Statistics
| Branch: | Revision:

root / target-arm / helper.c @ 37f9ba46

History | View | Annotate | Download (71.3 kB)

1
#include <stdio.h>
2
#include <stdlib.h>
3
#include <string.h>
4

    
5
#include "cpu.h"
6
#include "exec-all.h"
7
#include "gdbstub.h"
8
#include "helpers.h"
9
#include "qemu-common.h"
10

    
11
static uint32_t cortexa8_cp15_c0_c1[8] =
12
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
13

    
14
static uint32_t cortexa8_cp15_c0_c2[8] =
15
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
16

    
17
static uint32_t mpcore_cp15_c0_c1[8] =
18
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
19

    
20
static uint32_t mpcore_cp15_c0_c2[8] =
21
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
22

    
23
static uint32_t arm1136_cp15_c0_c1[8] =
24
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
25

    
26
static uint32_t arm1136_cp15_c0_c2[8] =
27
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
28

    
29
static uint32_t cpu_arm_find_by_name(const char *name);
30

    
31
static inline void set_feature(CPUARMState *env, int feature)
32
{
33
    env->features |= 1u << feature;
34
}
35

    
36
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
37
{
38
    env->cp15.c0_cpuid = id;
39
    switch (id) {
40
    case ARM_CPUID_ARM926:
41
        set_feature(env, ARM_FEATURE_VFP);
42
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
43
        env->cp15.c0_cachetype = 0x1dd20d2;
44
        env->cp15.c1_sys = 0x00090078;
45
        break;
46
    case ARM_CPUID_ARM946:
47
        set_feature(env, ARM_FEATURE_MPU);
48
        env->cp15.c0_cachetype = 0x0f004006;
49
        env->cp15.c1_sys = 0x00000078;
50
        break;
51
    case ARM_CPUID_ARM1026:
52
        set_feature(env, ARM_FEATURE_VFP);
53
        set_feature(env, ARM_FEATURE_AUXCR);
54
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
55
        env->cp15.c0_cachetype = 0x1dd20d2;
56
        env->cp15.c1_sys = 0x00090078;
57
        break;
58
    case ARM_CPUID_ARM1136_R2:
59
    case ARM_CPUID_ARM1136:
60
        set_feature(env, ARM_FEATURE_V6);
61
        set_feature(env, ARM_FEATURE_VFP);
62
        set_feature(env, ARM_FEATURE_AUXCR);
63
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
64
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
65
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
66
        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
67
        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
68
        env->cp15.c0_cachetype = 0x1dd20d2;
69
        break;
70
    case ARM_CPUID_ARM11MPCORE:
71
        set_feature(env, ARM_FEATURE_V6);
72
        set_feature(env, ARM_FEATURE_V6K);
73
        set_feature(env, ARM_FEATURE_VFP);
74
        set_feature(env, ARM_FEATURE_AUXCR);
75
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
76
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
77
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
78
        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
79
        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
80
        env->cp15.c0_cachetype = 0x1dd20d2;
81
        break;
82
    case ARM_CPUID_CORTEXA8:
83
        set_feature(env, ARM_FEATURE_V6);
84
        set_feature(env, ARM_FEATURE_V6K);
85
        set_feature(env, ARM_FEATURE_V7);
86
        set_feature(env, ARM_FEATURE_AUXCR);
87
        set_feature(env, ARM_FEATURE_THUMB2);
88
        set_feature(env, ARM_FEATURE_VFP);
89
        set_feature(env, ARM_FEATURE_VFP3);
90
        set_feature(env, ARM_FEATURE_NEON);
91
        set_feature(env, ARM_FEATURE_THUMB2EE);
92
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
93
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
94
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
95
        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
96
        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
97
        env->cp15.c0_cachetype = 0x82048004;
98
        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
99
        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
100
        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
101
        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
102
        break;
103
    case ARM_CPUID_CORTEXM3:
104
        set_feature(env, ARM_FEATURE_V6);
105
        set_feature(env, ARM_FEATURE_THUMB2);
106
        set_feature(env, ARM_FEATURE_V7);
107
        set_feature(env, ARM_FEATURE_M);
108
        set_feature(env, ARM_FEATURE_DIV);
109
        break;
110
    case ARM_CPUID_ANY: /* For userspace emulation.  */
111
        set_feature(env, ARM_FEATURE_V6);
112
        set_feature(env, ARM_FEATURE_V6K);
113
        set_feature(env, ARM_FEATURE_V7);
114
        set_feature(env, ARM_FEATURE_THUMB2);
115
        set_feature(env, ARM_FEATURE_VFP);
116
        set_feature(env, ARM_FEATURE_VFP3);
117
        set_feature(env, ARM_FEATURE_NEON);
118
        set_feature(env, ARM_FEATURE_THUMB2EE);
119
        set_feature(env, ARM_FEATURE_DIV);
120
        break;
121
    case ARM_CPUID_TI915T:
122
    case ARM_CPUID_TI925T:
123
        set_feature(env, ARM_FEATURE_OMAPCP);
124
        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
125
        env->cp15.c0_cachetype = 0x5109149;
126
        env->cp15.c1_sys = 0x00000070;
127
        env->cp15.c15_i_max = 0x000;
128
        env->cp15.c15_i_min = 0xff0;
129
        break;
130
    case ARM_CPUID_PXA250:
131
    case ARM_CPUID_PXA255:
132
    case ARM_CPUID_PXA260:
133
    case ARM_CPUID_PXA261:
134
    case ARM_CPUID_PXA262:
135
        set_feature(env, ARM_FEATURE_XSCALE);
136
        /* JTAG_ID is ((id << 28) | 0x09265013) */
137
        env->cp15.c0_cachetype = 0xd172172;
138
        env->cp15.c1_sys = 0x00000078;
139
        break;
140
    case ARM_CPUID_PXA270_A0:
141
    case ARM_CPUID_PXA270_A1:
142
    case ARM_CPUID_PXA270_B0:
143
    case ARM_CPUID_PXA270_B1:
144
    case ARM_CPUID_PXA270_C0:
145
    case ARM_CPUID_PXA270_C5:
146
        set_feature(env, ARM_FEATURE_XSCALE);
147
        /* JTAG_ID is ((id << 28) | 0x09265013) */
148
        set_feature(env, ARM_FEATURE_IWMMXT);
149
        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
150
        env->cp15.c0_cachetype = 0xd172172;
151
        env->cp15.c1_sys = 0x00000078;
152
        break;
153
    default:
154
        cpu_abort(env, "Bad CPU ID: %x\n", id);
155
        break;
156
    }
157
}
158

    
159
void cpu_reset(CPUARMState *env)
160
{
161
    uint32_t id;
162

    
163
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
164
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
165
        log_cpu_state(env, 0);
166
    }
167

    
168
    id = env->cp15.c0_cpuid;
169
    memset(env, 0, offsetof(CPUARMState, breakpoints));
170
    if (id)
171
        cpu_reset_model_id(env, id);
172
#if defined (CONFIG_USER_ONLY)
173
    env->uncached_cpsr = ARM_CPU_MODE_USR;
174
    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
175
#else
176
    /* SVC mode with interrupts disabled.  */
177
    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
178
    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
179
       clear at reset.  */
180
    if (IS_M(env))
181
        env->uncached_cpsr &= ~CPSR_I;
182
    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
183
    env->cp15.c2_base_mask = 0xffffc000u;
184
#endif
185
    env->regs[15] = 0;
186
    tlb_flush(env, 1);
187
}
188

    
189
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
190
{
191
    int nregs;
192

    
193
    /* VFP data registers are always little-endian.  */
194
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
195
    if (reg < nregs) {
196
        stfq_le_p(buf, env->vfp.regs[reg]);
197
        return 8;
198
    }
199
    if (arm_feature(env, ARM_FEATURE_NEON)) {
200
        /* Aliases for Q regs.  */
201
        nregs += 16;
202
        if (reg < nregs) {
203
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
204
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
205
            return 16;
206
        }
207
    }
208
    switch (reg - nregs) {
209
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
210
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
211
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
212
    }
213
    return 0;
214
}
215

    
216
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
217
{
218
    int nregs;
219

    
220
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
221
    if (reg < nregs) {
222
        env->vfp.regs[reg] = ldfq_le_p(buf);
223
        return 8;
224
    }
225
    if (arm_feature(env, ARM_FEATURE_NEON)) {
226
        nregs += 16;
227
        if (reg < nregs) {
228
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
229
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
230
            return 16;
231
        }
232
    }
233
    switch (reg - nregs) {
234
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
235
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
236
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
237
    }
238
    return 0;
239
}
240

    
241
CPUARMState *cpu_arm_init(const char *cpu_model)
242
{
243
    CPUARMState *env;
244
    uint32_t id;
245
    static int inited = 0;
246

    
247
    id = cpu_arm_find_by_name(cpu_model);
248
    if (id == 0)
249
        return NULL;
250
    env = qemu_mallocz(sizeof(CPUARMState));
251
    cpu_exec_init(env);
252
    if (!inited) {
253
        inited = 1;
254
        arm_translate_init();
255
    }
256

    
257
    env->cpu_model_str = cpu_model;
258
    env->cp15.c0_cpuid = id;
259
    cpu_reset(env);
260
    if (arm_feature(env, ARM_FEATURE_NEON)) {
261
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
262
                                 51, "arm-neon.xml", 0);
263
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
264
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
265
                                 35, "arm-vfp3.xml", 0);
266
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
267
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
268
                                 19, "arm-vfp.xml", 0);
269
    }
270
    return env;
271
}
272

    
273
struct arm_cpu_t {
274
    uint32_t id;
275
    const char *name;
276
};
277

    
278
static const struct arm_cpu_t arm_cpu_names[] = {
279
    { ARM_CPUID_ARM926, "arm926"},
280
    { ARM_CPUID_ARM946, "arm946"},
281
    { ARM_CPUID_ARM1026, "arm1026"},
282
    { ARM_CPUID_ARM1136, "arm1136"},
283
    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
284
    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
285
    { ARM_CPUID_CORTEXM3, "cortex-m3"},
286
    { ARM_CPUID_CORTEXA8, "cortex-a8"},
287
    { ARM_CPUID_TI925T, "ti925t" },
288
    { ARM_CPUID_PXA250, "pxa250" },
289
    { ARM_CPUID_PXA255, "pxa255" },
290
    { ARM_CPUID_PXA260, "pxa260" },
291
    { ARM_CPUID_PXA261, "pxa261" },
292
    { ARM_CPUID_PXA262, "pxa262" },
293
    { ARM_CPUID_PXA270, "pxa270" },
294
    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
295
    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
296
    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
297
    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
298
    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
299
    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
300
    { ARM_CPUID_ANY, "any"},
301
    { 0, NULL}
302
};
303

    
304
void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
305
{
306
    int i;
307

    
308
    (*cpu_fprintf)(f, "Available CPUs:\n");
309
    for (i = 0; arm_cpu_names[i].name; i++) {
310
        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
311
    }
312
}
313

    
314
/* return 0 if not found */
315
static uint32_t cpu_arm_find_by_name(const char *name)
316
{
317
    int i;
318
    uint32_t id;
319

    
320
    id = 0;
321
    for (i = 0; arm_cpu_names[i].name; i++) {
322
        if (strcmp(name, arm_cpu_names[i].name) == 0) {
323
            id = arm_cpu_names[i].id;
324
            break;
325
        }
326
    }
327
    return id;
328
}
329

    
330
void cpu_arm_close(CPUARMState *env)
331
{
332
    free(env);
333
}
334

    
335
uint32_t cpsr_read(CPUARMState *env)
336
{
337
    int ZF;
338
    ZF = (env->ZF == 0);
339
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
340
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
341
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
342
        | ((env->condexec_bits & 0xfc) << 8)
343
        | (env->GE << 16);
344
}
345

    
346
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
347
{
348
    if (mask & CPSR_NZCV) {
349
        env->ZF = (~val) & CPSR_Z;
350
        env->NF = val;
351
        env->CF = (val >> 29) & 1;
352
        env->VF = (val << 3) & 0x80000000;
353
    }
354
    if (mask & CPSR_Q)
355
        env->QF = ((val & CPSR_Q) != 0);
356
    if (mask & CPSR_T)
357
        env->thumb = ((val & CPSR_T) != 0);
358
    if (mask & CPSR_IT_0_1) {
359
        env->condexec_bits &= ~3;
360
        env->condexec_bits |= (val >> 25) & 3;
361
    }
362
    if (mask & CPSR_IT_2_7) {
363
        env->condexec_bits &= 3;
364
        env->condexec_bits |= (val >> 8) & 0xfc;
365
    }
366
    if (mask & CPSR_GE) {
367
        env->GE = (val >> 16) & 0xf;
368
    }
369

    
370
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
371
        switch_mode(env, val & CPSR_M);
372
    }
373
    mask &= ~CACHED_CPSR_BITS;
374
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
375
}
376

    
377
/* Sign/zero extend */
378
uint32_t HELPER(sxtb16)(uint32_t x)
379
{
380
    uint32_t res;
381
    res = (uint16_t)(int8_t)x;
382
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
383
    return res;
384
}
385

    
386
uint32_t HELPER(uxtb16)(uint32_t x)
387
{
388
    uint32_t res;
389
    res = (uint16_t)(uint8_t)x;
390
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
391
    return res;
392
}
393

    
394
uint32_t HELPER(clz)(uint32_t x)
395
{
396
    int count;
397
    for (count = 32; x; count--)
398
        x >>= 1;
399
    return count;
400
}
401

    
402
int32_t HELPER(sdiv)(int32_t num, int32_t den)
403
{
404
    if (den == 0)
405
      return 0;
406
    return num / den;
407
}
408

    
409
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
410
{
411
    if (den == 0)
412
      return 0;
413
    return num / den;
414
}
415

    
416
uint32_t HELPER(rbit)(uint32_t x)
417
{
418
    x =  ((x & 0xff000000) >> 24)
419
       | ((x & 0x00ff0000) >> 8)
420
       | ((x & 0x0000ff00) << 8)
421
       | ((x & 0x000000ff) << 24);
422
    x =  ((x & 0xf0f0f0f0) >> 4)
423
       | ((x & 0x0f0f0f0f) << 4);
424
    x =  ((x & 0x88888888) >> 3)
425
       | ((x & 0x44444444) >> 1)
426
       | ((x & 0x22222222) << 1)
427
       | ((x & 0x11111111) << 3);
428
    return x;
429
}
430

    
431
uint32_t HELPER(abs)(uint32_t x)
432
{
433
    return ((int32_t)x < 0) ? -x : x;
434
}
435

    
436
#if defined(CONFIG_USER_ONLY)
437

    
438
void do_interrupt (CPUState *env)
439
{
440
    env->exception_index = -1;
441
}
442

    
443
/* Structure used to record exclusive memory locations.  */
444
typedef struct mmon_state {
445
    struct mmon_state *next;
446
    CPUARMState *cpu_env;
447
    uint32_t addr;
448
} mmon_state;
449

    
450
/* Chain of current locks.  */
451
static mmon_state* mmon_head = NULL;
452

    
453
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
454
                              int mmu_idx, int is_softmmu)
455
{
456
    if (rw == 2) {
457
        env->exception_index = EXCP_PREFETCH_ABORT;
458
        env->cp15.c6_insn = address;
459
    } else {
460
        env->exception_index = EXCP_DATA_ABORT;
461
        env->cp15.c6_data = address;
462
    }
463
    return 1;
464
}
465

    
466
static void allocate_mmon_state(CPUState *env)
467
{
468
    env->mmon_entry = malloc(sizeof (mmon_state));
469
    memset (env->mmon_entry, 0, sizeof (mmon_state));
470
    env->mmon_entry->cpu_env = env;
471
    mmon_head = env->mmon_entry;
472
}
473

    
474
/* Flush any monitor locks for the specified address.  */
475
static void flush_mmon(uint32_t addr)
476
{
477
    mmon_state *mon;
478

    
479
    for (mon = mmon_head; mon; mon = mon->next)
480
      {
481
        if (mon->addr != addr)
482
          continue;
483

    
484
        mon->addr = 0;
485
        break;
486
      }
487
}
488

    
489
/* Mark an address for exclusive access.  */
490
void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
491
{
492
    if (!env->mmon_entry)
493
        allocate_mmon_state(env);
494
    /* Clear any previous locks.  */
495
    flush_mmon(addr);
496
    env->mmon_entry->addr = addr;
497
}
498

    
499
/* Test if an exclusive address is still exclusive.  Returns zero
500
   if the address is still exclusive.   */
501
uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
502
{
503
    int res;
504

    
505
    if (!env->mmon_entry)
506
        return 1;
507
    if (env->mmon_entry->addr == addr)
508
        res = 0;
509
    else
510
        res = 1;
511
    flush_mmon(addr);
512
    return res;
513
}
514

    
515
void HELPER(clrex)(CPUState *env)
516
{
517
    if (!(env->mmon_entry && env->mmon_entry->addr))
518
        return;
519
    flush_mmon(env->mmon_entry->addr);
520
}
521

    
522
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
523
{
524
    return addr;
525
}
526

    
527
/* These should probably raise undefined insn exceptions.  */
528
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
529
{
530
    int op1 = (insn >> 8) & 0xf;
531
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
532
    return;
533
}
534

    
535
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
536
{
537
    int op1 = (insn >> 8) & 0xf;
538
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
539
    return 0;
540
}
541

    
542
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
543
{
544
    cpu_abort(env, "cp15 insn %08x\n", insn);
545
}
546

    
547
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
548
{
549
    cpu_abort(env, "cp15 insn %08x\n", insn);
550
    return 0;
551
}
552

    
553
/* These should probably raise undefined insn exceptions.  */
554
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
555
{
556
    cpu_abort(env, "v7m_mrs %d\n", reg);
557
}
558

    
559
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
560
{
561
    cpu_abort(env, "v7m_mrs %d\n", reg);
562
    return 0;
563
}
564

    
565
void switch_mode(CPUState *env, int mode)
566
{
567
    if (mode != ARM_CPU_MODE_USR)
568
        cpu_abort(env, "Tried to switch out of user mode\n");
569
}
570

    
571
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
572
{
573
    cpu_abort(env, "banked r13 write\n");
574
}
575

    
576
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
577
{
578
    cpu_abort(env, "banked r13 read\n");
579
    return 0;
580
}
581

    
582
#else
583

    
584
extern int semihosting_enabled;
585

    
586
/* Map CPU modes onto saved register banks.  */
587
static inline int bank_number (int mode)
588
{
589
    switch (mode) {
590
    case ARM_CPU_MODE_USR:
591
    case ARM_CPU_MODE_SYS:
592
        return 0;
593
    case ARM_CPU_MODE_SVC:
594
        return 1;
595
    case ARM_CPU_MODE_ABT:
596
        return 2;
597
    case ARM_CPU_MODE_UND:
598
        return 3;
599
    case ARM_CPU_MODE_IRQ:
600
        return 4;
601
    case ARM_CPU_MODE_FIQ:
602
        return 5;
603
    }
604
    cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
605
    return -1;
606
}
607

    
608
void switch_mode(CPUState *env, int mode)
609
{
610
    int old_mode;
611
    int i;
612

    
613
    old_mode = env->uncached_cpsr & CPSR_M;
614
    if (mode == old_mode)
615
        return;
616

    
617
    if (old_mode == ARM_CPU_MODE_FIQ) {
618
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
619
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
620
    } else if (mode == ARM_CPU_MODE_FIQ) {
621
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
622
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
623
    }
624

    
625
    i = bank_number(old_mode);
626
    env->banked_r13[i] = env->regs[13];
627
    env->banked_r14[i] = env->regs[14];
628
    env->banked_spsr[i] = env->spsr;
629

    
630
    i = bank_number(mode);
631
    env->regs[13] = env->banked_r13[i];
632
    env->regs[14] = env->banked_r14[i];
633
    env->spsr = env->banked_spsr[i];
634
}
635

    
636
static void v7m_push(CPUARMState *env, uint32_t val)
637
{
638
    env->regs[13] -= 4;
639
    stl_phys(env->regs[13], val);
640
}
641

    
642
static uint32_t v7m_pop(CPUARMState *env)
643
{
644
    uint32_t val;
645
    val = ldl_phys(env->regs[13]);
646
    env->regs[13] += 4;
647
    return val;
648
}
649

    
650
/* Switch to V7M main or process stack pointer.  */
651
static void switch_v7m_sp(CPUARMState *env, int process)
652
{
653
    uint32_t tmp;
654
    if (env->v7m.current_sp != process) {
655
        tmp = env->v7m.other_sp;
656
        env->v7m.other_sp = env->regs[13];
657
        env->regs[13] = tmp;
658
        env->v7m.current_sp = process;
659
    }
660
}
661

    
662
static void do_v7m_exception_exit(CPUARMState *env)
663
{
664
    uint32_t type;
665
    uint32_t xpsr;
666

    
667
    type = env->regs[15];
668
    if (env->v7m.exception != 0)
669
        armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
670

    
671
    /* Switch to the target stack.  */
672
    switch_v7m_sp(env, (type & 4) != 0);
673
    /* Pop registers.  */
674
    env->regs[0] = v7m_pop(env);
675
    env->regs[1] = v7m_pop(env);
676
    env->regs[2] = v7m_pop(env);
677
    env->regs[3] = v7m_pop(env);
678
    env->regs[12] = v7m_pop(env);
679
    env->regs[14] = v7m_pop(env);
680
    env->regs[15] = v7m_pop(env);
681
    xpsr = v7m_pop(env);
682
    xpsr_write(env, xpsr, 0xfffffdff);
683
    /* Undo stack alignment.  */
684
    if (xpsr & 0x200)
685
        env->regs[13] |= 4;
686
    /* ??? The exception return type specifies Thread/Handler mode.  However
687
       this is also implied by the xPSR value. Not sure what to do
688
       if there is a mismatch.  */
689
    /* ??? Likewise for mismatches between the CONTROL register and the stack
690
       pointer.  */
691
}
692

    
693
static void do_interrupt_v7m(CPUARMState *env)
694
{
695
    uint32_t xpsr = xpsr_read(env);
696
    uint32_t lr;
697
    uint32_t addr;
698

    
699
    lr = 0xfffffff1;
700
    if (env->v7m.current_sp)
701
        lr |= 4;
702
    if (env->v7m.exception == 0)
703
        lr |= 8;
704

    
705
    /* For exceptions we just mark as pending on the NVIC, and let that
706
       handle it.  */
707
    /* TODO: Need to escalate if the current priority is higher than the
708
       one we're raising.  */
709
    switch (env->exception_index) {
710
    case EXCP_UDEF:
711
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
712
        return;
713
    case EXCP_SWI:
714
        env->regs[15] += 2;
715
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
716
        return;
717
    case EXCP_PREFETCH_ABORT:
718
    case EXCP_DATA_ABORT:
719
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
720
        return;
721
    case EXCP_BKPT:
722
        if (semihosting_enabled) {
723
            int nr;
724
            nr = lduw_code(env->regs[15]) & 0xff;
725
            if (nr == 0xab) {
726
                env->regs[15] += 2;
727
                env->regs[0] = do_arm_semihosting(env);
728
                return;
729
            }
730
        }
731
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
732
        return;
733
    case EXCP_IRQ:
734
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
735
        break;
736
    case EXCP_EXCEPTION_EXIT:
737
        do_v7m_exception_exit(env);
738
        return;
739
    default:
740
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
741
        return; /* Never happens.  Keep compiler happy.  */
742
    }
743

    
744
    /* Align stack pointer.  */
745
    /* ??? Should only do this if Configuration Control Register
746
       STACKALIGN bit is set.  */
747
    if (env->regs[13] & 4) {
748
        env->regs[13] -= 4;
749
        xpsr |= 0x200;
750
    }
751
    /* Switch to the handler mode.  */
752
    v7m_push(env, xpsr);
753
    v7m_push(env, env->regs[15]);
754
    v7m_push(env, env->regs[14]);
755
    v7m_push(env, env->regs[12]);
756
    v7m_push(env, env->regs[3]);
757
    v7m_push(env, env->regs[2]);
758
    v7m_push(env, env->regs[1]);
759
    v7m_push(env, env->regs[0]);
760
    switch_v7m_sp(env, 0);
761
    env->uncached_cpsr &= ~CPSR_IT;
762
    env->regs[14] = lr;
763
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
764
    env->regs[15] = addr & 0xfffffffe;
765
    env->thumb = addr & 1;
766
}
767

    
768
/* Handle a CPU exception.  */
769
void do_interrupt(CPUARMState *env)
770
{
771
    uint32_t addr;
772
    uint32_t mask;
773
    int new_mode;
774
    uint32_t offset;
775

    
776
    if (IS_M(env)) {
777
        do_interrupt_v7m(env);
778
        return;
779
    }
780
    /* TODO: Vectored interrupt controller.  */
781
    switch (env->exception_index) {
782
    case EXCP_UDEF:
783
        new_mode = ARM_CPU_MODE_UND;
784
        addr = 0x04;
785
        mask = CPSR_I;
786
        if (env->thumb)
787
            offset = 2;
788
        else
789
            offset = 4;
790
        break;
791
    case EXCP_SWI:
792
        if (semihosting_enabled) {
793
            /* Check for semihosting interrupt.  */
794
            if (env->thumb) {
795
                mask = lduw_code(env->regs[15] - 2) & 0xff;
796
            } else {
797
                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
798
            }
799
            /* Only intercept calls from privileged modes, to provide some
800
               semblance of security.  */
801
            if (((mask == 0x123456 && !env->thumb)
802
                    || (mask == 0xab && env->thumb))
803
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
804
                env->regs[0] = do_arm_semihosting(env);
805
                return;
806
            }
807
        }
808
        new_mode = ARM_CPU_MODE_SVC;
809
        addr = 0x08;
810
        mask = CPSR_I;
811
        /* The PC already points to the next instruction.  */
812
        offset = 0;
813
        break;
814
    case EXCP_BKPT:
815
        /* See if this is a semihosting syscall.  */
816
        if (env->thumb && semihosting_enabled) {
817
            mask = lduw_code(env->regs[15]) & 0xff;
818
            if (mask == 0xab
819
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
820
                env->regs[15] += 2;
821
                env->regs[0] = do_arm_semihosting(env);
822
                return;
823
            }
824
        }
825
        /* Fall through to prefetch abort.  */
826
    case EXCP_PREFETCH_ABORT:
827
        new_mode = ARM_CPU_MODE_ABT;
828
        addr = 0x0c;
829
        mask = CPSR_A | CPSR_I;
830
        offset = 4;
831
        break;
832
    case EXCP_DATA_ABORT:
833
        new_mode = ARM_CPU_MODE_ABT;
834
        addr = 0x10;
835
        mask = CPSR_A | CPSR_I;
836
        offset = 8;
837
        break;
838
    case EXCP_IRQ:
839
        new_mode = ARM_CPU_MODE_IRQ;
840
        addr = 0x18;
841
        /* Disable IRQ and imprecise data aborts.  */
842
        mask = CPSR_A | CPSR_I;
843
        offset = 4;
844
        break;
845
    case EXCP_FIQ:
846
        new_mode = ARM_CPU_MODE_FIQ;
847
        addr = 0x1c;
848
        /* Disable FIQ, IRQ and imprecise data aborts.  */
849
        mask = CPSR_A | CPSR_I | CPSR_F;
850
        offset = 4;
851
        break;
852
    default:
853
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
854
        return; /* Never happens.  Keep compiler happy.  */
855
    }
856
    /* High vectors.  */
857
    if (env->cp15.c1_sys & (1 << 13)) {
858
        addr += 0xffff0000;
859
    }
860
    switch_mode (env, new_mode);
861
    env->spsr = cpsr_read(env);
862
    /* Clear IT bits.  */
863
    env->condexec_bits = 0;
864
    /* Switch to the new mode, and switch to Arm mode.  */
865
    /* ??? Thumb interrupt handlers not implemented.  */
866
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
867
    env->uncached_cpsr |= mask;
868
    env->thumb = 0;
869
    env->regs[14] = env->regs[15] + offset;
870
    env->regs[15] = addr;
871
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
872
}
873

    
874
/* Check section/page access permissions.
875
   Returns the page protection flags, or zero if the access is not
876
   permitted.  */
877
static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
878
                           int is_user)
879
{
880
  int prot_ro;
881

    
882
  if (domain == 3)
883
    return PAGE_READ | PAGE_WRITE;
884

    
885
  if (access_type == 1)
886
      prot_ro = 0;
887
  else
888
      prot_ro = PAGE_READ;
889

    
890
  switch (ap) {
891
  case 0:
892
      if (access_type == 1)
893
          return 0;
894
      switch ((env->cp15.c1_sys >> 8) & 3) {
895
      case 1:
896
          return is_user ? 0 : PAGE_READ;
897
      case 2:
898
          return PAGE_READ;
899
      default:
900
          return 0;
901
      }
902
  case 1:
903
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
904
  case 2:
905
      if (is_user)
906
          return prot_ro;
907
      else
908
          return PAGE_READ | PAGE_WRITE;
909
  case 3:
910
      return PAGE_READ | PAGE_WRITE;
911
  case 4: /* Reserved.  */
912
      return 0;
913
  case 5:
914
      return is_user ? 0 : prot_ro;
915
  case 6:
916
      return prot_ro;
917
  case 7:
918
      if (!arm_feature (env, ARM_FEATURE_V7))
919
          return 0;
920
      return prot_ro;
921
  default:
922
      abort();
923
  }
924
}
925

    
926
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
927
{
928
    uint32_t table;
929

    
930
    if (address & env->cp15.c2_mask)
931
        table = env->cp15.c2_base1 & 0xffffc000;
932
    else
933
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
934

    
935
    table |= (address >> 18) & 0x3ffc;
936
    return table;
937
}
938

    
939
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
940
                            int is_user, uint32_t *phys_ptr, int *prot)
941
{
942
    int code;
943
    uint32_t table;
944
    uint32_t desc;
945
    int type;
946
    int ap;
947
    int domain;
948
    uint32_t phys_addr;
949

    
950
    /* Pagetable walk.  */
951
    /* Lookup l1 descriptor.  */
952
    table = get_level1_table_address(env, address);
953
    desc = ldl_phys(table);
954
    type = (desc & 3);
955
    domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
956
    if (type == 0) {
957
        /* Section translation fault.  */
958
        code = 5;
959
        goto do_fault;
960
    }
961
    if (domain == 0 || domain == 2) {
962
        if (type == 2)
963
            code = 9; /* Section domain fault.  */
964
        else
965
            code = 11; /* Page domain fault.  */
966
        goto do_fault;
967
    }
968
    if (type == 2) {
969
        /* 1Mb section.  */
970
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
971
        ap = (desc >> 10) & 3;
972
        code = 13;
973
    } else {
974
        /* Lookup l2 entry.  */
975
        if (type == 1) {
976
            /* Coarse pagetable.  */
977
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
978
        } else {
979
            /* Fine pagetable.  */
980
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
981
        }
982
        desc = ldl_phys(table);
983
        switch (desc & 3) {
984
        case 0: /* Page translation fault.  */
985
            code = 7;
986
            goto do_fault;
987
        case 1: /* 64k page.  */
988
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
989
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
990
            break;
991
        case 2: /* 4k page.  */
992
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
993
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
994
            break;
995
        case 3: /* 1k page.  */
996
            if (type == 1) {
997
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
998
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
999
                } else {
1000
                    /* Page translation fault.  */
1001
                    code = 7;
1002
                    goto do_fault;
1003
                }
1004
            } else {
1005
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1006
            }
1007
            ap = (desc >> 4) & 3;
1008
            break;
1009
        default:
1010
            /* Never happens, but compiler isn't smart enough to tell.  */
1011
            abort();
1012
        }
1013
        code = 15;
1014
    }
1015
    *prot = check_ap(env, ap, domain, access_type, is_user);
1016
    if (!*prot) {
1017
        /* Access permission fault.  */
1018
        goto do_fault;
1019
    }
1020
    *phys_ptr = phys_addr;
1021
    return 0;
1022
do_fault:
1023
    return code | (domain << 4);
1024
}
1025

    
1026
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1027
                            int is_user, uint32_t *phys_ptr, int *prot)
1028
{
1029
    int code;
1030
    uint32_t table;
1031
    uint32_t desc;
1032
    uint32_t xn;
1033
    int type;
1034
    int ap;
1035
    int domain;
1036
    uint32_t phys_addr;
1037

    
1038
    /* Pagetable walk.  */
1039
    /* Lookup l1 descriptor.  */
1040
    table = get_level1_table_address(env, address);
1041
    desc = ldl_phys(table);
1042
    type = (desc & 3);
1043
    if (type == 0) {
1044
        /* Section translation fault.  */
1045
        code = 5;
1046
        domain = 0;
1047
        goto do_fault;
1048
    } else if (type == 2 && (desc & (1 << 18))) {
1049
        /* Supersection.  */
1050
        domain = 0;
1051
    } else {
1052
        /* Section or page.  */
1053
        domain = (desc >> 4) & 0x1e;
1054
    }
1055
    domain = (env->cp15.c3 >> domain) & 3;
1056
    if (domain == 0 || domain == 2) {
1057
        if (type == 2)
1058
            code = 9; /* Section domain fault.  */
1059
        else
1060
            code = 11; /* Page domain fault.  */
1061
        goto do_fault;
1062
    }
1063
    if (type == 2) {
1064
        if (desc & (1 << 18)) {
1065
            /* Supersection.  */
1066
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1067
        } else {
1068
            /* Section.  */
1069
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1070
        }
1071
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1072
        xn = desc & (1 << 4);
1073
        code = 13;
1074
    } else {
1075
        /* Lookup l2 entry.  */
1076
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1077
        desc = ldl_phys(table);
1078
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1079
        switch (desc & 3) {
1080
        case 0: /* Page translation fault.  */
1081
            code = 7;
1082
            goto do_fault;
1083
        case 1: /* 64k page.  */
1084
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1085
            xn = desc & (1 << 15);
1086
            break;
1087
        case 2: case 3: /* 4k page.  */
1088
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1089
            xn = desc & 1;
1090
            break;
1091
        default:
1092
            /* Never happens, but compiler isn't smart enough to tell.  */
1093
            abort();
1094
        }
1095
        code = 15;
1096
    }
1097
    if (xn && access_type == 2)
1098
        goto do_fault;
1099

    
1100
    /* The simplified model uses AP[0] as an access control bit.  */
1101
    if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1102
        /* Access flag fault.  */
1103
        code = (code == 15) ? 6 : 3;
1104
        goto do_fault;
1105
    }
1106
    *prot = check_ap(env, ap, domain, access_type, is_user);
1107
    if (!*prot) {
1108
        /* Access permission fault.  */
1109
        goto do_fault;
1110
    }
1111
    *phys_ptr = phys_addr;
1112
    return 0;
1113
do_fault:
1114
    return code | (domain << 4);
1115
}
1116

    
1117
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1118
                             int is_user, uint32_t *phys_ptr, int *prot)
1119
{
1120
    int n;
1121
    uint32_t mask;
1122
    uint32_t base;
1123

    
1124
    *phys_ptr = address;
1125
    for (n = 7; n >= 0; n--) {
1126
        base = env->cp15.c6_region[n];
1127
        if ((base & 1) == 0)
1128
            continue;
1129
        mask = 1 << ((base >> 1) & 0x1f);
1130
        /* Keep this shift separate from the above to avoid an
1131
           (undefined) << 32.  */
1132
        mask = (mask << 1) - 1;
1133
        if (((base ^ address) & ~mask) == 0)
1134
            break;
1135
    }
1136
    if (n < 0)
1137
        return 2;
1138

    
1139
    if (access_type == 2) {
1140
        mask = env->cp15.c5_insn;
1141
    } else {
1142
        mask = env->cp15.c5_data;
1143
    }
1144
    mask = (mask >> (n * 4)) & 0xf;
1145
    switch (mask) {
1146
    case 0:
1147
        return 1;
1148
    case 1:
1149
        if (is_user)
1150
          return 1;
1151
        *prot = PAGE_READ | PAGE_WRITE;
1152
        break;
1153
    case 2:
1154
        *prot = PAGE_READ;
1155
        if (!is_user)
1156
            *prot |= PAGE_WRITE;
1157
        break;
1158
    case 3:
1159
        *prot = PAGE_READ | PAGE_WRITE;
1160
        break;
1161
    case 5:
1162
        if (is_user)
1163
            return 1;
1164
        *prot = PAGE_READ;
1165
        break;
1166
    case 6:
1167
        *prot = PAGE_READ;
1168
        break;
1169
    default:
1170
        /* Bad permission.  */
1171
        return 1;
1172
    }
1173
    return 0;
1174
}
1175

    
1176
static inline int get_phys_addr(CPUState *env, uint32_t address,
1177
                                int access_type, int is_user,
1178
                                uint32_t *phys_ptr, int *prot)
1179
{
1180
    /* Fast Context Switch Extension.  */
1181
    if (address < 0x02000000)
1182
        address += env->cp15.c13_fcse;
1183

    
1184
    if ((env->cp15.c1_sys & 1) == 0) {
1185
        /* MMU/MPU disabled.  */
1186
        *phys_ptr = address;
1187
        *prot = PAGE_READ | PAGE_WRITE;
1188
        return 0;
1189
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1190
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1191
                                 prot);
1192
    } else if (env->cp15.c1_sys & (1 << 23)) {
1193
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1194
                                prot);
1195
    } else {
1196
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1197
                                prot);
1198
    }
1199
}
1200

    
1201
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1202
                              int access_type, int mmu_idx, int is_softmmu)
1203
{
1204
    uint32_t phys_addr;
1205
    int prot;
1206
    int ret, is_user;
1207

    
1208
    is_user = mmu_idx == MMU_USER_IDX;
1209
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1210
    if (ret == 0) {
1211
        /* Map a single [sub]page.  */
1212
        phys_addr &= ~(uint32_t)0x3ff;
1213
        address &= ~(uint32_t)0x3ff;
1214
        return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1215
                             is_softmmu);
1216
    }
1217

    
1218
    if (access_type == 2) {
1219
        env->cp15.c5_insn = ret;
1220
        env->cp15.c6_insn = address;
1221
        env->exception_index = EXCP_PREFETCH_ABORT;
1222
    } else {
1223
        env->cp15.c5_data = ret;
1224
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1225
            env->cp15.c5_data |= (1 << 11);
1226
        env->cp15.c6_data = address;
1227
        env->exception_index = EXCP_DATA_ABORT;
1228
    }
1229
    return 1;
1230
}
1231

    
1232
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1233
{
1234
    uint32_t phys_addr;
1235
    int prot;
1236
    int ret;
1237

    
1238
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1239

    
1240
    if (ret != 0)
1241
        return -1;
1242

    
1243
    return phys_addr;
1244
}
1245

    
1246
/* Not really implemented.  Need to figure out a sane way of doing this.
1247
   Maybe add generic watchpoint support and use that.  */
1248

    
1249
void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1250
{
1251
    env->mmon_addr = addr;
1252
}
1253

    
1254
uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1255
{
1256
    return (env->mmon_addr != addr);
1257
}
1258

    
1259
void HELPER(clrex)(CPUState *env)
1260
{
1261
    env->mmon_addr = -1;
1262
}
1263

    
1264
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1265
{
1266
    int cp_num = (insn >> 8) & 0xf;
1267
    int cp_info = (insn >> 5) & 7;
1268
    int src = (insn >> 16) & 0xf;
1269
    int operand = insn & 0xf;
1270

    
1271
    if (env->cp[cp_num].cp_write)
1272
        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1273
                                 cp_info, src, operand, val);
1274
}
1275

    
1276
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1277
{
1278
    int cp_num = (insn >> 8) & 0xf;
1279
    int cp_info = (insn >> 5) & 7;
1280
    int dest = (insn >> 16) & 0xf;
1281
    int operand = insn & 0xf;
1282

    
1283
    if (env->cp[cp_num].cp_read)
1284
        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1285
                                       cp_info, dest, operand);
1286
    return 0;
1287
}
1288

    
1289
/* Return basic MPU access permission bits.  */
1290
static uint32_t simple_mpu_ap_bits(uint32_t val)
1291
{
1292
    uint32_t ret;
1293
    uint32_t mask;
1294
    int i;
1295
    ret = 0;
1296
    mask = 3;
1297
    for (i = 0; i < 16; i += 2) {
1298
        ret |= (val >> i) & mask;
1299
        mask <<= 2;
1300
    }
1301
    return ret;
1302
}
1303

    
1304
/* Pad basic MPU access permission bits to extended format.  */
1305
static uint32_t extended_mpu_ap_bits(uint32_t val)
1306
{
1307
    uint32_t ret;
1308
    uint32_t mask;
1309
    int i;
1310
    ret = 0;
1311
    mask = 3;
1312
    for (i = 0; i < 16; i += 2) {
1313
        ret |= (val & mask) << i;
1314
        mask <<= 2;
1315
    }
1316
    return ret;
1317
}
1318

    
1319
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1320
{
1321
    int op1;
1322
    int op2;
1323
    int crm;
1324

    
1325
    op1 = (insn >> 21) & 7;
1326
    op2 = (insn >> 5) & 7;
1327
    crm = insn & 0xf;
1328
    switch ((insn >> 16) & 0xf) {
1329
    case 0:
1330
        /* ID codes.  */
1331
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1332
            break;
1333
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1334
            break;
1335
        if (arm_feature(env, ARM_FEATURE_V7)
1336
                && op1 == 2 && crm == 0 && op2 == 0) {
1337
            env->cp15.c0_cssel = val & 0xf;
1338
            break;
1339
        }
1340
        goto bad_reg;
1341
    case 1: /* System configuration.  */
1342
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1343
            op2 = 0;
1344
        switch (op2) {
1345
        case 0:
1346
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1347
                env->cp15.c1_sys = val;
1348
            /* ??? Lots of these bits are not implemented.  */
1349
            /* This may enable/disable the MMU, so do a TLB flush.  */
1350
            tlb_flush(env, 1);
1351
            break;
1352
        case 1: /* Auxiliary cotrol register.  */
1353
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1354
                env->cp15.c1_xscaleauxcr = val;
1355
                break;
1356
            }
1357
            /* Not implemented.  */
1358
            break;
1359
        case 2:
1360
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1361
                goto bad_reg;
1362
            if (env->cp15.c1_coproc != val) {
1363
                env->cp15.c1_coproc = val;
1364
                /* ??? Is this safe when called from within a TB?  */
1365
                tb_flush(env);
1366
            }
1367
            break;
1368
        default:
1369
            goto bad_reg;
1370
        }
1371
        break;
1372
    case 2: /* MMU Page table control / MPU cache control.  */
1373
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1374
            switch (op2) {
1375
            case 0:
1376
                env->cp15.c2_data = val;
1377
                break;
1378
            case 1:
1379
                env->cp15.c2_insn = val;
1380
                break;
1381
            default:
1382
                goto bad_reg;
1383
            }
1384
        } else {
1385
            switch (op2) {
1386
            case 0:
1387
                env->cp15.c2_base0 = val;
1388
                break;
1389
            case 1:
1390
                env->cp15.c2_base1 = val;
1391
                break;
1392
            case 2:
1393
                val &= 7;
1394
                env->cp15.c2_control = val;
1395
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1396
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1397
                break;
1398
            default:
1399
                goto bad_reg;
1400
            }
1401
        }
1402
        break;
1403
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1404
        env->cp15.c3 = val;
1405
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1406
        break;
1407
    case 4: /* Reserved.  */
1408
        goto bad_reg;
1409
    case 5: /* MMU Fault status / MPU access permission.  */
1410
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1411
            op2 = 0;
1412
        switch (op2) {
1413
        case 0:
1414
            if (arm_feature(env, ARM_FEATURE_MPU))
1415
                val = extended_mpu_ap_bits(val);
1416
            env->cp15.c5_data = val;
1417
            break;
1418
        case 1:
1419
            if (arm_feature(env, ARM_FEATURE_MPU))
1420
                val = extended_mpu_ap_bits(val);
1421
            env->cp15.c5_insn = val;
1422
            break;
1423
        case 2:
1424
            if (!arm_feature(env, ARM_FEATURE_MPU))
1425
                goto bad_reg;
1426
            env->cp15.c5_data = val;
1427
            break;
1428
        case 3:
1429
            if (!arm_feature(env, ARM_FEATURE_MPU))
1430
                goto bad_reg;
1431
            env->cp15.c5_insn = val;
1432
            break;
1433
        default:
1434
            goto bad_reg;
1435
        }
1436
        break;
1437
    case 6: /* MMU Fault address / MPU base/size.  */
1438
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1439
            if (crm >= 8)
1440
                goto bad_reg;
1441
            env->cp15.c6_region[crm] = val;
1442
        } else {
1443
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1444
                op2 = 0;
1445
            switch (op2) {
1446
            case 0:
1447
                env->cp15.c6_data = val;
1448
                break;
1449
            case 1: /* ??? This is WFAR on armv6 */
1450
            case 2:
1451
                env->cp15.c6_insn = val;
1452
                break;
1453
            default:
1454
                goto bad_reg;
1455
            }
1456
        }
1457
        break;
1458
    case 7: /* Cache control.  */
1459
        env->cp15.c15_i_max = 0x000;
1460
        env->cp15.c15_i_min = 0xff0;
1461
        /* No cache, so nothing to do.  */
1462
        /* ??? MPCore has VA to PA translation functions.  */
1463
        break;
1464
    case 8: /* MMU TLB control.  */
1465
        switch (op2) {
1466
        case 0: /* Invalidate all.  */
1467
            tlb_flush(env, 0);
1468
            break;
1469
        case 1: /* Invalidate single TLB entry.  */
1470
#if 0
1471
            /* ??? This is wrong for large pages and sections.  */
1472
            /* As an ugly hack to make linux work we always flush a 4K
1473
               pages.  */
1474
            val &= 0xfffff000;
1475
            tlb_flush_page(env, val);
1476
            tlb_flush_page(env, val + 0x400);
1477
            tlb_flush_page(env, val + 0x800);
1478
            tlb_flush_page(env, val + 0xc00);
1479
#else
1480
            tlb_flush(env, 1);
1481
#endif
1482
            break;
1483
        case 2: /* Invalidate on ASID.  */
1484
            tlb_flush(env, val == 0);
1485
            break;
1486
        case 3: /* Invalidate single entry on MVA.  */
1487
            /* ??? This is like case 1, but ignores ASID.  */
1488
            tlb_flush(env, 1);
1489
            break;
1490
        default:
1491
            goto bad_reg;
1492
        }
1493
        break;
1494
    case 9:
1495
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1496
            break;
1497
        switch (crm) {
1498
        case 0: /* Cache lockdown.  */
1499
            switch (op1) {
1500
            case 0: /* L1 cache.  */
1501
                switch (op2) {
1502
                case 0:
1503
                    env->cp15.c9_data = val;
1504
                    break;
1505
                case 1:
1506
                    env->cp15.c9_insn = val;
1507
                    break;
1508
                default:
1509
                    goto bad_reg;
1510
                }
1511
                break;
1512
            case 1: /* L2 cache.  */
1513
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1514
                break;
1515
            default:
1516
                goto bad_reg;
1517
            }
1518
            break;
1519
        case 1: /* TCM memory region registers.  */
1520
            /* Not implemented.  */
1521
            goto bad_reg;
1522
        default:
1523
            goto bad_reg;
1524
        }
1525
        break;
1526
    case 10: /* MMU TLB lockdown.  */
1527
        /* ??? TLB lockdown not implemented.  */
1528
        break;
1529
    case 12: /* Reserved.  */
1530
        goto bad_reg;
1531
    case 13: /* Process ID.  */
1532
        switch (op2) {
1533
        case 0:
1534
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1535
               not modified virtual addresses, so this causes a TLB flush.
1536
             */
1537
            if (env->cp15.c13_fcse != val)
1538
              tlb_flush(env, 1);
1539
            env->cp15.c13_fcse = val;
1540
            break;
1541
        case 1:
1542
            /* This changes the ASID, so do a TLB flush.  */
1543
            if (env->cp15.c13_context != val
1544
                && !arm_feature(env, ARM_FEATURE_MPU))
1545
              tlb_flush(env, 0);
1546
            env->cp15.c13_context = val;
1547
            break;
1548
        case 2:
1549
            env->cp15.c13_tls1 = val;
1550
            break;
1551
        case 3:
1552
            env->cp15.c13_tls2 = val;
1553
            break;
1554
        case 4:
1555
            env->cp15.c13_tls3 = val;
1556
            break;
1557
        default:
1558
            goto bad_reg;
1559
        }
1560
        break;
1561
    case 14: /* Reserved.  */
1562
        goto bad_reg;
1563
    case 15: /* Implementation specific.  */
1564
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1565
            if (op2 == 0 && crm == 1) {
1566
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1567
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1568
                    tb_flush(env);
1569
                    env->cp15.c15_cpar = val & 0x3fff;
1570
                }
1571
                break;
1572
            }
1573
            goto bad_reg;
1574
        }
1575
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1576
            switch (crm) {
1577
            case 0:
1578
                break;
1579
            case 1: /* Set TI925T configuration.  */
1580
                env->cp15.c15_ticonfig = val & 0xe7;
1581
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1582
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1583
                break;
1584
            case 2: /* Set I_max.  */
1585
                env->cp15.c15_i_max = val;
1586
                break;
1587
            case 3: /* Set I_min.  */
1588
                env->cp15.c15_i_min = val;
1589
                break;
1590
            case 4: /* Set thread-ID.  */
1591
                env->cp15.c15_threadid = val & 0xffff;
1592
                break;
1593
            case 8: /* Wait-for-interrupt (deprecated).  */
1594
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1595
                break;
1596
            default:
1597
                goto bad_reg;
1598
            }
1599
        }
1600
        break;
1601
    }
1602
    return;
1603
bad_reg:
1604
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1605
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1606
              (insn >> 16) & 0xf, crm, op1, op2);
1607
}
1608

    
1609
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1610
{
1611
    int op1;
1612
    int op2;
1613
    int crm;
1614

    
1615
    op1 = (insn >> 21) & 7;
1616
    op2 = (insn >> 5) & 7;
1617
    crm = insn & 0xf;
1618
    switch ((insn >> 16) & 0xf) {
1619
    case 0: /* ID codes.  */
1620
        switch (op1) {
1621
        case 0:
1622
            switch (crm) {
1623
            case 0:
1624
                switch (op2) {
1625
                case 0: /* Device ID.  */
1626
                    return env->cp15.c0_cpuid;
1627
                case 1: /* Cache Type.  */
1628
                    return env->cp15.c0_cachetype;
1629
                case 2: /* TCM status.  */
1630
                    return 0;
1631
                case 3: /* TLB type register.  */
1632
                    return 0; /* No lockable TLB entries.  */
1633
                case 5: /* CPU ID */
1634
                    return env->cpu_index;
1635
                default:
1636
                    goto bad_reg;
1637
                }
1638
            case 1:
1639
                if (!arm_feature(env, ARM_FEATURE_V6))
1640
                    goto bad_reg;
1641
                return env->cp15.c0_c1[op2];
1642
            case 2:
1643
                if (!arm_feature(env, ARM_FEATURE_V6))
1644
                    goto bad_reg;
1645
                return env->cp15.c0_c2[op2];
1646
            case 3: case 4: case 5: case 6: case 7:
1647
                return 0;
1648
            default:
1649
                goto bad_reg;
1650
            }
1651
        case 1:
1652
            /* These registers aren't documented on arm11 cores.  However
1653
               Linux looks at them anyway.  */
1654
            if (!arm_feature(env, ARM_FEATURE_V6))
1655
                goto bad_reg;
1656
            if (crm != 0)
1657
                goto bad_reg;
1658
            if (!arm_feature(env, ARM_FEATURE_V7))
1659
                return 0;
1660

    
1661
            switch (op2) {
1662
            case 0:
1663
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1664
            case 1:
1665
                return env->cp15.c0_clid;
1666
            case 7:
1667
                return 0;
1668
            }
1669
            goto bad_reg;
1670
        case 2:
1671
            if (op2 != 0 || crm != 0)
1672
                goto bad_reg;
1673
            return env->cp15.c0_cssel;
1674
        default:
1675
            goto bad_reg;
1676
        }
1677
    case 1: /* System configuration.  */
1678
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1679
            op2 = 0;
1680
        switch (op2) {
1681
        case 0: /* Control register.  */
1682
            return env->cp15.c1_sys;
1683
        case 1: /* Auxiliary control register.  */
1684
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1685
                return env->cp15.c1_xscaleauxcr;
1686
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1687
                goto bad_reg;
1688
            switch (ARM_CPUID(env)) {
1689
            case ARM_CPUID_ARM1026:
1690
                return 1;
1691
            case ARM_CPUID_ARM1136:
1692
            case ARM_CPUID_ARM1136_R2:
1693
                return 7;
1694
            case ARM_CPUID_ARM11MPCORE:
1695
                return 1;
1696
            case ARM_CPUID_CORTEXA8:
1697
                return 2;
1698
            default:
1699
                goto bad_reg;
1700
            }
1701
        case 2: /* Coprocessor access register.  */
1702
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1703
                goto bad_reg;
1704
            return env->cp15.c1_coproc;
1705
        default:
1706
            goto bad_reg;
1707
        }
1708
    case 2: /* MMU Page table control / MPU cache control.  */
1709
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1710
            switch (op2) {
1711
            case 0:
1712
                return env->cp15.c2_data;
1713
                break;
1714
            case 1:
1715
                return env->cp15.c2_insn;
1716
                break;
1717
            default:
1718
                goto bad_reg;
1719
            }
1720
        } else {
1721
            switch (op2) {
1722
            case 0:
1723
                return env->cp15.c2_base0;
1724
            case 1:
1725
                return env->cp15.c2_base1;
1726
            case 2:
1727
                return env->cp15.c2_control;
1728
            default:
1729
                goto bad_reg;
1730
            }
1731
        }
1732
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1733
        return env->cp15.c3;
1734
    case 4: /* Reserved.  */
1735
        goto bad_reg;
1736
    case 5: /* MMU Fault status / MPU access permission.  */
1737
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1738
            op2 = 0;
1739
        switch (op2) {
1740
        case 0:
1741
            if (arm_feature(env, ARM_FEATURE_MPU))
1742
                return simple_mpu_ap_bits(env->cp15.c5_data);
1743
            return env->cp15.c5_data;
1744
        case 1:
1745
            if (arm_feature(env, ARM_FEATURE_MPU))
1746
                return simple_mpu_ap_bits(env->cp15.c5_data);
1747
            return env->cp15.c5_insn;
1748
        case 2:
1749
            if (!arm_feature(env, ARM_FEATURE_MPU))
1750
                goto bad_reg;
1751
            return env->cp15.c5_data;
1752
        case 3:
1753
            if (!arm_feature(env, ARM_FEATURE_MPU))
1754
                goto bad_reg;
1755
            return env->cp15.c5_insn;
1756
        default:
1757
            goto bad_reg;
1758
        }
1759
    case 6: /* MMU Fault address.  */
1760
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1761
            if (crm >= 8)
1762
                goto bad_reg;
1763
            return env->cp15.c6_region[crm];
1764
        } else {
1765
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1766
                op2 = 0;
1767
            switch (op2) {
1768
            case 0:
1769
                return env->cp15.c6_data;
1770
            case 1:
1771
                if (arm_feature(env, ARM_FEATURE_V6)) {
1772
                    /* Watchpoint Fault Adrress.  */
1773
                    return 0; /* Not implemented.  */
1774
                } else {
1775
                    /* Instruction Fault Adrress.  */
1776
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1777
                       shouldn't do any harm.  */
1778
                    return env->cp15.c6_insn;
1779
                }
1780
            case 2:
1781
                if (arm_feature(env, ARM_FEATURE_V6)) {
1782
                    /* Instruction Fault Adrress.  */
1783
                    return env->cp15.c6_insn;
1784
                } else {
1785
                    goto bad_reg;
1786
                }
1787
            default:
1788
                goto bad_reg;
1789
            }
1790
        }
1791
    case 7: /* Cache control.  */
1792
        /* FIXME: Should only clear Z flag if destination is r15.  */
1793
        env->ZF = 0;
1794
        return 0;
1795
    case 8: /* MMU TLB control.  */
1796
        goto bad_reg;
1797
    case 9: /* Cache lockdown.  */
1798
        switch (op1) {
1799
        case 0: /* L1 cache.  */
1800
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1801
                return 0;
1802
            switch (op2) {
1803
            case 0:
1804
                return env->cp15.c9_data;
1805
            case 1:
1806
                return env->cp15.c9_insn;
1807
            default:
1808
                goto bad_reg;
1809
            }
1810
        case 1: /* L2 cache */
1811
            if (crm != 0)
1812
                goto bad_reg;
1813
            /* L2 Lockdown and Auxiliary control.  */
1814
            return 0;
1815
        default:
1816
            goto bad_reg;
1817
        }
1818
    case 10: /* MMU TLB lockdown.  */
1819
        /* ??? TLB lockdown not implemented.  */
1820
        return 0;
1821
    case 11: /* TCM DMA control.  */
1822
    case 12: /* Reserved.  */
1823
        goto bad_reg;
1824
    case 13: /* Process ID.  */
1825
        switch (op2) {
1826
        case 0:
1827
            return env->cp15.c13_fcse;
1828
        case 1:
1829
            return env->cp15.c13_context;
1830
        case 2:
1831
            return env->cp15.c13_tls1;
1832
        case 3:
1833
            return env->cp15.c13_tls2;
1834
        case 4:
1835
            return env->cp15.c13_tls3;
1836
        default:
1837
            goto bad_reg;
1838
        }
1839
    case 14: /* Reserved.  */
1840
        goto bad_reg;
1841
    case 15: /* Implementation specific.  */
1842
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1843
            if (op2 == 0 && crm == 1)
1844
                return env->cp15.c15_cpar;
1845

    
1846
            goto bad_reg;
1847
        }
1848
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1849
            switch (crm) {
1850
            case 0:
1851
                return 0;
1852
            case 1: /* Read TI925T configuration.  */
1853
                return env->cp15.c15_ticonfig;
1854
            case 2: /* Read I_max.  */
1855
                return env->cp15.c15_i_max;
1856
            case 3: /* Read I_min.  */
1857
                return env->cp15.c15_i_min;
1858
            case 4: /* Read thread-ID.  */
1859
                return env->cp15.c15_threadid;
1860
            case 8: /* TI925T_status */
1861
                return 0;
1862
            }
1863
            /* TODO: Peripheral port remap register:
1864
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1865
             * controller base address at $rn & ~0xfff and map size of
1866
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1867
            goto bad_reg;
1868
        }
1869
        return 0;
1870
    }
1871
bad_reg:
1872
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1873
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1874
              (insn >> 16) & 0xf, crm, op1, op2);
1875
    return 0;
1876
}
1877

    
1878
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1879
{
1880
    env->banked_r13[bank_number(mode)] = val;
1881
}
1882

    
1883
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1884
{
1885
    return env->banked_r13[bank_number(mode)];
1886
}
1887

    
1888
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1889
{
1890
    switch (reg) {
1891
    case 0: /* APSR */
1892
        return xpsr_read(env) & 0xf8000000;
1893
    case 1: /* IAPSR */
1894
        return xpsr_read(env) & 0xf80001ff;
1895
    case 2: /* EAPSR */
1896
        return xpsr_read(env) & 0xff00fc00;
1897
    case 3: /* xPSR */
1898
        return xpsr_read(env) & 0xff00fdff;
1899
    case 5: /* IPSR */
1900
        return xpsr_read(env) & 0x000001ff;
1901
    case 6: /* EPSR */
1902
        return xpsr_read(env) & 0x0700fc00;
1903
    case 7: /* IEPSR */
1904
        return xpsr_read(env) & 0x0700edff;
1905
    case 8: /* MSP */
1906
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1907
    case 9: /* PSP */
1908
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1909
    case 16: /* PRIMASK */
1910
        return (env->uncached_cpsr & CPSR_I) != 0;
1911
    case 17: /* FAULTMASK */
1912
        return (env->uncached_cpsr & CPSR_F) != 0;
1913
    case 18: /* BASEPRI */
1914
    case 19: /* BASEPRI_MAX */
1915
        return env->v7m.basepri;
1916
    case 20: /* CONTROL */
1917
        return env->v7m.control;
1918
    default:
1919
        /* ??? For debugging only.  */
1920
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1921
        return 0;
1922
    }
1923
}
1924

    
1925
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1926
{
1927
    switch (reg) {
1928
    case 0: /* APSR */
1929
        xpsr_write(env, val, 0xf8000000);
1930
        break;
1931
    case 1: /* IAPSR */
1932
        xpsr_write(env, val, 0xf8000000);
1933
        break;
1934
    case 2: /* EAPSR */
1935
        xpsr_write(env, val, 0xfe00fc00);
1936
        break;
1937
    case 3: /* xPSR */
1938
        xpsr_write(env, val, 0xfe00fc00);
1939
        break;
1940
    case 5: /* IPSR */
1941
        /* IPSR bits are readonly.  */
1942
        break;
1943
    case 6: /* EPSR */
1944
        xpsr_write(env, val, 0x0600fc00);
1945
        break;
1946
    case 7: /* IEPSR */
1947
        xpsr_write(env, val, 0x0600fc00);
1948
        break;
1949
    case 8: /* MSP */
1950
        if (env->v7m.current_sp)
1951
            env->v7m.other_sp = val;
1952
        else
1953
            env->regs[13] = val;
1954
        break;
1955
    case 9: /* PSP */
1956
        if (env->v7m.current_sp)
1957
            env->regs[13] = val;
1958
        else
1959
            env->v7m.other_sp = val;
1960
        break;
1961
    case 16: /* PRIMASK */
1962
        if (val & 1)
1963
            env->uncached_cpsr |= CPSR_I;
1964
        else
1965
            env->uncached_cpsr &= ~CPSR_I;
1966
        break;
1967
    case 17: /* FAULTMASK */
1968
        if (val & 1)
1969
            env->uncached_cpsr |= CPSR_F;
1970
        else
1971
            env->uncached_cpsr &= ~CPSR_F;
1972
        break;
1973
    case 18: /* BASEPRI */
1974
        env->v7m.basepri = val & 0xff;
1975
        break;
1976
    case 19: /* BASEPRI_MAX */
1977
        val &= 0xff;
1978
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1979
            env->v7m.basepri = val;
1980
        break;
1981
    case 20: /* CONTROL */
1982
        env->v7m.control = val & 3;
1983
        switch_v7m_sp(env, (val & 2) != 0);
1984
        break;
1985
    default:
1986
        /* ??? For debugging only.  */
1987
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1988
        return;
1989
    }
1990
}
1991

    
1992
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1993
                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1994
                void *opaque)
1995
{
1996
    if (cpnum < 0 || cpnum > 14) {
1997
        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1998
        return;
1999
    }
2000

    
2001
    env->cp[cpnum].cp_read = cp_read;
2002
    env->cp[cpnum].cp_write = cp_write;
2003
    env->cp[cpnum].opaque = opaque;
2004
}
2005

    
2006
#endif
2007

    
2008
/* Note that signed overflow is undefined in C.  The following routines are
2009
   careful to use unsigned types where modulo arithmetic is required.
2010
   Failure to do so _will_ break on newer gcc.  */
2011

    
2012
/* Signed saturating arithmetic.  */
2013

    
2014
/* Perform 16-bit signed saturating addition.  */
2015
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2016
{
2017
    uint16_t res;
2018

    
2019
    res = a + b;
2020
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2021
        if (a & 0x8000)
2022
            res = 0x8000;
2023
        else
2024
            res = 0x7fff;
2025
    }
2026
    return res;
2027
}
2028

    
2029
/* Perform 8-bit signed saturating addition.  */
2030
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2031
{
2032
    uint8_t res;
2033

    
2034
    res = a + b;
2035
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2036
        if (a & 0x80)
2037
            res = 0x80;
2038
        else
2039
            res = 0x7f;
2040
    }
2041
    return res;
2042
}
2043

    
2044
/* Perform 16-bit signed saturating subtraction.  */
2045
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2046
{
2047
    uint16_t res;
2048

    
2049
    res = a - b;
2050
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2051
        if (a & 0x8000)
2052
            res = 0x8000;
2053
        else
2054
            res = 0x7fff;
2055
    }
2056
    return res;
2057
}
2058

    
2059
/* Perform 8-bit signed saturating subtraction.  */
2060
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2061
{
2062
    uint8_t res;
2063

    
2064
    res = a - b;
2065
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2066
        if (a & 0x80)
2067
            res = 0x80;
2068
        else
2069
            res = 0x7f;
2070
    }
2071
    return res;
2072
}
2073

    
2074
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2075
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2076
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2077
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2078
#define PFX q
2079

    
2080
#include "op_addsub.h"
2081

    
2082
/* Unsigned saturating arithmetic.  */
2083
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2084
{
2085
    uint16_t res;
2086
    res = a + b;
2087
    if (res < a)
2088
        res = 0xffff;
2089
    return res;
2090
}
2091

    
2092
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2093
{
2094
    if (a < b)
2095
        return a - b;
2096
    else
2097
        return 0;
2098
}
2099

    
2100
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2101
{
2102
    uint8_t res;
2103
    res = a + b;
2104
    if (res < a)
2105
        res = 0xff;
2106
    return res;
2107
}
2108

    
2109
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2110
{
2111
    if (a < b)
2112
        return a - b;
2113
    else
2114
        return 0;
2115
}
2116

    
2117
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2118
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2119
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2120
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2121
#define PFX uq
2122

    
2123
#include "op_addsub.h"
2124

    
2125
/* Signed modulo arithmetic.  */
2126
#define SARITH16(a, b, n, op) do { \
2127
    int32_t sum; \
2128
    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2129
    RESULT(sum, n, 16); \
2130
    if (sum >= 0) \
2131
        ge |= 3 << (n * 2); \
2132
    } while(0)
2133

    
2134
#define SARITH8(a, b, n, op) do { \
2135
    int32_t sum; \
2136
    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2137
    RESULT(sum, n, 8); \
2138
    if (sum >= 0) \
2139
        ge |= 1 << n; \
2140
    } while(0)
2141

    
2142

    
2143
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2144
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2145
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2146
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2147
#define PFX s
2148
#define ARITH_GE
2149

    
2150
#include "op_addsub.h"
2151

    
2152
/* Unsigned modulo arithmetic.  */
2153
#define ADD16(a, b, n) do { \
2154
    uint32_t sum; \
2155
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2156
    RESULT(sum, n, 16); \
2157
    if ((sum >> 16) == 1) \
2158
        ge |= 3 << (n * 2); \
2159
    } while(0)
2160

    
2161
#define ADD8(a, b, n) do { \
2162
    uint32_t sum; \
2163
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2164
    RESULT(sum, n, 8); \
2165
    if ((sum >> 8) == 1) \
2166
        ge |= 1 << n; \
2167
    } while(0)
2168

    
2169
#define SUB16(a, b, n) do { \
2170
    uint32_t sum; \
2171
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2172
    RESULT(sum, n, 16); \
2173
    if ((sum >> 16) == 0) \
2174
        ge |= 3 << (n * 2); \
2175
    } while(0)
2176

    
2177
#define SUB8(a, b, n) do { \
2178
    uint32_t sum; \
2179
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2180
    RESULT(sum, n, 8); \
2181
    if ((sum >> 8) == 0) \
2182
        ge |= 1 << n; \
2183
    } while(0)
2184

    
2185
#define PFX u
2186
#define ARITH_GE
2187

    
2188
#include "op_addsub.h"
2189

    
2190
/* Halved signed arithmetic.  */
2191
#define ADD16(a, b, n) \
2192
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2193
#define SUB16(a, b, n) \
2194
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2195
#define ADD8(a, b, n) \
2196
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2197
#define SUB8(a, b, n) \
2198
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2199
#define PFX sh
2200

    
2201
#include "op_addsub.h"
2202

    
2203
/* Halved unsigned arithmetic.  */
2204
#define ADD16(a, b, n) \
2205
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2206
#define SUB16(a, b, n) \
2207
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2208
#define ADD8(a, b, n) \
2209
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2210
#define SUB8(a, b, n) \
2211
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2212
#define PFX uh
2213

    
2214
#include "op_addsub.h"
2215

    
2216
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2217
{
2218
    if (a > b)
2219
        return a - b;
2220
    else
2221
        return b - a;
2222
}
2223

    
2224
/* Unsigned sum of absolute byte differences.  */
2225
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2226
{
2227
    uint32_t sum;
2228
    sum = do_usad(a, b);
2229
    sum += do_usad(a >> 8, b >> 8);
2230
    sum += do_usad(a >> 16, b >>16);
2231
    sum += do_usad(a >> 24, b >> 24);
2232
    return sum;
2233
}
2234

    
2235
/* For ARMv6 SEL instruction.  */
2236
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2237
{
2238
    uint32_t mask;
2239

    
2240
    mask = 0;
2241
    if (flags & 1)
2242
        mask |= 0xff;
2243
    if (flags & 2)
2244
        mask |= 0xff00;
2245
    if (flags & 4)
2246
        mask |= 0xff0000;
2247
    if (flags & 8)
2248
        mask |= 0xff000000;
2249
    return (a & mask) | (b & ~mask);
2250
}
2251

    
2252
uint32_t HELPER(logicq_cc)(uint64_t val)
2253
{
2254
    return (val >> 32) | (val != 0);
2255
}
2256

    
2257
/* VFP support.  We follow the convention used for VFP instrunctions:
2258
   Single precition routines have a "s" suffix, double precision a
2259
   "d" suffix.  */
2260

    
2261
/* Convert host exception flags to vfp form.  */
2262
static inline int vfp_exceptbits_from_host(int host_bits)
2263
{
2264
    int target_bits = 0;
2265

    
2266
    if (host_bits & float_flag_invalid)
2267
        target_bits |= 1;
2268
    if (host_bits & float_flag_divbyzero)
2269
        target_bits |= 2;
2270
    if (host_bits & float_flag_overflow)
2271
        target_bits |= 4;
2272
    if (host_bits & float_flag_underflow)
2273
        target_bits |= 8;
2274
    if (host_bits & float_flag_inexact)
2275
        target_bits |= 0x10;
2276
    return target_bits;
2277
}
2278

    
2279
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2280
{
2281
    int i;
2282
    uint32_t fpscr;
2283

    
2284
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2285
            | (env->vfp.vec_len << 16)
2286
            | (env->vfp.vec_stride << 20);
2287
    i = get_float_exception_flags(&env->vfp.fp_status);
2288
    fpscr |= vfp_exceptbits_from_host(i);
2289
    return fpscr;
2290
}
2291

    
2292
/* Convert vfp exception flags to target form.  */
2293
static inline int vfp_exceptbits_to_host(int target_bits)
2294
{
2295
    int host_bits = 0;
2296

    
2297
    if (target_bits & 1)
2298
        host_bits |= float_flag_invalid;
2299
    if (target_bits & 2)
2300
        host_bits |= float_flag_divbyzero;
2301
    if (target_bits & 4)
2302
        host_bits |= float_flag_overflow;
2303
    if (target_bits & 8)
2304
        host_bits |= float_flag_underflow;
2305
    if (target_bits & 0x10)
2306
        host_bits |= float_flag_inexact;
2307
    return host_bits;
2308
}
2309

    
2310
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2311
{
2312
    int i;
2313
    uint32_t changed;
2314

    
2315
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2316
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2317
    env->vfp.vec_len = (val >> 16) & 7;
2318
    env->vfp.vec_stride = (val >> 20) & 3;
2319

    
2320
    changed ^= val;
2321
    if (changed & (3 << 22)) {
2322
        i = (val >> 22) & 3;
2323
        switch (i) {
2324
        case 0:
2325
            i = float_round_nearest_even;
2326
            break;
2327
        case 1:
2328
            i = float_round_up;
2329
            break;
2330
        case 2:
2331
            i = float_round_down;
2332
            break;
2333
        case 3:
2334
            i = float_round_to_zero;
2335
            break;
2336
        }
2337
        set_float_rounding_mode(i, &env->vfp.fp_status);
2338
    }
2339
    if (changed & (1 << 24))
2340
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2341
    if (changed & (1 << 25))
2342
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2343

    
2344
    i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2345
    set_float_exception_flags(i, &env->vfp.fp_status);
2346
}
2347

    
2348
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2349

    
2350
#define VFP_BINOP(name) \
2351
float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2352
{ \
2353
    return float32_ ## name (a, b, &env->vfp.fp_status); \
2354
} \
2355
float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2356
{ \
2357
    return float64_ ## name (a, b, &env->vfp.fp_status); \
2358
}
2359
VFP_BINOP(add)
2360
VFP_BINOP(sub)
2361
VFP_BINOP(mul)
2362
VFP_BINOP(div)
2363
#undef VFP_BINOP
2364

    
2365
float32 VFP_HELPER(neg, s)(float32 a)
2366
{
2367
    return float32_chs(a);
2368
}
2369

    
2370
float64 VFP_HELPER(neg, d)(float64 a)
2371
{
2372
    return float64_chs(a);
2373
}
2374

    
2375
float32 VFP_HELPER(abs, s)(float32 a)
2376
{
2377
    return float32_abs(a);
2378
}
2379

    
2380
float64 VFP_HELPER(abs, d)(float64 a)
2381
{
2382
    return float64_abs(a);
2383
}
2384

    
2385
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2386
{
2387
    return float32_sqrt(a, &env->vfp.fp_status);
2388
}
2389

    
2390
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2391
{
2392
    return float64_sqrt(a, &env->vfp.fp_status);
2393
}
2394

    
2395
/* XXX: check quiet/signaling case */
2396
#define DO_VFP_cmp(p, type) \
2397
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2398
{ \
2399
    uint32_t flags; \
2400
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2401
    case 0: flags = 0x6; break; \
2402
    case -1: flags = 0x8; break; \
2403
    case 1: flags = 0x2; break; \
2404
    default: case 2: flags = 0x3; break; \
2405
    } \
2406
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2407
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2408
} \
2409
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2410
{ \
2411
    uint32_t flags; \
2412
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2413
    case 0: flags = 0x6; break; \
2414
    case -1: flags = 0x8; break; \
2415
    case 1: flags = 0x2; break; \
2416
    default: case 2: flags = 0x3; break; \
2417
    } \
2418
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2419
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2420
}
2421
DO_VFP_cmp(s, float32)
2422
DO_VFP_cmp(d, float64)
2423
#undef DO_VFP_cmp
2424

    
2425
/* Helper routines to perform bitwise copies between float and int.  */
2426
static inline float32 vfp_itos(uint32_t i)
2427
{
2428
    union {
2429
        uint32_t i;
2430
        float32 s;
2431
    } v;
2432

    
2433
    v.i = i;
2434
    return v.s;
2435
}
2436

    
2437
static inline uint32_t vfp_stoi(float32 s)
2438
{
2439
    union {
2440
        uint32_t i;
2441
        float32 s;
2442
    } v;
2443

    
2444
    v.s = s;
2445
    return v.i;
2446
}
2447

    
2448
static inline float64 vfp_itod(uint64_t i)
2449
{
2450
    union {
2451
        uint64_t i;
2452
        float64 d;
2453
    } v;
2454

    
2455
    v.i = i;
2456
    return v.d;
2457
}
2458

    
2459
static inline uint64_t vfp_dtoi(float64 d)
2460
{
2461
    union {
2462
        uint64_t i;
2463
        float64 d;
2464
    } v;
2465

    
2466
    v.d = d;
2467
    return v.i;
2468
}
2469

    
2470
/* Integer to float conversion.  */
2471
float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2472
{
2473
    return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2474
}
2475

    
2476
float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2477
{
2478
    return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2479
}
2480

    
2481
float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2482
{
2483
    return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2484
}
2485

    
2486
float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2487
{
2488
    return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2489
}
2490

    
2491
/* Float to integer conversion.  */
2492
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2493
{
2494
    return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2495
}
2496

    
2497
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2498
{
2499
    return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2500
}
2501

    
2502
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2503
{
2504
    return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2505
}
2506

    
2507
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2508
{
2509
    return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2510
}
2511

    
2512
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2513
{
2514
    return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2515
}
2516

    
2517
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2518
{
2519
    return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2520
}
2521

    
2522
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2523
{
2524
    return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2525
}
2526

    
2527
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2528
{
2529
    return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2530
}
2531

    
2532
/* floating point conversion */
2533
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2534
{
2535
    return float32_to_float64(x, &env->vfp.fp_status);
2536
}
2537

    
2538
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2539
{
2540
    return float64_to_float32(x, &env->vfp.fp_status);
2541
}
2542

    
2543
/* VFP3 fixed point conversion.  */
2544
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2545
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2546
{ \
2547
    ftype tmp; \
2548
    tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2549
                                  &env->vfp.fp_status); \
2550
    return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2551
} \
2552
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2553
{ \
2554
    ftype tmp; \
2555
    tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2556
    return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2557
        &env->vfp.fp_status)); \
2558
}
2559

    
2560
VFP_CONV_FIX(sh, d, float64, int16, )
2561
VFP_CONV_FIX(sl, d, float64, int32, )
2562
VFP_CONV_FIX(uh, d, float64, uint16, u)
2563
VFP_CONV_FIX(ul, d, float64, uint32, u)
2564
VFP_CONV_FIX(sh, s, float32, int16, )
2565
VFP_CONV_FIX(sl, s, float32, int32, )
2566
VFP_CONV_FIX(uh, s, float32, uint16, u)
2567
VFP_CONV_FIX(ul, s, float32, uint32, u)
2568
#undef VFP_CONV_FIX
2569

    
2570
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2571
{
2572
    float_status *s = &env->vfp.fp_status;
2573
    float32 two = int32_to_float32(2, s);
2574
    return float32_sub(two, float32_mul(a, b, s), s);
2575
}
2576

    
2577
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2578
{
2579
    float_status *s = &env->vfp.fp_status;
2580
    float32 three = int32_to_float32(3, s);
2581
    return float32_sub(three, float32_mul(a, b, s), s);
2582
}
2583

    
2584
/* NEON helpers.  */
2585

    
2586
/* TODO: The architecture specifies the value that the estimate functions
2587
   should return.  We return the exact reciprocal/root instead.  */
2588
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2589
{
2590
    float_status *s = &env->vfp.fp_status;
2591
    float32 one = int32_to_float32(1, s);
2592
    return float32_div(one, a, s);
2593
}
2594

    
2595
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2596
{
2597
    float_status *s = &env->vfp.fp_status;
2598
    float32 one = int32_to_float32(1, s);
2599
    return float32_div(one, float32_sqrt(a, s), s);
2600
}
2601

    
2602
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2603
{
2604
    float_status *s = &env->vfp.fp_status;
2605
    float32 tmp;
2606
    tmp = int32_to_float32(a, s);
2607
    tmp = float32_scalbn(tmp, -32, s);
2608
    tmp = helper_recpe_f32(tmp, env);
2609
    tmp = float32_scalbn(tmp, 31, s);
2610
    return float32_to_int32(tmp, s);
2611
}
2612

    
2613
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2614
{
2615
    float_status *s = &env->vfp.fp_status;
2616
    float32 tmp;
2617
    tmp = int32_to_float32(a, s);
2618
    tmp = float32_scalbn(tmp, -32, s);
2619
    tmp = helper_rsqrte_f32(tmp, env);
2620
    tmp = float32_scalbn(tmp, 31, s);
2621
    return float32_to_int32(tmp, s);
2622
}
2623

    
2624
void HELPER(set_teecr)(CPUState *env, uint32_t val)
2625
{
2626
    val &= 1;
2627
    if (env->teecr != val) {
2628
        env->teecr = val;
2629
        tb_flush(env);
2630
    }
2631
}