGIC1          0xc11c
1215
#define MP_WLAN_MAGIC2          0xc124
1216

    
1217
#define MP_GPIO_OE_LO           0xd008
1218
#define MP_GPIO_OUT_LO          0xd00c
1219
#define MP_GPIO_IN_LO           0xd010
1220
#define MP_GPIO_ISR_LO          0xd020
1221
#define MP_GPIO_OE_HI           0xd508
1222
#define MP_GPIO_OUT_HI          0xd50c
1223
#define MP_GPIO_IN_HI           0xd510
1224
#define MP_GPIO_ISR_HI          0xd520
1225

    
1226
/* GPIO bits & masks */
1227
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1228
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1229
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1230
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1231
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1232
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1233
#define MP_GPIO_BTN_MENU        (1 << 20)
1234
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1235
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1236
#define MP_GPIO_I2C_DATA_BIT    29
1237
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1238
#define MP_GPIO_I2C_CLOCK_BIT   30
1239

    
1240
/* LCD brightness bits in GPIO_OE_HI */
1241
#define MP_OE_LCD_BRIGHTNESS    0x0007
1242

    
1243
static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1244
{
1245
    switch (offset) {
1246
    case MP_BOARD_REVISION:
1247
        return 0x0031;
1248

    
1249
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1250
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1251

    
1252
    case MP_GPIO_OUT_LO:
1253
        return gpio_out_state & 0xFFFF;
1254
    case MP_GPIO_OUT_HI:
1255
        return gpio_out_state >> 16;
1256

    
1257
    case MP_GPIO_IN_LO:
1258
        return gpio_in_state & 0xFFFF;
1259
    case MP_GPIO_IN_HI:
1260
        /* Update received I2C data */
1261
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1262
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1263
        return gpio_in_state >> 16;
1264

    
1265
    case MP_GPIO_ISR_LO:
1266
        return gpio_isr & 0xFFFF;
1267
    case MP_GPIO_ISR_HI:
1268
        return gpio_isr >> 16;
1269

    
1270
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1271
     * from the original Freecom firmware. */
1272
    case MP_WLAN_MAGIC1:
1273
        return ~3;
1274
    case MP_WLAN_MAGIC2:
1275
        return -1;
1276

    
1277
    default:
1278
        return 0;
1279
    }
1280
}
1281

    
1282
static void musicpal_write(void *opaque, target_phys_addr_t offset,
1283
                           uint32_t value)
1284
{
1285
    switch (offset) {
1286
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1287
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1288
                         (value & MP_OE_LCD_BRIGHTNESS);
1289
        break;
1290

    
1291
    case MP_GPIO_OUT_LO:
1292
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1293
        break;
1294
    case MP_GPIO_OUT_HI:
1295
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1296
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1297
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1298
        i2c_state_update(mixer_i2c,
1299
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1300
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1301
        break;
1302

    
1303
    }
1304
}
1305

    
1306
/* Keyboard codes & masks */
1307
#define KEY_RELEASED            0x80
1308
#define KEY_CODE                0x7f
1309

    
1310
#define KEYCODE_TAB             0x0f
1311
#define KEYCODE_ENTER           0x1c
1312
#define KEYCODE_F               0x21
1313
#define KEYCODE_M               0x32
1314

    
1315
#define KEYCODE_EXTENDED        0xe0
1316
#define KEYCODE_UP              0x48
1317
#define KEYCODE_DOWN            0x50
1318
#define KEYCODE_LEFT            0x4b
1319
#define KEYCODE_RIGHT           0x4d
1320

    
1321
static void musicpal_key_event(void *opaque, int keycode)
1322
{
1323
    qemu_irq irq = opaque;
1324
    uint32_t event = 0;
1325
    static int kbd_extended;
1326

    
1327
    if (keycode == KEYCODE_EXTENDED) {
1328
        kbd_extended = 1;
1329
        return;
1330
    }
1331

    
1332
    if (kbd_extended)
1333
        switch (keycode & KEY_CODE) {
1334
        case KEYCODE_UP:
1335
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1336
            break;
1337

    
1338
        case KEYCODE_DOWN:
1339
            event = MP_GPIO_WHEEL_NAV;
1340
            break;
1341

    
1342
        case KEYCODE_LEFT:
1343
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1344
            break;
1345

    
1346
        case KEYCODE_RIGHT:
1347
            event = MP_GPIO_WHEEL_VOL;
1348
            break;
1349
        }
1350
    else {
1351
        switch (keycode & KEY_CODE) {
1352
        case KEYCODE_F:
1353
            event = MP_GPIO_BTN_FAVORITS;
1354
            break;
1355

    
1356
        case KEYCODE_TAB:
1357
            event = MP_GPIO_BTN_VOLUME;
1358
            break;
1359

    
1360
        case KEYCODE_ENTER:
1361
            event = MP_GPIO_BTN_NAVIGATION;
1362
            break;
1363

    
1364
        case KEYCODE_M:
1365
            event = MP_GPIO_BTN_MENU;
1366
            break;
1367
        }
1368
        /* Do not repeat already pressed buttons */
1369
        if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1370
            event = 0;
1371
    }
1372

    
1373
    if (event) {
1374
        if (keycode & KEY_RELEASED) {
1375
            gpio_in_state |= event;
1376
        } else {
1377
            gpio_in_state &= ~event;
1378
            gpio_isr = event;
1379
            qemu_irq_raise(irq);
1380
        }
1381
    }
1382

    
1383
    kbd_extended = 0;
1384
}
1385

    
1386
static CPUReadMemoryFunc *musicpal_readfn[] = {
1387
    musicpal_read,
1388
    musicpal_read,
1389
    musicpal_read,
1390
};
1391

    
1392
static CPUWriteMemoryFunc *musicpal_writefn[] = {
1393
    musicpal_write,
1394
    musicpal_write,
1395
    musicpal_write,
1396
};
1397

    
1398
static struct arm_boot_info musicpal_binfo = {
1399
    .loader_start = 0x0,
1400
    .board_id = 0x20e,
1401
};
1402

    
1403
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1404
               const char *boot_device, DisplayState *ds,
1405
               const char *kernel_filename, const char *kernel_cmdline,
1406
               const char *initrd_filename, const char *cpu_model)
1407
{
1408
    CPUState *env;
1409
    qemu_irq *pic;
1410
    int index;
1411
    int iomemtype;
1412
    unsigned long flash_size;
1413

    
1414
    if (!cpu_model)
1415
        cpu_model = "arm926";
1416

    
1417
    env = cpu_init(cpu_model);
1418
    if (!env) {
1419
        fprintf(stderr, "Unable to find CPU definition\n");
1420
        exit(1);
1421
    }
1422
    pic = arm_pic_init_cpu(env);
1423

    
1424
    /* For now we use a fixed - the original - RAM size */
1425
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1426
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1427

    
1428
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1429
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1430

    
1431
    /* Catch various stuff not handled by separate subsystems */
1432
    iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1433
                                       musicpal_writefn, env);
1434
    cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1435

    
1436
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1437
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1438

    
1439
    if (serial_hds[0])
1440
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1441
                   serial_hds[0], 1);
1442
    if (serial_hds[1])
1443
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1444
                   serial_hds[1], 1);
1445

    
1446
    /* Register flash */
1447
    index = drive_get_index(IF_PFLASH, 0, 0);
1448
    if (index != -1) {
1449
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1450
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1451
            flash_size != 32*1024*1024) {
1452
            fprintf(stderr, "Invalid flash image size\n");
1453
            exit(1);
1454
        }
1455

    
1456
        /*
1457
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1458
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1459
         * image is smaller than 32 MB.
1460
         */
1461
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1462
                              drives_table[index].bdrv, 0x10000,
1463
                              (flash_size + 0xffff) >> 16,
1464
                              MP_FLASH_SIZE_MAX / flash_size,
1465
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1466
                              0x5555, 0x2AAA);
1467
    }
1468
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1469

    
1470
    musicpal_lcd_init(ds, MP_LCD_BASE);
1471

    
1472
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1473

    
1474
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1475

    
1476
    mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1477

    
1478
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1479
    musicpal_binfo.kernel_filename = kernel_filename;
1480
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1481
    musicpal_binfo.initrd_filename = initrd_filename;
1482
    arm_load_kernel(env, &musicpal_binfo);
1483
}
1484

    
1485
QEMUMachine musicpal_machine = {
1486
    .name = "musicpal",
1487
    .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1488
    .init = musicpal_init,
1489
    .ram_require = MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE +
1490
            MP_FLASH_SIZE_MAX + RAMSIZE_FIXED,
1491
};