Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ 36081602

History | View | Annotate | Download (58.8 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21

    
22
#include "op_helper.h"
23

    
24
#define MEMSUFFIX _raw
25
#include "op_helper.h"
26
#include "op_helper_mem.h"
27
#if !defined(CONFIG_USER_ONLY)
28
#define MEMSUFFIX _user
29
#include "op_helper.h"
30
#include "op_helper_mem.h"
31
#define MEMSUFFIX _kernel
32
#include "op_helper.h"
33
#include "op_helper_mem.h"
34
#endif
35

    
36
//#define DEBUG_OP
37
//#define DEBUG_EXCEPTIONS
38
//#define DEBUG_SOFTWARE_TLB
39
//#define FLUSH_ALL_TLBS
40

    
41
/*****************************************************************************/
42
/* Exceptions processing helpers */
43

    
44
void do_raise_exception_err (uint32_t exception, int error_code)
45
{
46
#if 0
47
    printf("Raise exception %3x code : %d\n", exception, error_code);
48
#endif
49
    switch (exception) {
50
    case EXCP_PROGRAM:
51
        if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
52
            return;
53
        break;
54
    default:
55
        break;
56
    }
57
    env->exception_index = exception;
58
    env->error_code = error_code;
59
    cpu_loop_exit();
60
}
61

    
62
void do_raise_exception (uint32_t exception)
63
{
64
    do_raise_exception_err(exception, 0);
65
}
66

    
67
void cpu_dump_EA (target_ulong EA);
68
void do_print_mem_EA (target_ulong EA)
69
{
70
    cpu_dump_EA(EA);
71
}
72

    
73
/*****************************************************************************/
74
/* Registers load and stores */
75
void do_load_cr (void)
76
{
77
    T0 = (env->crf[0] << 28) |
78
        (env->crf[1] << 24) |
79
        (env->crf[2] << 20) |
80
        (env->crf[3] << 16) |
81
        (env->crf[4] << 12) |
82
        (env->crf[5] << 8) |
83
        (env->crf[6] << 4) |
84
        (env->crf[7] << 0);
85
}
86

    
87
void do_store_cr (uint32_t mask)
88
{
89
    int i, sh;
90

    
91
    for (i = 0, sh = 7; i < 8; i++, sh--) {
92
        if (mask & (1 << sh))
93
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
94
    }
95
}
96

    
97
void do_load_xer (void)
98
{
99
    T0 = (xer_so << XER_SO) |
100
        (xer_ov << XER_OV) |
101
        (xer_ca << XER_CA) |
102
        (xer_bc << XER_BC) |
103
        (xer_cmp << XER_CMP);
104
}
105

    
106
void do_store_xer (void)
107
{
108
    xer_so = (T0 >> XER_SO) & 0x01;
109
    xer_ov = (T0 >> XER_OV) & 0x01;
110
    xer_ca = (T0 >> XER_CA) & 0x01;
111
    xer_cmp = (T0 >> XER_CMP) & 0xFF;
112
    xer_bc = (T0 >> XER_BC) & 0x7F;
113
}
114

    
115
void do_load_fpscr (void)
116
{
117
    /* The 32 MSB of the target fpr are undefined.
118
     * They'll be zero...
119
     */
120
    union {
121
        float64 d;
122
        struct {
123
            uint32_t u[2];
124
        } s;
125
    } u;
126
    int i;
127

    
128
#if defined(WORDS_BIGENDIAN)
129
#define WORD0 0
130
#define WORD1 1
131
#else
132
#define WORD0 1
133
#define WORD1 0
134
#endif
135
    u.s.u[WORD0] = 0;
136
    u.s.u[WORD1] = 0;
137
    for (i = 0; i < 8; i++)
138
        u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
139
    FT0 = u.d;
140
}
141

    
142
void do_store_fpscr (uint32_t mask)
143
{
144
    /*
145
     * We use only the 32 LSB of the incoming fpr
146
     */
147
    union {
148
        double d;
149
        struct {
150
            uint32_t u[2];
151
        } s;
152
    } u;
153
    int i, rnd_type;
154

    
155
    u.d = FT0;
156
    if (mask & 0x80)
157
        env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
158
    for (i = 1; i < 7; i++) {
159
        if (mask & (1 << (7 - i)))
160
            env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
161
    }
162
    /* TODO: update FEX & VX */
163
    /* Set rounding mode */
164
    switch (env->fpscr[0] & 0x3) {
165
    case 0:
166
        /* Best approximation (round to nearest) */
167
        rnd_type = float_round_nearest_even;
168
        break;
169
    case 1:
170
        /* Smaller magnitude (round toward zero) */
171
        rnd_type = float_round_to_zero;
172
        break;
173
    case 2:
174
        /* Round toward +infinite */
175
        rnd_type = float_round_up;
176
        break;
177
    default:
178
    case 3:
179
        /* Round toward -infinite */
180
        rnd_type = float_round_down;
181
        break;
182
    }
183
    set_float_rounding_mode(rnd_type, &env->fp_status);
184
}
185

    
186
target_ulong ppc_load_dump_spr (int sprn)
187
{
188
    if (loglevel != 0) {
189
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
190
                sprn, sprn, env->spr[sprn]);
191
    }
192

    
193
    return env->spr[sprn];
194
}
195

    
196
void ppc_store_dump_spr (int sprn, target_ulong val)
197
{
198
    if (loglevel != 0) {
199
        fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
200
                sprn, sprn, env->spr[sprn], val);
201
    }
202
    env->spr[sprn] = val;
203
}
204

    
205
/*****************************************************************************/
206
/* Fixed point operations helpers */
207
#if defined(TARGET_PPC64)
208
static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
209
{
210
    *plow += a;
211
    /* carry test */
212
    if (*plow < a)
213
        (*phigh)++;
214
    *phigh += b;
215
}
216

    
217
static void neg128 (uint64_t *plow, uint64_t *phigh)
218
{
219
    *plow = ~*plow;
220
    *phigh = ~*phigh;
221
    add128(plow, phigh, 1, 0);
222
}
223

    
224
static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
225
{
226
    uint32_t a0, a1, b0, b1;
227
    uint64_t v;
228

    
229
    a0 = a;
230
    a1 = a >> 32;
231

    
232
    b0 = b;
233
    b1 = b >> 32;
234

    
235
    v = (uint64_t)a0 * (uint64_t)b0;
236
    *plow = v;
237
    *phigh = 0;
238

    
239
    v = (uint64_t)a0 * (uint64_t)b1;
240
    add128(plow, phigh, v << 32, v >> 32);
241

    
242
    v = (uint64_t)a1 * (uint64_t)b0;
243
    add128(plow, phigh, v << 32, v >> 32);
244

    
245
    v = (uint64_t)a1 * (uint64_t)b1;
246
    *phigh += v;
247
#if defined(DEBUG_MULDIV)
248
    printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
249
           a, b, *phigh, *plow);
250
#endif
251
}
252

    
253
void do_mul64 (uint64_t *plow, uint64_t *phigh)
254
{
255
    mul64(plow, phigh, T0, T1);
256
}
257

    
258
static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
259
{
260
    int sa, sb;
261

    
262
    sa = (a < 0);
263
    if (sa)
264
        a = -a;
265
    sb = (b < 0);
266
    if (sb)
267
        b = -b;
268
    mul64(plow, phigh, a, b);
269
    if (sa ^ sb) {
270
        neg128(plow, phigh);
271
    }
272
}
273

    
274
void do_imul64 (uint64_t *plow, uint64_t *phigh)
275
{
276
    imul64(plow, phigh, T0, T1);
277
}
278
#endif
279

    
280
void do_adde (void)
281
{
282
    T2 = T0;
283
    T0 += T1 + xer_ca;
284
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
285
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
286
        xer_ca = 0;
287
    } else {
288
        xer_ca = 1;
289
    }
290
}
291

    
292
#if defined(TARGET_PPC64)
293
void do_adde_64 (void)
294
{
295
    T2 = T0;
296
    T0 += T1 + xer_ca;
297
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
298
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
299
        xer_ca = 0;
300
    } else {
301
        xer_ca = 1;
302
    }
303
}
304
#endif
305

    
306
void do_addmeo (void)
307
{
308
    T1 = T0;
309
    T0 += xer_ca + (-1);
310
    if (likely(!((uint32_t)T1 &
311
                 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
312
        xer_ov = 0;
313
    } else {
314
        xer_so = 1;
315
        xer_ov = 1;
316
    }
317
    if (likely(T1 != 0))
318
        xer_ca = 1;
319
}
320

    
321
#if defined(TARGET_PPC64)
322
void do_addmeo_64 (void)
323
{
324
    T1 = T0;
325
    T0 += xer_ca + (-1);
326
    if (likely(!((uint64_t)T1 &
327
                 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
328
        xer_ov = 0;
329
    } else {
330
        xer_so = 1;
331
        xer_ov = 1;
332
    }
333
    if (likely(T1 != 0))
334
        xer_ca = 1;
335
}
336
#endif
337

    
338
void do_divwo (void)
339
{
340
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
341
                 (int32_t)T1 == 0))) {
342
        xer_ov = 0;
343
        T0 = (int32_t)T0 / (int32_t)T1;
344
    } else {
345
        xer_so = 1;
346
        xer_ov = 1;
347
        T0 = (-1) * ((uint32_t)T0 >> 31);
348
    }
349
}
350

    
351
#if defined(TARGET_PPC64)
352
void do_divdo (void)
353
{
354
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
355
                 (int64_t)T1 == 0))) {
356
        xer_ov = 0;
357
        T0 = (int64_t)T0 / (int64_t)T1;
358
    } else {
359
        xer_so = 1;
360
        xer_ov = 1;
361
        T0 = (-1ULL) * ((uint64_t)T0 >> 63);
362
    }
363
}
364
#endif
365

    
366
void do_divwuo (void)
367
{
368
    if (likely((uint32_t)T1 != 0)) {
369
        xer_ov = 0;
370
        T0 = (uint32_t)T0 / (uint32_t)T1;
371
    } else {
372
        xer_so = 1;
373
        xer_ov = 1;
374
        T0 = 0;
375
    }
376
}
377

    
378
#if defined(TARGET_PPC64)
379
void do_divduo (void)
380
{
381
    if (likely((uint64_t)T1 != 0)) {
382
        xer_ov = 0;
383
        T0 = (uint64_t)T0 / (uint64_t)T1;
384
    } else {
385
        xer_so = 1;
386
        xer_ov = 1;
387
        T0 = 0;
388
    }
389
}
390
#endif
391

    
392
void do_mullwo (void)
393
{
394
    int64_t res = (int64_t)T0 * (int64_t)T1;
395

    
396
    if (likely((int32_t)res == res)) {
397
        xer_ov = 0;
398
    } else {
399
        xer_ov = 1;
400
        xer_so = 1;
401
    }
402
    T0 = (int32_t)res;
403
}
404

    
405
#if defined(TARGET_PPC64)
406
void do_mulldo (void)
407
{
408
    int64_t th;
409
    uint64_t tl;
410

    
411
    do_imul64(&tl, &th);
412
    if (likely(th == 0)) {
413
        xer_ov = 0;
414
    } else {
415
        xer_ov = 1;
416
        xer_so = 1;
417
    }
418
    T0 = (int64_t)tl;
419
}
420
#endif
421

    
422
void do_nego (void)
423
{
424
    if (likely((int32_t)T0 != INT32_MIN)) {
425
        xer_ov = 0;
426
        T0 = -(int32_t)T0;
427
    } else {
428
        xer_ov = 1;
429
        xer_so = 1;
430
    }
431
}
432

    
433
#if defined(TARGET_PPC64)
434
void do_nego_64 (void)
435
{
436
    if (likely((int64_t)T0 != INT64_MIN)) {
437
        xer_ov = 0;
438
        T0 = -(int64_t)T0;
439
    } else {
440
        xer_ov = 1;
441
        xer_so = 1;
442
    }
443
}
444
#endif
445

    
446
void do_subfe (void)
447
{
448
    T0 = T1 + ~T0 + xer_ca;
449
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
450
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
451
        xer_ca = 0;
452
    } else {
453
        xer_ca = 1;
454
    }
455
}
456

    
457
#if defined(TARGET_PPC64)
458
void do_subfe_64 (void)
459
{
460
    T0 = T1 + ~T0 + xer_ca;
461
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
462
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
463
        xer_ca = 0;
464
    } else {
465
        xer_ca = 1;
466
    }
467
}
468
#endif
469

    
470
void do_subfmeo (void)
471
{
472
    T1 = T0;
473
    T0 = ~T0 + xer_ca - 1;
474
    if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
475
                 (1UL << 31)))) {
476
        xer_ov = 0;
477
    } else {
478
        xer_so = 1;
479
        xer_ov = 1;
480
    }
481
    if (likely((uint32_t)T1 != UINT32_MAX))
482
        xer_ca = 1;
483
}
484

    
485
#if defined(TARGET_PPC64)
486
void do_subfmeo_64 (void)
487
{
488
    T1 = T0;
489
    T0 = ~T0 + xer_ca - 1;
490
    if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
491
                 (1ULL << 63)))) {
492
        xer_ov = 0;
493
    } else {
494
        xer_so = 1;
495
        xer_ov = 1;
496
    }
497
    if (likely((uint64_t)T1 != UINT64_MAX))
498
        xer_ca = 1;
499
}
500
#endif
501

    
502
void do_subfzeo (void)
503
{
504
    T1 = T0;
505
    T0 = ~T0 + xer_ca;
506
    if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
507
                 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
508
        xer_ov = 0;
509
    } else {
510
        xer_ov = 1;
511
        xer_so = 1;
512
    }
513
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
514
        xer_ca = 0;
515
    } else {
516
        xer_ca = 1;
517
    }
518
}
519

    
520
#if defined(TARGET_PPC64)
521
void do_subfzeo_64 (void)
522
{
523
    T1 = T0;
524
    T0 = ~T0 + xer_ca;
525
    if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
526
                 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
527
        xer_ov = 0;
528
    } else {
529
        xer_ov = 1;
530
        xer_so = 1;
531
    }
532
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
533
        xer_ca = 0;
534
    } else {
535
        xer_ca = 1;
536
    }
537
}
538
#endif
539

    
540
/* shift right arithmetic helper */
541
void do_sraw (void)
542
{
543
    int32_t ret;
544

    
545
    if (likely(!(T1 & 0x20UL))) {
546
        if (likely((uint32_t)T1 != 0)) {
547
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
548
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
549
                xer_ca = 0;
550
            } else {
551
                xer_ca = 1;
552
            }
553
        } else {
554
            ret = T0;
555
            xer_ca = 0;
556
        }
557
    } else {
558
        ret = (-1) * ((uint32_t)T0 >> 31);
559
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
560
            xer_ca = 0;
561
        } else {
562
            xer_ca = 1;
563
        }
564
    }
565
    T0 = ret;
566
}
567

    
568
#if defined(TARGET_PPC64)
569
void do_srad (void)
570
{
571
    int64_t ret;
572

    
573
    if (likely(!(T1 & 0x40UL))) {
574
        if (likely((uint64_t)T1 != 0)) {
575
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
576
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
577
                xer_ca = 0;
578
            } else {
579
                xer_ca = 1;
580
            }
581
        } else {
582
            ret = T0;
583
            xer_ca = 0;
584
        }
585
    } else {
586
        ret = (-1) * ((uint64_t)T0 >> 63);
587
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
588
            xer_ca = 0;
589
        } else {
590
            xer_ca = 1;
591
        }
592
    }
593
    T0 = ret;
594
}
595
#endif
596

    
597
static inline int popcnt (uint32_t val)
598
{
599
    int i;
600

    
601
    for (i = 0; val != 0;)
602
        val = val ^ (val - 1);
603

    
604
    return i;
605
}
606

    
607
void do_popcntb (void)
608
{
609
    uint32_t ret;
610
    int i;
611

    
612
    ret = 0;
613
    for (i = 0; i < 32; i += 8)
614
        ret |= popcnt((T0 >> i) & 0xFF) << i;
615
    T0 = ret;
616
}
617

    
618
#if defined(TARGET_PPC64)
619
void do_popcntb_64 (void)
620
{
621
    uint64_t ret;
622
    int i;
623

    
624
    ret = 0;
625
    for (i = 0; i < 64; i += 8)
626
        ret |= popcnt((T0 >> i) & 0xFF) << i;
627
    T0 = ret;
628
}
629
#endif
630

    
631
/*****************************************************************************/
632
/* Floating point operations helpers */
633
void do_fctiw (void)
634
{
635
    union {
636
        double d;
637
        uint64_t i;
638
    } p;
639

    
640
    p.i = float64_to_int32(FT0, &env->fp_status);
641
#if USE_PRECISE_EMULATION
642
    /* XXX: higher bits are not supposed to be significant.
643
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
644
     */
645
    p.i |= 0xFFF80000ULL << 32;
646
#endif
647
    FT0 = p.d;
648
}
649

    
650
void do_fctiwz (void)
651
{
652
    union {
653
        double d;
654
        uint64_t i;
655
    } p;
656

    
657
    p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
658
#if USE_PRECISE_EMULATION
659
    /* XXX: higher bits are not supposed to be significant.
660
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
661
     */
662
    p.i |= 0xFFF80000ULL << 32;
663
#endif
664
    FT0 = p.d;
665
}
666

    
667
#if defined(TARGET_PPC64)
668
void do_fcfid (void)
669
{
670
    union {
671
        double d;
672
        uint64_t i;
673
    } p;
674

    
675
    p.d = FT0;
676
    FT0 = int64_to_float64(p.i, &env->fp_status);
677
}
678

    
679
void do_fctid (void)
680
{
681
    union {
682
        double d;
683
        uint64_t i;
684
    } p;
685

    
686
    p.i = float64_to_int64(FT0, &env->fp_status);
687
    FT0 = p.d;
688
}
689

    
690
void do_fctidz (void)
691
{
692
    union {
693
        double d;
694
        uint64_t i;
695
    } p;
696

    
697
    p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
698
    FT0 = p.d;
699
}
700

    
701
#endif
702

    
703
#if USE_PRECISE_EMULATION
704
void do_fmadd (void)
705
{
706
#ifdef FLOAT128
707
    float128 ft0_128, ft1_128;
708

    
709
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
710
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
711
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
712
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
713
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
714
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
715
#else
716
    /* This is OK on x86 hosts */
717
    FT0 = (FT0 * FT1) + FT2;
718
#endif
719
}
720

    
721
void do_fmsub (void)
722
{
723
#ifdef FLOAT128
724
    float128 ft0_128, ft1_128;
725

    
726
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
727
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
728
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
729
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
730
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
731
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
732
#else
733
    /* This is OK on x86 hosts */
734
    FT0 = (FT0 * FT1) - FT2;
735
#endif
736
}
737
#endif /* USE_PRECISE_EMULATION */
738

    
739
void do_fnmadd (void)
740
{
741
#if USE_PRECISE_EMULATION
742
#ifdef FLOAT128
743
    float128 ft0_128, ft1_128;
744

    
745
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
746
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
747
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
748
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
749
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
750
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
751
#else
752
    /* This is OK on x86 hosts */
753
    FT0 = (FT0 * FT1) + FT2;
754
#endif
755
#else
756
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
757
    FT0 = float64_add(FT0, FT2, &env->fp_status);
758
#endif
759
    if (likely(!isnan(FT0)))
760
        FT0 = float64_chs(FT0);
761
}
762

    
763
void do_fnmsub (void)
764
{
765
#if USE_PRECISE_EMULATION
766
#ifdef FLOAT128
767
    float128 ft0_128, ft1_128;
768

    
769
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
770
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
771
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
772
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
773
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
774
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
775
#else
776
    /* This is OK on x86 hosts */
777
    FT0 = (FT0 * FT1) - FT2;
778
#endif
779
#else
780
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
781
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
782
#endif
783
    if (likely(!isnan(FT0)))
784
        FT0 = float64_chs(FT0);
785
}
786

    
787
void do_fsqrt (void)
788
{
789
    FT0 = float64_sqrt(FT0, &env->fp_status);
790
}
791

    
792
void do_fres (void)
793
{
794
    union {
795
        double d;
796
        uint64_t i;
797
    } p;
798

    
799
    if (likely(isnormal(FT0))) {
800
#if USE_PRECISE_EMULATION
801
        FT0 = float64_div(1.0, FT0, &env->fp_status);
802
        FT0 = float64_to_float32(FT0, &env->fp_status);
803
#else
804
        FT0 = float32_div(1.0, FT0, &env->fp_status);
805
#endif
806
    } else {
807
        p.d = FT0;
808
        if (p.i == 0x8000000000000000ULL) {
809
            p.i = 0xFFF0000000000000ULL;
810
        } else if (p.i == 0x0000000000000000ULL) {
811
            p.i = 0x7FF0000000000000ULL;
812
        } else if (isnan(FT0)) {
813
            p.i = 0x7FF8000000000000ULL;
814
        } else if (FT0 < 0.0) {
815
            p.i = 0x8000000000000000ULL;
816
        } else {
817
            p.i = 0x0000000000000000ULL;
818
        }
819
        FT0 = p.d;
820
    }
821
}
822

    
823
void do_frsqrte (void)
824
{
825
    union {
826
        double d;
827
        uint64_t i;
828
    } p;
829

    
830
    if (likely(isnormal(FT0) && FT0 > 0.0)) {
831
        FT0 = float64_sqrt(FT0, &env->fp_status);
832
        FT0 = float32_div(1.0, FT0, &env->fp_status);
833
    } else {
834
        p.d = FT0;
835
        if (p.i == 0x8000000000000000ULL) {
836
            p.i = 0xFFF0000000000000ULL;
837
        } else if (p.i == 0x0000000000000000ULL) {
838
            p.i = 0x7FF0000000000000ULL;
839
        } else if (isnan(FT0)) {
840
            if (!(p.i & 0x0008000000000000ULL))
841
                p.i |= 0x000FFFFFFFFFFFFFULL;
842
        } else if (FT0 < 0) {
843
            p.i = 0x7FF8000000000000ULL;
844
        } else {
845
            p.i = 0x0000000000000000ULL;
846
        }
847
        FT0 = p.d;
848
    }
849
}
850

    
851
void do_fsel (void)
852
{
853
    if (FT0 >= 0)
854
        FT0 = FT1;
855
    else
856
        FT0 = FT2;
857
}
858

    
859
void do_fcmpu (void)
860
{
861
    if (likely(!isnan(FT0) && !isnan(FT1))) {
862
        if (float64_lt(FT0, FT1, &env->fp_status)) {
863
            T0 = 0x08UL;
864
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
865
            T0 = 0x04UL;
866
        } else {
867
            T0 = 0x02UL;
868
        }
869
    } else {
870
        T0 = 0x01UL;
871
        env->fpscr[4] |= 0x1;
872
        env->fpscr[6] |= 0x1;
873
    }
874
    env->fpscr[3] = T0;
875
}
876

    
877
void do_fcmpo (void)
878
{
879
    env->fpscr[4] &= ~0x1;
880
    if (likely(!isnan(FT0) && !isnan(FT1))) {
881
        if (float64_lt(FT0, FT1, &env->fp_status)) {
882
            T0 = 0x08UL;
883
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
884
            T0 = 0x04UL;
885
        } else {
886
            T0 = 0x02UL;
887
        }
888
    } else {
889
        T0 = 0x01UL;
890
        env->fpscr[4] |= 0x1;
891
        if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
892
            /* Quiet NaN case */
893
            env->fpscr[6] |= 0x1;
894
            if (!(env->fpscr[1] & 0x8))
895
                env->fpscr[4] |= 0x8;
896
        } else {
897
            env->fpscr[4] |= 0x8;
898
        }
899
    }
900
    env->fpscr[3] = T0;
901
}
902

    
903
#if !defined (CONFIG_USER_ONLY)
904
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
905
void do_rfi (void)
906
{
907
#if defined(TARGET_PPC64)
908
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
909
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
910
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
911
    } else {
912
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
913
        ppc_store_msr_32(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
914
    }
915
#else
916
    env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
917
    do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
918
#endif
919
#if defined (DEBUG_OP)
920
    cpu_dump_rfi(env->nip, do_load_msr(env));
921
#endif
922
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
923
}
924

    
925
#if defined(TARGET_PPC64)
926
void do_rfid (void)
927
{
928
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
929
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
930
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
931
    } else {
932
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
933
        do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
934
    }
935
#if defined (DEBUG_OP)
936
    cpu_dump_rfi(env->nip, do_load_msr(env));
937
#endif
938
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
939
}
940
#endif
941
#endif
942

    
943
void do_tw (int flags)
944
{
945
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
946
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
947
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
948
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
949
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
950
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
951
    }
952
}
953

    
954
#if defined(TARGET_PPC64)
955
void do_td (int flags)
956
{
957
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
958
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
959
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
960
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
961
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
962
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
963
}
964
#endif
965

    
966
/*****************************************************************************/
967
/* PowerPC 601 specific instructions (POWER bridge) */
968
void do_POWER_abso (void)
969
{
970
    if ((uint32_t)T0 == INT32_MIN) {
971
        T0 = INT32_MAX;
972
        xer_ov = 1;
973
        xer_so = 1;
974
    } else {
975
        T0 = -T0;
976
        xer_ov = 0;
977
    }
978
}
979

    
980
void do_POWER_clcs (void)
981
{
982
    switch (T0) {
983
    case 0x0CUL:
984
        /* Instruction cache line size */
985
        T0 = ICACHE_LINE_SIZE;
986
        break;
987
    case 0x0DUL:
988
        /* Data cache line size */
989
        T0 = DCACHE_LINE_SIZE;
990
        break;
991
    case 0x0EUL:
992
        /* Minimum cache line size */
993
        T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
994
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
995
        break;
996
    case 0x0FUL:
997
        /* Maximum cache line size */
998
        T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
999
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
1000
        break;
1001
    default:
1002
        /* Undefined */
1003
        break;
1004
    }
1005
}
1006

    
1007
void do_POWER_div (void)
1008
{
1009
    uint64_t tmp;
1010

    
1011
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1012
        T0 = (long)((-1) * (T0 >> 31));
1013
        env->spr[SPR_MQ] = 0;
1014
    } else {
1015
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1016
        env->spr[SPR_MQ] = tmp % T1;
1017
        T0 = tmp / (int32_t)T1;
1018
    }
1019
}
1020

    
1021
void do_POWER_divo (void)
1022
{
1023
    int64_t tmp;
1024

    
1025
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1026
        T0 = (long)((-1) * (T0 >> 31));
1027
        env->spr[SPR_MQ] = 0;
1028
        xer_ov = 1;
1029
        xer_so = 1;
1030
    } else {
1031
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1032
        env->spr[SPR_MQ] = tmp % T1;
1033
        tmp /= (int32_t)T1;
1034
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1035
            xer_ov = 1;
1036
            xer_so = 1;
1037
        } else {
1038
            xer_ov = 0;
1039
        }
1040
        T0 = tmp;
1041
    }
1042
}
1043

    
1044
void do_POWER_divs (void)
1045
{
1046
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1047
        T0 = (long)((-1) * (T0 >> 31));
1048
        env->spr[SPR_MQ] = 0;
1049
    } else {
1050
        env->spr[SPR_MQ] = T0 % T1;
1051
        T0 = (int32_t)T0 / (int32_t)T1;
1052
    }
1053
}
1054

    
1055
void do_POWER_divso (void)
1056
{
1057
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1058
        T0 = (long)((-1) * (T0 >> 31));
1059
        env->spr[SPR_MQ] = 0;
1060
        xer_ov = 1;
1061
        xer_so = 1;
1062
    } else {
1063
        T0 = (int32_t)T0 / (int32_t)T1;
1064
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1065
        xer_ov = 0;
1066
    }
1067
}
1068

    
1069
void do_POWER_dozo (void)
1070
{
1071
    if ((int32_t)T1 > (int32_t)T0) {
1072
        T2 = T0;
1073
        T0 = T1 - T0;
1074
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1075
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1076
            xer_so = 1;
1077
            xer_ov = 1;
1078
        } else {
1079
            xer_ov = 0;
1080
        }
1081
    } else {
1082
        T0 = 0;
1083
        xer_ov = 0;
1084
    }
1085
}
1086

    
1087
void do_POWER_maskg (void)
1088
{
1089
    uint32_t ret;
1090

    
1091
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1092
        ret = -1;
1093
    } else {
1094
        ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1095
            (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1096
        if ((uint32_t)T0 > (uint32_t)T1)
1097
            ret = ~ret;
1098
    }
1099
    T0 = ret;
1100
}
1101

    
1102
void do_POWER_mulo (void)
1103
{
1104
    uint64_t tmp;
1105

    
1106
    tmp = (uint64_t)T0 * (uint64_t)T1;
1107
    env->spr[SPR_MQ] = tmp >> 32;
1108
    T0 = tmp;
1109
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1110
        xer_ov = 1;
1111
        xer_so = 1;
1112
    } else {
1113
        xer_ov = 0;
1114
    }
1115
}
1116

    
1117
#if !defined (CONFIG_USER_ONLY)
1118
void do_POWER_rac (void)
1119
{
1120
#if 0
1121
    mmu_ctx_t ctx;
1122

1123
    /* We don't have to generate many instances of this instruction,
1124
     * as rac is supervisor only.
1125
     */
1126
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
1127
        T0 = ctx.raddr;
1128
#endif
1129
}
1130

    
1131
void do_POWER_rfsvc (void)
1132
{
1133
    env->nip = env->lr & ~0x00000003UL;
1134
    T0 = env->ctr & 0x0000FFFFUL;
1135
    do_store_msr(env, T0);
1136
#if defined (DEBUG_OP)
1137
    cpu_dump_rfi(env->nip, do_load_msr(env));
1138
#endif
1139
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1140
}
1141

    
1142
/* PowerPC 601 BAT management helper */
1143
void do_store_601_batu (int nr)
1144
{
1145
    do_store_ibatu(env, nr, (uint32_t)T0);
1146
    env->DBAT[0][nr] = env->IBAT[0][nr];
1147
    env->DBAT[1][nr] = env->IBAT[1][nr];
1148
}
1149
#endif
1150

    
1151
/*****************************************************************************/
1152
/* 602 specific instructions */
1153
/* mfrom is the most crazy instruction ever seen, imho ! */
1154
/* Real implementation uses a ROM table. Do the same */
1155
#define USE_MFROM_ROM_TABLE
1156
void do_op_602_mfrom (void)
1157
{
1158
    if (likely(T0 < 602)) {
1159
#if defined(USE_MFROM_ROM_TABLE)
1160
#include "mfrom_table.c"
1161
        T0 = mfrom_ROM_table[T0];
1162
#else
1163
        double d;
1164
        /* Extremly decomposed:
1165
         *                    -T0 / 256
1166
         * T0 = 256 * log10(10          + 1.0) + 0.5
1167
         */
1168
        d = T0;
1169
        d = float64_div(d, 256, &env->fp_status);
1170
        d = float64_chs(d);
1171
        d = exp10(d); // XXX: use float emulation function
1172
        d = float64_add(d, 1.0, &env->fp_status);
1173
        d = log10(d); // XXX: use float emulation function
1174
        d = float64_mul(d, 256, &env->fp_status);
1175
        d = float64_add(d, 0.5, &env->fp_status);
1176
        T0 = float64_round_to_int(d, &env->fp_status);
1177
#endif
1178
    } else {
1179
        T0 = 0;
1180
    }
1181
}
1182

    
1183
/*****************************************************************************/
1184
/* Embedded PowerPC specific helpers */
1185
void do_405_check_ov (void)
1186
{
1187
    if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1188
               !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1189
        xer_ov = 0;
1190
    } else {
1191
        xer_ov = 1;
1192
        xer_so = 1;
1193
    }
1194
}
1195

    
1196
void do_405_check_sat (void)
1197
{
1198
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1199
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1200
        /* Saturate result */
1201
        if (T2 >> 31) {
1202
            T0 = INT32_MIN;
1203
        } else {
1204
            T0 = INT32_MAX;
1205
        }
1206
    }
1207
}
1208

    
1209
#if !defined(CONFIG_USER_ONLY)
1210
void do_40x_rfci (void)
1211
{
1212
    env->nip = env->spr[SPR_40x_SRR2];
1213
    do_store_msr(env, env->spr[SPR_40x_SRR3] & ~0xFFFF0000);
1214
#if defined (DEBUG_OP)
1215
    cpu_dump_rfi(env->nip, do_load_msr(env));
1216
#endif
1217
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1218
}
1219

    
1220
void do_rfci (void)
1221
{
1222
#if defined(TARGET_PPC64)
1223
    if (env->spr[SPR_BOOKE_CSRR1] & (1 << MSR_CM)) {
1224
        env->nip = (uint64_t)env->spr[SPR_BOOKE_CSRR0];
1225
    } else
1226
#endif
1227
    {
1228
        env->nip = (uint32_t)env->spr[SPR_BOOKE_CSRR0];
1229
    }
1230
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_CSRR1] & ~0x3FFF0000);
1231
#if defined (DEBUG_OP)
1232
    cpu_dump_rfi(env->nip, do_load_msr(env));
1233
#endif
1234
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1235
}
1236

    
1237
void do_rfdi (void)
1238
{
1239
#if defined(TARGET_PPC64)
1240
    if (env->spr[SPR_BOOKE_DSRR1] & (1 << MSR_CM)) {
1241
        env->nip = (uint64_t)env->spr[SPR_BOOKE_DSRR0];
1242
    } else
1243
#endif
1244
    {
1245
        env->nip = (uint32_t)env->spr[SPR_BOOKE_DSRR0];
1246
    }
1247
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_DSRR1] & ~0x3FFF0000);
1248
#if defined (DEBUG_OP)
1249
    cpu_dump_rfi(env->nip, do_load_msr(env));
1250
#endif
1251
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1252
}
1253

    
1254
void do_rfmci (void)
1255
{
1256
#if defined(TARGET_PPC64)
1257
    if (env->spr[SPR_BOOKE_MCSRR1] & (1 << MSR_CM)) {
1258
        env->nip = (uint64_t)env->spr[SPR_BOOKE_MCSRR0];
1259
    } else
1260
#endif
1261
    {
1262
        env->nip = (uint32_t)env->spr[SPR_BOOKE_MCSRR0];
1263
    }
1264
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_MCSRR1] & ~0x3FFF0000);
1265
#if defined (DEBUG_OP)
1266
    cpu_dump_rfi(env->nip, do_load_msr(env));
1267
#endif
1268
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1269
}
1270

    
1271
void do_load_dcr (void)
1272
{
1273
    target_ulong val;
1274

    
1275
    if (unlikely(env->dcr_env == NULL)) {
1276
        if (loglevel != 0) {
1277
            fprintf(logfile, "No DCR environment\n");
1278
        }
1279
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1280
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1281
        if (loglevel != 0) {
1282
            fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1283
        }
1284
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1285
    } else {
1286
        T0 = val;
1287
    }
1288
}
1289

    
1290
void do_store_dcr (void)
1291
{
1292
    if (unlikely(env->dcr_env == NULL)) {
1293
        if (loglevel != 0) {
1294
            fprintf(logfile, "No DCR environment\n");
1295
        }
1296
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1297
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1298
        if (loglevel != 0) {
1299
            fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1300
        }
1301
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1302
    }
1303
}
1304

    
1305
void do_load_403_pb (int num)
1306
{
1307
    T0 = env->pb[num];
1308
}
1309

    
1310
void do_store_403_pb (int num)
1311
{
1312
    if (likely(env->pb[num] != T0)) {
1313
        env->pb[num] = T0;
1314
        /* Should be optimized */
1315
        tlb_flush(env, 1);
1316
    }
1317
}
1318
#endif
1319

    
1320
/* 440 specific */
1321
void do_440_dlmzb (void)
1322
{
1323
    target_ulong mask;
1324
    int i;
1325

    
1326
    i = 1;
1327
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1328
        if ((T0 & mask) == 0)
1329
            goto done;
1330
        i++;
1331
    }
1332
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1333
        if ((T1 & mask) == 0)
1334
            break;
1335
        i++;
1336
    }
1337
 done:
1338
    T0 = i;
1339
}
1340

    
1341
#if defined(TARGET_PPCEMB)
1342
/* SPE extension helpers */
1343
/* Use a table to make this quicker */
1344
static uint8_t hbrev[16] = {
1345
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1346
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1347
};
1348

    
1349
static inline uint8_t byte_reverse (uint8_t val)
1350
{
1351
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1352
}
1353

    
1354
static inline uint32_t word_reverse (uint32_t val)
1355
{
1356
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1357
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1358
}
1359

    
1360
#define MASKBITS 16 // Random value - to be fixed
1361
void do_brinc (void)
1362
{
1363
    uint32_t a, b, d, mask;
1364

    
1365
    mask = (uint32_t)(-1UL) >> MASKBITS;
1366
    b = T1_64 & mask;
1367
    a = T0_64 & mask;
1368
    d = word_reverse(1 + word_reverse(a | ~mask));
1369
    T0_64 = (T0_64 & ~mask) | (d & mask);
1370
}
1371

    
1372
#define DO_SPE_OP2(name)                                                      \
1373
void do_ev##name (void)                                                       \
1374
{                                                                             \
1375
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
1376
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
1377
}
1378

    
1379
#define DO_SPE_OP1(name)                                                      \
1380
void do_ev##name (void)                                                       \
1381
{                                                                             \
1382
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
1383
        (uint64_t)_do_e##name(T0_64);                                         \
1384
}
1385

    
1386
/* Fixed-point vector arithmetic */
1387
static inline uint32_t _do_eabs (uint32_t val)
1388
{
1389
    if (val != 0x80000000)
1390
        val &= ~0x80000000;
1391

    
1392
    return val;
1393
}
1394

    
1395
static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1396
{
1397
    return op1 + op2;
1398
}
1399

    
1400
static inline int _do_ecntlsw (uint32_t val)
1401
{
1402
    if (val & 0x80000000)
1403
        return _do_cntlzw(~val);
1404
    else
1405
        return _do_cntlzw(val);
1406
}
1407

    
1408
static inline int _do_ecntlzw (uint32_t val)
1409
{
1410
    return _do_cntlzw(val);
1411
}
1412

    
1413
static inline uint32_t _do_eneg (uint32_t val)
1414
{
1415
    if (val != 0x80000000)
1416
        val ^= 0x80000000;
1417

    
1418
    return val;
1419
}
1420

    
1421
static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1422
{
1423
    return rotl32(op1, op2);
1424
}
1425

    
1426
static inline uint32_t _do_erndw (uint32_t val)
1427
{
1428
    return (val + 0x000080000000) & 0xFFFF0000;
1429
}
1430

    
1431
static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1432
{
1433
    /* No error here: 6 bits are used */
1434
    return op1 << (op2 & 0x3F);
1435
}
1436

    
1437
static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1438
{
1439
    /* No error here: 6 bits are used */
1440
    return op1 >> (op2 & 0x3F);
1441
}
1442

    
1443
static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1444
{
1445
    /* No error here: 6 bits are used */
1446
    return op1 >> (op2 & 0x3F);
1447
}
1448

    
1449
static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1450
{
1451
    return op2 - op1;
1452
}
1453

    
1454
/* evabs */
1455
DO_SPE_OP1(abs);
1456
/* evaddw */
1457
DO_SPE_OP2(addw);
1458
/* evcntlsw */
1459
DO_SPE_OP1(cntlsw);
1460
/* evcntlzw */
1461
DO_SPE_OP1(cntlzw);
1462
/* evneg */
1463
DO_SPE_OP1(neg);
1464
/* evrlw */
1465
DO_SPE_OP2(rlw);
1466
/* evrnd */
1467
DO_SPE_OP1(rndw);
1468
/* evslw */
1469
DO_SPE_OP2(slw);
1470
/* evsrws */
1471
DO_SPE_OP2(srws);
1472
/* evsrwu */
1473
DO_SPE_OP2(srwu);
1474
/* evsubfw */
1475
DO_SPE_OP2(subfw);
1476

    
1477
/* evsel is a little bit more complicated... */
1478
static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1479
{
1480
    if (n)
1481
        return op1;
1482
    else
1483
        return op2;
1484
}
1485

    
1486
void do_evsel (void)
1487
{
1488
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1489
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1490
}
1491

    
1492
/* Fixed-point vector comparisons */
1493
#define DO_SPE_CMP(name)                                                      \
1494
void do_ev##name (void)                                                       \
1495
{                                                                             \
1496
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
1497
                                               T1_64 >> 32) << 32,            \
1498
                         _do_e##name(T0_64, T1_64));                          \
1499
}
1500

    
1501
static inline uint32_t _do_evcmp_merge (int t0, int t1)
1502
{
1503
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1504
}
1505
static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
1506
{
1507
    return op1 == op2 ? 1 : 0;
1508
}
1509

    
1510
static inline int _do_ecmpgts (int32_t op1, int32_t op2)
1511
{
1512
    return op1 > op2 ? 1 : 0;
1513
}
1514

    
1515
static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
1516
{
1517
    return op1 > op2 ? 1 : 0;
1518
}
1519

    
1520
static inline int _do_ecmplts (int32_t op1, int32_t op2)
1521
{
1522
    return op1 < op2 ? 1 : 0;
1523
}
1524

    
1525
static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
1526
{
1527
    return op1 < op2 ? 1 : 0;
1528
}
1529

    
1530
/* evcmpeq */
1531
DO_SPE_CMP(cmpeq);
1532
/* evcmpgts */
1533
DO_SPE_CMP(cmpgts);
1534
/* evcmpgtu */
1535
DO_SPE_CMP(cmpgtu);
1536
/* evcmplts */
1537
DO_SPE_CMP(cmplts);
1538
/* evcmpltu */
1539
DO_SPE_CMP(cmpltu);
1540

    
1541
/* Single precision floating-point conversions from/to integer */
1542
static inline uint32_t _do_efscfsi (int32_t val)
1543
{
1544
    union {
1545
        uint32_t u;
1546
        float32 f;
1547
    } u;
1548

    
1549
    u.f = int32_to_float32(val, &env->spe_status);
1550

    
1551
    return u.u;
1552
}
1553

    
1554
static inline uint32_t _do_efscfui (uint32_t val)
1555
{
1556
    union {
1557
        uint32_t u;
1558
        float32 f;
1559
    } u;
1560

    
1561
    u.f = uint32_to_float32(val, &env->spe_status);
1562

    
1563
    return u.u;
1564
}
1565

    
1566
static inline int32_t _do_efsctsi (uint32_t val)
1567
{
1568
    union {
1569
        int32_t u;
1570
        float32 f;
1571
    } u;
1572

    
1573
    u.u = val;
1574
    /* NaN are not treated the same way IEEE 754 does */
1575
    if (unlikely(isnan(u.f)))
1576
        return 0;
1577

    
1578
    return float32_to_int32(u.f, &env->spe_status);
1579
}
1580

    
1581
static inline uint32_t _do_efsctui (uint32_t val)
1582
{
1583
    union {
1584
        int32_t u;
1585
        float32 f;
1586
    } u;
1587

    
1588
    u.u = val;
1589
    /* NaN are not treated the same way IEEE 754 does */
1590
    if (unlikely(isnan(u.f)))
1591
        return 0;
1592

    
1593
    return float32_to_uint32(u.f, &env->spe_status);
1594
}
1595

    
1596
static inline int32_t _do_efsctsiz (uint32_t val)
1597
{
1598
    union {
1599
        int32_t u;
1600
        float32 f;
1601
    } u;
1602

    
1603
    u.u = val;
1604
    /* NaN are not treated the same way IEEE 754 does */
1605
    if (unlikely(isnan(u.f)))
1606
        return 0;
1607

    
1608
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1609
}
1610

    
1611
static inline uint32_t _do_efsctuiz (uint32_t val)
1612
{
1613
    union {
1614
        int32_t u;
1615
        float32 f;
1616
    } u;
1617

    
1618
    u.u = val;
1619
    /* NaN are not treated the same way IEEE 754 does */
1620
    if (unlikely(isnan(u.f)))
1621
        return 0;
1622

    
1623
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1624
}
1625

    
1626
void do_efscfsi (void)
1627
{
1628
    T0_64 = _do_efscfsi(T0_64);
1629
}
1630

    
1631
void do_efscfui (void)
1632
{
1633
    T0_64 = _do_efscfui(T0_64);
1634
}
1635

    
1636
void do_efsctsi (void)
1637
{
1638
    T0_64 = _do_efsctsi(T0_64);
1639
}
1640

    
1641
void do_efsctui (void)
1642
{
1643
    T0_64 = _do_efsctui(T0_64);
1644
}
1645

    
1646
void do_efsctsiz (void)
1647
{
1648
    T0_64 = _do_efsctsiz(T0_64);
1649
}
1650

    
1651
void do_efsctuiz (void)
1652
{
1653
    T0_64 = _do_efsctuiz(T0_64);
1654
}
1655

    
1656
/* Single precision floating-point conversion to/from fractional */
1657
static inline uint32_t _do_efscfsf (uint32_t val)
1658
{
1659
    union {
1660
        uint32_t u;
1661
        float32 f;
1662
    } u;
1663
    float32 tmp;
1664

    
1665
    u.f = int32_to_float32(val, &env->spe_status);
1666
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1667
    u.f = float32_div(u.f, tmp, &env->spe_status);
1668

    
1669
    return u.u;
1670
}
1671

    
1672
static inline uint32_t _do_efscfuf (uint32_t val)
1673
{
1674
    union {
1675
        uint32_t u;
1676
        float32 f;
1677
    } u;
1678
    float32 tmp;
1679

    
1680
    u.f = uint32_to_float32(val, &env->spe_status);
1681
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1682
    u.f = float32_div(u.f, tmp, &env->spe_status);
1683

    
1684
    return u.u;
1685
}
1686

    
1687
static inline int32_t _do_efsctsf (uint32_t val)
1688
{
1689
    union {
1690
        int32_t u;
1691
        float32 f;
1692
    } u;
1693
    float32 tmp;
1694

    
1695
    u.u = val;
1696
    /* NaN are not treated the same way IEEE 754 does */
1697
    if (unlikely(isnan(u.f)))
1698
        return 0;
1699
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1700
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1701

    
1702
    return float32_to_int32(u.f, &env->spe_status);
1703
}
1704

    
1705
static inline uint32_t _do_efsctuf (uint32_t val)
1706
{
1707
    union {
1708
        int32_t u;
1709
        float32 f;
1710
    } u;
1711
    float32 tmp;
1712

    
1713
    u.u = val;
1714
    /* NaN are not treated the same way IEEE 754 does */
1715
    if (unlikely(isnan(u.f)))
1716
        return 0;
1717
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1718
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1719

    
1720
    return float32_to_uint32(u.f, &env->spe_status);
1721
}
1722

    
1723
static inline int32_t _do_efsctsfz (uint32_t val)
1724
{
1725
    union {
1726
        int32_t u;
1727
        float32 f;
1728
    } u;
1729
    float32 tmp;
1730

    
1731
    u.u = val;
1732
    /* NaN are not treated the same way IEEE 754 does */
1733
    if (unlikely(isnan(u.f)))
1734
        return 0;
1735
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1736
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1737

    
1738
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1739
}
1740

    
1741
static inline uint32_t _do_efsctufz (uint32_t val)
1742
{
1743
    union {
1744
        int32_t u;
1745
        float32 f;
1746
    } u;
1747
    float32 tmp;
1748

    
1749
    u.u = val;
1750
    /* NaN are not treated the same way IEEE 754 does */
1751
    if (unlikely(isnan(u.f)))
1752
        return 0;
1753
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1754
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1755

    
1756
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1757
}
1758

    
1759
void do_efscfsf (void)
1760
{
1761
    T0_64 = _do_efscfsf(T0_64);
1762
}
1763

    
1764
void do_efscfuf (void)
1765
{
1766
    T0_64 = _do_efscfuf(T0_64);
1767
}
1768

    
1769
void do_efsctsf (void)
1770
{
1771
    T0_64 = _do_efsctsf(T0_64);
1772
}
1773

    
1774
void do_efsctuf (void)
1775
{
1776
    T0_64 = _do_efsctuf(T0_64);
1777
}
1778

    
1779
void do_efsctsfz (void)
1780
{
1781
    T0_64 = _do_efsctsfz(T0_64);
1782
}
1783

    
1784
void do_efsctufz (void)
1785
{
1786
    T0_64 = _do_efsctufz(T0_64);
1787
}
1788

    
1789
/* Double precision floating point helpers */
1790
static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1791
{
1792
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1793
    return _do_efdtstlt(op1, op2);
1794
}
1795

    
1796
static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1797
{
1798
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1799
    return _do_efdtstgt(op1, op2);
1800
}
1801

    
1802
static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1803
{
1804
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1805
    return _do_efdtsteq(op1, op2);
1806
}
1807

    
1808
void do_efdcmplt (void)
1809
{
1810
    T0 = _do_efdcmplt(T0_64, T1_64);
1811
}
1812

    
1813
void do_efdcmpgt (void)
1814
{
1815
    T0 = _do_efdcmpgt(T0_64, T1_64);
1816
}
1817

    
1818
void do_efdcmpeq (void)
1819
{
1820
    T0 = _do_efdcmpeq(T0_64, T1_64);
1821
}
1822

    
1823
/* Double precision floating-point conversion to/from integer */
1824
static inline uint64_t _do_efdcfsi (int64_t val)
1825
{
1826
    union {
1827
        uint64_t u;
1828
        float64 f;
1829
    } u;
1830

    
1831
    u.f = int64_to_float64(val, &env->spe_status);
1832

    
1833
    return u.u;
1834
}
1835

    
1836
static inline uint64_t _do_efdcfui (uint64_t val)
1837
{
1838
    union {
1839
        uint64_t u;
1840
        float64 f;
1841
    } u;
1842

    
1843
    u.f = uint64_to_float64(val, &env->spe_status);
1844

    
1845
    return u.u;
1846
}
1847

    
1848
static inline int64_t _do_efdctsi (uint64_t val)
1849
{
1850
    union {
1851
        int64_t u;
1852
        float64 f;
1853
    } u;
1854

    
1855
    u.u = val;
1856
    /* NaN are not treated the same way IEEE 754 does */
1857
    if (unlikely(isnan(u.f)))
1858
        return 0;
1859

    
1860
    return float64_to_int64(u.f, &env->spe_status);
1861
}
1862

    
1863
static inline uint64_t _do_efdctui (uint64_t val)
1864
{
1865
    union {
1866
        int64_t u;
1867
        float64 f;
1868
    } u;
1869

    
1870
    u.u = val;
1871
    /* NaN are not treated the same way IEEE 754 does */
1872
    if (unlikely(isnan(u.f)))
1873
        return 0;
1874

    
1875
    return float64_to_uint64(u.f, &env->spe_status);
1876
}
1877

    
1878
static inline int64_t _do_efdctsiz (uint64_t val)
1879
{
1880
    union {
1881
        int64_t u;
1882
        float64 f;
1883
    } u;
1884

    
1885
    u.u = val;
1886
    /* NaN are not treated the same way IEEE 754 does */
1887
    if (unlikely(isnan(u.f)))
1888
        return 0;
1889

    
1890
    return float64_to_int64_round_to_zero(u.f, &env->spe_status);
1891
}
1892

    
1893
static inline uint64_t _do_efdctuiz (uint64_t val)
1894
{
1895
    union {
1896
        int64_t u;
1897
        float64 f;
1898
    } u;
1899

    
1900
    u.u = val;
1901
    /* NaN are not treated the same way IEEE 754 does */
1902
    if (unlikely(isnan(u.f)))
1903
        return 0;
1904

    
1905
    return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
1906
}
1907

    
1908
void do_efdcfsi (void)
1909
{
1910
    T0_64 = _do_efdcfsi(T0_64);
1911
}
1912

    
1913
void do_efdcfui (void)
1914
{
1915
    T0_64 = _do_efdcfui(T0_64);
1916
}
1917

    
1918
void do_efdctsi (void)
1919
{
1920
    T0_64 = _do_efdctsi(T0_64);
1921
}
1922

    
1923
void do_efdctui (void)
1924
{
1925
    T0_64 = _do_efdctui(T0_64);
1926
}
1927

    
1928
void do_efdctsiz (void)
1929
{
1930
    T0_64 = _do_efdctsiz(T0_64);
1931
}
1932

    
1933
void do_efdctuiz (void)
1934
{
1935
    T0_64 = _do_efdctuiz(T0_64);
1936
}
1937

    
1938
/* Double precision floating-point conversion to/from fractional */
1939
static inline uint64_t _do_efdcfsf (int64_t val)
1940
{
1941
    union {
1942
        uint64_t u;
1943
        float64 f;
1944
    } u;
1945
    float64 tmp;
1946

    
1947
    u.f = int32_to_float64(val, &env->spe_status);
1948
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1949
    u.f = float64_div(u.f, tmp, &env->spe_status);
1950

    
1951
    return u.u;
1952
}
1953

    
1954
static inline uint64_t _do_efdcfuf (uint64_t val)
1955
{
1956
    union {
1957
        uint64_t u;
1958
        float64 f;
1959
    } u;
1960
    float64 tmp;
1961

    
1962
    u.f = uint32_to_float64(val, &env->spe_status);
1963
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1964
    u.f = float64_div(u.f, tmp, &env->spe_status);
1965

    
1966
    return u.u;
1967
}
1968

    
1969
static inline int64_t _do_efdctsf (uint64_t val)
1970
{
1971
    union {
1972
        int64_t u;
1973
        float64 f;
1974
    } u;
1975
    float64 tmp;
1976

    
1977
    u.u = val;
1978
    /* NaN are not treated the same way IEEE 754 does */
1979
    if (unlikely(isnan(u.f)))
1980
        return 0;
1981
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1982
    u.f = float64_mul(u.f, tmp, &env->spe_status);
1983

    
1984
    return float64_to_int32(u.f, &env->spe_status);
1985
}
1986

    
1987
static inline uint64_t _do_efdctuf (uint64_t val)
1988
{
1989
    union {
1990
        int64_t u;
1991
        float64 f;
1992
    } u;
1993
    float64 tmp;
1994

    
1995
    u.u = val;
1996
    /* NaN are not treated the same way IEEE 754 does */
1997
    if (unlikely(isnan(u.f)))
1998
        return 0;
1999
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2000
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2001

    
2002
    return float64_to_uint32(u.f, &env->spe_status);
2003
}
2004

    
2005
static inline int64_t _do_efdctsfz (uint64_t val)
2006
{
2007
    union {
2008
        int64_t u;
2009
        float64 f;
2010
    } u;
2011
    float64 tmp;
2012

    
2013
    u.u = val;
2014
    /* NaN are not treated the same way IEEE 754 does */
2015
    if (unlikely(isnan(u.f)))
2016
        return 0;
2017
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2018
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2019

    
2020
    return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2021
}
2022

    
2023
static inline uint64_t _do_efdctufz (uint64_t val)
2024
{
2025
    union {
2026
        int64_t u;
2027
        float64 f;
2028
    } u;
2029
    float64 tmp;
2030

    
2031
    u.u = val;
2032
    /* NaN are not treated the same way IEEE 754 does */
2033
    if (unlikely(isnan(u.f)))
2034
        return 0;
2035
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2036
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2037

    
2038
    return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2039
}
2040

    
2041
void do_efdcfsf (void)
2042
{
2043
    T0_64 = _do_efdcfsf(T0_64);
2044
}
2045

    
2046
void do_efdcfuf (void)
2047
{
2048
    T0_64 = _do_efdcfuf(T0_64);
2049
}
2050

    
2051
void do_efdctsf (void)
2052
{
2053
    T0_64 = _do_efdctsf(T0_64);
2054
}
2055

    
2056
void do_efdctuf (void)
2057
{
2058
    T0_64 = _do_efdctuf(T0_64);
2059
}
2060

    
2061
void do_efdctsfz (void)
2062
{
2063
    T0_64 = _do_efdctsfz(T0_64);
2064
}
2065

    
2066
void do_efdctufz (void)
2067
{
2068
    T0_64 = _do_efdctufz(T0_64);
2069
}
2070

    
2071
/* Floating point conversion between single and double precision */
2072
static inline uint32_t _do_efscfd (uint64_t val)
2073
{
2074
    union {
2075
        uint64_t u;
2076
        float64 f;
2077
    } u1;
2078
    union {
2079
        uint32_t u;
2080
        float32 f;
2081
    } u2;
2082

    
2083
    u1.u = val;
2084
    u2.f = float64_to_float32(u1.f, &env->spe_status);
2085

    
2086
    return u2.u;
2087
}
2088

    
2089
static inline uint64_t _do_efdcfs (uint32_t val)
2090
{
2091
    union {
2092
        uint64_t u;
2093
        float64 f;
2094
    } u2;
2095
    union {
2096
        uint32_t u;
2097
        float32 f;
2098
    } u1;
2099

    
2100
    u1.u = val;
2101
    u2.f = float32_to_float64(u1.f, &env->spe_status);
2102

    
2103
    return u2.u;
2104
}
2105

    
2106
void do_efscfd (void)
2107
{
2108
    T0_64 = _do_efscfd(T0_64);
2109
}
2110

    
2111
void do_efdcfs (void)
2112
{
2113
    T0_64 = _do_efdcfs(T0_64);
2114
}
2115

    
2116
/* Single precision fixed-point vector arithmetic */
2117
/* evfsabs */
2118
DO_SPE_OP1(fsabs);
2119
/* evfsnabs */
2120
DO_SPE_OP1(fsnabs);
2121
/* evfsneg */
2122
DO_SPE_OP1(fsneg);
2123
/* evfsadd */
2124
DO_SPE_OP2(fsadd);
2125
/* evfssub */
2126
DO_SPE_OP2(fssub);
2127
/* evfsmul */
2128
DO_SPE_OP2(fsmul);
2129
/* evfsdiv */
2130
DO_SPE_OP2(fsdiv);
2131

    
2132
/* Single-precision floating-point comparisons */
2133
static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2134
{
2135
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2136
    return _do_efststlt(op1, op2);
2137
}
2138

    
2139
static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2140
{
2141
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2142
    return _do_efststgt(op1, op2);
2143
}
2144

    
2145
static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2146
{
2147
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2148
    return _do_efststeq(op1, op2);
2149
}
2150

    
2151
void do_efscmplt (void)
2152
{
2153
    T0 = _do_efscmplt(T0_64, T1_64);
2154
}
2155

    
2156
void do_efscmpgt (void)
2157
{
2158
    T0 = _do_efscmpgt(T0_64, T1_64);
2159
}
2160

    
2161
void do_efscmpeq (void)
2162
{
2163
    T0 = _do_efscmpeq(T0_64, T1_64);
2164
}
2165

    
2166
/* Single-precision floating-point vector comparisons */
2167
/* evfscmplt */
2168
DO_SPE_CMP(fscmplt);
2169
/* evfscmpgt */
2170
DO_SPE_CMP(fscmpgt);
2171
/* evfscmpeq */
2172
DO_SPE_CMP(fscmpeq);
2173
/* evfststlt */
2174
DO_SPE_CMP(fststlt);
2175
/* evfststgt */
2176
DO_SPE_CMP(fststgt);
2177
/* evfststeq */
2178
DO_SPE_CMP(fststeq);
2179

    
2180
/* Single-precision floating-point vector conversions */
2181
/* evfscfsi */
2182
DO_SPE_OP1(fscfsi);
2183
/* evfscfui */
2184
DO_SPE_OP1(fscfui);
2185
/* evfscfuf */
2186
DO_SPE_OP1(fscfuf);
2187
/* evfscfsf */
2188
DO_SPE_OP1(fscfsf);
2189
/* evfsctsi */
2190
DO_SPE_OP1(fsctsi);
2191
/* evfsctui */
2192
DO_SPE_OP1(fsctui);
2193
/* evfsctsiz */
2194
DO_SPE_OP1(fsctsiz);
2195
/* evfsctuiz */
2196
DO_SPE_OP1(fsctuiz);
2197
/* evfsctsf */
2198
DO_SPE_OP1(fsctsf);
2199
/* evfsctuf */
2200
DO_SPE_OP1(fsctuf);
2201
#endif /* defined(TARGET_PPCEMB) */
2202

    
2203
/*****************************************************************************/
2204
/* Softmmu support */
2205
#if !defined (CONFIG_USER_ONLY)
2206

    
2207
#define MMUSUFFIX _mmu
2208
#define GETPC() (__builtin_return_address(0))
2209

    
2210
#define SHIFT 0
2211
#include "softmmu_template.h"
2212

    
2213
#define SHIFT 1
2214
#include "softmmu_template.h"
2215

    
2216
#define SHIFT 2
2217
#include "softmmu_template.h"
2218

    
2219
#define SHIFT 3
2220
#include "softmmu_template.h"
2221

    
2222
/* try to fill the TLB and return an exception if error. If retaddr is
2223
   NULL, it means that the function was called in C code (i.e. not
2224
   from generated code or from helper.c) */
2225
/* XXX: fix it to restore all registers */
2226
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
2227
{
2228
    TranslationBlock *tb;
2229
    CPUState *saved_env;
2230
    target_phys_addr_t pc;
2231
    int ret;
2232

    
2233
    /* XXX: hack to restore env in all cases, even if not called from
2234
       generated code */
2235
    saved_env = env;
2236
    env = cpu_single_env;
2237
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
2238
    if (unlikely(ret != 0)) {
2239
        if (likely(retaddr)) {
2240
            /* now we have a real cpu fault */
2241
            pc = (target_phys_addr_t)retaddr;
2242
            tb = tb_find_pc(pc);
2243
            if (likely(tb)) {
2244
                /* the PC is inside the translated code. It means that we have
2245
                   a virtual CPU fault */
2246
                cpu_restore_state(tb, env, pc, NULL);
2247
            }
2248
        }
2249
        do_raise_exception_err(env->exception_index, env->error_code);
2250
    }
2251
    env = saved_env;
2252
}
2253

    
2254
/* TLB invalidation helpers */
2255
void do_tlbia (void)
2256
{
2257
    ppc_tlb_invalidate_all(env);
2258
}
2259

    
2260
void do_tlbie (void)
2261
{
2262
    T0 = (uint32_t)T0;
2263
#if !defined(FLUSH_ALL_TLBS)
2264
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2265
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2266
        if (env->id_tlbs == 1)
2267
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2268
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2269
        /* XXX: TODO */
2270
#if 0
2271
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2272
                                     env->spr[SPR_BOOKE_PID]);
2273
#endif
2274
    } else {
2275
        /* tlbie invalidate TLBs for all segments */
2276
        T0 &= TARGET_PAGE_MASK;
2277
        T0 &= ~((target_ulong)-1 << 28);
2278
        /* XXX: this case should be optimized,
2279
         * giving a mask to tlb_flush_page
2280
         */
2281
        tlb_flush_page(env, T0 | (0x0 << 28));
2282
        tlb_flush_page(env, T0 | (0x1 << 28));
2283
        tlb_flush_page(env, T0 | (0x2 << 28));
2284
        tlb_flush_page(env, T0 | (0x3 << 28));
2285
        tlb_flush_page(env, T0 | (0x4 << 28));
2286
        tlb_flush_page(env, T0 | (0x5 << 28));
2287
        tlb_flush_page(env, T0 | (0x6 << 28));
2288
        tlb_flush_page(env, T0 | (0x7 << 28));
2289
        tlb_flush_page(env, T0 | (0x8 << 28));
2290
        tlb_flush_page(env, T0 | (0x9 << 28));
2291
        tlb_flush_page(env, T0 | (0xA << 28));
2292
        tlb_flush_page(env, T0 | (0xB << 28));
2293
        tlb_flush_page(env, T0 | (0xC << 28));
2294
        tlb_flush_page(env, T0 | (0xD << 28));
2295
        tlb_flush_page(env, T0 | (0xE << 28));
2296
        tlb_flush_page(env, T0 | (0xF << 28));
2297
    }
2298
#else
2299
    do_tlbia();
2300
#endif
2301
}
2302

    
2303
#if defined(TARGET_PPC64)
2304
void do_tlbie_64 (void)
2305
{
2306
    T0 = (uint64_t)T0;
2307
#if !defined(FLUSH_ALL_TLBS)
2308
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2309
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2310
        if (env->id_tlbs == 1)
2311
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2312
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2313
        /* XXX: TODO */
2314
#if 0
2315
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2316
                                     env->spr[SPR_BOOKE_PID]);
2317
#endif
2318
    } else {
2319
        /* tlbie invalidate TLBs for all segments
2320
         * As we have 2^36 segments, invalidate all qemu TLBs
2321
         */
2322
#if 0
2323
        T0 &= TARGET_PAGE_MASK;
2324
        T0 &= ~((target_ulong)-1 << 28);
2325
        /* XXX: this case should be optimized,
2326
         * giving a mask to tlb_flush_page
2327
         */
2328
        tlb_flush_page(env, T0 | (0x0 << 28));
2329
        tlb_flush_page(env, T0 | (0x1 << 28));
2330
        tlb_flush_page(env, T0 | (0x2 << 28));
2331
        tlb_flush_page(env, T0 | (0x3 << 28));
2332
        tlb_flush_page(env, T0 | (0x4 << 28));
2333
        tlb_flush_page(env, T0 | (0x5 << 28));
2334
        tlb_flush_page(env, T0 | (0x6 << 28));
2335
        tlb_flush_page(env, T0 | (0x7 << 28));
2336
        tlb_flush_page(env, T0 | (0x8 << 28));
2337
        tlb_flush_page(env, T0 | (0x9 << 28));
2338
        tlb_flush_page(env, T0 | (0xA << 28));
2339
        tlb_flush_page(env, T0 | (0xB << 28));
2340
        tlb_flush_page(env, T0 | (0xC << 28));
2341
        tlb_flush_page(env, T0 | (0xD << 28));
2342
        tlb_flush_page(env, T0 | (0xE << 28));
2343
        tlb_flush_page(env, T0 | (0xF << 28));
2344
#else
2345
        tlb_flush(env, 1);
2346
#endif
2347
    }
2348
#else
2349
    do_tlbia();
2350
#endif
2351
}
2352
#endif
2353

    
2354
#if defined(TARGET_PPC64)
2355
void do_slbia (void)
2356
{
2357
    /* XXX: TODO */
2358
    tlb_flush(env, 1);
2359
}
2360

    
2361
void do_slbie (void)
2362
{
2363
    /* XXX: TODO */
2364
    tlb_flush(env, 1);
2365
}
2366
#endif
2367

    
2368
/* Software driven TLBs management */
2369
/* PowerPC 602/603 software TLB load instructions helpers */
2370
void do_load_6xx_tlb (int is_code)
2371
{
2372
    target_ulong RPN, CMP, EPN;
2373
    int way;
2374

    
2375
    RPN = env->spr[SPR_RPA];
2376
    if (is_code) {
2377
        CMP = env->spr[SPR_ICMP];
2378
        EPN = env->spr[SPR_IMISS];
2379
    } else {
2380
        CMP = env->spr[SPR_DCMP];
2381
        EPN = env->spr[SPR_DMISS];
2382
    }
2383
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2384
#if defined (DEBUG_SOFTWARE_TLB)
2385
    if (loglevel != 0) {
2386
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2387
                __func__, (unsigned long)T0, (unsigned long)EPN,
2388
                (unsigned long)CMP, (unsigned long)RPN, way);
2389
    }
2390
#endif
2391
    /* Store this TLB */
2392
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2393
                     way, is_code, CMP, RPN);
2394
}
2395

    
2396
static target_ulong booke_tlb_to_page_size (int size)
2397
{
2398
    return 1024 << (2 * size);
2399
}
2400

    
2401
static int booke_page_size_to_tlb (target_ulong page_size)
2402
{
2403
    int size;
2404

    
2405
    switch (page_size) {
2406
    case 0x00000400UL:
2407
        size = 0x0;
2408
        break;
2409
    case 0x00001000UL:
2410
        size = 0x1;
2411
        break;
2412
    case 0x00004000UL:
2413
        size = 0x2;
2414
        break;
2415
    case 0x00010000UL:
2416
        size = 0x3;
2417
        break;
2418
    case 0x00040000UL:
2419
        size = 0x4;
2420
        break;
2421
    case 0x00100000UL:
2422
        size = 0x5;
2423
        break;
2424
    case 0x00400000UL:
2425
        size = 0x6;
2426
        break;
2427
    case 0x01000000UL:
2428
        size = 0x7;
2429
        break;
2430
    case 0x04000000UL:
2431
        size = 0x8;
2432
        break;
2433
    case 0x10000000UL:
2434
        size = 0x9;
2435
        break;
2436
    case 0x40000000UL:
2437
        size = 0xA;
2438
        break;
2439
#if defined (TARGET_PPC64)
2440
    case 0x000100000000ULL:
2441
        size = 0xB;
2442
        break;
2443
    case 0x000400000000ULL:
2444
        size = 0xC;
2445
        break;
2446
    case 0x001000000000ULL:
2447
        size = 0xD;
2448
        break;
2449
    case 0x004000000000ULL:
2450
        size = 0xE;
2451
        break;
2452
    case 0x010000000000ULL:
2453
        size = 0xF;
2454
        break;
2455
#endif
2456
    default:
2457
        size = -1;
2458
        break;
2459
    }
2460

    
2461
    return size;
2462
}
2463

    
2464
/* Helpers for 4xx TLB management */
2465
void do_4xx_tlbre_lo (void)
2466
{
2467
    ppcemb_tlb_t *tlb;
2468
    int size;
2469

    
2470
    T0 &= 0x3F;
2471
    tlb = &env->tlb[T0].tlbe;
2472
    T0 = tlb->EPN;
2473
    if (tlb->prot & PAGE_VALID)
2474
        T0 |= 0x400;
2475
    size = booke_page_size_to_tlb(tlb->size);
2476
    if (size < 0 || size > 0x7)
2477
        size = 1;
2478
    T0 |= size << 7;
2479
    env->spr[SPR_40x_PID] = tlb->PID;
2480
}
2481

    
2482
void do_4xx_tlbre_hi (void)
2483
{
2484
    ppcemb_tlb_t *tlb;
2485

    
2486
    T0 &= 0x3F;
2487
    tlb = &env->tlb[T0].tlbe;
2488
    T0 = tlb->RPN;
2489
    if (tlb->prot & PAGE_EXEC)
2490
        T0 |= 0x200;
2491
    if (tlb->prot & PAGE_WRITE)
2492
        T0 |= 0x100;
2493
}
2494

    
2495
void do_4xx_tlbsx (void)
2496
{
2497
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]);
2498
}
2499

    
2500
void do_4xx_tlbsx_ (void)
2501
{
2502
    int tmp = xer_ov;
2503

    
2504
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]);
2505
    if (T0 != -1)
2506
        tmp |= 0x02;
2507
    env->crf[0] = tmp;
2508
}
2509

    
2510
void do_4xx_tlbwe_hi (void)
2511
{
2512
    ppcemb_tlb_t *tlb;
2513
    target_ulong page, end;
2514

    
2515
#if defined (DEBUG_SOFTWARE_TLB)
2516
    if (loglevel != 0) {
2517
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2518
    }
2519
#endif
2520
    T0 &= 0x3F;
2521
    tlb = &env->tlb[T0].tlbe;
2522
    /* Invalidate previous TLB (if it's valid) */
2523
    if (tlb->prot & PAGE_VALID) {
2524
        end = tlb->EPN + tlb->size;
2525
#if defined (DEBUG_SOFTWARE_TLB)
2526
        if (loglevel != 0) {
2527
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2528
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2529
        }
2530
#endif
2531
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2532
            tlb_flush_page(env, page);
2533
    }
2534
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2535
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2536
     * If this ever occurs, one should use the ppcemb target instead
2537
     * of the ppc or ppc64 one
2538
     */
2539
    if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2540
        cpu_abort(env, "TLB size %u < %u are not supported (%d)\n",
2541
                  tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2542
    }
2543
    tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1);
2544
    if (T1 & 0x40)
2545
        tlb->prot |= PAGE_VALID;
2546
    else
2547
        tlb->prot &= ~PAGE_VALID;
2548
    if (T1 & 0x20) {
2549
        /* XXX: TO BE FIXED */
2550
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2551
    }
2552
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2553
    tlb->attr = T1 & 0xFF;
2554
#if defined (DEBUG_SOFTWARE_TLB)
2555
    if (loglevel != 0) {
2556
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2557
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2558
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2559
                tlb->prot & PAGE_READ ? 'r' : '-',
2560
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2561
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2562
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2563
    }
2564
#endif
2565
    /* Invalidate new TLB (if valid) */
2566
    if (tlb->prot & PAGE_VALID) {
2567
        end = tlb->EPN + tlb->size;
2568
#if defined (DEBUG_SOFTWARE_TLB)
2569
        if (loglevel != 0) {
2570
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2571
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2572
        }
2573
#endif
2574
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2575
            tlb_flush_page(env, page);
2576
    }
2577
}
2578

    
2579
void do_4xx_tlbwe_lo (void)
2580
{
2581
    ppcemb_tlb_t *tlb;
2582

    
2583
#if defined (DEBUG_SOFTWARE_TLB)
2584
    if (loglevel != 0) {
2585
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2586
    }
2587
#endif
2588
    T0 &= 0x3F;
2589
    tlb = &env->tlb[T0].tlbe;
2590
    tlb->RPN = T1 & 0xFFFFFC00;
2591
    tlb->prot = PAGE_READ;
2592
    if (T1 & 0x200)
2593
        tlb->prot |= PAGE_EXEC;
2594
    if (T1 & 0x100)
2595
        tlb->prot |= PAGE_WRITE;
2596
#if defined (DEBUG_SOFTWARE_TLB)
2597
    if (loglevel != 0) {
2598
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2599
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2600
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2601
                tlb->prot & PAGE_READ ? 'r' : '-',
2602
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2603
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2604
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2605
    }
2606
#endif
2607
}
2608
#endif /* !CONFIG_USER_ONLY */