Statistics
| Branch: | Revision:

root / hw / spapr.c @ 3627757e

History | View | Annotate | Download (26.8 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44

    
45
#include "kvm.h"
46
#include "kvm_ppc.h"
47
#include "pci.h"
48

    
49
#include "exec-memory.h"
50

    
51
#include <libfdt.h>
52

    
53
/* SLOF memory layout:
54
 *
55
 * SLOF raw image loaded at 0, copies its romfs right below the flat
56
 * device-tree, then position SLOF itself 31M below that
57
 *
58
 * So we set FW_OVERHEAD to 40MB which should account for all of that
59
 * and more
60
 *
61
 * We load our kernel at 4M, leaving space for SLOF initial image
62
 */
63
#define FDT_MAX_SIZE            0x10000
64
#define RTAS_MAX_SIZE           0x10000
65
#define FW_MAX_SIZE             0x400000
66
#define FW_FILE_NAME            "slof.bin"
67
#define FW_OVERHEAD             0x2800000
68
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
69

    
70
#define MIN_RMA_SLOF            128UL
71

    
72
#define TIMEBASE_FREQ           512000000ULL
73

    
74
#define MAX_CPUS                256
75
#define XICS_IRQS               1024
76

    
77
#define SPAPR_PCI_BUID          0x800000020000001ULL
78
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
79
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
80
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
81

    
82
#define PHANDLE_XICP            0x00001111
83

    
84
sPAPREnvironment *spapr;
85

    
86
qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
87
                            enum xics_irq_type type)
88
{
89
    uint32_t irq;
90
    qemu_irq qirq;
91

    
92
    if (hint) {
93
        irq = hint;
94
        /* FIXME: we should probably check for collisions somehow */
95
    } else {
96
        irq = spapr->next_irq++;
97
    }
98

    
99
    qirq = xics_assign_irq(spapr->icp, irq, type);
100
    if (!qirq) {
101
        return NULL;
102
    }
103

    
104
    if (irq_num) {
105
        *irq_num = irq;
106
    }
107

    
108
    return qirq;
109
}
110

    
111
static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
112
{
113
    int ret = 0, offset;
114
    CPUPPCState *env;
115
    char cpu_model[32];
116
    int smt = kvmppc_smt_threads();
117

    
118
    assert(spapr->cpu_model);
119

    
120
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
121
        uint32_t associativity[] = {cpu_to_be32(0x5),
122
                                    cpu_to_be32(0x0),
123
                                    cpu_to_be32(0x0),
124
                                    cpu_to_be32(0x0),
125
                                    cpu_to_be32(env->numa_node),
126
                                    cpu_to_be32(env->cpu_index)};
127

    
128
        if ((env->cpu_index % smt) != 0) {
129
            continue;
130
        }
131

    
132
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
133
                 env->cpu_index);
134

    
135
        offset = fdt_path_offset(fdt, cpu_model);
136
        if (offset < 0) {
137
            return offset;
138
        }
139

    
140
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
141
                          sizeof(associativity));
142
        if (ret < 0) {
143
            return ret;
144
        }
145
    }
146
    return ret;
147
}
148

    
149

    
150
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
151
                                     size_t maxsize)
152
{
153
    size_t maxcells = maxsize / sizeof(uint32_t);
154
    int i, j, count;
155
    uint32_t *p = prop;
156

    
157
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
158
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
159

    
160
        if (!sps->page_shift) {
161
            break;
162
        }
163
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
164
            if (sps->enc[count].page_shift == 0) {
165
                break;
166
            }
167
        }
168
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
169
            break;
170
        }
171
        *(p++) = cpu_to_be32(sps->page_shift);
172
        *(p++) = cpu_to_be32(sps->slb_enc);
173
        *(p++) = cpu_to_be32(count);
174
        for (j = 0; j < count; j++) {
175
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
176
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
177
        }
178
    }
179

    
180
    return (p - prop) * sizeof(uint32_t);
181
}
182

    
183
static void *spapr_create_fdt_skel(const char *cpu_model,
184
                                   target_phys_addr_t rma_size,
185
                                   target_phys_addr_t initrd_base,
186
                                   target_phys_addr_t initrd_size,
187
                                   target_phys_addr_t kernel_size,
188
                                   const char *boot_device,
189
                                   const char *kernel_cmdline,
190
                                   long hash_shift)
191
{
192
    void *fdt;
193
    CPUPPCState *env;
194
    uint64_t mem_reg_property[2];
195
    uint32_t start_prop = cpu_to_be32(initrd_base);
196
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
197
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
198
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
199
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
200
    char qemu_hypertas_prop[] = "hcall-memop1";
201
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
202
    int i;
203
    char *modelname;
204
    int smt = kvmppc_smt_threads();
205
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
206
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
207
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
208
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
209
                                cpu_to_be32(0x0)};
210
    char mem_name[32];
211
    target_phys_addr_t node0_size, mem_start;
212

    
213
#define _FDT(exp) \
214
    do { \
215
        int ret = (exp);                                           \
216
        if (ret < 0) {                                             \
217
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
218
                    #exp, fdt_strerror(ret));                      \
219
            exit(1);                                               \
220
        }                                                          \
221
    } while (0)
222

    
223
    fdt = g_malloc0(FDT_MAX_SIZE);
224
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
225

    
226
    if (kernel_size) {
227
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
228
    }
229
    if (initrd_size) {
230
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
231
    }
232
    _FDT((fdt_finish_reservemap(fdt)));
233

    
234
    /* Root node */
235
    _FDT((fdt_begin_node(fdt, "")));
236
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
237
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
238

    
239
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
240
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
241

    
242
    /* /chosen */
243
    _FDT((fdt_begin_node(fdt, "chosen")));
244

    
245
    /* Set Form1_affinity */
246
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
247

    
248
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
249
    _FDT((fdt_property(fdt, "linux,initrd-start",
250
                       &start_prop, sizeof(start_prop))));
251
    _FDT((fdt_property(fdt, "linux,initrd-end",
252
                       &end_prop, sizeof(end_prop))));
253
    if (kernel_size) {
254
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
255
                              cpu_to_be64(kernel_size) };
256

    
257
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
258
    }
259
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
260

    
261
    _FDT((fdt_end_node(fdt)));
262

    
263
    /* memory node(s) */
264
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
265
    if (rma_size > node0_size) {
266
        rma_size = node0_size;
267
    }
268

    
269
    /* RMA */
270
    mem_reg_property[0] = 0;
271
    mem_reg_property[1] = cpu_to_be64(rma_size);
272
    _FDT((fdt_begin_node(fdt, "memory@0")));
273
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
274
    _FDT((fdt_property(fdt, "reg", mem_reg_property,
275
        sizeof(mem_reg_property))));
276
    _FDT((fdt_property(fdt, "ibm,associativity", associativity,
277
        sizeof(associativity))));
278
    _FDT((fdt_end_node(fdt)));
279

    
280
    /* RAM: Node 0 */
281
    if (node0_size > rma_size) {
282
        mem_reg_property[0] = cpu_to_be64(rma_size);
283
        mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
284

    
285
        sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
286
        _FDT((fdt_begin_node(fdt, mem_name)));
287
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
288
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
289
                           sizeof(mem_reg_property))));
290
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
291
                           sizeof(associativity))));
292
        _FDT((fdt_end_node(fdt)));
293
    }
294

    
295
    /* RAM: Node 1 and beyond */
296
    mem_start = node0_size;
297
    for (i = 1; i < nb_numa_nodes; i++) {
298
        mem_reg_property[0] = cpu_to_be64(mem_start);
299
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
300
        associativity[3] = associativity[4] = cpu_to_be32(i);
301
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
302
        _FDT((fdt_begin_node(fdt, mem_name)));
303
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
304
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
305
            sizeof(mem_reg_property))));
306
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
307
            sizeof(associativity))));
308
        _FDT((fdt_end_node(fdt)));
309
        mem_start += node_mem[i];
310
    }
311

    
312
    /* cpus */
313
    _FDT((fdt_begin_node(fdt, "cpus")));
314

    
315
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
316
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
317

    
318
    modelname = g_strdup(cpu_model);
319

    
320
    for (i = 0; i < strlen(modelname); i++) {
321
        modelname[i] = toupper(modelname[i]);
322
    }
323

    
324
    /* This is needed during FDT finalization */
325
    spapr->cpu_model = g_strdup(modelname);
326

    
327
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
328
        int index = env->cpu_index;
329
        uint32_t servers_prop[smp_threads];
330
        uint32_t gservers_prop[smp_threads * 2];
331
        char *nodename;
332
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
333
                           0xffffffff, 0xffffffff};
334
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
335
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
336
        uint32_t page_sizes_prop[64];
337
        size_t page_sizes_prop_size;
338

    
339
        if ((index % smt) != 0) {
340
            continue;
341
        }
342

    
343
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
344
            fprintf(stderr, "Allocation failure\n");
345
            exit(1);
346
        }
347

    
348
        _FDT((fdt_begin_node(fdt, nodename)));
349

    
350
        free(nodename);
351

    
352
        _FDT((fdt_property_cell(fdt, "reg", index)));
353
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
354

    
355
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
356
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
357
                                env->dcache_line_size)));
358
        _FDT((fdt_property_cell(fdt, "icache-block-size",
359
                                env->icache_line_size)));
360
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
361
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
362
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
363
        _FDT((fdt_property(fdt, "ibm,pft-size",
364
                           pft_size_prop, sizeof(pft_size_prop))));
365
        _FDT((fdt_property_string(fdt, "status", "okay")));
366
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
367

    
368
        /* Build interrupt servers and gservers properties */
369
        for (i = 0; i < smp_threads; i++) {
370
            servers_prop[i] = cpu_to_be32(index + i);
371
            /* Hack, direct the group queues back to cpu 0 */
372
            gservers_prop[i*2] = cpu_to_be32(index + i);
373
            gservers_prop[i*2 + 1] = 0;
374
        }
375
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
376
                           servers_prop, sizeof(servers_prop))));
377
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
378
                           gservers_prop, sizeof(gservers_prop))));
379

    
380
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
381
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
382
                               segs, sizeof(segs))));
383
        }
384

    
385
        /* Advertise VMX/VSX (vector extensions) if available
386
         *   0 / no property == no vector extensions
387
         *   1               == VMX / Altivec available
388
         *   2               == VSX available */
389
        if (env->insns_flags & PPC_ALTIVEC) {
390
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
391

    
392
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
393
        }
394

    
395
        /* Advertise DFP (Decimal Floating Point) if available
396
         *   0 / no property == no DFP
397
         *   1               == DFP available */
398
        if (env->insns_flags2 & PPC2_DFP) {
399
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
400
        }
401

    
402
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
403
                                                      sizeof(page_sizes_prop));
404
        if (page_sizes_prop_size) {
405
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
406
                               page_sizes_prop, page_sizes_prop_size)));
407
        }
408

    
409
        _FDT((fdt_end_node(fdt)));
410
    }
411

    
412
    g_free(modelname);
413

    
414
    _FDT((fdt_end_node(fdt)));
415

    
416
    /* RTAS */
417
    _FDT((fdt_begin_node(fdt, "rtas")));
418

    
419
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
420
                       sizeof(hypertas_prop))));
421
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
422
                       sizeof(qemu_hypertas_prop))));
423

    
424
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
425
        refpoints, sizeof(refpoints))));
426

    
427
    _FDT((fdt_end_node(fdt)));
428

    
429
    /* interrupt controller */
430
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
431

    
432
    _FDT((fdt_property_string(fdt, "device_type",
433
                              "PowerPC-External-Interrupt-Presentation")));
434
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
435
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
436
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
437
                       interrupt_server_ranges_prop,
438
                       sizeof(interrupt_server_ranges_prop))));
439
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
440
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
441
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
442

    
443
    _FDT((fdt_end_node(fdt)));
444

    
445
    /* vdevice */
446
    _FDT((fdt_begin_node(fdt, "vdevice")));
447

    
448
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
449
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
450
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
451
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
452
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
453
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
454

    
455
    _FDT((fdt_end_node(fdt)));
456

    
457
    _FDT((fdt_end_node(fdt))); /* close root node */
458
    _FDT((fdt_finish(fdt)));
459

    
460
    return fdt;
461
}
462

    
463
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
464
                               target_phys_addr_t fdt_addr,
465
                               target_phys_addr_t rtas_addr,
466
                               target_phys_addr_t rtas_size)
467
{
468
    int ret;
469
    void *fdt;
470
    sPAPRPHBState *phb;
471

    
472
    fdt = g_malloc(FDT_MAX_SIZE);
473

    
474
    /* open out the base tree into a temp buffer for the final tweaks */
475
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
476

    
477
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
478
    if (ret < 0) {
479
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
480
        exit(1);
481
    }
482

    
483
    QLIST_FOREACH(phb, &spapr->phbs, list) {
484
        ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
485
    }
486

    
487
    if (ret < 0) {
488
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
489
        exit(1);
490
    }
491

    
492
    /* RTAS */
493
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
494
    if (ret < 0) {
495
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
496
    }
497

    
498
    /* Advertise NUMA via ibm,associativity */
499
    if (nb_numa_nodes > 1) {
500
        ret = spapr_set_associativity(fdt, spapr);
501
        if (ret < 0) {
502
            fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
503
        }
504
    }
505

    
506
    spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
507

    
508
    _FDT((fdt_pack(fdt)));
509

    
510
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
511
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
512
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
513
        exit(1);
514
    }
515

    
516
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
517

    
518
    g_free(fdt);
519
}
520

    
521
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
522
{
523
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
524
}
525

    
526
static void emulate_spapr_hypercall(CPUPPCState *env)
527
{
528
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
529
}
530

    
531
static void spapr_reset(void *opaque)
532
{
533
    sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
534

    
535
    fprintf(stderr, "sPAPR reset\n");
536

    
537
    /* flush out the hash table */
538
    memset(spapr->htab, 0, spapr->htab_size);
539

    
540
    /* Load the fdt */
541
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
542
                       spapr->rtas_size);
543

    
544
    /* Set up the entry state */
545
    first_cpu->gpr[3] = spapr->fdt_addr;
546
    first_cpu->gpr[5] = 0;
547
    first_cpu->halted = 0;
548
    first_cpu->nip = spapr->entry_point;
549

    
550
}
551

    
552
static void spapr_cpu_reset(void *opaque)
553
{
554
    PowerPCCPU *cpu = opaque;
555

    
556
    cpu_reset(CPU(cpu));
557
}
558

    
559
/* pSeries LPAR / sPAPR hardware init */
560
static void ppc_spapr_init(ram_addr_t ram_size,
561
                           const char *boot_device,
562
                           const char *kernel_filename,
563
                           const char *kernel_cmdline,
564
                           const char *initrd_filename,
565
                           const char *cpu_model)
566
{
567
    PowerPCCPU *cpu;
568
    CPUPPCState *env;
569
    int i;
570
    MemoryRegion *sysmem = get_system_memory();
571
    MemoryRegion *ram = g_new(MemoryRegion, 1);
572
    target_phys_addr_t rma_alloc_size, rma_size;
573
    uint32_t initrd_base = 0;
574
    long kernel_size = 0, initrd_size = 0;
575
    long load_limit, rtas_limit, fw_size;
576
    long pteg_shift = 17;
577
    char *filename;
578

    
579
    spapr = g_malloc0(sizeof(*spapr));
580
    QLIST_INIT(&spapr->phbs);
581

    
582
    cpu_ppc_hypercall = emulate_spapr_hypercall;
583

    
584
    /* Allocate RMA if necessary */
585
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
586

    
587
    if (rma_alloc_size == -1) {
588
        hw_error("qemu: Unable to create RMA\n");
589
        exit(1);
590
    }
591
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
592
        rma_size = rma_alloc_size;
593
    } else {
594
        rma_size = ram_size;
595
    }
596

    
597
    /* We place the device tree and RTAS just below either the top of the RMA,
598
     * or just below 2GB, whichever is lowere, so that it can be
599
     * processed with 32-bit real mode code if necessary */
600
    rtas_limit = MIN(rma_size, 0x80000000);
601
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
602
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
603
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
604

    
605
    /* init CPUs */
606
    if (cpu_model == NULL) {
607
        cpu_model = kvm_enabled() ? "host" : "POWER7";
608
    }
609
    for (i = 0; i < smp_cpus; i++) {
610
        cpu = cpu_ppc_init(cpu_model);
611
        if (cpu == NULL) {
612
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
613
            exit(1);
614
        }
615
        env = &cpu->env;
616

    
617
        /* Set time-base frequency to 512 MHz */
618
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
619
        qemu_register_reset(spapr_cpu_reset, cpu);
620

    
621
        env->hreset_vector = 0x60;
622
        env->hreset_excp_prefix = 0;
623
        env->gpr[3] = env->cpu_index;
624
    }
625

    
626
    /* allocate RAM */
627
    spapr->ram_limit = ram_size;
628
    if (spapr->ram_limit > rma_alloc_size) {
629
        ram_addr_t nonrma_base = rma_alloc_size;
630
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
631

    
632
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
633
        vmstate_register_ram_global(ram);
634
        memory_region_add_subregion(sysmem, nonrma_base, ram);
635
    }
636

    
637
    /* allocate hash page table.  For now we always make this 16mb,
638
     * later we should probably make it scale to the size of guest
639
     * RAM */
640
    spapr->htab_size = 1ULL << (pteg_shift + 7);
641
    spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
642

    
643
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
644
        env->external_htab = spapr->htab;
645
        env->htab_base = -1;
646
        env->htab_mask = spapr->htab_size - 1;
647

    
648
        /* Tell KVM that we're in PAPR mode */
649
        env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
650
                             ((pteg_shift + 7) - 18);
651
        env->spr[SPR_HIOR] = 0;
652

    
653
        if (kvm_enabled()) {
654
            kvmppc_set_papr(env);
655
        }
656
    }
657

    
658
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
659
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
660
                                           rtas_limit - spapr->rtas_addr);
661
    if (spapr->rtas_size < 0) {
662
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
663
        exit(1);
664
    }
665
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
666
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
667
                 spapr->rtas_size, RTAS_MAX_SIZE);
668
        exit(1);
669
    }
670
    g_free(filename);
671

    
672

    
673
    /* Set up Interrupt Controller */
674
    spapr->icp = xics_system_init(XICS_IRQS);
675
    spapr->next_irq = 16;
676

    
677
    /* Set up VIO bus */
678
    spapr->vio_bus = spapr_vio_bus_init();
679

    
680
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
681
        if (serial_hds[i]) {
682
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
683
        }
684
    }
685

    
686
    /* Set up PCI */
687
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
688
                     SPAPR_PCI_MEM_WIN_ADDR,
689
                     SPAPR_PCI_MEM_WIN_SIZE,
690
                     SPAPR_PCI_IO_WIN_ADDR);
691

    
692
    for (i = 0; i < nb_nics; i++) {
693
        NICInfo *nd = &nd_table[i];
694

    
695
        if (!nd->model) {
696
            nd->model = g_strdup("ibmveth");
697
        }
698

    
699
        if (strcmp(nd->model, "ibmveth") == 0) {
700
            spapr_vlan_create(spapr->vio_bus, nd);
701
        } else {
702
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
703
        }
704
    }
705

    
706
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
707
        spapr_vscsi_create(spapr->vio_bus);
708
    }
709

    
710
    if (rma_size < (MIN_RMA_SLOF << 20)) {
711
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
712
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
713
        exit(1);
714
    }
715

    
716
    fprintf(stderr, "sPAPR memory map:\n");
717
    fprintf(stderr, "RTAS                 : 0x%08lx..%08lx\n",
718
            (unsigned long)spapr->rtas_addr,
719
            (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
720
    fprintf(stderr, "FDT                  : 0x%08lx..%08lx\n",
721
            (unsigned long)spapr->fdt_addr,
722
            (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
723

    
724
    if (kernel_filename) {
725
        uint64_t lowaddr = 0;
726

    
727
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
728
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
729
        if (kernel_size < 0) {
730
            kernel_size = load_image_targphys(kernel_filename,
731
                                              KERNEL_LOAD_ADDR,
732
                                              load_limit - KERNEL_LOAD_ADDR);
733
        }
734
        if (kernel_size < 0) {
735
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
736
                    kernel_filename);
737
            exit(1);
738
        }
739
        fprintf(stderr, "Kernel               : 0x%08x..%08lx\n",
740
                KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
741

    
742
        /* load initrd */
743
        if (initrd_filename) {
744
            /* Try to locate the initrd in the gap between the kernel
745
             * and the firmware. Add a bit of space just in case
746
             */
747
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
748
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
749
                                              load_limit - initrd_base);
750
            if (initrd_size < 0) {
751
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
752
                        initrd_filename);
753
                exit(1);
754
            }
755
            fprintf(stderr, "Ramdisk              : 0x%08lx..%08lx\n",
756
                    (long)initrd_base, (long)(initrd_base + initrd_size - 1));
757
        } else {
758
            initrd_base = 0;
759
            initrd_size = 0;
760
        }
761
    }
762

    
763
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
764
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
765
    if (fw_size < 0) {
766
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
767
        exit(1);
768
    }
769
    g_free(filename);
770
    fprintf(stderr, "Firmware load        : 0x%08x..%08lx\n",
771
            0, fw_size);
772
    fprintf(stderr, "Firmware runtime     : 0x%08lx..%08lx\n",
773
            load_limit, (unsigned long)spapr->fdt_addr);
774

    
775
    spapr->entry_point = 0x100;
776

    
777
    /* SLOF will startup the secondary CPUs using RTAS */
778
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
779
        env->halted = 1;
780
    }
781

    
782
    /* Prepare the device tree */
783
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
784
                                            initrd_base, initrd_size,
785
                                            kernel_size,
786
                                            boot_device, kernel_cmdline,
787
                                            pteg_shift + 7);
788
    assert(spapr->fdt_skel != NULL);
789

    
790
    qemu_register_reset(spapr_reset, spapr);
791
}
792

    
793
static QEMUMachine spapr_machine = {
794
    .name = "pseries",
795
    .desc = "pSeries Logical Partition (PAPR compliant)",
796
    .init = ppc_spapr_init,
797
    .max_cpus = MAX_CPUS,
798
    .no_parallel = 1,
799
    .use_scsi = 1,
800
};
801

    
802
static void spapr_machine_init(void)
803
{
804
    qemu_register_machine(&spapr_machine);
805
}
806

    
807
machine_init(spapr_machine_init);