Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ 38641f8f

History | View | Annotate | Download (23.4 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config-host.h"
47

    
48
/*----------------------------------------------------------------------------
49
| Each of the following `typedef's defines the most convenient type that holds
50
| integers of at least as many bits as specified.  For example, `uint8' should
51
| be the most convenient type that can hold unsigned integers of as many as
52
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
53
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54
| to the same as `int'.
55
*----------------------------------------------------------------------------*/
56
typedef uint8_t flag;
57
typedef uint8_t uint8;
58
typedef int8_t int8;
59
#ifndef _AIX
60
typedef int uint16;
61
typedef int int16;
62
#endif
63
typedef unsigned int uint32;
64
typedef signed int int32;
65
typedef uint64_t uint64;
66
typedef int64_t int64;
67

    
68
#define LIT64( a ) a##LL
69
#define INLINE static inline
70

    
71
#define STATUS_PARAM , float_status *status
72
#define STATUS(field) status->field
73
#define STATUS_VAR , status
74

    
75
/*----------------------------------------------------------------------------
76
| Software IEC/IEEE floating-point ordering relations
77
*----------------------------------------------------------------------------*/
78
enum {
79
    float_relation_less      = -1,
80
    float_relation_equal     =  0,
81
    float_relation_greater   =  1,
82
    float_relation_unordered =  2
83
};
84

    
85
/*----------------------------------------------------------------------------
86
| Software IEC/IEEE floating-point types.
87
*----------------------------------------------------------------------------*/
88
/* Use structures for soft-float types.  This prevents accidentally mixing
89
   them with native int/float types.  A sufficiently clever compiler and
90
   sane ABI should be able to see though these structs.  However
91
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
92
//#define USE_SOFTFLOAT_STRUCT_TYPES
93
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
94
typedef struct {
95
    uint16_t v;
96
} float16;
97
#define float16_val(x) (((float16)(x)).v)
98
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
99
#define const_float16(x) { x }
100
typedef struct {
101
    uint32_t v;
102
} float32;
103
/* The cast ensures an error if the wrong type is passed.  */
104
#define float32_val(x) (((float32)(x)).v)
105
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
106
#define const_float32(x) { x }
107
typedef struct {
108
    uint64_t v;
109
} float64;
110
#define float64_val(x) (((float64)(x)).v)
111
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
112
#define const_float64(x) { x }
113
#else
114
typedef uint16_t float16;
115
typedef uint32_t float32;
116
typedef uint64_t float64;
117
#define float16_val(x) (x)
118
#define float32_val(x) (x)
119
#define float64_val(x) (x)
120
#define make_float16(x) (x)
121
#define make_float32(x) (x)
122
#define make_float64(x) (x)
123
#define const_float16(x) (x)
124
#define const_float32(x) (x)
125
#define const_float64(x) (x)
126
#endif
127
typedef struct {
128
    uint64_t low;
129
    uint16_t high;
130
} floatx80;
131
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
132
typedef struct {
133
#ifdef HOST_WORDS_BIGENDIAN
134
    uint64_t high, low;
135
#else
136
    uint64_t low, high;
137
#endif
138
} float128;
139
#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
140

    
141
/*----------------------------------------------------------------------------
142
| Software IEC/IEEE floating-point underflow tininess-detection mode.
143
*----------------------------------------------------------------------------*/
144
enum {
145
    float_tininess_after_rounding  = 0,
146
    float_tininess_before_rounding = 1
147
};
148

    
149
/*----------------------------------------------------------------------------
150
| Software IEC/IEEE floating-point rounding mode.
151
*----------------------------------------------------------------------------*/
152
enum {
153
    float_round_nearest_even = 0,
154
    float_round_down         = 1,
155
    float_round_up           = 2,
156
    float_round_to_zero      = 3
157
};
158

    
159
/*----------------------------------------------------------------------------
160
| Software IEC/IEEE floating-point exception flags.
161
*----------------------------------------------------------------------------*/
162
enum {
163
    float_flag_invalid   =  1,
164
    float_flag_divbyzero =  4,
165
    float_flag_overflow  =  8,
166
    float_flag_underflow = 16,
167
    float_flag_inexact   = 32,
168
    float_flag_input_denormal = 64,
169
    float_flag_output_denormal = 128
170
};
171

    
172
typedef struct float_status {
173
    signed char float_detect_tininess;
174
    signed char float_rounding_mode;
175
    signed char float_exception_flags;
176
    signed char floatx80_rounding_precision;
177
    /* should denormalised results go to zero and set the inexact flag? */
178
    flag flush_to_zero;
179
    /* should denormalised inputs go to zero and set the input_denormal flag? */
180
    flag flush_inputs_to_zero;
181
    flag default_nan_mode;
182
} float_status;
183

    
184
void set_float_rounding_mode(int val STATUS_PARAM);
185
void set_float_exception_flags(int val STATUS_PARAM);
186
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
187
{
188
    STATUS(float_detect_tininess) = val;
189
}
190
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
191
{
192
    STATUS(flush_to_zero) = val;
193
}
194
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
195
{
196
    STATUS(flush_inputs_to_zero) = val;
197
}
198
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
199
{
200
    STATUS(default_nan_mode) = val;
201
}
202
INLINE int get_float_exception_flags(float_status *status)
203
{
204
    return STATUS(float_exception_flags);
205
}
206
void set_floatx80_rounding_precision(int val STATUS_PARAM);
207

    
208
/*----------------------------------------------------------------------------
209
| Routine to raise any or all of the software IEC/IEEE floating-point
210
| exception flags.
211
*----------------------------------------------------------------------------*/
212
void float_raise( int8 flags STATUS_PARAM);
213

    
214
/*----------------------------------------------------------------------------
215
| Software IEC/IEEE integer-to-floating-point conversion routines.
216
*----------------------------------------------------------------------------*/
217
float32 int32_to_float32( int32 STATUS_PARAM );
218
float64 int32_to_float64( int32 STATUS_PARAM );
219
float32 uint32_to_float32( unsigned int STATUS_PARAM );
220
float64 uint32_to_float64( unsigned int STATUS_PARAM );
221
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
222
float128 int32_to_float128( int32 STATUS_PARAM );
223
float32 int64_to_float32( int64 STATUS_PARAM );
224
float32 uint64_to_float32( uint64 STATUS_PARAM );
225
float64 int64_to_float64( int64 STATUS_PARAM );
226
float64 uint64_to_float64( uint64 STATUS_PARAM );
227
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
228
float128 int64_to_float128( int64 STATUS_PARAM );
229

    
230
/*----------------------------------------------------------------------------
231
| Software half-precision conversion routines.
232
*----------------------------------------------------------------------------*/
233
float16 float32_to_float16( float32, flag STATUS_PARAM );
234
float32 float16_to_float32( float16, flag STATUS_PARAM );
235

    
236
/*----------------------------------------------------------------------------
237
| Software half-precision operations.
238
*----------------------------------------------------------------------------*/
239
int float16_is_quiet_nan( float16 );
240
int float16_is_signaling_nan( float16 );
241
float16 float16_maybe_silence_nan( float16 );
242

    
243
/*----------------------------------------------------------------------------
244
| The pattern for a default generated half-precision NaN.
245
*----------------------------------------------------------------------------*/
246
extern const float16 float16_default_nan;
247

    
248
/*----------------------------------------------------------------------------
249
| Software IEC/IEEE single-precision conversion routines.
250
*----------------------------------------------------------------------------*/
251
int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
252
uint16 float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
253
int32 float32_to_int32( float32 STATUS_PARAM );
254
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
255
uint32 float32_to_uint32( float32 STATUS_PARAM );
256
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
257
int64 float32_to_int64( float32 STATUS_PARAM );
258
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
259
float64 float32_to_float64( float32 STATUS_PARAM );
260
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
261
float128 float32_to_float128( float32 STATUS_PARAM );
262

    
263
/*----------------------------------------------------------------------------
264
| Software IEC/IEEE single-precision operations.
265
*----------------------------------------------------------------------------*/
266
float32 float32_round_to_int( float32 STATUS_PARAM );
267
float32 float32_add( float32, float32 STATUS_PARAM );
268
float32 float32_sub( float32, float32 STATUS_PARAM );
269
float32 float32_mul( float32, float32 STATUS_PARAM );
270
float32 float32_div( float32, float32 STATUS_PARAM );
271
float32 float32_rem( float32, float32 STATUS_PARAM );
272
float32 float32_sqrt( float32 STATUS_PARAM );
273
float32 float32_exp2( float32 STATUS_PARAM );
274
float32 float32_log2( float32 STATUS_PARAM );
275
int float32_eq( float32, float32 STATUS_PARAM );
276
int float32_le( float32, float32 STATUS_PARAM );
277
int float32_lt( float32, float32 STATUS_PARAM );
278
int float32_unordered( float32, float32 STATUS_PARAM );
279
int float32_eq_quiet( float32, float32 STATUS_PARAM );
280
int float32_le_quiet( float32, float32 STATUS_PARAM );
281
int float32_lt_quiet( float32, float32 STATUS_PARAM );
282
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
283
int float32_compare( float32, float32 STATUS_PARAM );
284
int float32_compare_quiet( float32, float32 STATUS_PARAM );
285
float32 float32_min(float32, float32 STATUS_PARAM);
286
float32 float32_max(float32, float32 STATUS_PARAM);
287
int float32_is_quiet_nan( float32 );
288
int float32_is_signaling_nan( float32 );
289
float32 float32_maybe_silence_nan( float32 );
290
float32 float32_scalbn( float32, int STATUS_PARAM );
291

    
292
INLINE float32 float32_abs(float32 a)
293
{
294
    /* Note that abs does *not* handle NaN specially, nor does
295
     * it flush denormal inputs to zero.
296
     */
297
    return make_float32(float32_val(a) & 0x7fffffff);
298
}
299

    
300
INLINE float32 float32_chs(float32 a)
301
{
302
    /* Note that chs does *not* handle NaN specially, nor does
303
     * it flush denormal inputs to zero.
304
     */
305
    return make_float32(float32_val(a) ^ 0x80000000);
306
}
307

    
308
INLINE int float32_is_infinity(float32 a)
309
{
310
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
311
}
312

    
313
INLINE int float32_is_neg(float32 a)
314
{
315
    return float32_val(a) >> 31;
316
}
317

    
318
INLINE int float32_is_zero(float32 a)
319
{
320
    return (float32_val(a) & 0x7fffffff) == 0;
321
}
322

    
323
INLINE int float32_is_any_nan(float32 a)
324
{
325
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
326
}
327

    
328
INLINE int float32_is_zero_or_denormal(float32 a)
329
{
330
    return (float32_val(a) & 0x7f800000) == 0;
331
}
332

    
333
INLINE float32 float32_set_sign(float32 a, int sign)
334
{
335
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
336
}
337

    
338
#define float32_zero make_float32(0)
339
#define float32_one make_float32(0x3f800000)
340
#define float32_ln2 make_float32(0x3f317218)
341
#define float32_pi make_float32(0x40490fdb)
342
#define float32_half make_float32(0x3f000000)
343
#define float32_infinity make_float32(0x7f800000)
344

    
345

    
346
/*----------------------------------------------------------------------------
347
| The pattern for a default generated single-precision NaN.
348
*----------------------------------------------------------------------------*/
349
extern const float32 float32_default_nan;
350

    
351
/*----------------------------------------------------------------------------
352
| Software IEC/IEEE double-precision conversion routines.
353
*----------------------------------------------------------------------------*/
354
int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
355
uint16 float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
356
int32 float64_to_int32( float64 STATUS_PARAM );
357
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
358
uint32 float64_to_uint32( float64 STATUS_PARAM );
359
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
360
int64 float64_to_int64( float64 STATUS_PARAM );
361
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
362
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
363
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
364
float32 float64_to_float32( float64 STATUS_PARAM );
365
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
366
float128 float64_to_float128( float64 STATUS_PARAM );
367

    
368
/*----------------------------------------------------------------------------
369
| Software IEC/IEEE double-precision operations.
370
*----------------------------------------------------------------------------*/
371
float64 float64_round_to_int( float64 STATUS_PARAM );
372
float64 float64_trunc_to_int( float64 STATUS_PARAM );
373
float64 float64_add( float64, float64 STATUS_PARAM );
374
float64 float64_sub( float64, float64 STATUS_PARAM );
375
float64 float64_mul( float64, float64 STATUS_PARAM );
376
float64 float64_div( float64, float64 STATUS_PARAM );
377
float64 float64_rem( float64, float64 STATUS_PARAM );
378
float64 float64_sqrt( float64 STATUS_PARAM );
379
float64 float64_log2( float64 STATUS_PARAM );
380
int float64_eq( float64, float64 STATUS_PARAM );
381
int float64_le( float64, float64 STATUS_PARAM );
382
int float64_lt( float64, float64 STATUS_PARAM );
383
int float64_unordered( float64, float64 STATUS_PARAM );
384
int float64_eq_quiet( float64, float64 STATUS_PARAM );
385
int float64_le_quiet( float64, float64 STATUS_PARAM );
386
int float64_lt_quiet( float64, float64 STATUS_PARAM );
387
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
388
int float64_compare( float64, float64 STATUS_PARAM );
389
int float64_compare_quiet( float64, float64 STATUS_PARAM );
390
float64 float64_min(float64, float64 STATUS_PARAM);
391
float64 float64_max(float64, float64 STATUS_PARAM);
392
int float64_is_quiet_nan( float64 a );
393
int float64_is_signaling_nan( float64 );
394
float64 float64_maybe_silence_nan( float64 );
395
float64 float64_scalbn( float64, int STATUS_PARAM );
396

    
397
INLINE float64 float64_abs(float64 a)
398
{
399
    /* Note that abs does *not* handle NaN specially, nor does
400
     * it flush denormal inputs to zero.
401
     */
402
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
403
}
404

    
405
INLINE float64 float64_chs(float64 a)
406
{
407
    /* Note that chs does *not* handle NaN specially, nor does
408
     * it flush denormal inputs to zero.
409
     */
410
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
411
}
412

    
413
INLINE int float64_is_infinity(float64 a)
414
{
415
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
416
}
417

    
418
INLINE int float64_is_neg(float64 a)
419
{
420
    return float64_val(a) >> 63;
421
}
422

    
423
INLINE int float64_is_zero(float64 a)
424
{
425
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
426
}
427

    
428
INLINE int float64_is_any_nan(float64 a)
429
{
430
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
431
}
432

    
433
INLINE int float64_is_zero_or_denormal(float64 a)
434
{
435
    return (float64_val(a) & 0x7ff0000000000000LL) == 0;
436
}
437

    
438
INLINE float64 float64_set_sign(float64 a, int sign)
439
{
440
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
441
                        | ((int64_t)sign << 63));
442
}
443

    
444
#define float64_zero make_float64(0)
445
#define float64_one make_float64(0x3ff0000000000000LL)
446
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
447
#define float64_pi make_float64(0x400921fb54442d18LL)
448
#define float64_half make_float64(0x3fe0000000000000LL)
449
#define float64_infinity make_float64(0x7ff0000000000000LL)
450

    
451
/*----------------------------------------------------------------------------
452
| The pattern for a default generated double-precision NaN.
453
*----------------------------------------------------------------------------*/
454
extern const float64 float64_default_nan;
455

    
456
/*----------------------------------------------------------------------------
457
| Software IEC/IEEE extended double-precision conversion routines.
458
*----------------------------------------------------------------------------*/
459
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
460
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
461
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
462
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
463
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
464
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
465
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
466

    
467
/*----------------------------------------------------------------------------
468
| Software IEC/IEEE extended double-precision operations.
469
*----------------------------------------------------------------------------*/
470
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
471
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
472
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
473
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
474
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
475
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
476
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
477
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
478
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
479
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
480
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
481
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
482
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
483
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
484
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
485
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
486
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
487
int floatx80_is_quiet_nan( floatx80 );
488
int floatx80_is_signaling_nan( floatx80 );
489
floatx80 floatx80_maybe_silence_nan( floatx80 );
490
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
491

    
492
INLINE floatx80 floatx80_abs(floatx80 a)
493
{
494
    a.high &= 0x7fff;
495
    return a;
496
}
497

    
498
INLINE floatx80 floatx80_chs(floatx80 a)
499
{
500
    a.high ^= 0x8000;
501
    return a;
502
}
503

    
504
INLINE int floatx80_is_infinity(floatx80 a)
505
{
506
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
507
}
508

    
509
INLINE int floatx80_is_neg(floatx80 a)
510
{
511
    return a.high >> 15;
512
}
513

    
514
INLINE int floatx80_is_zero(floatx80 a)
515
{
516
    return (a.high & 0x7fff) == 0 && a.low == 0;
517
}
518

    
519
INLINE int floatx80_is_zero_or_denormal(floatx80 a)
520
{
521
    return (a.high & 0x7fff) == 0;
522
}
523

    
524
INLINE int floatx80_is_any_nan(floatx80 a)
525
{
526
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
527
}
528

    
529
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
530
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
531
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
532
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
533
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
534
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
535

    
536
/*----------------------------------------------------------------------------
537
| The pattern for a default generated extended double-precision NaN.
538
*----------------------------------------------------------------------------*/
539
extern const floatx80 floatx80_default_nan;
540

    
541
/*----------------------------------------------------------------------------
542
| Software IEC/IEEE quadruple-precision conversion routines.
543
*----------------------------------------------------------------------------*/
544
int32 float128_to_int32( float128 STATUS_PARAM );
545
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
546
int64 float128_to_int64( float128 STATUS_PARAM );
547
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
548
float32 float128_to_float32( float128 STATUS_PARAM );
549
float64 float128_to_float64( float128 STATUS_PARAM );
550
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
551

    
552
/*----------------------------------------------------------------------------
553
| Software IEC/IEEE quadruple-precision operations.
554
*----------------------------------------------------------------------------*/
555
float128 float128_round_to_int( float128 STATUS_PARAM );
556
float128 float128_add( float128, float128 STATUS_PARAM );
557
float128 float128_sub( float128, float128 STATUS_PARAM );
558
float128 float128_mul( float128, float128 STATUS_PARAM );
559
float128 float128_div( float128, float128 STATUS_PARAM );
560
float128 float128_rem( float128, float128 STATUS_PARAM );
561
float128 float128_sqrt( float128 STATUS_PARAM );
562
int float128_eq( float128, float128 STATUS_PARAM );
563
int float128_le( float128, float128 STATUS_PARAM );
564
int float128_lt( float128, float128 STATUS_PARAM );
565
int float128_unordered( float128, float128 STATUS_PARAM );
566
int float128_eq_quiet( float128, float128 STATUS_PARAM );
567
int float128_le_quiet( float128, float128 STATUS_PARAM );
568
int float128_lt_quiet( float128, float128 STATUS_PARAM );
569
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
570
int float128_compare( float128, float128 STATUS_PARAM );
571
int float128_compare_quiet( float128, float128 STATUS_PARAM );
572
int float128_is_quiet_nan( float128 );
573
int float128_is_signaling_nan( float128 );
574
float128 float128_maybe_silence_nan( float128 );
575
float128 float128_scalbn( float128, int STATUS_PARAM );
576

    
577
INLINE float128 float128_abs(float128 a)
578
{
579
    a.high &= 0x7fffffffffffffffLL;
580
    return a;
581
}
582

    
583
INLINE float128 float128_chs(float128 a)
584
{
585
    a.high ^= 0x8000000000000000LL;
586
    return a;
587
}
588

    
589
INLINE int float128_is_infinity(float128 a)
590
{
591
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
592
}
593

    
594
INLINE int float128_is_neg(float128 a)
595
{
596
    return a.high >> 63;
597
}
598

    
599
INLINE int float128_is_zero(float128 a)
600
{
601
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
602
}
603

    
604
INLINE int float128_is_zero_or_denormal(float128 a)
605
{
606
    return (a.high & 0x7fff000000000000LL) == 0;
607
}
608

    
609
INLINE int float128_is_any_nan(float128 a)
610
{
611
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
612
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
613
}
614

    
615
/*----------------------------------------------------------------------------
616
| The pattern for a default generated quadruple-precision NaN.
617
*----------------------------------------------------------------------------*/
618
extern const float128 float128_default_nan;
619

    
620
#endif /* !SOFTFLOAT_H */