Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 38f5b2b8

History | View | Annotate | Download (60.3 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>
14

    
15
#include "hw.h"
16
#include "pci.h"
17
#include "scsi.h"
18
#include "block_int.h"
19

    
20
//#define DEBUG_LSI
21
//#define DEBUG_LSI_REG
22

    
23
#ifdef DEBUG_LSI
24
#define DPRINTF(fmt, ...) \
25
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26
#define BADF(fmt, ...) \
27
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28
#else
29
#define DPRINTF(fmt, ...) do {} while(0)
30
#define BADF(fmt, ...) \
31
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32
#endif
33

    
34
#define LSI_MAX_DEVS 7
35

    
36
#define LSI_SCNTL0_TRG    0x01
37
#define LSI_SCNTL0_AAP    0x02
38
#define LSI_SCNTL0_EPC    0x08
39
#define LSI_SCNTL0_WATN   0x10
40
#define LSI_SCNTL0_START  0x20
41

    
42
#define LSI_SCNTL1_SST    0x01
43
#define LSI_SCNTL1_IARB   0x02
44
#define LSI_SCNTL1_AESP   0x04
45
#define LSI_SCNTL1_RST    0x08
46
#define LSI_SCNTL1_CON    0x10
47
#define LSI_SCNTL1_DHP    0x20
48
#define LSI_SCNTL1_ADB    0x40
49
#define LSI_SCNTL1_EXC    0x80
50

    
51
#define LSI_SCNTL2_WSR    0x01
52
#define LSI_SCNTL2_VUE0   0x02
53
#define LSI_SCNTL2_VUE1   0x04
54
#define LSI_SCNTL2_WSS    0x08
55
#define LSI_SCNTL2_SLPHBEN 0x10
56
#define LSI_SCNTL2_SLPMD  0x20
57
#define LSI_SCNTL2_CHM    0x40
58
#define LSI_SCNTL2_SDU    0x80
59

    
60
#define LSI_ISTAT0_DIP    0x01
61
#define LSI_ISTAT0_SIP    0x02
62
#define LSI_ISTAT0_INTF   0x04
63
#define LSI_ISTAT0_CON    0x08
64
#define LSI_ISTAT0_SEM    0x10
65
#define LSI_ISTAT0_SIGP   0x20
66
#define LSI_ISTAT0_SRST   0x40
67
#define LSI_ISTAT0_ABRT   0x80
68

    
69
#define LSI_ISTAT1_SI     0x01
70
#define LSI_ISTAT1_SRUN   0x02
71
#define LSI_ISTAT1_FLSH   0x04
72

    
73
#define LSI_SSTAT0_SDP0   0x01
74
#define LSI_SSTAT0_RST    0x02
75
#define LSI_SSTAT0_WOA    0x04
76
#define LSI_SSTAT0_LOA    0x08
77
#define LSI_SSTAT0_AIP    0x10
78
#define LSI_SSTAT0_OLF    0x20
79
#define LSI_SSTAT0_ORF    0x40
80
#define LSI_SSTAT0_ILF    0x80
81

    
82
#define LSI_SIST0_PAR     0x01
83
#define LSI_SIST0_RST     0x02
84
#define LSI_SIST0_UDC     0x04
85
#define LSI_SIST0_SGE     0x08
86
#define LSI_SIST0_RSL     0x10
87
#define LSI_SIST0_SEL     0x20
88
#define LSI_SIST0_CMP     0x40
89
#define LSI_SIST0_MA      0x80
90

    
91
#define LSI_SIST1_HTH     0x01
92
#define LSI_SIST1_GEN     0x02
93
#define LSI_SIST1_STO     0x04
94
#define LSI_SIST1_SBMC    0x10
95

    
96
#define LSI_SOCL_IO       0x01
97
#define LSI_SOCL_CD       0x02
98
#define LSI_SOCL_MSG      0x04
99
#define LSI_SOCL_ATN      0x08
100
#define LSI_SOCL_SEL      0x10
101
#define LSI_SOCL_BSY      0x20
102
#define LSI_SOCL_ACK      0x40
103
#define LSI_SOCL_REQ      0x80
104

    
105
#define LSI_DSTAT_IID     0x01
106
#define LSI_DSTAT_SIR     0x04
107
#define LSI_DSTAT_SSI     0x08
108
#define LSI_DSTAT_ABRT    0x10
109
#define LSI_DSTAT_BF      0x20
110
#define LSI_DSTAT_MDPE    0x40
111
#define LSI_DSTAT_DFE     0x80
112

    
113
#define LSI_DCNTL_COM     0x01
114
#define LSI_DCNTL_IRQD    0x02
115
#define LSI_DCNTL_STD     0x04
116
#define LSI_DCNTL_IRQM    0x08
117
#define LSI_DCNTL_SSM     0x10
118
#define LSI_DCNTL_PFEN    0x20
119
#define LSI_DCNTL_PFF     0x40
120
#define LSI_DCNTL_CLSE    0x80
121

    
122
#define LSI_DMODE_MAN     0x01
123
#define LSI_DMODE_BOF     0x02
124
#define LSI_DMODE_ERMP    0x04
125
#define LSI_DMODE_ERL     0x08
126
#define LSI_DMODE_DIOM    0x10
127
#define LSI_DMODE_SIOM    0x20
128

    
129
#define LSI_CTEST2_DACK   0x01
130
#define LSI_CTEST2_DREQ   0x02
131
#define LSI_CTEST2_TEOP   0x04
132
#define LSI_CTEST2_PCICIE 0x08
133
#define LSI_CTEST2_CM     0x10
134
#define LSI_CTEST2_CIO    0x20
135
#define LSI_CTEST2_SIGP   0x40
136
#define LSI_CTEST2_DDIR   0x80
137

    
138
#define LSI_CTEST5_BL2    0x04
139
#define LSI_CTEST5_DDIR   0x08
140
#define LSI_CTEST5_MASR   0x10
141
#define LSI_CTEST5_DFSN   0x20
142
#define LSI_CTEST5_BBCK   0x40
143
#define LSI_CTEST5_ADCK   0x80
144

    
145
#define LSI_CCNTL0_DILS   0x01
146
#define LSI_CCNTL0_DISFC  0x10
147
#define LSI_CCNTL0_ENNDJ  0x20
148
#define LSI_CCNTL0_PMJCTL 0x40
149
#define LSI_CCNTL0_ENPMJ  0x80
150

    
151
#define LSI_CCNTL1_EN64DBMV  0x01
152
#define LSI_CCNTL1_EN64TIBMV 0x02
153
#define LSI_CCNTL1_64TIMOD   0x04
154
#define LSI_CCNTL1_DDAC      0x08
155
#define LSI_CCNTL1_ZMOD      0x80
156

    
157
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
158

    
159
#define PHASE_DO          0
160
#define PHASE_DI          1
161
#define PHASE_CMD         2
162
#define PHASE_ST          3
163
#define PHASE_MO          6
164
#define PHASE_MI          7
165
#define PHASE_MASK        7
166

    
167
/* Maximum length of MSG IN data.  */
168
#define LSI_MAX_MSGIN_LEN 8
169

    
170
/* Flag set if this is a tagged command.  */
171
#define LSI_TAG_VALID     (1 << 16)
172

    
173
typedef struct {
174
    uint32_t tag;
175
    uint32_t pending;
176
    int out;
177
} lsi_queue;
178

    
179
typedef struct {
180
    PCIDevice dev;
181
    int mmio_io_addr;
182
    int ram_io_addr;
183
    uint32_t script_ram_base;
184

    
185
    int carry; /* ??? Should this be an a visible register somewhere?  */
186
    int sense;
187
    /* Action to take at the end of a MSG IN phase.
188
       0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
189
    int msg_action;
190
    int msg_len;
191
    uint8_t msg[LSI_MAX_MSGIN_LEN];
192
    /* 0 if SCRIPTS are running or stopped.
193
     * 1 if a Wait Reselect instruction has been issued.
194
     * 2 if processing DMA from lsi_execute_script.
195
     * 3 if a DMA operation is in progress.  */
196
    int waiting;
197
    SCSIBus bus;
198
    SCSIDevice *current_dev;
199
    int current_lun;
200
    /* The tag is a combination of the device ID and the SCSI tag.  */
201
    uint32_t current_tag;
202
    uint32_t current_dma_len;
203
    int command_complete;
204
    uint8_t *dma_buf;
205
    lsi_queue *queue;
206
    int queue_len;
207
    int active_commands;
208

    
209
    uint32_t dsa;
210
    uint32_t temp;
211
    uint32_t dnad;
212
    uint32_t dbc;
213
    uint8_t istat0;
214
    uint8_t istat1;
215
    uint8_t dcmd;
216
    uint8_t dstat;
217
    uint8_t dien;
218
    uint8_t sist0;
219
    uint8_t sist1;
220
    uint8_t sien0;
221
    uint8_t sien1;
222
    uint8_t mbox0;
223
    uint8_t mbox1;
224
    uint8_t dfifo;
225
    uint8_t ctest2;
226
    uint8_t ctest3;
227
    uint8_t ctest4;
228
    uint8_t ctest5;
229
    uint8_t ccntl0;
230
    uint8_t ccntl1;
231
    uint32_t dsp;
232
    uint32_t dsps;
233
    uint8_t dmode;
234
    uint8_t dcntl;
235
    uint8_t scntl0;
236
    uint8_t scntl1;
237
    uint8_t scntl2;
238
    uint8_t scntl3;
239
    uint8_t sstat0;
240
    uint8_t sstat1;
241
    uint8_t scid;
242
    uint8_t sxfer;
243
    uint8_t socl;
244
    uint8_t sdid;
245
    uint8_t ssid;
246
    uint8_t sfbr;
247
    uint8_t stest1;
248
    uint8_t stest2;
249
    uint8_t stest3;
250
    uint8_t sidl;
251
    uint8_t stime0;
252
    uint8_t respid0;
253
    uint8_t respid1;
254
    uint32_t mmrs;
255
    uint32_t mmws;
256
    uint32_t sfs;
257
    uint32_t drs;
258
    uint32_t sbms;
259
    uint32_t dbms;
260
    uint32_t dnad64;
261
    uint32_t pmjad1;
262
    uint32_t pmjad2;
263
    uint32_t rbc;
264
    uint32_t ua;
265
    uint32_t ia;
266
    uint32_t sbc;
267
    uint32_t csbc;
268
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
269
    uint8_t sbr;
270

    
271
    /* Script ram is stored as 32-bit words in host byteorder.  */
272
    uint32_t script_ram[2048];
273
} LSIState;
274

    
275
static void lsi_soft_reset(LSIState *s)
276
{
277
    DPRINTF("Reset\n");
278
    s->carry = 0;
279

    
280
    s->waiting = 0;
281
    s->dsa = 0;
282
    s->dnad = 0;
283
    s->dbc = 0;
284
    s->temp = 0;
285
    memset(s->scratch, 0, sizeof(s->scratch));
286
    s->istat0 = 0;
287
    s->istat1 = 0;
288
    s->dcmd = 0;
289
    s->dstat = 0;
290
    s->dien = 0;
291
    s->sist0 = 0;
292
    s->sist1 = 0;
293
    s->sien0 = 0;
294
    s->sien1 = 0;
295
    s->mbox0 = 0;
296
    s->mbox1 = 0;
297
    s->dfifo = 0;
298
    s->ctest2 = 0;
299
    s->ctest3 = 0;
300
    s->ctest4 = 0;
301
    s->ctest5 = 0;
302
    s->ccntl0 = 0;
303
    s->ccntl1 = 0;
304
    s->dsp = 0;
305
    s->dsps = 0;
306
    s->dmode = 0;
307
    s->dcntl = 0;
308
    s->scntl0 = 0xc0;
309
    s->scntl1 = 0;
310
    s->scntl2 = 0;
311
    s->scntl3 = 0;
312
    s->sstat0 = 0;
313
    s->sstat1 = 0;
314
    s->scid = 7;
315
    s->sxfer = 0;
316
    s->socl = 0;
317
    s->stest1 = 0;
318
    s->stest2 = 0;
319
    s->stest3 = 0;
320
    s->sidl = 0;
321
    s->stime0 = 0;
322
    s->respid0 = 0x80;
323
    s->respid1 = 0;
324
    s->mmrs = 0;
325
    s->mmws = 0;
326
    s->sfs = 0;
327
    s->drs = 0;
328
    s->sbms = 0;
329
    s->dbms = 0;
330
    s->dnad64 = 0;
331
    s->pmjad1 = 0;
332
    s->pmjad2 = 0;
333
    s->rbc = 0;
334
    s->ua = 0;
335
    s->ia = 0;
336
    s->sbc = 0;
337
    s->csbc = 0;
338
    s->sbr = 0;
339
}
340

    
341
static int lsi_dma_40bit(LSIState *s)
342
{
343
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
344
        return 1;
345
    return 0;
346
}
347

    
348
static int lsi_dma_ti64bit(LSIState *s)
349
{
350
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
351
        return 1;
352
    return 0;
353
}
354

    
355
static int lsi_dma_64bit(LSIState *s)
356
{
357
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
358
        return 1;
359
    return 0;
360
}
361

    
362
static uint8_t lsi_reg_readb(LSIState *s, int offset);
363
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
364
static void lsi_execute_script(LSIState *s);
365

    
366
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
367
{
368
    uint32_t buf;
369

    
370
    /* Optimize reading from SCRIPTS RAM.  */
371
    if ((addr & 0xffffe000) == s->script_ram_base) {
372
        return s->script_ram[(addr & 0x1fff) >> 2];
373
    }
374
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
375
    return cpu_to_le32(buf);
376
}
377

    
378
static void lsi_stop_script(LSIState *s)
379
{
380
    s->istat1 &= ~LSI_ISTAT1_SRUN;
381
}
382

    
383
static void lsi_update_irq(LSIState *s)
384
{
385
    int level;
386
    static int last_level;
387

    
388
    /* It's unclear whether the DIP/SIP bits should be cleared when the
389
       Interrupt Status Registers are cleared or when istat0 is read.
390
       We currently do the formwer, which seems to work.  */
391
    level = 0;
392
    if (s->dstat) {
393
        if (s->dstat & s->dien)
394
            level = 1;
395
        s->istat0 |= LSI_ISTAT0_DIP;
396
    } else {
397
        s->istat0 &= ~LSI_ISTAT0_DIP;
398
    }
399

    
400
    if (s->sist0 || s->sist1) {
401
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
402
            level = 1;
403
        s->istat0 |= LSI_ISTAT0_SIP;
404
    } else {
405
        s->istat0 &= ~LSI_ISTAT0_SIP;
406
    }
407
    if (s->istat0 & LSI_ISTAT0_INTF)
408
        level = 1;
409

    
410
    if (level != last_level) {
411
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
412
                level, s->dstat, s->sist1, s->sist0);
413
        last_level = level;
414
    }
415
    qemu_set_irq(s->dev.irq[0], level);
416
}
417

    
418
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
419
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
420
{
421
    uint32_t mask0;
422
    uint32_t mask1;
423

    
424
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
425
            stat1, stat0, s->sist1, s->sist0);
426
    s->sist0 |= stat0;
427
    s->sist1 |= stat1;
428
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
429
       we don't stop processing when raising STO.  Instead continue
430
       execution and stop at the next insn that accesses the SCSI bus.  */
431
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
432
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
433
    mask1 &= ~LSI_SIST1_STO;
434
    if (s->sist0 & mask0 || s->sist1 & mask1) {
435
        lsi_stop_script(s);
436
    }
437
    lsi_update_irq(s);
438
}
439

    
440
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
441
static void lsi_script_dma_interrupt(LSIState *s, int stat)
442
{
443
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
444
    s->dstat |= stat;
445
    lsi_update_irq(s);
446
    lsi_stop_script(s);
447
}
448

    
449
static inline void lsi_set_phase(LSIState *s, int phase)
450
{
451
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
452
}
453

    
454
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
455
{
456
    /* Trigger a phase mismatch.  */
457
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
458
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
459
            s->dsp = s->pmjad1;
460
        } else {
461
            s->dsp = s->pmjad2;
462
        }
463
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
464
    } else {
465
        DPRINTF("Phase mismatch interrupt\n");
466
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
467
        lsi_stop_script(s);
468
    }
469
    lsi_set_phase(s, new_phase);
470
}
471

    
472

    
473
/* Resume SCRIPTS execution after a DMA operation.  */
474
static void lsi_resume_script(LSIState *s)
475
{
476
    if (s->waiting != 2) {
477
        s->waiting = 0;
478
        lsi_execute_script(s);
479
    } else {
480
        s->waiting = 0;
481
    }
482
}
483

    
484
/* Initiate a SCSI layer data transfer.  */
485
static void lsi_do_dma(LSIState *s, int out)
486
{
487
    uint32_t count;
488
    target_phys_addr_t addr;
489

    
490
    if (!s->current_dma_len) {
491
        /* Wait until data is available.  */
492
        DPRINTF("DMA no data available\n");
493
        return;
494
    }
495

    
496
    count = s->dbc;
497
    if (count > s->current_dma_len)
498
        count = s->current_dma_len;
499

    
500
    addr = s->dnad;
501
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
502
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
503
        addr |= ((uint64_t)s->dnad64 << 32);
504
    else if (s->dbms)
505
        addr |= ((uint64_t)s->dbms << 32);
506
    else if (s->sbms)
507
        addr |= ((uint64_t)s->sbms << 32);
508

    
509
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
510
    s->csbc += count;
511
    s->dnad += count;
512
    s->dbc -= count;
513

    
514
    if (s->dma_buf == NULL) {
515
        s->dma_buf = s->current_dev->info->get_buf(s->current_dev,
516
                                                   s->current_tag);
517
    }
518

    
519
    /* ??? Set SFBR to first data byte.  */
520
    if (out) {
521
        cpu_physical_memory_read(addr, s->dma_buf, count);
522
    } else {
523
        cpu_physical_memory_write(addr, s->dma_buf, count);
524
    }
525
    s->current_dma_len -= count;
526
    if (s->current_dma_len == 0) {
527
        s->dma_buf = NULL;
528
        if (out) {
529
            /* Write the data.  */
530
            s->current_dev->info->write_data(s->current_dev, s->current_tag);
531
        } else {
532
            /* Request any remaining data.  */
533
            s->current_dev->info->read_data(s->current_dev, s->current_tag);
534
        }
535
    } else {
536
        s->dma_buf += count;
537
        lsi_resume_script(s);
538
    }
539
}
540

    
541

    
542
/* Add a command to the queue.  */
543
static void lsi_queue_command(LSIState *s)
544
{
545
    lsi_queue *p;
546

    
547
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
548
    if (s->queue_len == s->active_commands) {
549
        s->queue_len++;
550
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
551
    }
552
    p = &s->queue[s->active_commands++];
553
    p->tag = s->current_tag;
554
    p->pending = 0;
555
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
556
}
557

    
558
/* Queue a byte for a MSG IN phase.  */
559
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
560
{
561
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
562
        BADF("MSG IN data too long\n");
563
    } else {
564
        DPRINTF("MSG IN 0x%02x\n", data);
565
        s->msg[s->msg_len++] = data;
566
    }
567
}
568

    
569
/* Perform reselection to continue a command.  */
570
static void lsi_reselect(LSIState *s, uint32_t tag)
571
{
572
    lsi_queue *p;
573
    int n;
574
    int id;
575

    
576
    p = NULL;
577
    for (n = 0; n < s->active_commands; n++) {
578
        p = &s->queue[n];
579
        if (p->tag == tag)
580
            break;
581
    }
582
    if (n == s->active_commands) {
583
        BADF("Reselected non-existant command tag=0x%x\n", tag);
584
        return;
585
    }
586
    id = (tag >> 8) & 0xf;
587
    s->ssid = id | 0x80;
588
    /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
589
    if (!s->dcntl & LSI_DCNTL_COM) {
590
        s->sfbr = 1 << (id & 0x7);
591
    }
592
    DPRINTF("Reselected target %d\n", id);
593
    s->current_dev = s->bus.devs[id];
594
    s->current_tag = tag;
595
    s->scntl1 |= LSI_SCNTL1_CON;
596
    lsi_set_phase(s, PHASE_MI);
597
    s->msg_action = p->out ? 2 : 3;
598
    s->current_dma_len = p->pending;
599
    s->dma_buf = NULL;
600
    lsi_add_msg_byte(s, 0x80);
601
    if (s->current_tag & LSI_TAG_VALID) {
602
        lsi_add_msg_byte(s, 0x20);
603
        lsi_add_msg_byte(s, tag & 0xff);
604
    }
605

    
606
    s->active_commands--;
607
    if (n != s->active_commands) {
608
        s->queue[n] = s->queue[s->active_commands];
609
    }
610
}
611

    
612
/* Record that data is available for a queued command.  Returns zero if
613
   the device was reselected, nonzero if the IO is deferred.  */
614
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
615
{
616
    lsi_queue *p;
617
    int i;
618
    for (i = 0; i < s->active_commands; i++) {
619
        p = &s->queue[i];
620
        if (p->tag == tag) {
621
            if (p->pending) {
622
                BADF("Multiple IO pending for tag %d\n", tag);
623
            }
624
            p->pending = arg;
625
            if (s->waiting == 1) {
626
                /* Reselect device.  */
627
                lsi_reselect(s, tag);
628
                return 0;
629
            } else {
630
               DPRINTF("Queueing IO tag=0x%x\n", tag);
631
                p->pending = arg;
632
                return 1;
633
            }
634
        }
635
    }
636
    BADF("IO with unknown tag %d\n", tag);
637
    return 1;
638
}
639

    
640
/* Callback to indicate that the SCSI layer has completed a transfer.  */
641
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
642
                                 uint32_t arg)
643
{
644
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
645
    int out;
646

    
647
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
648
    if (reason == SCSI_REASON_DONE) {
649
        DPRINTF("Command complete sense=%d\n", (int)arg);
650
        s->sense = arg;
651
        s->command_complete = 2;
652
        if (s->waiting && s->dbc != 0) {
653
            /* Raise phase mismatch for short transfers.  */
654
            lsi_bad_phase(s, out, PHASE_ST);
655
        } else {
656
            lsi_set_phase(s, PHASE_ST);
657
        }
658
        lsi_resume_script(s);
659
        return;
660
    }
661

    
662
    if (s->waiting == 1 || tag != s->current_tag) {
663
        if (lsi_queue_tag(s, tag, arg))
664
            return;
665
    }
666
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
667
    s->current_dma_len = arg;
668
    s->command_complete = 1;
669
    if (!s->waiting)
670
        return;
671
    if (s->waiting == 1 || s->dbc == 0) {
672
        lsi_resume_script(s);
673
    } else {
674
        lsi_do_dma(s, out);
675
    }
676
}
677

    
678
static void lsi_do_command(LSIState *s)
679
{
680
    uint8_t buf[16];
681
    int n;
682

    
683
    DPRINTF("Send command len=%d\n", s->dbc);
684
    if (s->dbc > 16)
685
        s->dbc = 16;
686
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
687
    s->sfbr = buf[0];
688
    s->command_complete = 0;
689
    n = s->current_dev->info->send_command(s->current_dev, s->current_tag, buf,
690
                                           s->current_lun);
691
    if (n > 0) {
692
        lsi_set_phase(s, PHASE_DI);
693
        s->current_dev->info->read_data(s->current_dev, s->current_tag);
694
    } else if (n < 0) {
695
        lsi_set_phase(s, PHASE_DO);
696
        s->current_dev->info->write_data(s->current_dev, s->current_tag);
697
    }
698

    
699
    if (!s->command_complete) {
700
        if (n) {
701
            /* Command did not complete immediately so disconnect.  */
702
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
703
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
704
            /* wait data */
705
            lsi_set_phase(s, PHASE_MI);
706
            s->msg_action = 1;
707
            lsi_queue_command(s);
708
        } else {
709
            /* wait command complete */
710
            lsi_set_phase(s, PHASE_DI);
711
        }
712
    }
713
}
714

    
715
static void lsi_do_status(LSIState *s)
716
{
717
    uint8_t sense;
718
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
719
    if (s->dbc != 1)
720
        BADF("Bad Status move\n");
721
    s->dbc = 1;
722
    sense = s->sense;
723
    s->sfbr = sense;
724
    cpu_physical_memory_write(s->dnad, &sense, 1);
725
    lsi_set_phase(s, PHASE_MI);
726
    s->msg_action = 1;
727
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
728
}
729

    
730
static void lsi_disconnect(LSIState *s)
731
{
732
    s->scntl1 &= ~LSI_SCNTL1_CON;
733
    s->sstat1 &= ~PHASE_MASK;
734
}
735

    
736
static void lsi_do_msgin(LSIState *s)
737
{
738
    int len;
739
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
740
    s->sfbr = s->msg[0];
741
    len = s->msg_len;
742
    if (len > s->dbc)
743
        len = s->dbc;
744
    cpu_physical_memory_write(s->dnad, s->msg, len);
745
    /* Linux drivers rely on the last byte being in the SIDL.  */
746
    s->sidl = s->msg[len - 1];
747
    s->msg_len -= len;
748
    if (s->msg_len) {
749
        memmove(s->msg, s->msg + len, s->msg_len);
750
    } else {
751
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
752
           switch to PHASE_MO.  */
753
        switch (s->msg_action) {
754
        case 0:
755
            lsi_set_phase(s, PHASE_CMD);
756
            break;
757
        case 1:
758
            lsi_disconnect(s);
759
            break;
760
        case 2:
761
            lsi_set_phase(s, PHASE_DO);
762
            break;
763
        case 3:
764
            lsi_set_phase(s, PHASE_DI);
765
            break;
766
        default:
767
            abort();
768
        }
769
    }
770
}
771

    
772
/* Read the next byte during a MSGOUT phase.  */
773
static uint8_t lsi_get_msgbyte(LSIState *s)
774
{
775
    uint8_t data;
776
    cpu_physical_memory_read(s->dnad, &data, 1);
777
    s->dnad++;
778
    s->dbc--;
779
    return data;
780
}
781

    
782
static void lsi_do_msgout(LSIState *s)
783
{
784
    uint8_t msg;
785
    int len;
786

    
787
    DPRINTF("MSG out len=%d\n", s->dbc);
788
    while (s->dbc) {
789
        msg = lsi_get_msgbyte(s);
790
        s->sfbr = msg;
791

    
792
        switch (msg) {
793
        case 0x04:
794
            DPRINTF("MSG: Disconnect\n");
795
            lsi_disconnect(s);
796
            break;
797
        case 0x08:
798
            DPRINTF("MSG: No Operation\n");
799
            lsi_set_phase(s, PHASE_CMD);
800
            break;
801
        case 0x01:
802
            len = lsi_get_msgbyte(s);
803
            msg = lsi_get_msgbyte(s);
804
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
805
            switch (msg) {
806
            case 1:
807
                DPRINTF("SDTR (ignored)\n");
808
                s->dbc -= 2;
809
                break;
810
            case 3:
811
                DPRINTF("WDTR (ignored)\n");
812
                s->dbc -= 1;
813
                break;
814
            default:
815
                goto bad;
816
            }
817
            break;
818
        case 0x20: /* SIMPLE queue */
819
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
820
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
821
            break;
822
        case 0x21: /* HEAD of queue */
823
            BADF("HEAD queue not implemented\n");
824
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
825
            break;
826
        case 0x22: /* ORDERED queue */
827
            BADF("ORDERED queue not implemented\n");
828
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
829
            break;
830
        default:
831
            if ((msg & 0x80) == 0) {
832
                goto bad;
833
            }
834
            s->current_lun = msg & 7;
835
            DPRINTF("Select LUN %d\n", s->current_lun);
836
            lsi_set_phase(s, PHASE_CMD);
837
            break;
838
        }
839
    }
840
    return;
841
bad:
842
    BADF("Unimplemented message 0x%02x\n", msg);
843
    lsi_set_phase(s, PHASE_MI);
844
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
845
    s->msg_action = 0;
846
}
847

    
848
/* Sign extend a 24-bit value.  */
849
static inline int32_t sxt24(int32_t n)
850
{
851
    return (n << 8) >> 8;
852
}
853

    
854
#define LSI_BUF_SIZE 4096
855
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
856
{
857
    int n;
858
    uint8_t buf[LSI_BUF_SIZE];
859

    
860
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
861
    while (count) {
862
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
863
        cpu_physical_memory_read(src, buf, n);
864
        cpu_physical_memory_write(dest, buf, n);
865
        src += n;
866
        dest += n;
867
        count -= n;
868
    }
869
}
870

    
871
static void lsi_wait_reselect(LSIState *s)
872
{
873
    int i;
874
    DPRINTF("Wait Reselect\n");
875
    if (s->current_dma_len)
876
        BADF("Reselect with pending DMA\n");
877
    for (i = 0; i < s->active_commands; i++) {
878
        if (s->queue[i].pending) {
879
            lsi_reselect(s, s->queue[i].tag);
880
            break;
881
        }
882
    }
883
    if (s->current_dma_len == 0) {
884
        s->waiting = 1;
885
    }
886
}
887

    
888
static void lsi_execute_script(LSIState *s)
889
{
890
    uint32_t insn;
891
    uint32_t addr, addr_high;
892
    int opcode;
893
    int insn_processed = 0;
894

    
895
    s->istat1 |= LSI_ISTAT1_SRUN;
896
again:
897
    insn_processed++;
898
    insn = read_dword(s, s->dsp);
899
    if (!insn) {
900
        /* If we receive an empty opcode increment the DSP by 4 bytes
901
           instead of 8 and execute the next opcode at that location */
902
        s->dsp += 4;
903
        goto again;
904
    }
905
    addr = read_dword(s, s->dsp + 4);
906
    addr_high = 0;
907
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
908
    s->dsps = addr;
909
    s->dcmd = insn >> 24;
910
    s->dsp += 8;
911
    switch (insn >> 30) {
912
    case 0: /* Block move.  */
913
        if (s->sist1 & LSI_SIST1_STO) {
914
            DPRINTF("Delayed select timeout\n");
915
            lsi_stop_script(s);
916
            break;
917
        }
918
        s->dbc = insn & 0xffffff;
919
        s->rbc = s->dbc;
920
        /* ??? Set ESA.  */
921
        s->ia = s->dsp - 8;
922
        if (insn & (1 << 29)) {
923
            /* Indirect addressing.  */
924
            addr = read_dword(s, addr);
925
        } else if (insn & (1 << 28)) {
926
            uint32_t buf[2];
927
            int32_t offset;
928
            /* Table indirect addressing.  */
929

    
930
            /* 32-bit Table indirect */
931
            offset = sxt24(addr);
932
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
933
            /* byte count is stored in bits 0:23 only */
934
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
935
            s->rbc = s->dbc;
936
            addr = cpu_to_le32(buf[1]);
937

    
938
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
939
             * table, bits [31:24] */
940
            if (lsi_dma_40bit(s))
941
                addr_high = cpu_to_le32(buf[0]) >> 24;
942
            else if (lsi_dma_ti64bit(s)) {
943
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
944
                switch (selector) {
945
                case 0 ... 0x0f:
946
                    /* offset index into scratch registers since
947
                     * TI64 mode can use registers C to R */
948
                    addr_high = s->scratch[2 + selector];
949
                    break;
950
                case 0x10:
951
                    addr_high = s->mmrs;
952
                    break;
953
                case 0x11:
954
                    addr_high = s->mmws;
955
                    break;
956
                case 0x12:
957
                    addr_high = s->sfs;
958
                    break;
959
                case 0x13:
960
                    addr_high = s->drs;
961
                    break;
962
                case 0x14:
963
                    addr_high = s->sbms;
964
                    break;
965
                case 0x15:
966
                    addr_high = s->dbms;
967
                    break;
968
                default:
969
                    BADF("Illegal selector specified (0x%x > 0x15)"
970
                         " for 64-bit DMA block move", selector);
971
                    break;
972
                }
973
            }
974
        } else if (lsi_dma_64bit(s)) {
975
            /* fetch a 3rd dword if 64-bit direct move is enabled and
976
               only if we're not doing table indirect or indirect addressing */
977
            s->dbms = read_dword(s, s->dsp);
978
            s->dsp += 4;
979
            s->ia = s->dsp - 12;
980
        }
981
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
982
            DPRINTF("Wrong phase got %d expected %d\n",
983
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
984
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
985
            break;
986
        }
987
        s->dnad = addr;
988
        s->dnad64 = addr_high;
989
        switch (s->sstat1 & 0x7) {
990
        case PHASE_DO:
991
            s->waiting = 2;
992
            lsi_do_dma(s, 1);
993
            if (s->waiting)
994
                s->waiting = 3;
995
            break;
996
        case PHASE_DI:
997
            s->waiting = 2;
998
            lsi_do_dma(s, 0);
999
            if (s->waiting)
1000
                s->waiting = 3;
1001
            break;
1002
        case PHASE_CMD:
1003
            lsi_do_command(s);
1004
            break;
1005
        case PHASE_ST:
1006
            lsi_do_status(s);
1007
            break;
1008
        case PHASE_MO:
1009
            lsi_do_msgout(s);
1010
            break;
1011
        case PHASE_MI:
1012
            lsi_do_msgin(s);
1013
            break;
1014
        default:
1015
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1016
            exit(1);
1017
        }
1018
        s->dfifo = s->dbc & 0xff;
1019
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1020
        s->sbc = s->dbc;
1021
        s->rbc -= s->dbc;
1022
        s->ua = addr + s->dbc;
1023
        break;
1024

    
1025
    case 1: /* IO or Read/Write instruction.  */
1026
        opcode = (insn >> 27) & 7;
1027
        if (opcode < 5) {
1028
            uint32_t id;
1029

    
1030
            if (insn & (1 << 25)) {
1031
                id = read_dword(s, s->dsa + sxt24(insn));
1032
            } else {
1033
                id = insn;
1034
            }
1035
            id = (id >> 16) & 0xf;
1036
            if (insn & (1 << 26)) {
1037
                addr = s->dsp + sxt24(addr);
1038
            }
1039
            s->dnad = addr;
1040
            switch (opcode) {
1041
            case 0: /* Select */
1042
                s->sdid = id;
1043
                if (s->scntl1 & LSI_SCNTL1_CON) {
1044
                    DPRINTF("Already reselected, jumping to alternative address\n");
1045
                    s->dsp = s->dnad;
1046
                    break;
1047
                }
1048
                s->sstat0 |= LSI_SSTAT0_WOA;
1049
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1050
                if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1051
                    DPRINTF("Selected absent target %d\n", id);
1052
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1053
                    lsi_disconnect(s);
1054
                    break;
1055
                }
1056
                DPRINTF("Selected target %d%s\n",
1057
                        id, insn & (1 << 3) ? " ATN" : "");
1058
                /* ??? Linux drivers compain when this is set.  Maybe
1059
                   it only applies in low-level mode (unimplemented).
1060
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1061
                s->current_dev = s->bus.devs[id];
1062
                s->current_tag = id << 8;
1063
                s->scntl1 |= LSI_SCNTL1_CON;
1064
                if (insn & (1 << 3)) {
1065
                    s->socl |= LSI_SOCL_ATN;
1066
                }
1067
                lsi_set_phase(s, PHASE_MO);
1068
                break;
1069
            case 1: /* Disconnect */
1070
                DPRINTF("Wait Disconnect\n");
1071
                s->scntl1 &= ~LSI_SCNTL1_CON;
1072
                break;
1073
            case 2: /* Wait Reselect */
1074
                lsi_wait_reselect(s);
1075
                break;
1076
            case 3: /* Set */
1077
                DPRINTF("Set%s%s%s%s\n",
1078
                        insn & (1 << 3) ? " ATN" : "",
1079
                        insn & (1 << 6) ? " ACK" : "",
1080
                        insn & (1 << 9) ? " TM" : "",
1081
                        insn & (1 << 10) ? " CC" : "");
1082
                if (insn & (1 << 3)) {
1083
                    s->socl |= LSI_SOCL_ATN;
1084
                    lsi_set_phase(s, PHASE_MO);
1085
                }
1086
                if (insn & (1 << 9)) {
1087
                    BADF("Target mode not implemented\n");
1088
                    exit(1);
1089
                }
1090
                if (insn & (1 << 10))
1091
                    s->carry = 1;
1092
                break;
1093
            case 4: /* Clear */
1094
                DPRINTF("Clear%s%s%s%s\n",
1095
                        insn & (1 << 3) ? " ATN" : "",
1096
                        insn & (1 << 6) ? " ACK" : "",
1097
                        insn & (1 << 9) ? " TM" : "",
1098
                        insn & (1 << 10) ? " CC" : "");
1099
                if (insn & (1 << 3)) {
1100
                    s->socl &= ~LSI_SOCL_ATN;
1101
                }
1102
                if (insn & (1 << 10))
1103
                    s->carry = 0;
1104
                break;
1105
            }
1106
        } else {
1107
            uint8_t op0;
1108
            uint8_t op1;
1109
            uint8_t data8;
1110
            int reg;
1111
            int operator;
1112
#ifdef DEBUG_LSI
1113
            static const char *opcode_names[3] =
1114
                {"Write", "Read", "Read-Modify-Write"};
1115
            static const char *operator_names[8] =
1116
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1117
#endif
1118

    
1119
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1120
            data8 = (insn >> 8) & 0xff;
1121
            opcode = (insn >> 27) & 7;
1122
            operator = (insn >> 24) & 7;
1123
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1124
                    opcode_names[opcode - 5], reg,
1125
                    operator_names[operator], data8, s->sfbr,
1126
                    (insn & (1 << 23)) ? " SFBR" : "");
1127
            op0 = op1 = 0;
1128
            switch (opcode) {
1129
            case 5: /* From SFBR */
1130
                op0 = s->sfbr;
1131
                op1 = data8;
1132
                break;
1133
            case 6: /* To SFBR */
1134
                if (operator)
1135
                    op0 = lsi_reg_readb(s, reg);
1136
                op1 = data8;
1137
                break;
1138
            case 7: /* Read-modify-write */
1139
                if (operator)
1140
                    op0 = lsi_reg_readb(s, reg);
1141
                if (insn & (1 << 23)) {
1142
                    op1 = s->sfbr;
1143
                } else {
1144
                    op1 = data8;
1145
                }
1146
                break;
1147
            }
1148

    
1149
            switch (operator) {
1150
            case 0: /* move */
1151
                op0 = op1;
1152
                break;
1153
            case 1: /* Shift left */
1154
                op1 = op0 >> 7;
1155
                op0 = (op0 << 1) | s->carry;
1156
                s->carry = op1;
1157
                break;
1158
            case 2: /* OR */
1159
                op0 |= op1;
1160
                break;
1161
            case 3: /* XOR */
1162
                op0 ^= op1;
1163
                break;
1164
            case 4: /* AND */
1165
                op0 &= op1;
1166
                break;
1167
            case 5: /* SHR */
1168
                op1 = op0 & 1;
1169
                op0 = (op0 >> 1) | (s->carry << 7);
1170
                s->carry = op1;
1171
                break;
1172
            case 6: /* ADD */
1173
                op0 += op1;
1174
                s->carry = op0 < op1;
1175
                break;
1176
            case 7: /* ADC */
1177
                op0 += op1 + s->carry;
1178
                if (s->carry)
1179
                    s->carry = op0 <= op1;
1180
                else
1181
                    s->carry = op0 < op1;
1182
                break;
1183
            }
1184

    
1185
            switch (opcode) {
1186
            case 5: /* From SFBR */
1187
            case 7: /* Read-modify-write */
1188
                lsi_reg_writeb(s, reg, op0);
1189
                break;
1190
            case 6: /* To SFBR */
1191
                s->sfbr = op0;
1192
                break;
1193
            }
1194
        }
1195
        break;
1196

    
1197
    case 2: /* Transfer Control.  */
1198
        {
1199
            int cond;
1200
            int jmp;
1201

    
1202
            if ((insn & 0x002e0000) == 0) {
1203
                DPRINTF("NOP\n");
1204
                break;
1205
            }
1206
            if (s->sist1 & LSI_SIST1_STO) {
1207
                DPRINTF("Delayed select timeout\n");
1208
                lsi_stop_script(s);
1209
                break;
1210
            }
1211
            cond = jmp = (insn & (1 << 19)) != 0;
1212
            if (cond == jmp && (insn & (1 << 21))) {
1213
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1214
                cond = s->carry != 0;
1215
            }
1216
            if (cond == jmp && (insn & (1 << 17))) {
1217
                DPRINTF("Compare phase %d %c= %d\n",
1218
                        (s->sstat1 & PHASE_MASK),
1219
                        jmp ? '=' : '!',
1220
                        ((insn >> 24) & 7));
1221
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1222
            }
1223
            if (cond == jmp && (insn & (1 << 18))) {
1224
                uint8_t mask;
1225

    
1226
                mask = (~insn >> 8) & 0xff;
1227
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1228
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1229
                cond = (s->sfbr & mask) == (insn & mask);
1230
            }
1231
            if (cond == jmp) {
1232
                if (insn & (1 << 23)) {
1233
                    /* Relative address.  */
1234
                    addr = s->dsp + sxt24(addr);
1235
                }
1236
                switch ((insn >> 27) & 7) {
1237
                case 0: /* Jump */
1238
                    DPRINTF("Jump to 0x%08x\n", addr);
1239
                    s->dsp = addr;
1240
                    break;
1241
                case 1: /* Call */
1242
                    DPRINTF("Call 0x%08x\n", addr);
1243
                    s->temp = s->dsp;
1244
                    s->dsp = addr;
1245
                    break;
1246
                case 2: /* Return */
1247
                    DPRINTF("Return to 0x%08x\n", s->temp);
1248
                    s->dsp = s->temp;
1249
                    break;
1250
                case 3: /* Interrupt */
1251
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1252
                    if ((insn & (1 << 20)) != 0) {
1253
                        s->istat0 |= LSI_ISTAT0_INTF;
1254
                        lsi_update_irq(s);
1255
                    } else {
1256
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1257
                    }
1258
                    break;
1259
                default:
1260
                    DPRINTF("Illegal transfer control\n");
1261
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1262
                    break;
1263
                }
1264
            } else {
1265
                DPRINTF("Control condition failed\n");
1266
            }
1267
        }
1268
        break;
1269

    
1270
    case 3:
1271
        if ((insn & (1 << 29)) == 0) {
1272
            /* Memory move.  */
1273
            uint32_t dest;
1274
            /* ??? The docs imply the destination address is loaded into
1275
               the TEMP register.  However the Linux drivers rely on
1276
               the value being presrved.  */
1277
            dest = read_dword(s, s->dsp);
1278
            s->dsp += 4;
1279
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1280
        } else {
1281
            uint8_t data[7];
1282
            int reg;
1283
            int n;
1284
            int i;
1285

    
1286
            if (insn & (1 << 28)) {
1287
                addr = s->dsa + sxt24(addr);
1288
            }
1289
            n = (insn & 7);
1290
            reg = (insn >> 16) & 0xff;
1291
            if (insn & (1 << 24)) {
1292
                cpu_physical_memory_read(addr, data, n);
1293
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1294
                        addr, *(int *)data);
1295
                for (i = 0; i < n; i++) {
1296
                    lsi_reg_writeb(s, reg + i, data[i]);
1297
                }
1298
            } else {
1299
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1300
                for (i = 0; i < n; i++) {
1301
                    data[i] = lsi_reg_readb(s, reg + i);
1302
                }
1303
                cpu_physical_memory_write(addr, data, n);
1304
            }
1305
        }
1306
    }
1307
    if (insn_processed > 10000 && !s->waiting) {
1308
        /* Some windows drivers make the device spin waiting for a memory
1309
           location to change.  If we have been executed a lot of code then
1310
           assume this is the case and force an unexpected device disconnect.
1311
           This is apparently sufficient to beat the drivers into submission.
1312
         */
1313
        if (!(s->sien0 & LSI_SIST0_UDC))
1314
            fprintf(stderr, "inf. loop with UDC masked\n");
1315
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1316
        lsi_disconnect(s);
1317
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1318
        if (s->dcntl & LSI_DCNTL_SSM) {
1319
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1320
        } else {
1321
            goto again;
1322
        }
1323
    }
1324
    DPRINTF("SCRIPTS execution stopped\n");
1325
}
1326

    
1327
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1328
{
1329
    uint8_t tmp;
1330
#define CASE_GET_REG24(name, addr) \
1331
    case addr: return s->name & 0xff; \
1332
    case addr + 1: return (s->name >> 8) & 0xff; \
1333
    case addr + 2: return (s->name >> 16) & 0xff;
1334

    
1335
#define CASE_GET_REG32(name, addr) \
1336
    case addr: return s->name & 0xff; \
1337
    case addr + 1: return (s->name >> 8) & 0xff; \
1338
    case addr + 2: return (s->name >> 16) & 0xff; \
1339
    case addr + 3: return (s->name >> 24) & 0xff;
1340

    
1341
#ifdef DEBUG_LSI_REG
1342
    DPRINTF("Read reg %x\n", offset);
1343
#endif
1344
    switch (offset) {
1345
    case 0x00: /* SCNTL0 */
1346
        return s->scntl0;
1347
    case 0x01: /* SCNTL1 */
1348
        return s->scntl1;
1349
    case 0x02: /* SCNTL2 */
1350
        return s->scntl2;
1351
    case 0x03: /* SCNTL3 */
1352
        return s->scntl3;
1353
    case 0x04: /* SCID */
1354
        return s->scid;
1355
    case 0x05: /* SXFER */
1356
        return s->sxfer;
1357
    case 0x06: /* SDID */
1358
        return s->sdid;
1359
    case 0x07: /* GPREG0 */
1360
        return 0x7f;
1361
    case 0x08: /* Revision ID */
1362
        return 0x00;
1363
    case 0xa: /* SSID */
1364
        return s->ssid;
1365
    case 0xb: /* SBCL */
1366
        /* ??? This is not correct. However it's (hopefully) only
1367
           used for diagnostics, so should be ok.  */
1368
        return 0;
1369
    case 0xc: /* DSTAT */
1370
        tmp = s->dstat | 0x80;
1371
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1372
            s->dstat = 0;
1373
        lsi_update_irq(s);
1374
        return tmp;
1375
    case 0x0d: /* SSTAT0 */
1376
        return s->sstat0;
1377
    case 0x0e: /* SSTAT1 */
1378
        return s->sstat1;
1379
    case 0x0f: /* SSTAT2 */
1380
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1381
    CASE_GET_REG32(dsa, 0x10)
1382
    case 0x14: /* ISTAT0 */
1383
        return s->istat0;
1384
    case 0x15: /* ISTAT1 */
1385
        return s->istat1;
1386
    case 0x16: /* MBOX0 */
1387
        return s->mbox0;
1388
    case 0x17: /* MBOX1 */
1389
        return s->mbox1;
1390
    case 0x18: /* CTEST0 */
1391
        return 0xff;
1392
    case 0x19: /* CTEST1 */
1393
        return 0;
1394
    case 0x1a: /* CTEST2 */
1395
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1396
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1397
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1398
            tmp |= LSI_CTEST2_SIGP;
1399
        }
1400
        return tmp;
1401
    case 0x1b: /* CTEST3 */
1402
        return s->ctest3;
1403
    CASE_GET_REG32(temp, 0x1c)
1404
    case 0x20: /* DFIFO */
1405
        return 0;
1406
    case 0x21: /* CTEST4 */
1407
        return s->ctest4;
1408
    case 0x22: /* CTEST5 */
1409
        return s->ctest5;
1410
    case 0x23: /* CTEST6 */
1411
         return 0;
1412
    CASE_GET_REG24(dbc, 0x24)
1413
    case 0x27: /* DCMD */
1414
        return s->dcmd;
1415
    CASE_GET_REG32(dnad, 0x28)
1416
    CASE_GET_REG32(dsp, 0x2c)
1417
    CASE_GET_REG32(dsps, 0x30)
1418
    CASE_GET_REG32(scratch[0], 0x34)
1419
    case 0x38: /* DMODE */
1420
        return s->dmode;
1421
    case 0x39: /* DIEN */
1422
        return s->dien;
1423
    case 0x3a: /* SBR */
1424
        return s->sbr;
1425
    case 0x3b: /* DCNTL */
1426
        return s->dcntl;
1427
    case 0x40: /* SIEN0 */
1428
        return s->sien0;
1429
    case 0x41: /* SIEN1 */
1430
        return s->sien1;
1431
    case 0x42: /* SIST0 */
1432
        tmp = s->sist0;
1433
        s->sist0 = 0;
1434
        lsi_update_irq(s);
1435
        return tmp;
1436
    case 0x43: /* SIST1 */
1437
        tmp = s->sist1;
1438
        s->sist1 = 0;
1439
        lsi_update_irq(s);
1440
        return tmp;
1441
    case 0x46: /* MACNTL */
1442
        return 0x0f;
1443
    case 0x47: /* GPCNTL0 */
1444
        return 0x0f;
1445
    case 0x48: /* STIME0 */
1446
        return s->stime0;
1447
    case 0x4a: /* RESPID0 */
1448
        return s->respid0;
1449
    case 0x4b: /* RESPID1 */
1450
        return s->respid1;
1451
    case 0x4d: /* STEST1 */
1452
        return s->stest1;
1453
    case 0x4e: /* STEST2 */
1454
        return s->stest2;
1455
    case 0x4f: /* STEST3 */
1456
        return s->stest3;
1457
    case 0x50: /* SIDL */
1458
        /* This is needed by the linux drivers.  We currently only update it
1459
           during the MSG IN phase.  */
1460
        return s->sidl;
1461
    case 0x52: /* STEST4 */
1462
        return 0xe0;
1463
    case 0x56: /* CCNTL0 */
1464
        return s->ccntl0;
1465
    case 0x57: /* CCNTL1 */
1466
        return s->ccntl1;
1467
    case 0x58: /* SBDL */
1468
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1469
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1470
            return s->msg[0];
1471
        return 0;
1472
    case 0x59: /* SBDL high */
1473
        return 0;
1474
    CASE_GET_REG32(mmrs, 0xa0)
1475
    CASE_GET_REG32(mmws, 0xa4)
1476
    CASE_GET_REG32(sfs, 0xa8)
1477
    CASE_GET_REG32(drs, 0xac)
1478
    CASE_GET_REG32(sbms, 0xb0)
1479
    CASE_GET_REG32(dbms, 0xb4)
1480
    CASE_GET_REG32(dnad64, 0xb8)
1481
    CASE_GET_REG32(pmjad1, 0xc0)
1482
    CASE_GET_REG32(pmjad2, 0xc4)
1483
    CASE_GET_REG32(rbc, 0xc8)
1484
    CASE_GET_REG32(ua, 0xcc)
1485
    CASE_GET_REG32(ia, 0xd4)
1486
    CASE_GET_REG32(sbc, 0xd8)
1487
    CASE_GET_REG32(csbc, 0xdc)
1488
    }
1489
    if (offset >= 0x5c && offset < 0xa0) {
1490
        int n;
1491
        int shift;
1492
        n = (offset - 0x58) >> 2;
1493
        shift = (offset & 3) * 8;
1494
        return (s->scratch[n] >> shift) & 0xff;
1495
    }
1496
    BADF("readb 0x%x\n", offset);
1497
    exit(1);
1498
#undef CASE_GET_REG24
1499
#undef CASE_GET_REG32
1500
}
1501

    
1502
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1503
{
1504
#define CASE_SET_REG24(name, addr) \
1505
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1506
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1507
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1508

    
1509
#define CASE_SET_REG32(name, addr) \
1510
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1511
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1512
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1513
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1514

    
1515
#ifdef DEBUG_LSI_REG
1516
    DPRINTF("Write reg %x = %02x\n", offset, val);
1517
#endif
1518
    switch (offset) {
1519
    case 0x00: /* SCNTL0 */
1520
        s->scntl0 = val;
1521
        if (val & LSI_SCNTL0_START) {
1522
            BADF("Start sequence not implemented\n");
1523
        }
1524
        break;
1525
    case 0x01: /* SCNTL1 */
1526
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1527
        if (val & LSI_SCNTL1_IARB) {
1528
            BADF("Immediate Arbritration not implemented\n");
1529
        }
1530
        if (val & LSI_SCNTL1_RST) {
1531
            s->sstat0 |= LSI_SSTAT0_RST;
1532
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1533
        } else {
1534
            s->sstat0 &= ~LSI_SSTAT0_RST;
1535
        }
1536
        break;
1537
    case 0x02: /* SCNTL2 */
1538
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1539
        s->scntl2 = val;
1540
        break;
1541
    case 0x03: /* SCNTL3 */
1542
        s->scntl3 = val;
1543
        break;
1544
    case 0x04: /* SCID */
1545
        s->scid = val;
1546
        break;
1547
    case 0x05: /* SXFER */
1548
        s->sxfer = val;
1549
        break;
1550
    case 0x06: /* SDID */
1551
        if ((val & 0xf) != (s->ssid & 0xf))
1552
            BADF("Destination ID does not match SSID\n");
1553
        s->sdid = val & 0xf;
1554
        break;
1555
    case 0x07: /* GPREG0 */
1556
        break;
1557
    case 0x08: /* SFBR */
1558
        /* The CPU is not allowed to write to this register.  However the
1559
           SCRIPTS register move instructions are.  */
1560
        s->sfbr = val;
1561
        break;
1562
    case 0x0a: case 0x0b:
1563
        /* Openserver writes to these readonly registers on startup */
1564
        return;
1565
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1566
        /* Linux writes to these readonly registers on startup.  */
1567
        return;
1568
    CASE_SET_REG32(dsa, 0x10)
1569
    case 0x14: /* ISTAT0 */
1570
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1571
        if (val & LSI_ISTAT0_ABRT) {
1572
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1573
        }
1574
        if (val & LSI_ISTAT0_INTF) {
1575
            s->istat0 &= ~LSI_ISTAT0_INTF;
1576
            lsi_update_irq(s);
1577
        }
1578
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1579
            DPRINTF("Woken by SIGP\n");
1580
            s->waiting = 0;
1581
            s->dsp = s->dnad;
1582
            lsi_execute_script(s);
1583
        }
1584
        if (val & LSI_ISTAT0_SRST) {
1585
            lsi_soft_reset(s);
1586
        }
1587
        break;
1588
    case 0x16: /* MBOX0 */
1589
        s->mbox0 = val;
1590
        break;
1591
    case 0x17: /* MBOX1 */
1592
        s->mbox1 = val;
1593
        break;
1594
    case 0x1a: /* CTEST2 */
1595
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1596
        break;
1597
    case 0x1b: /* CTEST3 */
1598
        s->ctest3 = val & 0x0f;
1599
        break;
1600
    CASE_SET_REG32(temp, 0x1c)
1601
    case 0x21: /* CTEST4 */
1602
        if (val & 7) {
1603
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1604
        }
1605
        s->ctest4 = val;
1606
        break;
1607
    case 0x22: /* CTEST5 */
1608
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1609
            BADF("CTEST5 DMA increment not implemented\n");
1610
        }
1611
        s->ctest5 = val;
1612
        break;
1613
    CASE_SET_REG24(dbc, 0x24)
1614
    CASE_SET_REG32(dnad, 0x28)
1615
    case 0x2c: /* DSP[0:7] */
1616
        s->dsp &= 0xffffff00;
1617
        s->dsp |= val;
1618
        break;
1619
    case 0x2d: /* DSP[8:15] */
1620
        s->dsp &= 0xffff00ff;
1621
        s->dsp |= val << 8;
1622
        break;
1623
    case 0x2e: /* DSP[16:23] */
1624
        s->dsp &= 0xff00ffff;
1625
        s->dsp |= val << 16;
1626
        break;
1627
    case 0x2f: /* DSP[24:31] */
1628
        s->dsp &= 0x00ffffff;
1629
        s->dsp |= val << 24;
1630
        if ((s->dmode & LSI_DMODE_MAN) == 0
1631
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1632
            lsi_execute_script(s);
1633
        break;
1634
    CASE_SET_REG32(dsps, 0x30)
1635
    CASE_SET_REG32(scratch[0], 0x34)
1636
    case 0x38: /* DMODE */
1637
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1638
            BADF("IO mappings not implemented\n");
1639
        }
1640
        s->dmode = val;
1641
        break;
1642
    case 0x39: /* DIEN */
1643
        s->dien = val;
1644
        lsi_update_irq(s);
1645
        break;
1646
    case 0x3a: /* SBR */
1647
        s->sbr = val;
1648
        break;
1649
    case 0x3b: /* DCNTL */
1650
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1651
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1652
            lsi_execute_script(s);
1653
        break;
1654
    case 0x40: /* SIEN0 */
1655
        s->sien0 = val;
1656
        lsi_update_irq(s);
1657
        break;
1658
    case 0x41: /* SIEN1 */
1659
        s->sien1 = val;
1660
        lsi_update_irq(s);
1661
        break;
1662
    case 0x47: /* GPCNTL0 */
1663
        break;
1664
    case 0x48: /* STIME0 */
1665
        s->stime0 = val;
1666
        break;
1667
    case 0x49: /* STIME1 */
1668
        if (val & 0xf) {
1669
            DPRINTF("General purpose timer not implemented\n");
1670
            /* ??? Raising the interrupt immediately seems to be sufficient
1671
               to keep the FreeBSD driver happy.  */
1672
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1673
        }
1674
        break;
1675
    case 0x4a: /* RESPID0 */
1676
        s->respid0 = val;
1677
        break;
1678
    case 0x4b: /* RESPID1 */
1679
        s->respid1 = val;
1680
        break;
1681
    case 0x4d: /* STEST1 */
1682
        s->stest1 = val;
1683
        break;
1684
    case 0x4e: /* STEST2 */
1685
        if (val & 1) {
1686
            BADF("Low level mode not implemented\n");
1687
        }
1688
        s->stest2 = val;
1689
        break;
1690
    case 0x4f: /* STEST3 */
1691
        if (val & 0x41) {
1692
            BADF("SCSI FIFO test mode not implemented\n");
1693
        }
1694
        s->stest3 = val;
1695
        break;
1696
    case 0x56: /* CCNTL0 */
1697
        s->ccntl0 = val;
1698
        break;
1699
    case 0x57: /* CCNTL1 */
1700
        s->ccntl1 = val;
1701
        break;
1702
    CASE_SET_REG32(mmrs, 0xa0)
1703
    CASE_SET_REG32(mmws, 0xa4)
1704
    CASE_SET_REG32(sfs, 0xa8)
1705
    CASE_SET_REG32(drs, 0xac)
1706
    CASE_SET_REG32(sbms, 0xb0)
1707
    CASE_SET_REG32(dbms, 0xb4)
1708
    CASE_SET_REG32(dnad64, 0xb8)
1709
    CASE_SET_REG32(pmjad1, 0xc0)
1710
    CASE_SET_REG32(pmjad2, 0xc4)
1711
    CASE_SET_REG32(rbc, 0xc8)
1712
    CASE_SET_REG32(ua, 0xcc)
1713
    CASE_SET_REG32(ia, 0xd4)
1714
    CASE_SET_REG32(sbc, 0xd8)
1715
    CASE_SET_REG32(csbc, 0xdc)
1716
    default:
1717
        if (offset >= 0x5c && offset < 0xa0) {
1718
            int n;
1719
            int shift;
1720
            n = (offset - 0x58) >> 2;
1721
            shift = (offset & 3) * 8;
1722
            s->scratch[n] &= ~(0xff << shift);
1723
            s->scratch[n] |= (val & 0xff) << shift;
1724
        } else {
1725
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1726
        }
1727
    }
1728
#undef CASE_SET_REG24
1729
#undef CASE_SET_REG32
1730
}
1731

    
1732
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1733
{
1734
    LSIState *s = opaque;
1735

    
1736
    lsi_reg_writeb(s, addr & 0xff, val);
1737
}
1738

    
1739
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1740
{
1741
    LSIState *s = opaque;
1742

    
1743
    addr &= 0xff;
1744
    lsi_reg_writeb(s, addr, val & 0xff);
1745
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1746
}
1747

    
1748
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1749
{
1750
    LSIState *s = opaque;
1751

    
1752
    addr &= 0xff;
1753
    lsi_reg_writeb(s, addr, val & 0xff);
1754
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1755
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1756
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1757
}
1758

    
1759
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1760
{
1761
    LSIState *s = opaque;
1762

    
1763
    return lsi_reg_readb(s, addr & 0xff);
1764
}
1765

    
1766
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1767
{
1768
    LSIState *s = opaque;
1769
    uint32_t val;
1770

    
1771
    addr &= 0xff;
1772
    val = lsi_reg_readb(s, addr);
1773
    val |= lsi_reg_readb(s, addr + 1) << 8;
1774
    return val;
1775
}
1776

    
1777
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1778
{
1779
    LSIState *s = opaque;
1780
    uint32_t val;
1781
    addr &= 0xff;
1782
    val = lsi_reg_readb(s, addr);
1783
    val |= lsi_reg_readb(s, addr + 1) << 8;
1784
    val |= lsi_reg_readb(s, addr + 2) << 16;
1785
    val |= lsi_reg_readb(s, addr + 3) << 24;
1786
    return val;
1787
}
1788

    
1789
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1790
    lsi_mmio_readb,
1791
    lsi_mmio_readw,
1792
    lsi_mmio_readl,
1793
};
1794

    
1795
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1796
    lsi_mmio_writeb,
1797
    lsi_mmio_writew,
1798
    lsi_mmio_writel,
1799
};
1800

    
1801
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1802
{
1803
    LSIState *s = opaque;
1804
    uint32_t newval;
1805
    int shift;
1806

    
1807
    addr &= 0x1fff;
1808
    newval = s->script_ram[addr >> 2];
1809
    shift = (addr & 3) * 8;
1810
    newval &= ~(0xff << shift);
1811
    newval |= val << shift;
1812
    s->script_ram[addr >> 2] = newval;
1813
}
1814

    
1815
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1816
{
1817
    LSIState *s = opaque;
1818
    uint32_t newval;
1819

    
1820
    addr &= 0x1fff;
1821
    newval = s->script_ram[addr >> 2];
1822
    if (addr & 2) {
1823
        newval = (newval & 0xffff) | (val << 16);
1824
    } else {
1825
        newval = (newval & 0xffff0000) | val;
1826
    }
1827
    s->script_ram[addr >> 2] = newval;
1828
}
1829

    
1830

    
1831
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1832
{
1833
    LSIState *s = opaque;
1834

    
1835
    addr &= 0x1fff;
1836
    s->script_ram[addr >> 2] = val;
1837
}
1838

    
1839
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1840
{
1841
    LSIState *s = opaque;
1842
    uint32_t val;
1843

    
1844
    addr &= 0x1fff;
1845
    val = s->script_ram[addr >> 2];
1846
    val >>= (addr & 3) * 8;
1847
    return val & 0xff;
1848
}
1849

    
1850
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1851
{
1852
    LSIState *s = opaque;
1853
    uint32_t val;
1854

    
1855
    addr &= 0x1fff;
1856
    val = s->script_ram[addr >> 2];
1857
    if (addr & 2)
1858
        val >>= 16;
1859
    return le16_to_cpu(val);
1860
}
1861

    
1862
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1863
{
1864
    LSIState *s = opaque;
1865

    
1866
    addr &= 0x1fff;
1867
    return le32_to_cpu(s->script_ram[addr >> 2]);
1868
}
1869

    
1870
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1871
    lsi_ram_readb,
1872
    lsi_ram_readw,
1873
    lsi_ram_readl,
1874
};
1875

    
1876
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1877
    lsi_ram_writeb,
1878
    lsi_ram_writew,
1879
    lsi_ram_writel,
1880
};
1881

    
1882
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1883
{
1884
    LSIState *s = opaque;
1885
    return lsi_reg_readb(s, addr & 0xff);
1886
}
1887

    
1888
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1889
{
1890
    LSIState *s = opaque;
1891
    uint32_t val;
1892
    addr &= 0xff;
1893
    val = lsi_reg_readb(s, addr);
1894
    val |= lsi_reg_readb(s, addr + 1) << 8;
1895
    return val;
1896
}
1897

    
1898
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1899
{
1900
    LSIState *s = opaque;
1901
    uint32_t val;
1902
    addr &= 0xff;
1903
    val = lsi_reg_readb(s, addr);
1904
    val |= lsi_reg_readb(s, addr + 1) << 8;
1905
    val |= lsi_reg_readb(s, addr + 2) << 16;
1906
    val |= lsi_reg_readb(s, addr + 3) << 24;
1907
    return val;
1908
}
1909

    
1910
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1911
{
1912
    LSIState *s = opaque;
1913
    lsi_reg_writeb(s, addr & 0xff, val);
1914
}
1915

    
1916
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1917
{
1918
    LSIState *s = opaque;
1919
    addr &= 0xff;
1920
    lsi_reg_writeb(s, addr, val & 0xff);
1921
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1922
}
1923

    
1924
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1925
{
1926
    LSIState *s = opaque;
1927
    addr &= 0xff;
1928
    lsi_reg_writeb(s, addr, val & 0xff);
1929
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1930
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1931
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1932
}
1933

    
1934
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1935
                           pcibus_t addr, pcibus_t size, int type)
1936
{
1937
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1938

    
1939
    DPRINTF("Mapping IO at %08x\n", addr);
1940

    
1941
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1942
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1943
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1944
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1945
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1946
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1947
}
1948

    
1949
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1950
                            pcibus_t addr, pcibus_t size, int type)
1951
{
1952
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1953

    
1954
    DPRINTF("Mapping ram at %08x\n", addr);
1955
    s->script_ram_base = addr;
1956
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1957
}
1958

    
1959
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1960
                             pcibus_t addr, pcibus_t size, int type)
1961
{
1962
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1963

    
1964
    DPRINTF("Mapping registers at %08x\n", addr);
1965
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1966
}
1967

    
1968
static void lsi_pre_save(void *opaque)
1969
{
1970
    LSIState *s = opaque;
1971

    
1972
    assert(s->dma_buf == NULL);
1973
    assert(s->current_dma_len == 0);
1974
    assert(s->active_commands == 0);
1975
}
1976

    
1977
static const VMStateDescription vmstate_lsi_scsi = {
1978
    .name = "lsiscsi",
1979
    .version_id = 0,
1980
    .minimum_version_id = 0,
1981
    .minimum_version_id_old = 0,
1982
    .pre_save = lsi_pre_save,
1983
    .fields      = (VMStateField []) {
1984
        VMSTATE_PCI_DEVICE(dev, LSIState),
1985

    
1986
        VMSTATE_INT32(carry, LSIState),
1987
        VMSTATE_INT32(sense, LSIState),
1988
        VMSTATE_INT32(msg_action, LSIState),
1989
        VMSTATE_INT32(msg_len, LSIState),
1990
        VMSTATE_BUFFER(msg, LSIState),
1991
        VMSTATE_INT32(waiting, LSIState),
1992

    
1993
        VMSTATE_UINT32(dsa, LSIState),
1994
        VMSTATE_UINT32(temp, LSIState),
1995
        VMSTATE_UINT32(dnad, LSIState),
1996
        VMSTATE_UINT32(dbc, LSIState),
1997
        VMSTATE_UINT8(istat0, LSIState),
1998
        VMSTATE_UINT8(istat1, LSIState),
1999
        VMSTATE_UINT8(dcmd, LSIState),
2000
        VMSTATE_UINT8(dstat, LSIState),
2001
        VMSTATE_UINT8(dien, LSIState),
2002
        VMSTATE_UINT8(sist0, LSIState),
2003
        VMSTATE_UINT8(sist1, LSIState),
2004
        VMSTATE_UINT8(sien0, LSIState),
2005
        VMSTATE_UINT8(sien1, LSIState),
2006
        VMSTATE_UINT8(mbox0, LSIState),
2007
        VMSTATE_UINT8(mbox1, LSIState),
2008
        VMSTATE_UINT8(dfifo, LSIState),
2009
        VMSTATE_UINT8(ctest2, LSIState),
2010
        VMSTATE_UINT8(ctest3, LSIState),
2011
        VMSTATE_UINT8(ctest4, LSIState),
2012
        VMSTATE_UINT8(ctest5, LSIState),
2013
        VMSTATE_UINT8(ccntl0, LSIState),
2014
        VMSTATE_UINT8(ccntl1, LSIState),
2015
        VMSTATE_UINT32(dsp, LSIState),
2016
        VMSTATE_UINT32(dsps, LSIState),
2017
        VMSTATE_UINT8(dmode, LSIState),
2018
        VMSTATE_UINT8(dcntl, LSIState),
2019
        VMSTATE_UINT8(scntl0, LSIState),
2020
        VMSTATE_UINT8(scntl1, LSIState),
2021
        VMSTATE_UINT8(scntl2, LSIState),
2022
        VMSTATE_UINT8(scntl3, LSIState),
2023
        VMSTATE_UINT8(sstat0, LSIState),
2024
        VMSTATE_UINT8(sstat1, LSIState),
2025
        VMSTATE_UINT8(scid, LSIState),
2026
        VMSTATE_UINT8(sxfer, LSIState),
2027
        VMSTATE_UINT8(socl, LSIState),
2028
        VMSTATE_UINT8(sdid, LSIState),
2029
        VMSTATE_UINT8(ssid, LSIState),
2030
        VMSTATE_UINT8(sfbr, LSIState),
2031
        VMSTATE_UINT8(stest1, LSIState),
2032
        VMSTATE_UINT8(stest2, LSIState),
2033
        VMSTATE_UINT8(stest3, LSIState),
2034
        VMSTATE_UINT8(sidl, LSIState),
2035
        VMSTATE_UINT8(stime0, LSIState),
2036
        VMSTATE_UINT8(respid0, LSIState),
2037
        VMSTATE_UINT8(respid1, LSIState),
2038
        VMSTATE_UINT32(mmrs, LSIState),
2039
        VMSTATE_UINT32(mmws, LSIState),
2040
        VMSTATE_UINT32(sfs, LSIState),
2041
        VMSTATE_UINT32(drs, LSIState),
2042
        VMSTATE_UINT32(sbms, LSIState),
2043
        VMSTATE_UINT32(dbms, LSIState),
2044
        VMSTATE_UINT32(dnad64, LSIState),
2045
        VMSTATE_UINT32(pmjad1, LSIState),
2046
        VMSTATE_UINT32(pmjad2, LSIState),
2047
        VMSTATE_UINT32(rbc, LSIState),
2048
        VMSTATE_UINT32(ua, LSIState),
2049
        VMSTATE_UINT32(ia, LSIState),
2050
        VMSTATE_UINT32(sbc, LSIState),
2051
        VMSTATE_UINT32(csbc, LSIState),
2052
        VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2053
        VMSTATE_UINT8(sbr, LSIState),
2054

    
2055
        VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2056
        VMSTATE_END_OF_LIST()
2057
    }
2058
};
2059

    
2060
static int lsi_scsi_uninit(PCIDevice *d)
2061
{
2062
    LSIState *s = DO_UPCAST(LSIState, dev, d);
2063

    
2064
    cpu_unregister_io_memory(s->mmio_io_addr);
2065
    cpu_unregister_io_memory(s->ram_io_addr);
2066

    
2067
    qemu_free(s->queue);
2068

    
2069
    return 0;
2070
}
2071

    
2072
static int lsi_scsi_init(PCIDevice *dev)
2073
{
2074
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
2075
    uint8_t *pci_conf;
2076

    
2077
    pci_conf = s->dev.config;
2078

    
2079
    /* PCI Vendor ID (word) */
2080
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2081
    /* PCI device ID (word) */
2082
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2083
    /* PCI base class code */
2084
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2085
    /* PCI subsystem ID */
2086
    pci_conf[0x2e] = 0x00;
2087
    pci_conf[0x2f] = 0x10;
2088
    /* PCI latency timer = 255 */
2089
    pci_conf[0x0d] = 0xff;
2090
    /* Interrupt pin 1 */
2091
    pci_conf[0x3d] = 0x01;
2092

    
2093
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2094
                                             lsi_mmio_writefn, s);
2095
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2096
                                            lsi_ram_writefn, s);
2097

    
2098
    pci_register_bar((struct PCIDevice *)s, 0, 256,
2099
                           PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2100
    pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2101
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2102
    pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2103
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2104
    s->queue = qemu_malloc(sizeof(lsi_queue));
2105
    s->queue_len = 1;
2106
    s->active_commands = 0;
2107

    
2108
    lsi_soft_reset(s);
2109

    
2110
    scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2111
    if (!dev->qdev.hotplugged) {
2112
        scsi_bus_legacy_handle_cmdline(&s->bus);
2113
    }
2114
    vmstate_register(-1, &vmstate_lsi_scsi, s);
2115
    return 0;
2116
}
2117

    
2118
static PCIDeviceInfo lsi_info = {
2119
    .qdev.name  = "lsi53c895a",
2120
    .qdev.alias = "lsi",
2121
    .qdev.size  = sizeof(LSIState),
2122
    .init       = lsi_scsi_init,
2123
    .exit       = lsi_scsi_uninit,
2124
};
2125

    
2126
static void lsi53c895a_register_devices(void)
2127
{
2128
    pci_qdev_register(&lsi_info);
2129
}
2130

    
2131
device_init(lsi53c895a_register_devices);