Statistics
| Branch: | Revision:

root / qemu-tech.texi @ 370521a1

History | View | Annotate | Download (23 kB)

1 1f673135 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-tech.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 debc7065 bellard
@settitle QEMU Internals
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 1f673135 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU Internals: (qemu-tech).   The QEMU Emulator Internals.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 1f673135 bellard
@iftex
20 1f673135 bellard
@titlepage
21 1f673135 bellard
@sp 7
22 1f673135 bellard
@center @titlefont{QEMU Internals}
23 1f673135 bellard
@sp 3
24 1f673135 bellard
@end titlepage
25 1f673135 bellard
@end iftex
26 1f673135 bellard
27 debc7065 bellard
@ifnottex
28 debc7065 bellard
@node Top
29 debc7065 bellard
@top
30 debc7065 bellard
31 debc7065 bellard
@menu
32 debc7065 bellard
* Introduction::
33 debc7065 bellard
* QEMU Internals::
34 debc7065 bellard
* Regression Tests::
35 debc7065 bellard
* Index::
36 debc7065 bellard
@end menu
37 debc7065 bellard
@end ifnottex
38 debc7065 bellard
39 debc7065 bellard
@contents
40 debc7065 bellard
41 debc7065 bellard
@node Introduction
42 1f673135 bellard
@chapter Introduction
43 1f673135 bellard
44 debc7065 bellard
@menu
45 3aeaea65 Max Filippov
* intro_features::         Features
46 3aeaea65 Max Filippov
* intro_x86_emulation::    x86 and x86-64 emulation
47 3aeaea65 Max Filippov
* intro_arm_emulation::    ARM emulation
48 3aeaea65 Max Filippov
* intro_mips_emulation::   MIPS emulation
49 3aeaea65 Max Filippov
* intro_ppc_emulation::    PowerPC emulation
50 3aeaea65 Max Filippov
* intro_sparc_emulation::  Sparc32 and Sparc64 emulation
51 3aeaea65 Max Filippov
* intro_xtensa_emulation:: Xtensa emulation
52 3aeaea65 Max Filippov
* intro_other_emulation::  Other CPU emulation
53 debc7065 bellard
@end menu
54 debc7065 bellard
55 debc7065 bellard
@node intro_features
56 1f673135 bellard
@section Features
57 1f673135 bellard
58 1f673135 bellard
QEMU is a FAST! processor emulator using a portable dynamic
59 1f673135 bellard
translator.
60 1f673135 bellard
61 1f673135 bellard
QEMU has two operating modes:
62 1f673135 bellard
63 1f673135 bellard
@itemize @minus
64 1f673135 bellard
65 5fafdf24 ths
@item
66 998a0501 blueswir1
Full system emulation. In this mode (full platform virtualization),
67 998a0501 blueswir1
QEMU emulates a full system (usually a PC), including a processor and
68 998a0501 blueswir1
various peripherals. It can be used to launch several different
69 998a0501 blueswir1
Operating Systems at once without rebooting the host machine or to
70 998a0501 blueswir1
debug system code.
71 1f673135 bellard
72 5fafdf24 ths
@item
73 998a0501 blueswir1
User mode emulation. In this mode (application level virtualization),
74 998a0501 blueswir1
QEMU can launch processes compiled for one CPU on another CPU, however
75 998a0501 blueswir1
the Operating Systems must match. This can be used for example to ease
76 998a0501 blueswir1
cross-compilation and cross-debugging.
77 1f673135 bellard
@end itemize
78 1f673135 bellard
79 1f673135 bellard
As QEMU requires no host kernel driver to run, it is very safe and
80 1f673135 bellard
easy to use.
81 1f673135 bellard
82 1f673135 bellard
QEMU generic features:
83 1f673135 bellard
84 5fafdf24 ths
@itemize
85 1f673135 bellard
86 1f673135 bellard
@item User space only or full system emulation.
87 1f673135 bellard
88 debc7065 bellard
@item Using dynamic translation to native code for reasonable speed.
89 1f673135 bellard
90 998a0501 blueswir1
@item
91 998a0501 blueswir1
Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
92 998a0501 blueswir1
HPPA, Sparc32 and Sparc64. Previous versions had some support for
93 998a0501 blueswir1
Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
94 1f673135 bellard
95 1f673135 bellard
@item Self-modifying code support.
96 1f673135 bellard
97 1f673135 bellard
@item Precise exceptions support.
98 1f673135 bellard
99 998a0501 blueswir1
@item
100 998a0501 blueswir1
Floating point library supporting both full software emulation and
101 998a0501 blueswir1
native host FPU instructions.
102 998a0501 blueswir1
103 1f673135 bellard
@end itemize
104 1f673135 bellard
105 1f673135 bellard
QEMU user mode emulation features:
106 5fafdf24 ths
@itemize
107 1f673135 bellard
@item Generic Linux system call converter, including most ioctls.
108 1f673135 bellard
109 1f673135 bellard
@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
110 1f673135 bellard
111 5fafdf24 ths
@item Accurate signal handling by remapping host signals to target signals.
112 1f673135 bellard
@end itemize
113 1f673135 bellard
114 998a0501 blueswir1
Linux user emulator (Linux host only) can be used to launch the Wine
115 998a0501 blueswir1
Windows API emulator (@url{http://www.winehq.org}). A Darwin user
116 998a0501 blueswir1
emulator (Darwin hosts only) exists and a BSD user emulator for BSD
117 998a0501 blueswir1
hosts is under development. It would also be possible to develop a
118 998a0501 blueswir1
similar user emulator for Solaris.
119 998a0501 blueswir1
120 1f673135 bellard
QEMU full system emulation features:
121 5fafdf24 ths
@itemize
122 998a0501 blueswir1
@item
123 998a0501 blueswir1
QEMU uses a full software MMU for maximum portability.
124 998a0501 blueswir1
125 998a0501 blueswir1
@item
126 4a1418e0 Anthony Liguori
QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators 
127 4a1418e0 Anthony Liguori
execute some of the guest code natively, while
128 998a0501 blueswir1
continuing to emulate the rest of the machine.
129 998a0501 blueswir1
130 998a0501 blueswir1
@item
131 998a0501 blueswir1
Various hardware devices can be emulated and in some cases, host
132 998a0501 blueswir1
devices (e.g. serial and parallel ports, USB, drives) can be used
133 998a0501 blueswir1
transparently by the guest Operating System. Host device passthrough
134 998a0501 blueswir1
can be used for talking to external physical peripherals (e.g. a
135 998a0501 blueswir1
webcam, modem or tape drive).
136 998a0501 blueswir1
137 998a0501 blueswir1
@item
138 998a0501 blueswir1
Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
139 998a0501 blueswir1
SMP host system, QEMU can use only one CPU fully due to difficulty in
140 998a0501 blueswir1
implementing atomic memory accesses efficiently.
141 998a0501 blueswir1
142 1f673135 bellard
@end itemize
143 1f673135 bellard
144 debc7065 bellard
@node intro_x86_emulation
145 998a0501 blueswir1
@section x86 and x86-64 emulation
146 1f673135 bellard
147 1f673135 bellard
QEMU x86 target features:
148 1f673135 bellard
149 5fafdf24 ths
@itemize
150 1f673135 bellard
151 5fafdf24 ths
@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
152 998a0501 blueswir1
LDT/GDT and IDT are emulated. VM86 mode is also supported to run
153 998a0501 blueswir1
DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
154 998a0501 blueswir1
and SSE4 as well as x86-64 SVM.
155 1f673135 bellard
156 1f673135 bellard
@item Support of host page sizes bigger than 4KB in user mode emulation.
157 1f673135 bellard
158 1f673135 bellard
@item QEMU can emulate itself on x86.
159 1f673135 bellard
160 5fafdf24 ths
@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
161 1f673135 bellard
It can be used to test other x86 virtual CPUs.
162 1f673135 bellard
163 1f673135 bellard
@end itemize
164 1f673135 bellard
165 1f673135 bellard
Current QEMU limitations:
166 1f673135 bellard
167 5fafdf24 ths
@itemize
168 1f673135 bellard
169 998a0501 blueswir1
@item Limited x86-64 support.
170 1f673135 bellard
171 1f673135 bellard
@item IPC syscalls are missing.
172 1f673135 bellard
173 5fafdf24 ths
@item The x86 segment limits and access rights are not tested at every
174 1f673135 bellard
memory access (yet). Hopefully, very few OSes seem to rely on that for
175 1f673135 bellard
normal use.
176 1f673135 bellard
177 1f673135 bellard
@end itemize
178 1f673135 bellard
179 debc7065 bellard
@node intro_arm_emulation
180 1f673135 bellard
@section ARM emulation
181 1f673135 bellard
182 1f673135 bellard
@itemize
183 1f673135 bellard
184 1f673135 bellard
@item Full ARM 7 user emulation.
185 1f673135 bellard
186 1f673135 bellard
@item NWFPE FPU support included in user Linux emulation.
187 1f673135 bellard
188 1f673135 bellard
@item Can run most ARM Linux binaries.
189 1f673135 bellard
190 1f673135 bellard
@end itemize
191 1f673135 bellard
192 24d4de45 ths
@node intro_mips_emulation
193 24d4de45 ths
@section MIPS emulation
194 24d4de45 ths
195 24d4de45 ths
@itemize
196 24d4de45 ths
197 24d4de45 ths
@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
198 24d4de45 ths
including privileged instructions, FPU and MMU, in both little and big
199 24d4de45 ths
endian modes.
200 24d4de45 ths
201 24d4de45 ths
@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
202 24d4de45 ths
203 24d4de45 ths
@end itemize
204 24d4de45 ths
205 24d4de45 ths
Current QEMU limitations:
206 24d4de45 ths
207 24d4de45 ths
@itemize
208 24d4de45 ths
209 24d4de45 ths
@item Self-modifying code is not always handled correctly.
210 24d4de45 ths
211 24d4de45 ths
@item 64 bit userland emulation is not implemented.
212 24d4de45 ths
213 24d4de45 ths
@item The system emulation is not complete enough to run real firmware.
214 24d4de45 ths
215 b1f45238 ths
@item The watchpoint debug facility is not implemented.
216 b1f45238 ths
217 24d4de45 ths
@end itemize
218 24d4de45 ths
219 debc7065 bellard
@node intro_ppc_emulation
220 1f673135 bellard
@section PowerPC emulation
221 1f673135 bellard
222 1f673135 bellard
@itemize
223 1f673135 bellard
224 5fafdf24 ths
@item Full PowerPC 32 bit emulation, including privileged instructions,
225 1f673135 bellard
FPU and MMU.
226 1f673135 bellard
227 1f673135 bellard
@item Can run most PowerPC Linux binaries.
228 1f673135 bellard
229 1f673135 bellard
@end itemize
230 1f673135 bellard
231 debc7065 bellard
@node intro_sparc_emulation
232 998a0501 blueswir1
@section Sparc32 and Sparc64 emulation
233 1f673135 bellard
234 1f673135 bellard
@itemize
235 1f673135 bellard
236 f6b647cd blueswir1
@item Full SPARC V8 emulation, including privileged
237 3475187d bellard
instructions, FPU and MMU. SPARC V9 emulation includes most privileged
238 a785e42e blueswir1
and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
239 1f673135 bellard
240 a785e42e blueswir1
@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
241 a785e42e blueswir1
some 64-bit SPARC Linux binaries.
242 3475187d bellard
243 3475187d bellard
@end itemize
244 3475187d bellard
245 3475187d bellard
Current QEMU limitations:
246 3475187d bellard
247 5fafdf24 ths
@itemize
248 3475187d bellard
249 3475187d bellard
@item IPC syscalls are missing.
250 3475187d bellard
251 1f587329 blueswir1
@item Floating point exception support is buggy.
252 3475187d bellard
253 3475187d bellard
@item Atomic instructions are not correctly implemented.
254 3475187d bellard
255 998a0501 blueswir1
@item There are still some problems with Sparc64 emulators.
256 998a0501 blueswir1
257 998a0501 blueswir1
@end itemize
258 998a0501 blueswir1
259 3aeaea65 Max Filippov
@node intro_xtensa_emulation
260 3aeaea65 Max Filippov
@section Xtensa emulation
261 3aeaea65 Max Filippov
262 3aeaea65 Max Filippov
@itemize
263 3aeaea65 Max Filippov
264 3aeaea65 Max Filippov
@item Core Xtensa ISA emulation, including most options: code density,
265 3aeaea65 Max Filippov
loop, extended L32R, 16- and 32-bit multiplication, 32-bit division,
266 3aeaea65 Max Filippov
MAC16, miscellaneous operations, boolean, multiprocessor synchronization,
267 3aeaea65 Max Filippov
conditional store, exceptions, relocatable vectors, unaligned exception,
268 3aeaea65 Max Filippov
interrupts (including high priority and timer), hardware alignment,
269 3aeaea65 Max Filippov
region protection, region translation, MMU, windowed registers, thread
270 3aeaea65 Max Filippov
pointer, processor ID.
271 3aeaea65 Max Filippov
272 3aeaea65 Max Filippov
@item Not implemented options: FP coprocessor, coprocessor context,
273 3aeaea65 Max Filippov
data/instruction cache (including cache prefetch and locking), XLMI,
274 3aeaea65 Max Filippov
processor interface, debug. Also options not covered by the core ISA
275 3aeaea65 Max Filippov
(e.g. FLIX, wide branches) are not implemented.
276 3aeaea65 Max Filippov
277 3aeaea65 Max Filippov
@item Can run most Xtensa Linux binaries.
278 3aeaea65 Max Filippov
279 3aeaea65 Max Filippov
@item New core configuration that requires no additional instructions
280 3aeaea65 Max Filippov
may be created from overlay with minimal amount of hand-written code.
281 3aeaea65 Max Filippov
282 3aeaea65 Max Filippov
@end itemize
283 3aeaea65 Max Filippov
284 998a0501 blueswir1
@node intro_other_emulation
285 998a0501 blueswir1
@section Other CPU emulation
286 1f673135 bellard
287 998a0501 blueswir1
In addition to the above, QEMU supports emulation of other CPUs with
288 998a0501 blueswir1
varying levels of success. These are:
289 998a0501 blueswir1
290 998a0501 blueswir1
@itemize
291 998a0501 blueswir1
292 998a0501 blueswir1
@item
293 998a0501 blueswir1
Alpha
294 998a0501 blueswir1
@item
295 998a0501 blueswir1
CRIS
296 998a0501 blueswir1
@item
297 998a0501 blueswir1
M68k
298 998a0501 blueswir1
@item
299 998a0501 blueswir1
SH4
300 1f673135 bellard
@end itemize
301 1f673135 bellard
302 debc7065 bellard
@node QEMU Internals
303 1f673135 bellard
@chapter QEMU Internals
304 1f673135 bellard
305 debc7065 bellard
@menu
306 debc7065 bellard
* QEMU compared to other emulators::
307 debc7065 bellard
* Portable dynamic translation::
308 debc7065 bellard
* Condition code optimisations::
309 debc7065 bellard
* CPU state optimisations::
310 debc7065 bellard
* Translation cache::
311 debc7065 bellard
* Direct block chaining::
312 debc7065 bellard
* Self-modifying code and translated code invalidation::
313 debc7065 bellard
* Exception support::
314 debc7065 bellard
* MMU emulation::
315 998a0501 blueswir1
* Device emulation::
316 debc7065 bellard
* Hardware interrupts::
317 debc7065 bellard
* User emulation specific details::
318 debc7065 bellard
* Bibliography::
319 debc7065 bellard
@end menu
320 debc7065 bellard
321 debc7065 bellard
@node QEMU compared to other emulators
322 1f673135 bellard
@section QEMU compared to other emulators
323 1f673135 bellard
324 1f673135 bellard
Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
325 1f673135 bellard
bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
326 1f673135 bellard
emulation while QEMU can emulate several processors.
327 1f673135 bellard
328 1f673135 bellard
Like Valgrind [2], QEMU does user space emulation and dynamic
329 1f673135 bellard
translation. Valgrind is mainly a memory debugger while QEMU has no
330 1f673135 bellard
support for it (QEMU could be used to detect out of bound memory
331 1f673135 bellard
accesses as Valgrind, but it has no support to track uninitialised data
332 1f673135 bellard
as Valgrind does). The Valgrind dynamic translator generates better code
333 1f673135 bellard
than QEMU (in particular it does register allocation) but it is closely
334 1f673135 bellard
tied to an x86 host and target and has no support for precise exceptions
335 1f673135 bellard
and system emulation.
336 1f673135 bellard
337 1f673135 bellard
EM86 [4] is the closest project to user space QEMU (and QEMU still uses
338 1f673135 bellard
some of its code, in particular the ELF file loader). EM86 was limited
339 1f673135 bellard
to an alpha host and used a proprietary and slow interpreter (the
340 1f673135 bellard
interpreter part of the FX!32 Digital Win32 code translator [5]).
341 1f673135 bellard
342 1f673135 bellard
TWIN [6] is a Windows API emulator like Wine. It is less accurate than
343 1f673135 bellard
Wine but includes a protected mode x86 interpreter to launch x86 Windows
344 36d54d15 bellard
executables. Such an approach has greater potential because most of the
345 1f673135 bellard
Windows API is executed natively but it is far more difficult to develop
346 1f673135 bellard
because all the data structures and function parameters exchanged
347 1f673135 bellard
between the API and the x86 code must be converted.
348 1f673135 bellard
349 1f673135 bellard
User mode Linux [7] was the only solution before QEMU to launch a
350 1f673135 bellard
Linux kernel as a process while not needing any host kernel
351 1f673135 bellard
patches. However, user mode Linux requires heavy kernel patches while
352 1f673135 bellard
QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
353 1f673135 bellard
slower.
354 1f673135 bellard
355 998a0501 blueswir1
The Plex86 [8] PC virtualizer is done in the same spirit as the now
356 998a0501 blueswir1
obsolete qemu-fast system emulator. It requires a patched Linux kernel
357 998a0501 blueswir1
to work (you cannot launch the same kernel on your PC), but the
358 998a0501 blueswir1
patches are really small. As it is a PC virtualizer (no emulation is
359 998a0501 blueswir1
done except for some privileged instructions), it has the potential of
360 998a0501 blueswir1
being faster than QEMU. The downside is that a complicated (and
361 998a0501 blueswir1
potentially unsafe) host kernel patch is needed.
362 1f673135 bellard
363 1f673135 bellard
The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
364 1f673135 bellard
[11]) are faster than QEMU, but they all need specific, proprietary
365 1f673135 bellard
and potentially unsafe host drivers. Moreover, they are unable to
366 1f673135 bellard
provide cycle exact simulation as an emulator can.
367 1f673135 bellard
368 998a0501 blueswir1
VirtualBox [12], Xen [13] and KVM [14] are based on QEMU. QEMU-SystemC
369 998a0501 blueswir1
[15] uses QEMU to simulate a system where some hardware devices are
370 998a0501 blueswir1
developed in SystemC.
371 998a0501 blueswir1
372 debc7065 bellard
@node Portable dynamic translation
373 1f673135 bellard
@section Portable dynamic translation
374 1f673135 bellard
375 1f673135 bellard
QEMU is a dynamic translator. When it first encounters a piece of code,
376 1f673135 bellard
it converts it to the host instruction set. Usually dynamic translators
377 1f673135 bellard
are very complicated and highly CPU dependent. QEMU uses some tricks
378 1f673135 bellard
which make it relatively easily portable and simple while achieving good
379 1f673135 bellard
performances.
380 1f673135 bellard
381 998a0501 blueswir1
After the release of version 0.9.1, QEMU switched to a new method of
382 998a0501 blueswir1
generating code, Tiny Code Generator or TCG. TCG relaxes the
383 998a0501 blueswir1
dependency on the exact version of the compiler used. The basic idea
384 998a0501 blueswir1
is to split every target instruction into a couple of RISC-like TCG
385 998a0501 blueswir1
ops (see @code{target-i386/translate.c}). Some optimizations can be
386 998a0501 blueswir1
performed at this stage, including liveness analysis and trivial
387 998a0501 blueswir1
constant expression evaluation. TCG ops are then implemented in the
388 998a0501 blueswir1
host CPU back end, also known as TCG target (see
389 998a0501 blueswir1
@code{tcg/i386/tcg-target.c}). For more information, please take a
390 998a0501 blueswir1
look at @code{tcg/README}.
391 1f673135 bellard
392 debc7065 bellard
@node Condition code optimisations
393 1f673135 bellard
@section Condition code optimisations
394 1f673135 bellard
395 998a0501 blueswir1
Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
396 998a0501 blueswir1
is important for CPUs where every instruction sets the condition
397 998a0501 blueswir1
codes. It tends to be less important on conventional RISC systems
398 f0f26a06 Blue Swirl
where condition codes are only updated when explicitly requested. On
399 f0f26a06 Blue Swirl
Sparc64, costly update of both 32 and 64 bit condition codes can be
400 f0f26a06 Blue Swirl
avoided with lazy evaluation.
401 998a0501 blueswir1
402 998a0501 blueswir1
Instead of computing the condition codes after each x86 instruction,
403 998a0501 blueswir1
QEMU just stores one operand (called @code{CC_SRC}), the result
404 998a0501 blueswir1
(called @code{CC_DST}) and the type of operation (called
405 998a0501 blueswir1
@code{CC_OP}). When the condition codes are needed, the condition
406 998a0501 blueswir1
codes can be calculated using this information. In addition, an
407 998a0501 blueswir1
optimized calculation can be performed for some instruction types like
408 998a0501 blueswir1
conditional branches.
409 1f673135 bellard
410 1235fc06 ths
@code{CC_OP} is almost never explicitly set in the generated code
411 1f673135 bellard
because it is known at translation time.
412 1f673135 bellard
413 f0f26a06 Blue Swirl
The lazy condition code evaluation is used on x86, m68k, cris and
414 f0f26a06 Blue Swirl
Sparc. ARM uses a simplified variant for the N and Z flags.
415 1f673135 bellard
416 debc7065 bellard
@node CPU state optimisations
417 1f673135 bellard
@section CPU state optimisations
418 1f673135 bellard
419 998a0501 blueswir1
The target CPUs have many internal states which change the way it
420 998a0501 blueswir1
evaluates instructions. In order to achieve a good speed, the
421 998a0501 blueswir1
translation phase considers that some state information of the virtual
422 998a0501 blueswir1
CPU cannot change in it. The state is recorded in the Translation
423 998a0501 blueswir1
Block (TB). If the state changes (e.g. privilege level), a new TB will
424 998a0501 blueswir1
be generated and the previous TB won't be used anymore until the state
425 998a0501 blueswir1
matches the state recorded in the previous TB. For example, if the SS,
426 998a0501 blueswir1
DS and ES segments have a zero base, then the translator does not even
427 998a0501 blueswir1
generate an addition for the segment base.
428 1f673135 bellard
429 1f673135 bellard
[The FPU stack pointer register is not handled that way yet].
430 1f673135 bellard
431 debc7065 bellard
@node Translation cache
432 1f673135 bellard
@section Translation cache
433 1f673135 bellard
434 27c8efcb ้™ณ้Ÿ‹ไปป
A 32 MByte cache holds the most recently used translations. For
435 1f673135 bellard
simplicity, it is completely flushed when it is full. A translation unit
436 1f673135 bellard
contains just a single basic block (a block of x86 instructions
437 1f673135 bellard
terminated by a jump or by a virtual CPU state change which the
438 1f673135 bellard
translator cannot deduce statically).
439 1f673135 bellard
440 debc7065 bellard
@node Direct block chaining
441 1f673135 bellard
@section Direct block chaining
442 1f673135 bellard
443 1f673135 bellard
After each translated basic block is executed, QEMU uses the simulated
444 1f673135 bellard
Program Counter (PC) and other cpu state informations (such as the CS
445 1f673135 bellard
segment base value) to find the next basic block.
446 1f673135 bellard
447 1f673135 bellard
In order to accelerate the most common cases where the new simulated PC
448 1f673135 bellard
is known, QEMU can patch a basic block so that it jumps directly to the
449 1f673135 bellard
next one.
450 1f673135 bellard
451 1f673135 bellard
The most portable code uses an indirect jump. An indirect jump makes
452 1f673135 bellard
it easier to make the jump target modification atomic. On some host
453 1f673135 bellard
architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
454 1f673135 bellard
directly patched so that the block chaining has no overhead.
455 1f673135 bellard
456 debc7065 bellard
@node Self-modifying code and translated code invalidation
457 1f673135 bellard
@section Self-modifying code and translated code invalidation
458 1f673135 bellard
459 1f673135 bellard
Self-modifying code is a special challenge in x86 emulation because no
460 1f673135 bellard
instruction cache invalidation is signaled by the application when code
461 1f673135 bellard
is modified.
462 1f673135 bellard
463 1f673135 bellard
When translated code is generated for a basic block, the corresponding
464 998a0501 blueswir1
host page is write protected if it is not already read-only. Then, if
465 998a0501 blueswir1
a write access is done to the page, Linux raises a SEGV signal. QEMU
466 998a0501 blueswir1
then invalidates all the translated code in the page and enables write
467 998a0501 blueswir1
accesses to the page.
468 1f673135 bellard
469 1f673135 bellard
Correct translated code invalidation is done efficiently by maintaining
470 1f673135 bellard
a linked list of every translated block contained in a given page. Other
471 5fafdf24 ths
linked lists are also maintained to undo direct block chaining.
472 1f673135 bellard
473 998a0501 blueswir1
On RISC targets, correctly written software uses memory barriers and
474 998a0501 blueswir1
cache flushes, so some of the protection above would not be
475 998a0501 blueswir1
necessary. However, QEMU still requires that the generated code always
476 998a0501 blueswir1
matches the target instructions in memory in order to handle
477 998a0501 blueswir1
exceptions correctly.
478 1f673135 bellard
479 debc7065 bellard
@node Exception support
480 1f673135 bellard
@section Exception support
481 1f673135 bellard
482 1f673135 bellard
longjmp() is used when an exception such as division by zero is
483 5fafdf24 ths
encountered.
484 1f673135 bellard
485 1f673135 bellard
The host SIGSEGV and SIGBUS signal handlers are used to get invalid
486 998a0501 blueswir1
memory accesses. The simulated program counter is found by
487 998a0501 blueswir1
retranslating the corresponding basic block and by looking where the
488 998a0501 blueswir1
host program counter was at the exception point.
489 1f673135 bellard
490 1f673135 bellard
The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
491 1f673135 bellard
in some cases it is not computed because of condition code
492 1f673135 bellard
optimisations. It is not a big concern because the emulated code can
493 1f673135 bellard
still be restarted in any cases.
494 1f673135 bellard
495 debc7065 bellard
@node MMU emulation
496 1f673135 bellard
@section MMU emulation
497 1f673135 bellard
498 998a0501 blueswir1
For system emulation QEMU supports a soft MMU. In that mode, the MMU
499 998a0501 blueswir1
virtual to physical address translation is done at every memory
500 998a0501 blueswir1
access. QEMU uses an address translation cache to speed up the
501 998a0501 blueswir1
translation.
502 1f673135 bellard
503 1f673135 bellard
In order to avoid flushing the translated code each time the MMU
504 1f673135 bellard
mappings change, QEMU uses a physically indexed translation cache. It
505 5fafdf24 ths
means that each basic block is indexed with its physical address.
506 1f673135 bellard
507 1f673135 bellard
When MMU mappings change, only the chaining of the basic blocks is
508 1f673135 bellard
reset (i.e. a basic block can no longer jump directly to another one).
509 1f673135 bellard
510 998a0501 blueswir1
@node Device emulation
511 998a0501 blueswir1
@section Device emulation
512 998a0501 blueswir1
513 998a0501 blueswir1
Systems emulated by QEMU are organized by boards. At initialization
514 998a0501 blueswir1
phase, each board instantiates a number of CPUs, devices, RAM and
515 998a0501 blueswir1
ROM. Each device in turn can assign I/O ports or memory areas (for
516 998a0501 blueswir1
MMIO) to its handlers. When the emulation starts, an access to the
517 998a0501 blueswir1
ports or MMIO memory areas assigned to the device causes the
518 998a0501 blueswir1
corresponding handler to be called.
519 998a0501 blueswir1
520 998a0501 blueswir1
RAM and ROM are handled more optimally, only the offset to the host
521 998a0501 blueswir1
memory needs to be added to the guest address.
522 998a0501 blueswir1
523 998a0501 blueswir1
The video RAM of VGA and other display cards is special: it can be
524 998a0501 blueswir1
read or written directly like RAM, but write accesses cause the memory
525 998a0501 blueswir1
to be marked with VGA_DIRTY flag as well.
526 998a0501 blueswir1
527 998a0501 blueswir1
QEMU supports some device classes like serial and parallel ports, USB,
528 998a0501 blueswir1
drives and network devices, by providing APIs for easier connection to
529 998a0501 blueswir1
the generic, higher level implementations. The API hides the
530 998a0501 blueswir1
implementation details from the devices, like native device use or
531 998a0501 blueswir1
advanced block device formats like QCOW.
532 998a0501 blueswir1
533 998a0501 blueswir1
Usually the devices implement a reset method and register support for
534 998a0501 blueswir1
saving and loading of the device state. The devices can also use
535 998a0501 blueswir1
timers, especially together with the use of bottom halves (BHs).
536 998a0501 blueswir1
537 debc7065 bellard
@node Hardware interrupts
538 1f673135 bellard
@section Hardware interrupts
539 1f673135 bellard
540 1f673135 bellard
In order to be faster, QEMU does not check at every basic block if an
541 e8dc0938 Stefan Weil
hardware interrupt is pending. Instead, the user must asynchronously
542 1f673135 bellard
call a specific function to tell that an interrupt is pending. This
543 1f673135 bellard
function resets the chaining of the currently executing basic
544 1f673135 bellard
block. It ensures that the execution will return soon in the main loop
545 1f673135 bellard
of the CPU emulator. Then the main loop can test if the interrupt is
546 1f673135 bellard
pending and handle it.
547 1f673135 bellard
548 debc7065 bellard
@node User emulation specific details
549 1f673135 bellard
@section User emulation specific details
550 1f673135 bellard
551 1f673135 bellard
@subsection Linux system call translation
552 1f673135 bellard
553 1f673135 bellard
QEMU includes a generic system call translator for Linux. It means that
554 1f673135 bellard
the parameters of the system calls can be converted to fix the
555 1f673135 bellard
endianness and 32/64 bit issues. The IOCTLs are converted with a generic
556 1f673135 bellard
type description system (see @file{ioctls.h} and @file{thunk.c}).
557 1f673135 bellard
558 1f673135 bellard
QEMU supports host CPUs which have pages bigger than 4KB. It records all
559 1f673135 bellard
the mappings the process does and try to emulated the @code{mmap()}
560 1f673135 bellard
system calls in cases where the host @code{mmap()} call would fail
561 1f673135 bellard
because of bad page alignment.
562 1f673135 bellard
563 1f673135 bellard
@subsection Linux signals
564 1f673135 bellard
565 1f673135 bellard
Normal and real-time signals are queued along with their information
566 1f673135 bellard
(@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
567 1f673135 bellard
request is done to the virtual CPU. When it is interrupted, one queued
568 1f673135 bellard
signal is handled by generating a stack frame in the virtual CPU as the
569 1f673135 bellard
Linux kernel does. The @code{sigreturn()} system call is emulated to return
570 1f673135 bellard
from the virtual signal handler.
571 1f673135 bellard
572 1f673135 bellard
Some signals (such as SIGALRM) directly come from the host. Other
573 e8dc0938 Stefan Weil
signals are synthesized from the virtual CPU exceptions such as SIGFPE
574 1f673135 bellard
when a division by zero is done (see @code{main.c:cpu_loop()}).
575 1f673135 bellard
576 1f673135 bellard
The blocked signal mask is still handled by the host Linux kernel so
577 1f673135 bellard
that most signal system calls can be redirected directly to the host
578 1f673135 bellard
Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
579 1f673135 bellard
calls need to be fully emulated (see @file{signal.c}).
580 1f673135 bellard
581 1f673135 bellard
@subsection clone() system call and threads
582 1f673135 bellard
583 1f673135 bellard
The Linux clone() system call is usually used to create a thread. QEMU
584 1f673135 bellard
uses the host clone() system call so that real host threads are created
585 1f673135 bellard
for each emulated thread. One virtual CPU instance is created for each
586 1f673135 bellard
thread.
587 1f673135 bellard
588 1f673135 bellard
The virtual x86 CPU atomic operations are emulated with a global lock so
589 1f673135 bellard
that their semantic is preserved.
590 1f673135 bellard
591 1f673135 bellard
Note that currently there are still some locking issues in QEMU. In
592 1f673135 bellard
particular, the translated cache flush is not protected yet against
593 1f673135 bellard
reentrancy.
594 1f673135 bellard
595 1f673135 bellard
@subsection Self-virtualization
596 1f673135 bellard
597 1f673135 bellard
QEMU was conceived so that ultimately it can emulate itself. Although
598 1f673135 bellard
it is not very useful, it is an important test to show the power of the
599 1f673135 bellard
emulator.
600 1f673135 bellard
601 1f673135 bellard
Achieving self-virtualization is not easy because there may be address
602 998a0501 blueswir1
space conflicts. QEMU user emulators solve this problem by being an
603 998a0501 blueswir1
executable ELF shared object as the ld-linux.so ELF interpreter. That
604 998a0501 blueswir1
way, it can be relocated at load time.
605 1f673135 bellard
606 debc7065 bellard
@node Bibliography
607 1f673135 bellard
@section Bibliography
608 1f673135 bellard
609 1f673135 bellard
@table @asis
610 1f673135 bellard
611 5fafdf24 ths
@item [1]
612 1f673135 bellard
@url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
613 1f673135 bellard
direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio
614 1f673135 bellard
Riccardi.
615 1f673135 bellard
616 1f673135 bellard
@item [2]
617 1f673135 bellard
@url{http://developer.kde.org/~sewardj/}, Valgrind, an open-source
618 1f673135 bellard
memory debugger for x86-GNU/Linux, by Julian Seward.
619 1f673135 bellard
620 1f673135 bellard
@item [3]
621 1f673135 bellard
@url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
622 1f673135 bellard
by Kevin Lawton et al.
623 1f673135 bellard
624 1f673135 bellard
@item [4]
625 1f673135 bellard
@url{http://www.cs.rose-hulman.edu/~donaldlf/em86/index.html}, the EM86
626 1f673135 bellard
x86 emulator on Alpha-Linux.
627 1f673135 bellard
628 1f673135 bellard
@item [5]
629 debc7065 bellard
@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/@/full_papers/chernoff/chernoff.pdf},
630 1f673135 bellard
DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
631 1f673135 bellard
Chernoff and Ray Hookway.
632 1f673135 bellard
633 1f673135 bellard
@item [6]
634 1f673135 bellard
@url{http://www.willows.com/}, Windows API library emulation from
635 1f673135 bellard
Willows Software.
636 1f673135 bellard
637 1f673135 bellard
@item [7]
638 5fafdf24 ths
@url{http://user-mode-linux.sourceforge.net/},
639 1f673135 bellard
The User-mode Linux Kernel.
640 1f673135 bellard
641 1f673135 bellard
@item [8]
642 5fafdf24 ths
@url{http://www.plex86.org/},
643 1f673135 bellard
The new Plex86 project.
644 1f673135 bellard
645 1f673135 bellard
@item [9]
646 5fafdf24 ths
@url{http://www.vmware.com/},
647 1f673135 bellard
The VMWare PC virtualizer.
648 1f673135 bellard
649 1f673135 bellard
@item [10]
650 5fafdf24 ths
@url{http://www.microsoft.com/windowsxp/virtualpc/},
651 1f673135 bellard
The VirtualPC PC virtualizer.
652 1f673135 bellard
653 1f673135 bellard
@item [11]
654 5fafdf24 ths
@url{http://www.twoostwo.org/},
655 1f673135 bellard
The TwoOStwo PC virtualizer.
656 1f673135 bellard
657 998a0501 blueswir1
@item [12]
658 998a0501 blueswir1
@url{http://virtualbox.org/},
659 998a0501 blueswir1
The VirtualBox PC virtualizer.
660 998a0501 blueswir1
661 998a0501 blueswir1
@item [13]
662 998a0501 blueswir1
@url{http://www.xen.org/},
663 998a0501 blueswir1
The Xen hypervisor.
664 998a0501 blueswir1
665 998a0501 blueswir1
@item [14]
666 998a0501 blueswir1
@url{http://kvm.qumranet.com/kvmwiki/Front_Page},
667 998a0501 blueswir1
Kernel Based Virtual Machine (KVM).
668 998a0501 blueswir1
669 998a0501 blueswir1
@item [15]
670 998a0501 blueswir1
@url{http://www.greensocs.com/projects/QEMUSystemC},
671 998a0501 blueswir1
QEMU-SystemC, a hardware co-simulator.
672 998a0501 blueswir1
673 1f673135 bellard
@end table
674 1f673135 bellard
675 debc7065 bellard
@node Regression Tests
676 1f673135 bellard
@chapter Regression Tests
677 1f673135 bellard
678 1f673135 bellard
In the directory @file{tests/}, various interesting testing programs
679 b1f45238 ths
are available. They are used for regression testing.
680 1f673135 bellard
681 debc7065 bellard
@menu
682 debc7065 bellard
* test-i386::
683 debc7065 bellard
* linux-test::
684 debc7065 bellard
@end menu
685 debc7065 bellard
686 debc7065 bellard
@node test-i386
687 1f673135 bellard
@section @file{test-i386}
688 1f673135 bellard
689 1f673135 bellard
This program executes most of the 16 bit and 32 bit x86 instructions and
690 1f673135 bellard
generates a text output. It can be compared with the output obtained with
691 1f673135 bellard
a real CPU or another emulator. The target @code{make test} runs this
692 1f673135 bellard
program and a @code{diff} on the generated output.
693 1f673135 bellard
694 1f673135 bellard
The Linux system call @code{modify_ldt()} is used to create x86 selectors
695 1f673135 bellard
to test some 16 bit addressing and 32 bit with segmentation cases.
696 1f673135 bellard
697 1f673135 bellard
The Linux system call @code{vm86()} is used to test vm86 emulation.
698 1f673135 bellard
699 1f673135 bellard
Various exceptions are raised to test most of the x86 user space
700 1f673135 bellard
exception reporting.
701 1f673135 bellard
702 debc7065 bellard
@node linux-test
703 1f673135 bellard
@section @file{linux-test}
704 1f673135 bellard
705 1f673135 bellard
This program tests various Linux system calls. It is used to verify
706 1f673135 bellard
that the system call parameters are correctly converted between target
707 1f673135 bellard
and host CPUs.
708 1f673135 bellard
709 debc7065 bellard
@node Index
710 debc7065 bellard
@chapter Index
711 debc7065 bellard
@printindex cp
712 debc7065 bellard
713 debc7065 bellard
@bye